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Introduction
This course was taught in Bonn, Germany over the Sommersemester 2017, by Prof. Dr. Peter Scholze.

We started by looking at properties of flat maps between schemes, as a way of parametrising nice
families of schemes over the base scheme. This naturally lead us into the study of smooth, unramified,
and étale morphisms, as well as the sheaf of Kdhler differentials. Whilst proving that smoothness is lo-
cal on source, we defined the first cohomology group H'(X, F) of an abelian sheaf on a scheme F using
F-torsors. This pushed us to define sheaf cohomology in general, and explore some of the associated
homological algebra surrounding it. After proving some technical statements about the cohomology of
coherent sheaves, and various base change properites, we had all the fire-power we needed to state and
prove the Riemann-Roch Theorem and Serre Duality. We wrapped up the course with the theory of
formal functions, Zariski’s main theorem and Stein factorisation.

The author really needs to thank Johannes Anschiitz, Alice Campigotto, Mafalda Santos, and Sarah
Scherotzke for help editing these notes, both mathematically and Englishly.






1 Overview of the Course 20/04/2017

Recall that algebraic geometry is the study of geometric objects that are locally defined as the solution
set of a system of polynomial equations,

pl(xla”-axn) = :p'rn(x17--~7x7z) =0,

over some field k. This is encoded algebraically in the k-algebra A = k[z1,...,2,]/(p1,...,Pm), and
geometrically as the affine scheme Spec A, the set of all prime ideals of A, with the Zariski topology,
and a sheaf of k-algebras on it. By gluing together these affine schemes we obtain general schemes (in
this case only schemes of finite type over a field k). This semester we will explore two main topics:

I Families of schemes; the notations of flatness and smoothness.
II Cohomology of (quasi-coherent) sheaves.

This lecture we’ll just see a preview of both of these topics.

I - Families of Schemes
Definition 1.1. A family of schemes (parametrised by the base scheme S) is a morphism f: X — S.

The intuition here should be that for all points s € S we have a scheme Speck(s) and an inclusion
Speck(s) < S. For all point s € S we can then define the fibre of f at s simply as the pullback,

X; := X Xg Speck(s),

which is a scheme over k(s). In this way we can move from morphisms f : X — S to a family of
schemes X over k(s) parametrised by s € S. This process forgets some information, so knowing the
morphism f is important. However, this definition is mostly useless in this generality, as the following
stupid example ilustrates.

Example 1.2. Start with a scheme S, and choose any collection of schemes X (s) such that each X (s)
is a scheme over k(s), with no assumed compatibility. Then we let X =[] _g X (s), which is a scheme,
and we obtain a map,

fX= HX(S) — HSpeck(s) — S.

ses seS
For s’ € S, we then have,
Xyg = X x5 Speck(s') = H X (s) xs Speck(s") = X (s),
seS

since the only time the fibre X (s) x g Speck(s’) is non-empty is when s = s’. This is a silly family of
schemes, since over each point s € S, the fibres X; = X (s) need to have no relations amongst each
other.

We need to somehow find a condition which encodes the idea of a continuous family of schemes. This
leads us to the notions of flatness and smoothness.

Recall 1.3. Let A be aring and M be an A-module, then we have a functor —® 4 M from the category
of A-modules onto itself. This functor is always right exact, so if

0—N —N—N'—0,
is an exact sequence of A-modules, then
N@xaM-—NRuM— N'" @4 M —0,

is also an exact sequence of A-modules. However, the map N'®4 M — N ® 4 M might not be injective.



Definition 1.4. An A-module M is flat if the functor — @4 M is exact.

This is equivalent to the following statement: if N/ < N is an injective map of A-modules, then
N®4 M N®a M is an injective map of A-modules.

Definition 1.5. A morphism of schemes f : X — S is flat if for all open affine U = Spec A C X
mapping to Spec R C S, the corresponding map R — A makes A a flat R-module.

Remark 1.6. This definition and the interpretation of this as a good definition for a continuous family
of schemes was suggested by Serre. It can be tricky to obtain a good geometric understanding of this.

Example 1.7 (Non-flat ring map). Let A be a local ring, and f € my C A be a nonzero divisor of A.
Then A/fA is not a flat A-module. More generally, if B is any nonzero A/ f A-algebra, then B is not
a flat A-module. The object Spec B is somehow vertical over Spec A, so there are non-empty fibres of
Spec B — Spec A over V(f), but the fibres away from V(f) are empty. Visually, we might view Spec B
as hanging vertically over Spec A. To see this, note that we have an injective map fA — A. But its
tensor, fA®4 B — B is not injective unless fA ®4 B = 0 (since its image must be contained in fB,
which is 0). But since f is a nonzero divisor, fA >~ A, so fA®s B>~ A®4 B = B # 0. Hence B is not
flat.

More generally we have the following statement
Proposition 1.8. If A is a ring and M is a flat A-module, then the set
Zy ={x € X =SpecA|M @4 k(z) #0},
is generalising, i.e. if v € Zp; and x € @ for some y € Spec A, then y is also in Zy;.

Proof. Choose an « € Z);, and a generalisation of x, say y € Spec A. Then we have prime ideals p
and q of A corresponding to x and y respectively. We need to show M ® k(y) = (M/q)q # 0. We
can replace A by A/q, and M by M/q = M ®4 A/q, so A is a local integral domain, and M is a
non-zero flat A-module. This works since flatness is preserved by base change (see Lemma|2.7)). Setting
K = Frac A = Ay we then have an inclusion A — K, and after tensoring with M over A we obtain an
inclusion M — M ®4 K = M. Since M # 0, this implies M, # 0. O

Example 1.9. If A =7 then M = Z/pZ is not flat. Indeed, we have that
Zu ={(p)}-

But Z is an integral domain, so it has generic a point n = (0) which is not in Z,;. On the other hand,
if M = Q, then we see that Zg = {n}, which is closed under generalisations.

