Dr. D. Schwein
Dr. J. Anschütz

Algebra II - Local fields

7. Exercise sheet

Exercise 1 (4 points):

Let K be a complete discretely valued field with perfect residue field k, and let L / K be a finite Galois extension with group G and lower ramification filtration $G_{i} \subseteq G, i \geq-1$. Let $\pi \in L$ be a uniformizer, and let $U_{L}^{0}:=\mathcal{O}_{L}^{\times} \supseteq U_{L}^{i}:=1+\pi^{i} \mathcal{O}_{L}, i \geq 1$, be the filtration of the units.

1) Show that $U_{L}^{0} / U_{L}^{1} \cong\left(\mathcal{O}_{L} / \pi\right)^{\times}, x U_{L}^{1} \mapsto x+\pi \mathcal{O}_{L}$ and $U_{L}^{i} / U_{L}^{i+1} \cong \pi^{i} \mathcal{O}_{L} / \pi^{i+1} \mathcal{O}_{L}, x U_{L}^{i+1} \mapsto$ $(x-1)+\pi^{i+1} \mathcal{O}_{L}$ are isomorphisms for $i \geq 1$.
2) Show that for $i \geq 0$ the map $G_{i} / G_{i+1} \rightarrow U_{L}^{i} / U_{L}^{i+1}, \sigma G_{i+1} \mapsto \sigma(\pi) / \pi$ is a well-defined injective group homomorphism, which is independent of the choice of π. Conclude that every Galois extension of a local non-archimedean field is solvable.

Exercise 2 (4 points):

With notations from exercise 1 let $\theta_{i}: G_{i} / G_{i+1} \rightarrow \pi^{i} \mathcal{O}_{L} / \pi^{i+1} \mathcal{O}_{L}$ for $i \geq 1$ be the injective morphism constructed there.

1) Assume $i, j \geq 1, s \in G_{i}$ and $t \in G_{j}$. Show $s t s^{-1} t^{-1} \in G_{i+j}$ and $\theta_{i+j}\left(s t s^{-1} t^{-1}\right)=(j-i) \theta_{i}(s) \theta_{j}(t)$ by calculating consequently modulo π^{i+j+1}.
2) Assume $j \geq 1$ is maximal such that $G_{j} \neq\{1\}$. Show that sts ${ }^{-1} t^{-1}=1$.
3) Conclude that if $i, j \geq 1$ are jumps in the lower numbering filtration, i.e., $G_{i} \neq G_{i+1}$ and $G_{j} \neq G_{j+1}$, then $j \equiv i$ modulo $\operatorname{char}(k)$.

Exercise 3 (4 points):

Compute the upper numbering ramification filtration for the Galois extensions $K_{n} / K, n \geq 1$ prime to p, from Sheet 6, Exercise 2. In particular, compute the functions $\varphi_{K_{n} / K}, \psi_{K_{n} / K}$.

Exercise 4 (4 points):

Let L / K be a totally ramified extension with Galois group G isomorphic to the quaternion group $Q_{8}:=\left\langle i, j \mid i^{4}=1, j^{2}=i^{2}, i j=j i^{-1}\right\rangle$.

1) Show that $H:=\left\langle i^{2}\right\rangle \subseteq Q_{8}$ is the unique subgroup of order 2 , and that every subgroup of order 4 is cyclic.
2) Assume that the ramification subgroup G_{4} is trivial. Use exercise 2 to show that the lower ramification filtration on G is given by

$$
\{1\}=G_{4} \subsetneq G_{3}=G_{2}=H \subseteq G_{1}=G_{0}=G
$$

3) Show that the upper ramification filtration on G is given by

$$
G^{v}= \begin{cases}G, & 0 \leq v \leq 1 \\ H, & 1<v \leq \frac{3}{2} \\ \{1\}, & v>\frac{3}{2}\end{cases}
$$

To be handed in on: Thursday, 30.11.2023 (during the lecture, or via eCampus).

