Algebra II - Local fields

8. Exercise sheet

Exercise 1 (4 points):

Set $K:=\mathbb{Q}_{2}\left(\zeta_{8}\right)$ with ζ_{8} a primitive 8-th root of unity.

1) Show that $K=\mathbb{Q}_{2}(\sqrt{2}, i)$.
2) Let $G:=\operatorname{Gal}\left(K / \mathbb{Q}_{2}\right)$ and $H:=\operatorname{Gal}\left(K / \mathbb{Q}_{2}(\sqrt{2})\right)$. Then $G / H \cong \operatorname{Gal}\left(\mathbb{Q}_{2}(\sqrt{2}) / \mathbb{Q}_{2}\right)$. Show that $(G / H)_{i} \neq G_{i} H / H$ for some $i \geq 0$.
Hint: Show first $\mathbb{Q}\left(e^{2 \pi i / 8}\right)=\mathbb{Q}(\sqrt{2}, i)$.

Exercise 2 (4 points):

Let $L:=\mathbb{Q}_{2}(\alpha, i), \alpha^{4}=2$, and $K:=\mathbb{Q}_{2}\left(\zeta_{8}\right) \subseteq L$ with ζ_{8} a primitive 8-th root of unity. Set $\pi_{K}:=1-\zeta_{8}$ and $u:=\frac{\sqrt{2}}{\pi_{K}^{2}} \in K$.

1) Show that $1-u \equiv \pi_{K} \bmod \pi_{K}^{2}$ and deduce that $1-u$ is a uniformizer in \mathcal{O}_{K}.
2) Show that $L=K(\sqrt{u})$ with uniformizer $1+\sqrt{u} \in \mathcal{O}_{L}$. Deduce that $\mathcal{O}_{L} \neq \mathbb{Z}_{2}[\alpha, i]$.

Exercise 3 (4 points):

We keep the notation from exercise 2 .

1) Show that L / \mathbb{Q}_{2} is Galois with Galois group $G=\langle\sigma, \tau\rangle$ the dihedral group with 8 elements. Here, $\sigma(i)=-i, \tau(i)=i, \sigma(\alpha)=\alpha, \tau(\alpha)=i \alpha$.
2) Show that

$$
G=G_{1} \supsetneq G_{2}=G_{3}=\langle\tau\rangle \supsetneq G_{4}=\ldots=G_{7}=\left\langle\tau^{2}\right\rangle \supsetneq G_{8}=\{1\}
$$

is the lower ramification filtration.
3) Show that the jumps in the upper ramification filtration on G are $1,2,3$.

Exercise 4 (4 points):

Set $f(X)=1+x+\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\ldots+\frac{1}{8} x^{8}$.

1) Draw the Newton polygon of $f \in \mathbb{Q}_{p}[X]$ for $p=5,7$.
2) Show that $f(X)$ factors in $\mathbb{Q}_{7}[X]$ in irreducible polynomials of degree 1 and 7 , and over $\mathbb{Q}_{5}[X]$ in irreducible polynomials of degree 3 and 5 . Deduce that $f(X) \in \mathbb{Q}[X]$ is irreducible.

To be handed in on: Thursday, 7.12.2023 (during the lecture, or via eCampus).