If f: X — S is a flat map, then our definition of a continuous family of schemes will make sense. Note
that if S = Speck for some field k, then all morphisms f as above are flat. This is algebraically clear,
since all modules over a field are free (vector spaces), and also geometrically clear since Speck is a
single point.

There is a stronger condition than flatness, called smoothness. We will see that this condition is
interesting even when S = Spec k. In fact, we have a theorem which states that f is smooth if and only
if fis flat and for all s € S, the morphism f, : X, — Speck(s) is smooth (see Theorem [6.12)). This
tells us than in order to know that a morphism is smooth, we only need to know that it is smooth over
a collection of fields.

Example 1.10. Consider the family of curves parametrised by y? = x> + z2 + t, for varying ¢, over a
field k of characteristic not equal to 2. Different values for ¢ parametrize different curves. In particular,
when ¢ > 0 the respective curve is smooth, but for ¢ = 0 we obtain a nodal singularity (the nodal
cubic). Hence this family of curves is not smooth, but it is flat since the deformations are continuous.
If we remove the point ¢ = 0 from the fibre and all other points that create singularities, we obtain a
smooth family of curves.



There are other adjectives we can use here too. A proper flat map gives us a continuous family of
compact (possibly singular) spaces, and a proper smooth map over C will be a continuous family of
compact complex manifolds. We will add more adjectives like unramifed and étale as the semester
carries on.

IT - Sheaf Cohomology

This machinery will be used to prove the Riemann-Roch theorem.

Recall 1.11. If k is an algebraically closed field, and C' is a projective smooth (or equivalently proper
normal) curve over k, then the genus g is defined as,

g = dim T(C,Q¢1.),
where Qf, /i 18 canonical line bundle on C', as defined in lecture 29 of [7].
Theorem 1.12 (Riemann-Roch). For all line bundles L on C' we have,
dimy, I(C, £) — dim, T(C, Qg @ LY) = deg L+ 1 — g.

Our proof of the Riemann-Roch theorem will have three major steps:

Step 1 For any (quasi-coherent) sheaf F on a scheme X, and for i > 0, we define the cohomology
groups H*(X, F) (the ith cohomology group of X with coefficients in F), with H%(X, F) = I'(X, F) in
such a way that, given an exact sequence

0—F —F—F"—0,
of sheaves, we obtain a long exact sequence on sheaf cohomology,

0— H'X,F)— H(X,F) = H' (X, F") - H (X, F) - HY(X,F) = ---.

Step 2 We prove that for any line bundle £ on a proper, normal curve C, the equality
dimy H°(C, £) — dimy, H*(C,£) =deg L+ 1 —g

holds. We note that various finiteness properties must hold here too, such as dim; H*(C, L) is finite,
which crutially uses properness.

Step 3 Finally we prove that given a proper, smooth scheme X over a field £ of dimension d, and a
vector bundle £ over X , we have an isomorphism

H'(X,F) = Hom(H™"(X,90% ), @ FY), k).

This is called the Serre duality. In particular, if X = C, then d = 1 and we see that H*(C, F) is dual
to HY(C, Qé/k ® FY).

Remark 1.13. If £ is a coherent sheaf over a projective smooth scheme X/k with d = dim X, then
we can define its Euler characteristic,

d

X(X,€) = (1) dimy, H'(X, ),

i=1

assuming that each H*(X,£) is a finite dimensional k-vector space, and H*(X,€) = 0 for large values of
i. Famously, Hirzebruch expressed this as an explicit formula in terms of the Chern classes of £, which
are somehow generalisations of the degree of a line bundle. This is called the Riemann-Roch-Hirzebruch
theorem, and it can be seen written in the entrance of the Max Plank Institute for Mathematics in
Bonn.



2 Flatness 24/04/2017

We start by recalling some definitions.

Definition 2.1. 1. Given a ring A, and an A-module M, then we say that M is flat (as an A-
module) if the functor — ®4 M s exact.

2. If : A — B is a map of rings, then ¢ is flat if B a flat A-module through ¢.

3. If ¢ : A — B is a flat map of rings such that the induced morphism of schemes Spec B — Spec A
is surjective, then we call ¢ faithfully flat (treuflach auf Deutsch).

We now give a range of examples of flat modules and morphisms.

Example 2.2 (Localisations). If S C A is a multiplicatively closed subset of A, then A — A[S™!] is
flat. Indeed, in this case we can see that — ®4 A[S™!] is given by M + M[S™1] on any A-module M,
which we already know to be exact from exercise 6.3(i) from last semester.

Example 2.3 (Filtered Colimits). We already know that filtered colimits of A-modules are exact.
Using the fact that the tensor product of filtered colimits is the filtered colimit of the tensor product
(which we can see by adjunction) allows us to conclude that filtered colimits of flat modules are flat
from exercise 3.4 from last semester.

We can relate the previous two examples by realising the localisation of A at S as a filtered colimit,
A[STY = colim,eg A[s 1.
For example, we saw last semester that A[f~!] for any f € A is simply the colimit of the diagram
Adsa Tyt
where all the maps are multiplication by f.

Theorem 2.4 (Lazard). An A-module is flat if and only if it is a filtered colimit of finite free A-modules.

