Dr. D. Schwein Dr. J. Anschütz

WS 2023/24

Algebra II - Local fields

1. Exercise sheet

Exercise 1 (4 points):

1) Find the 7-adic expansion of $2/5 \in \mathbb{Q}$ up to 7^3 , i.e., the coefficients in $\{0, 1, \ldots, 6\}$ in front of $7^0, 7^1, 7^2$.

2) Find the full 7-adic expansion of $1/6 \in \mathbb{Q}$.

3) Find a solution of the equation $x^2 = 2$ in \mathbb{Z}_7 up to 7^3 .

Exercise 2 (4 points):

1) Let p be a prime and $a \in \mathbb{Z}$ coprime to p. Show that $a^{p^n}, n \in \mathbb{N}$, is a Cauchy sequence in \mathbb{Q}_p and hence converging to some element $x \in \mathbb{Q}_p$. Show that $x \in \mathbb{Z}_p$.

Hint: Prove first that $a^{(p-1)p^{n-1}} \equiv 1 \mod p^n$. 2) For a, x as in 2) show $a \equiv x \mod p\mathbb{Z}_p$ and that $x^{p-1} = 1$. In particular, deduce that the polynomial $X^{p-1} - 1$ splits completely in \mathbb{Q}_p .

Exercise 3 (4 points):

Let K be a field and let $|-|: K \to \mathbb{R}_{\geq 0}$ be a norm. Show that the completion \widehat{K} of K with respect to |-| is a topological field, i.e., \widehat{K} is a field and addition/multiplication/inversion are well-defined and continuous. Here, $\widehat{K} \times \widehat{K}$ is equipped with the product topology and $\widehat{K} \setminus \{0\}$ with the subspace topology.

Exercise 4 (4 points):

1) Let p be a prime. Show that any continuous ring automorphism of \mathbb{Q}_p is the identity. Remark: We will eventually see that any ring automorphism of \mathbb{Q}_p is continuous. 2) Show that any ring automorphism of \mathbb{R} is the identity.

Hint: Show first that each ring automorphism must preserve the order on \mathbb{R} .

To be handed in on: Thursday, 19.10.2023 (during the lecture, or via eCampus).