Dr. D. Schwein Dr. J. Anschütz

Algebra II - Local fields

5. Exercise sheet

Exercise 1 (4 points):

1) Let *I* be a filtered poset and let $(K_i, \iota_{ij}: K_i \to K_j, i \leq j)$ be an inductive system of fields, i.e., the K_i are fields and the ι_{ij} are ring homomorphisms. Show that the filtered union $\bigcup_{i \in I} K_i$ is a field. 2) Set $K := \mathbb{F}_p((t))$ and let $F : K \to K, \ x \mapsto x^p$ be the Frobenius of *K*. Realize the filtered union of the inductive system $K \xrightarrow{F} K \xrightarrow{F} \ldots$ and the inverse limit of the projective system $\ldots \xrightarrow{F} K \xrightarrow{F} K$ as subfields of \overline{K} .

Exercise 2 (4 points):

1) Show $\mathbb{Q}/\mathbb{Z} \cong \bigoplus_{p \text{ prime}} \mathbb{Q}/\mathbb{Z}_{(p)} \text{ and } \mathbb{Q}/\mathbb{Z}_{(p)} \cong \mathbb{Q}_p/\mathbb{Z}_p.$ 2) Show that $\widehat{\mathbb{Z}} \cong \operatorname{End}_{\mathbb{Z}}(\mathbb{Q}/\mathbb{Z}) \cong \prod_{p \text{ prime}} \mathbb{Z}_p \text{ and } \mathbb{Z}_p \cong \operatorname{End}_{\mathbb{Z}}(\mathbb{Q}_p/\mathbb{Z}_p) \text{ (as rings).}$

Exercise 3 (4 points):

Let K be a non-archimedean local field with residue field \mathbb{F}_q and let K^{sep} be a separable closure of K. Let $K^{\text{tr}} \subseteq K^{\text{sep}}$ be the union of all finite tamely ramified extensions L/K in K^{sep} .

1) Show that K^{tr} is Galois over K.

2) Show that $\operatorname{Gal}(K^{\operatorname{tr}}/K) \cong (\prod_{\ell \neq p \text{ prime}} \mathbb{Z}_{\ell}) \rtimes \widehat{\mathbb{Z}}$ with $1 \in \widehat{\mathbb{Z}}$ acting on $\prod_{\ell \neq p \text{ prime}} \mathbb{Z}_{\ell}$ via multiplication

by q.

Exercise 4 (4 points):

Let S be a topological space.

1) Assume that S is compact and Hausdorff and that $T \subseteq S$ is a connected component. Show that T is the intersection of all open and closed subsets containing T.

2) Show that S is a profinite set if and only if S is compact, Hausdorff and totally disconnected. Hint: For the reverse direction map S to the inverse limit of its discrete quotients S_i .

3) Show that $\{0\} \cup \{1/n \mid n \in \mathbb{N}\} \subseteq [0, 1]$ and the Cantor set $\mathcal{C} \subseteq [0, 1]$ are profinite sets and that as topological spaces $\mathcal{C} \cong \mathbb{Z}_2$.

Remark: In fact, $\mathcal{C} \cong \mathbb{Z}_p$ for any prime p.

To be handed in on: Thursday, 16.11.2023 (during the lecture, or via eCampus).