Example 2.5 (Completions). Let A be a noetherian ring with an ideal I C A, and
A=limA/I",

the I-adic completion of A. Then the morphism A — A is flat. To see this, if M is a finitely generated
A-module, we know that M ®4 A — M is an isomorphism, and that M — M is exact (see Lemma
10.95.1 part (3) in [§]). But M is a flat A-module if and only if for all finitely generated ideals I C A,
the induced map

TQAM— M

is injective. Applying this to M = ﬁ’ we get that it is enough to show that T Ais injective. But
this is just the exactness of completions of finitely generated A-modules mentioned above.

Example 2.6. Let X = Spec A = J_, D(f;) for some collection of f; € A. Notice that the map,
n
A— B=]JAlf"
i=1
is faithfully flat. Indeed, B is a finite direct surrﬂ of flat modules so it is flat, and the induced map
Spec B — Spec A = X,

is surjective since the D(f;)’s form a cover of X.

IRecall finite direct sums are isomorphic to finite direct products in an abelian category (see Definition .



Lemma 2.7. Let ¢ : A — B be a map of rings, M be an A-module and N be a B-module.
1. If M is a flat A-module, then M @4 B is a flat B-module.
2. If ¢ is flat and N is a flat B-module, then N is also flat as an A-module.

Proof. To prove 1, notice we have the following commutative diagram (up to canonical isomorphism)

of functors.

B—Mod 225%™ b 2 od

lforg. lforg.

A—Mod —24M o A_Mod

The two vertical functors are exact. Note that we can check the exactness of B-modules in the category
of abelian groups, so it suffices to check exactness after forgetting to the category of A-modules. The
bottom functor is exact by assumption, hence the top functor is also exact. For Part 2 we use a similar
argument. Consider the following commutative diagram (up to canonical isomorphism) of functors.

A—Mod —248_ B_Mod

—®AN=(—®AB)®BNJ/ J{*@BN

A—Mod T B—Mod

The top and right funtors are exact by assumption and the bottom functor is always exact, hence the
left functor must also be exact. O

The important proposition we would like to prove this lecture is the following.

Proposition 2.8 (Flatness Descent). If ¢ : A — B is faithfully flat and M is an A-module, then M
is flat if and only if M ®4 B is flat.

If we apply this to Example we see that it implies that M is flat if and only if M| f[l] is a flat
Al fi_l]—module fori=1,...,n. In particular, we only need to check flatness on localisations at elements
which generate the unit ideal of A.

To prove this proposition we need a lemma;:

Lemma 2.9. Let ¢ : A — B be a flat map, and C*® be an integer graded complex (so we have maps
d:C"— C for all i € Z, such that d*> = 0) of A-modules. Then C*® is exact implies that C* @4 B
is exact. In fact, we have

H*(C*®4 B) = H*(C*)®4 B.
Conversely, if ¢ is faithfully flat, then exactness of C* ® 4 B implies exactness of C*.

It might seem strange that we have to work with complexes, but we will need this added generality
later on. For now, we recall some definitions and facts from homological algebra.

Recall 2.10. If C* is a complex of A-modules, then we define submodules B* C Z* C C" as follows:
B’ is the image of d : C*~! — C* and Z’ is the kernel of d : C* — C**'. Notice that B* C Z since
d? = 0. We define the cohomology of C* as

H'(C*) = Z'/B".

We say that C'*® is an exact complex (also called acyclic) if its defining sequence is exact, i.e. kerd = imd
for all d. Then we have that Z* = B? for all i € Z, and thus H(C*®) = 0 for all i € Z.



Proof of Lemma[2.9 The first part of the lemma is a formal consequence of the following two short
exact sequences, _ 4 _
0— 7' — C"— B — 0,

0—B — 7' — H —0,
which, after tensoring with the flat A-module B, gives us short exact sequences,

0—Z2'®4B—C"®1B— B ®,4B—0, (2.11)

0— B ®4B—2Z"'®4B— H ®4 B—0. (2.12)

Sequence [2.11] tells us that B**! ® 4 B is the image of the map d ® 4 B, which has kernel Z' ® 4 B.
Sequence [2.12] tells us that, the H(C®*) ® 4 B is isomorphic to the quotient of Z* ® 4 B by B* ®4 B,
which is by definition H?(C*® ®4 B). For the converse, note that H(C*®* ® 4 B) = H(C*) ®4 B, so if
we setting M = H!(C*®) we see that it suffices to check that M ®4 B = 0 implies M = 0. Assume
not, and take an element 0 # x € M. Let I g A be the annihilator of x. Then we have an inclusion
A/I — M, from which by flatness we obtain another injection, B/IB < M ® 4 B. Then observe the
following pullback square.

Spec(B/IB) —— Spec(A/I)

l l

Spec(B) ——— Spec(A)

We know the bottom map is surjective, and that the right map is a closed immersion, so the left map
must also be closed and the top map is surjective. This implies that B/IB # 0, which contradicts our
assumption since we have an injection B/BI < M ®4 B = 0. O

Proof of Proposition[2.8 Let 0 = N’ — N — N’ — 0 be an exact sequence of A-modules. We have
to show that the sequence, after tensoring with — ® 4 M, is still exact. The map ¢ is faithfully flat, so
by Lemma [2.9] it suffices to check exactness after tensoring the sequence with B. We are reduced to
showing the exactness of,

O—)N’@AM(@AB—)N@AM@AB—)N”@AM®AB—>O.

However, we know M ® 4 B is flat as a B-module, so flatness of ¢ implies that M ® 4 B is flat as an
A-module by Lemma [2.7] The result follows. O

We now generalize these results in scheme-theoretic language.

