Dr. D. Schwein Dr. J. Anschütz WS 2023/24

Algebra II - Local fields

4. Exercise sheet

Exercise 1 (4 points):

Prove that $\mathbb{C}_p := \widehat{\mathbb{Q}_p}$ is algebraically closed.

Exercise 2 (4 points):

Set $K := \mathbb{Q}(i)$. Find a prime p and two inequivalent extensions of the p-adic valuation on \mathbb{Q} to K.

Exercise 3 (4 points):

Let $K := \mathbb{Q}_3(\alpha)$ with $\alpha^6 - 12\alpha^3 + 360$, and let |-| be the extension of the *p*-adic norm to *K*. Show that Q₃(√2) ≅ Q₃(√-1) is a subfield of K.
Determine the degree [K : Q₃], the ramification index e(K/Q₃), the inertia degree f(K/Q₃)

and the norm $|\alpha|$.

Exercise 4 (4 points):

Let $n \geq 1$ and let K/\mathbb{Q}_p be a finite extension. Show that K has (up to isomorphism) only finitely many field extensions of degree $\leq n$. Hint: Use Krasner's lemma and the fact that Eisenstein polynomials are irreducible.

To be handed in on: Thursday, 09.11.2023 (during the lecture, or via eCampus).