Dr. D. Schwein
WS 2023/24
Dr. J. Anschütz

Algebra II - Local fields

3. Exercise sheet

Exercise 1 (4 points):

Let K be a complete non-archimedean field with norm $|-|$ and let $\pi \in K$ with $0<|\pi|<1$.

1) Let $S \subseteq \mathcal{O}_{K}$ be a system of representatives of $\mathcal{O}_{K} / \pi \mathcal{O}_{K}$. Show that the map

$$
S^{\mathbb{N}} \rightarrow \mathcal{O}_{K},\left(a_{0}, a_{1}, \ldots\right) \mapsto \sum_{n=0}^{\infty} a_{n} \pi^{n}
$$

is a well-defined homeomorphism (with S given the discrete topology).
2) Let L be one of the fields $\bigcup_{n \geq 1} \mathbb{Q}_{p}\left(\mu_{n}\right), \bigcup_{n \geq 1} \mathbb{Q}_{p}\left(p^{1 / n}\right), \overline{\mathbb{Q}}_{p}$ with $\mu_{n} \subseteq \overline{\mathbb{Q}}_{p}{ }^{\times}$the subgroup of n-th roots of unity. Let \widehat{L} be the completion of L for the unique norm extending $|-|_{p}$ on \mathbb{Q}_{p}. In each case construct an element $x \in \widehat{L} \backslash L$.

Exercise 2 (4 points):

1) Let p be a prime. Construct a sequence $a_{n} \in \mathbb{Q}, n \geq 0$, and $x \neq y \in \mathbb{Q}$ such that $\sum_{n=0}^{\infty} a_{n}$ converges in \mathbb{Q}_{p} to x, while $\sum_{n=0}^{\infty} a_{n}$ converges in \mathbb{R} to y.
2) Let K be a complete non-archimedean field. Show that an infinite product $\prod_{n=0}^{\infty} a_{n}$ with $a_{n} \in K^{\times}$ converges to some $a \in K^{\times}$if and only if $a_{n} \rightarrow 1, n \rightarrow \infty$.

Exercise 3 (4 points):

Let K be a complete non-archimedean field with residue field $k:=\mathcal{O}_{K} / \mathfrak{m}_{K}$ of characteristic $p \geq 0$. Let $n \geq 1$ and assume that p does not divide n.

1) Show that the map $\left\{y \in \mathcal{O}_{K} \mid y^{n}=1\right\} \rightarrow\left\{z \in k \mid z^{n}=1\right\}, y \mapsto y \bmod \mathfrak{m}_{K}$ is bijective.
2) Show that the map $x \mapsto x^{n}$ is bijective on the principal units $U_{K}:=\left\{y \in \mathcal{O}_{K} \mid y \equiv 1 \bmod \mathfrak{m}_{K}\right\}$.
3) Let p be an odd prime. Show that the degree 2 extensions of \mathbb{Q}_{p} are exactly $\mathbb{Q}_{p}(\sqrt{p}), \mathbb{Q}_{p}\left(\zeta_{p^{2}-1}\right)$ or $\mathbb{Q}_{p}\left(\zeta_{p^{2}-1} \cdot \sqrt{p}\right)$. Here, $\zeta_{p^{2}-1}$ denotes a $p^{2}-1$-th primitive root of unity.

Exercise 4 (4 points):

1) Show that $\mathbb{Q}_{p}^{\times} \cong \mathbb{Z} \times \mathbb{F}_{p}^{\times} \times U_{\mathbb{Q}_{p}}$ as topological groups, and that $U_{\mathbb{Q}_{p}}$ is the maximal $\mathbb{Z}_{(p) \text {-module }}$ of \mathbb{Q}_{p}^{\times}. Here, $\mathbb{Z}_{(p)}$ is the localization of \mathbb{Z} at the multiplicative set $p \mathbb{Z} \backslash\{0\}$.
2) Let p_{1}, p_{2} be primes and let $\alpha: \mathbb{Q}_{p_{1}} \cong \mathbb{Q}_{p_{2}}$ be any isomorphism of fields. Show that $p_{1}=p_{2}$ and $\alpha=\operatorname{Id}_{\mathbb{Q}_{p_{1}}}$.
Hint: First show $p_{1}=p_{2}$. By sheet 1, exercise 1 it is then sufficient to show that α is continuous.
To be handed in on: Thursday, 02.11.2023 (during the lecture, or via eCampus).