Proposition 2.13 (Definition/Proposition). Let X be a scheme and M a quasi-coherent sheaf (of
Ox-modules) on X. Then M is flat if one of the following equivalent conditions hold:

1. For all open affines U = Spec A C X, M(U) is a flat Ox(U)-module.
2. There is a cover of X by open affines U = Spec A C X such that M(U) is a flat A-module.
We must show that the conditions are equivalent.

Proof. The first implication is trivial. For the converse, suppose that X = |JU; for some U; = Spec(A4;)
is a cover such that M(U;) are flat A;-modules . For simplicity, we will consider one of those U; and
denote it by U = Spec(4). So M(U) is a flat A-module. Let f € A such that V = Spec A[f~1] =
Dy (f) C U. Clearly, we have that M(V) = M(U) ®4 A[f '], since M is quasi-coherent, so M(V) is a
flat A[f~!] = Ox(V)-module. Such V’s form a basis for the topology on U, and thus on X. Therefore,
if Spec A’ = U’ C X is any open affine, we can find f] ..., f;, € A’ such that Dy/(f!) = Dy,(f;) CU;
for some U;, f; as above. Thus we see that

M(Dy(f7)) = MU ) @a A'[f]7]



is a flat A’'[f/"']-module, for i = 1,...,n. As flatness descends along the faithfully flat map,
A —TTAU,
i=1

we conclude that M(U’) is a flat A’-module. O
Now we need to define flat morphisms of schemes.

Proposition 2.14 (Definition/Proposition). A morphism of schemes f : Y — X is said to be flat if
one of the following equivalent conditions hold:

1. For all open affine V = Spec B CY mapped to an open affine U = Spec A C X, the map A — B
is flat.

2. There is a cover of Y by open affines V = Spec B CY mapping to open affines U = Spec A C X
such that A — B is flat.

Proof. Again, one of the implications is trivial. For the other implication, we start by proving that if
we shrink U and V the map is still flat. Then we show that if Y, X are affine the result holds, and the
result follows by gluing.

Indeed, since localisations are flat, we can restrict to open subsets of U, and since the composition of flat
maps is flat we can restrict to open subsets of V. For the second part, let f : Y = Spec B — X = Spec A
be a map of affine schemes, and assume that there exists a cover by distinguished open sets on X and
Y such that the restricted maps are flat. So, there is a cover Y = |J;_, D(g;) such that A — Blg; ']
is flat for i =1,. .. ,nE| Now we argue as in the proof of flat descent. Given a short exact sequence of
A-modules,

00— M — M — M"—0,

we want to conclude that the sequence after applying — ®4 B is still exact. However, the map B —
[T, Blg; 1] is faithfully flat, so we can check after tensoring with the latter product ring. This follows
from flat descent, and the flatness of Blg; '] over A. O

Remark 2.15. In [5], Grothendieck considers f : Y — X and a quasi-coherent sheaf A" on Y. Then
he defines "flatness of A over Ox”. If Y = X, this definition recovers flatness of quasi-coherent sheaves
and if A/ = Oy it recovers flatness of the map f. We will consider this more general approach in
Definition [[6.1l when it is needed.

We need the following result, but we will not prove it.

Proposition 2.16. Let P be the collection of all flat morphisms of schemes. Then P is closed under
composition, and satisfies the base change, product, and the local on the source and on the target
properties.

Proof. This is Proposition 14.3 in [2]. O

Notice that this is the first class of morphisms that we have defined (so far) that is local on the source.
This essentially follows by definition. The fact that these morphisms are also local on the target means
we can prove every other property stated above on affine schemes.

We now begin a detour into the subject of faithfully flat descent. Recall the following proposition
from last semester (see [7, Cor. 11.10]).

2A priori we only get that flatness of A[fi_l} — B[gi_l}, but A — A[f;!] is also flat.

3



Proposition 2.17. The functor M — M; = M[f[l] from the category of A-modules to the category of
collections of A[f~']-modules M; and isomorphisms c; : Mi[f;l] — M;[f;"] which satisfy the cocycle
condition, is an equivalence of categories.

The idea in what follows is to see the above statement as a special case of a much more general
statement. The general statement deals with faithfully flat maps, while the above only deals with the
faithfully flat map,

A—s ﬁA[f;l].
=1

Theorem 2.18. Let ¢ : A — B be a faithfully flat map. Then the category of A-modules is equivalent to
the category of B-modules, N, together with an isomorphism a: N®4 B = B4 N of B® 4 B-modules
such that the following diagram commutes,

a®aidp

NRuB®u B ———3 B N®sB

\ J{idB(X)AOé )

B®sB®a N

where the diagonal « is the map switching the tensor factors N and B ® 4 B.

The resulting functor F' sends an A-module M to (N = B ® 4 M, acan) where the isomorphism is the
canonical isomorphism,

acan:N®AB:B®AM®AB2B®AB®AM:B®AN.

Remark 2.19. This functor has a right adjoint. We will use it to prove the above equivalence. It is
defined as
(N,a)r—>eq( N—=BasN ) —neN|anh®l)=1en},

where the top map is n — 1 ®n and the bottom one is n — a(n ® 1). Indeed, given any M and (N, «)
we can easily check the natural isomorphism of hom-sets required for an adjunction:

f®aidp

M®AB®AB—>N®AB
Hom((M ®4 B, @can), (N,a)) = { f € Homp(M ®4 B, N) l“ l‘*
BosM®osB —2284 po, N
M- N s No,B
=< fo € Hom(M, N) l: la :HomA<M,eq<N:{B®AN)).

ML, N e, N

To prove Theorem we will need to show the unit and counit of the above adjunction are equiva-
lences, i.e. we need to see that

(unit) for all A-modules M, the map M — eq( B4 M —= BaB®a M ) is an isomorphism,
and

(counit) for all (IV, @) satifying the cocycle condition, if M = eq ( N —=X B®aN ) then M@, B — N

is an isomorphism.



3 Faithfully Flat Descent 27/04/2017

This lecture we shall prove Theorem [2.18| seen last time.

Remark 3.1 (Geometric Interpretation). Let f:Y = Spec B — Spec A = X be a faithfully flat map,
and let M be a quasi-coherent sheaf on X. Then N' = f* M is a quasi-coherent sheaf on Y. Note that
we have an isomorphism.

a: piN =pN,

where p; : Y Xx Y — Y are the canonical projections. Indeed, considering the usual diagram

YxyY 25V

lpl lf’
y — L . x

we immediatelly see that
PN =pif* M= (piof) M= (p2of) M=p;f"M=p;N.

Furthermore, this isomorphism « satisfies the cocycle condition on ¥ X x Y Xx Y. Actually, these
two conditions encode the fact that A comes from a quasi-coherent module on X, meaning that given
a quasi-coherent sheaf N on Y, it is the pullback of a quasi-coherent sheaf on X if and only if we
have an isomorphism « as above satisfying the cocycle condition. This is called descent because we
want to descend from a cover of Y down to X. We can descend modules by Theorem [2.I8] but with
more case we can descend schemes, morphisms, and properties (such as the descent of flatness from

Proposition .
For the proof of Theorem we recall Remark which says F' has a right adjoint, G, sending,

(N,a)»—>eq( N —=XB®aN )
In geometric terms, using the same notation as in Remark this equaliser can be simply written as
{s € H'Y.N) =N | pi(s) =p3(s) € H'(Y xx Y, piN) =o H'(Y xx Y, p3N)}.

Note that the definition of G' does not use the cocycle condition. Since we have an adjunction between
the categories in Theorem [2.18] we simply need to show that the unit and counit are isomorphisms.
We'll see that proving that the unit is an isomorphism does not make use of the cocycle conditionsﬂ

Proposition 3.2. Let ¢ : A — B be a faithfully flat map. Then the sequence
00— A—B— B®4B,

where the last map sends b—b®1—1® b is exact.

Proof. Suppose that ¢ : A — B has a section, so a ring map o : B — A such that 0 o ¢ = idAE|
Then it is clear that ¢ must be injective. Let b € B such that b® 1 = 1® b € B®4 B. The map
o0®aidp : B®4 B — Bsendsb® 1+ o(b) and 1®b+— b, so b= 0(b) € A, hence b € A (note that we
didn’t even need faithful flatness in this case).

3We remark this now, since the occurance of the cocycle conditions in the proof that the counit is an isomorphism
can be considered as a little subtle.

4This would usually be called a retraction of ¢, but when we consider the maps on spectra the map induced by o is
really a section.



For the general case, recall that flat descent (Proposition states that we can check the exact-
ness of our sequence above after applying the functor — ®4 B. If we let A’ = B, B’ = B ®4 B, then
our sequence becomes,

O—)A/—>B/—>B/®A/B,,

where last map is still ¥’ — ¥’ ® 1 —1®¥’. But in this case we have a trivial section m : B’ = B®4 B —
B = A’ of ¢, which is simply multiplication of B as an A-algebra. The result follows. O

The following is not a corollary of the above proposition, but it is a corollary of the proof as we will
see.

Corollary 3.3. Let A, B, ¢ as above. For any A-module, M, the natural map
M—)FG(M):eq( BoaM —= BoiBosM )
(where the two maps on the equalizer are the same as Remark is an isomorphism, i.e. the sequence,
00— M —>M®B—M®®s BB,

is exact, where the maps are m—> m®1 and mRJIbr—>mR°bRX1—m1Qb.

Proof. Instinctively, we would tensor Proposition with M, but tensoring is not left exact, so we
cannot naively do this. We shall use a similar argument as the one in the proof above . It is enough
to prove this after tensoring with — ® 4 B, so we can again assume that ¢ : A — B has a section o.
Then M — M ®4 B has a section, and is therefore injective. To see exactness in the middle, take
>, m; ®b; € M ®4 B satistying,

Zmi®bi®1zzmi®1®bi€M®A3®AB-
7 7

Then the map,
idM®AU®AidB:M®AB®AB—>M®AA®AB:M®A87

sends ), m; @b, @1+ . m; ®o(b;), and ), m; ®1®b; — Y, m; ®b;. Hence,
~j mi®bi :Zmu@a(bz) :Zmia(bi)®1 e M.

O

This gives us the unit case, and we will now procced to show the counit is an isomorphism. Let N be
a B-module, and a: N ® 4 B~ B®4 N a given isomorphism.

Proposition 3.4. If the pair (N, «) satisfies the cocycle condition, then the map

a®Bg 4 BidB
—4

Y:N=(N®pB®sB)®pg.8 B=(N®4 B)®pg.5 B (B®a N)®pg.p B=N,
1s the identity.

Remark 3.5 (Geometric Interpretation). Recall the set up of Remark We have « : piN =2 p3
Then we can see that the map v can be translated to the map,

Ak(a) : ASpIN = ASpsN,
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where Ay is the diagonal map, defined by the commutative diagram,

idy
Y

~

YxyY —25Y -

idy J{Pl J{f

y — I x

But note that A}p*{/\/ =N = A}pgj\/', so the above proposition is just saying that A% (a) = idy.

Proof. The idea is to use the fact that ¢ is an automorphism of N. In particular, this tells us that it
suffices to show that 1) o4 = . This is precisely where the cocycle condition is used. Let n € N, and
write a(n ® 1) = >, b; ® x; for some b; € B and x; € N. Then we can write,

p(n) =Y bi; €N,

straight from the definitions. We now write a(z; ® 1) = Zj bij ® y;; for some b;; € B and y;; € N.
The cocycle condition applied to n ® 1 ® 1 then tells us that,

Zbi®bij®yijzzbi®1®$i€B®A3®AN-
%, i

By applying the B-module action on N twice , we get
Z bibijyij = szxl € N.
i i

Then we obtain

Y((n)) = Zbﬂ/)(%) = Zbibijyij = sz% =1(n).

We can finally prove the counit result.

Proposition 3.6. Let (N, «) be a pair as above satisfying the cocycle condition, and let

M:eq(N:iB@AN).

Then the natural map M @4 B — N s an isomorphism, i.e. FG(N,a) = (N,«a), since the a’s are
automatically compatible.

Proof. Tt is enough to check this after — ® 4 B. Note that the equaliser commutes with — ® 4 B, by
flatness of ¢. Hence we may assume that ¢ has a section o : B — A. To show injectivity, let m; € M
and b; € B be such that )", b; ® m; is in the kernel of M ® 4 B — N, i.e. >, b;m; = 0. Recall that
am;®1)=1@m;, s00=0ad,bim; ®1)=>,b;@m; € B4 M.

For surjectivity, let n € N, and write a(n ® 1) = >, b; ® ; € B®4 N. Since ¢(n) = n, we have the
equality n = ), bjx;. We also write a(z; ® 1) = Zij bi; ® y;; as before, and by the cocycle condition
we get,

Zbi®bij®yij ZZbi®1®$i EB®R®aB®a N

]
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as above. Applying the map 0 ® 4 idg ® 4 idy, and using the equality above and the fact that « is
linear, we obtain the equality

a (Z o(bi)r; ® 1) = ZU(b)a(ﬂfi@l) = ZU(bz‘) Z bi; @yij | = Z o(b)®z; =1® (Z U(bi)$i> .

4 % % i i

This implies that >, o(b;)x; € M C N, since o(b;) € A. We now specialise along

idp® ®aid .
B®aB®y N —B24724N , Bo, N 2% N |

and consider

i J
Applying the previous argument to the x;’s, we see that the term inside the parentheses in [3.7]is in M.
Since we have )", j b, @b;ij @y;j = . bi ®1® z;, we then notice the expression is simply equal to

This implies that M generates N as a B-module, as required. O]
This immediatelly implies Theorem [2.1§
Proof of Theorem[2.18 This follows from Remark Corollary and Proposition [3.6 O

Remark 3.8. This can be generalised to a categorical context by the Barr-Beck Monadicity Theorem.
It can be generalised further in algebra too. Given a map of rings ¢ : A — B we can ask when the
functor F' of Theorem is fully faithful or essentially surjective. There is an obvious necessary
condition for fully faithfulness (in fact even for faithfulness):

For any A-module M, M = Homu(A, M) — Homp(B,B ®4 M) = B ®4 M must be injective, or
equivalentlyﬂ for all ideals I C A we must have A/I — B/IB is injective. This condition on ¢ is
sometimes called universally injectivity. It turns out this is in fact sufficient too.

Theorem 3.9. If ¢ is universally injective, then F is an equivalence of categories.

This is satisfied, for example, if ¢ : A — B has a splitting as a map of A-modules. There is also a
related conjecture of Hochster from 1973.

Conjecture 3.10 (Direct Summand Conjecture). If A is reqular, and ¢ : A — B is finite injective,
then it splits as a map of A-modules.

This was proved to be true in 2016 by Yves André.

Remark 3.11. It is easy to obtain this theorem if Q C A, since in that case we have a trace map
tr: B — A and the composition of ¢ with tr is simply the degree of B/A, which is some d € A*. In this
case, d~'tr is a splitting. If F, C A, then the conjecture was proved shortly after Hochster’s conjecture
from 1973, but this requires lots of theory developed by Hochster. There was almost no progress on
the mixed characteristic case until André.

5Peter puts a little astrix here, in case this isn’t 100% true.
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4 Smoothness 04/05/2017

Today we are going to talk about smoothness, and some of our intuition of smoothness should come
from the study of tangent spaces. We saw in exercise 11.4(i) last semester, that the tangent space of a
scheme over a field k is naturally isomorphic to the set of maps from Spec k[e]/€2. This is an example
of a first order thickening of Speck, in the following sense.

Definition 4.1. A closed immersion i : Sy — S of schemes is a first order thickening (resp. nth order
thickening) of So, if the corresponding ideal sheaf T = ker(i® : Og — i.Og,) satisfies I> = 0 (resp.
ntl =0).

Locally we have Spec Ag C Spec A, where Ag = A/I, with I2 = 0 (resp. I"™! = 0). In commutative
algebra the first case is called a square zero extension. The map 7 is said to be split if there is a section
5: 5 — Sp such that soi =idg,.

Remark 4.2. There is a bijection of sets between the set of split first order thickenings of Sy and the
set of quasi-coherent Og,-modules. The map in one direction is given by sending a thickening S to its
ideal subsheaf, and for the converse direction by sending a quasi-coherent module M to the relative
spectrum Spec(QOg,[M]). Notice that if M is any quasi-coherent Og,-module, then Og,[M], defined
as Og, @ M, is a quasi-coherent Og,-algebra through the map,

We should think of this as (f + me)(g + ne) with €2 = 0.

Notice as well that there are non-split square zero extensions, e.g. Z/p*Z — Z/pZ.

Definition 4.3. A morphism f : X — S of schemes is called formally smooth (resp. formally étale,
resp. formally unramified) if for all commutative diagrams,

To —2» X

2 A
\[z’ v lf ’
T— S

where i : Ty C T is a first order thickening of affine schemes, there is a lift uw : T — X such that the
whole diagram commutes (resp. there is exactly one such lift u, resp. there is at most one such u).

Formally smoothness essentially says that there is no obstruction to extending maps to first order
thickenings.

Remark 4.4. Equivalently, we could have defined formal smoothness (étaleness, unramified) using
a nth order thickening instead of a first order thickening. Indeed, since a nth order thickening is a
composition of n first order thickenings, the equivalence is clear. Hence this definition is really that of
a smooth map, not just a one time differentiable map.

Clearly, formally étale is equivalent to formally smooth plus formally unramified.
Example 4.5. We now give examples of some maps that lie within the classes of maps we just defined.

e Open immersions are formally étale. Indeed, if f : X — S is an open immersion, then we
know that a morphism 7" — S factors over X if and only if f(|T']) C |X]|. Since the underlying
topological spaces of T' and Ty for a first order thickening are identical, the result is clear.

e Closed immersions are formally unramified. To see this just note that f : X — S being a closed
immersion implies that X (7') — S(T) is injective on T-valued points for any scheme 7', hence
formally unramified. We can also come up with explicit examples of when a closed immersion is not

13



formally étale, i.e. not also formally smooth. Consider the closed immersion SpecZ/2 — SpecZ,
then there is no dotted arrow in the following diagram,

Z— 7)4

[

72 — 7.)2

where all the maps are the canonical quotients or the identity.

e The natural map X = A% — §'is formally smooth. To check this we may assume that S = SpecZ,
since we will see that these classes of maps are all stable under base change. Given Ty = Spec Ay,
T = Spec A and a surjection A — Ay, we see that the map ug : To — A = SpecZ[Xq,...,X,]
corresponds exactly to some choice of elements xg,...,x, € Ag. We define the map v : T — X
by sending X1, ..., X,, to some Z1,...,T, € A lifting z1,...,x, € Ay, which is always possible by
the surjectivity of A — Ag. u might not be unique since A — Ag is not necessarily injective.

e If R is a perfect ]Fp—algebraﬂ then Spec R — Spec[F,, is formally étale. This is exercise 4.3.

e Let A be aring, a € A*, and n € Z such that n is invertible in A. Then the canonical map
Spec A[X]/(X™ — a) — Spec A,
is finite and formally étale. The is exercise 5.1.

Proposition 4.6. The classes of formally smooth/étale/unramified maps satisfy BC, COMP, PROD,
LOCS and LOCT. Furthermore, given a general morphism of schemes g : Y — X and a formally
unramified map f : X — S, if fog is formally smooth (resp. formally étale, resp. formally unramified)
then g is formally smooth (resp. formally étale, resp. formally unramified).

Proof. Showing that these classes of maps satisfy BC, COMP and PROD is straightforward from the
definitions. To show formally étale and formally unramified maps are LOCS and LOCT is also an
elementary exercise. On the other hand, to show that (non-finitely presented) formally smooth maps
are LOCS and LOCT is actually very difficult. In this latter case we need a different characterisation
of formally smooth and a big theorem by Raynaud and Gruson (see Theorem [7.3)).

For the last part of the proposition, we’ll prove the case of formally smoothness, and the others follow
by similar arguments. Assume f o g is formally smooth. We want to see that this implies that g also
is formally smooth. Suppose that we have a commutative diagram as above:

Ty —25 Y

Pl
.
ji “ lg'
.
,

-

T —— X

We know the corresponding diagram involving f o g has a lift w : T'— Y since f o g is formally smooth,
so we obtain,

Ty —25 v

[ Lo

T —"-S

6 An Fp-algebra R is perfect if the Frobenius map R — R sending z + 2P is an isomorphism.
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We fix such a v : T' — Y and claim that this is a desired lifting for the first diagram. We only have
to check the commutivity of our original lifting problem using this u. This is solved by considering the
following diagram,

Ty —25 X

T — 5

Since f is formally unramified, there can only exist one lift 7' — X making the diagram commute. But
we have two such maps, v and g o u, hence they must be equal. Commutativity, and hence the result
follow. O

Definition 4.7. A morphism f : X — S is smooth (resp. étale, resp. unramified) if it is formally
smooth (resp. formally étale, resp. formally unramified) and f is locally of finite presentation (resp.
locally of finite presentation, resp. locally of finite type).

Remark 4.8. In [5] unramified maps are also asked to be locally of finite presentation, but this excludes
some closed immersions for which the ideal sheaf if not locally finitely generated. We are following the
convention of [§].

Recall the following definitions.

Definition 4.9. A morphism f : X — S is locally of finite type (resp. finite presentation) if one of
the following equivalent conditions hold:

1. For any open affine U = Spec A C X mapping to Spec R C S, A is a finitely generated (resp.
finitely presented) R-algebra.

2. There exists an affine cover of X = JU; = |J Spec(A;), each mapping to Spec R; C S, such that
A; are finitely generated (resp. finitely presented) R;-algebras.

Remark 4.10. Note that if we assume in addition that f is quasi-compact (resp. ch&[l), then f is
actually of finite type (resp. finite presentation). Both of these classes of maps satisty BC, COMP,
PROD, LOCS and LOCT.

Corollary 4.11. The classes of smooth maps, étale maps, and unramified maps all satisfy BC, COMP,
PROD, LOCS and LOCT.

The finiteness conditions imposed above facilitate the proof of these statements.

Example 4.12. Let k be a field (or a ring) and set Ty = Speck. Let X be a k-scheme, f : X — Speck,
and Ty C T = Speck[e]/e? (note that we have a map k[e]/e?> — k, sending € to 0, which induces the
desired inclusion on spectra). Fix a k—point, ug : Speck — X € X (k). If the scheme X is formally
smooth (i.e. the base morphism f is smooth) then we have a map v : T — X making the following
diagram commute,

Ty —=2, X

[ ]

T —— Speck

The lift u can be thought of associating a tangent direction to the point ug : Speck — X. If we assume
furthermore that f is of finite presentation, then it is actually smooth.

In this example Ty — T is split, so we always have a lift, but the set of maps here is something we will
study in more detail now.

7qecgs=quasi-compact and quasi-separated. We will use this as an adjective for schemes, and maps of schemes.
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Definition 4.13. Let k, X, To, T as above, and x € X (k) be a k-point of X. The tangent space of X
at © is defined as T, X = {maps u:T — X | above diagram commutes}.

Let’s compute this. Without loss of generality, assume X = Spec A for a k-algebra A. The point x
corresponds to a map ¢ : A — k, and u to a map ¢ : A — kle]/e? = k @ ke lifting ¢ as maps of
k-algebras. From this, we deduce that we can write ¢ as

¢(a) = ¢(a) + d(a)e,

for some map d : A — k. Then, using the fact that % is a map of k-algebras, we can deduce the
following properties for d.

1. For all A € k,a € A the equality d(Aa) = Ad(a) holds.
2. For all a,b € A, the equality d(a + b) = d(a) + d(b) holds.
3. For all a,b € A, the equality d(ab) = ¢(a)d(b) + ¢(b)d(a).

Properties 1 and 2 above are simply k-linearity, and property 3 is often called the Leibniz rule (& la
Calculus 1).

Definition 4.14. Let R — A be a map of rings and M be an A-module. A derivation of A over R
with values in M is a R-linear map d : A — M (not a map of A-modules) such that for all a,b € A we
have d(ab) = ad(b) + bd(a) (i.e. d satisfies the Leibniz rule).

In fact there exists a universal derivation, and hence a universal A-module of differentials.

Proposition 4.15. Let R — A be a map of rings. Then there exists an A-module Q,lax/R and a universal
derivation d : A — Q}4/R of A/R, i.e. any R-derivation d' : A — M factors uniquely through QA/R.
In particular, we have a functorial isomorphism Derg(A, M) = HomA(leL‘/R,M). We call QZ/R the
A-module of Kdhler differentials.

Proof. This proof is purely formal. We define 9}4 /R tO be the free A-module generated by the symbols

d(a) for all @ € A subject to the relations d(Aa) = Ad(a), d(a + b) = d(a) + d(b) and the Leibniz rule
for all a,b € A and \ € R. O

We get the following corollary:
Corollary 4.16. In the context of Example[[.13

\Y%
T, X = Dery,(A, k) = Homa (2} 5., k) = Homy (2}, ®4,6 k. k) = (Q; e ®a k:) .

Example 4.17. Let Z = Speck[X,Y]/XY, which is simply the union of the X and Y axes, and let
2 = (0,0). What is then T, Z? Note that the map ¢ : k[X,Y]/XY — k[e]/e> must send X ~— ae and
Y > be for a,b € k. We can then see that T}, Z is 2-dimensional. In fact it is isomorphic to TzAi, which
is seemingly counterintuitive. However, let us now consider ug : Spec kle]/€2 — Z given by X,Y + €
and try to extend this to a map

u : Speckle]/e* — Speckle]/e* — Z.

The latter would be given by a map of rings k[X,Y]/XY — kle]/e? sending X + e+ae? and Y + e+be.
Then 0 = XY + €2 # 0, which is a contradiction. Hence there is no such lift of ug. This show Z is not
smooth over k.

Now we will try to compute some modules of Kéahler differentials.
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Proposition 4.18. Let R - A, R — S and A — B be maps of rings. Then the following properties
are satisfied:

1.0 =0}, ®rS.

A®RS/S —

2. The sequence,
Q}4/R ®AB — QlB/R — QlB/A —>0,

is exact (but the first map is not necessarily injective).

3. If in addition A — B is surjective, and I = ker(A — B), then the sequence,
I®AB:I/12 i)Qi/R(gAB *)QlB/R HQIB/A :07
15 exact.

4. If A= R[X;|i € I] (which we will write as R[X;] for now) is a free polynomial algebra indexed by
some set I, then,

o:PA-dX; — Qg

is an tsomorphism.

Corollary 4.19. If A = R[X,]/(f;) then,

Y/ = (EBA : dXz-> /(d(f7).

Proof. This is simply part 3 and 4 of the proposition above. O

Proof of Proposition[{.18 Part 1 follows quickly from universal properties. Parts 2 and 3 use the
definition of !, i.e. the presentation given in the proof of Propositionm For part 4, we first observe
the map ® in question is surjective. We need to see that for all f = f(X;) € A = R[X,], the element

df lies in the image, but,
finite,(n;) NI el

and when we apply the derivation d and the Leibniz rule multiple times, we obtain,

df =D _rnyd (H XZ”) = X [ X dx.
el el j#i
A - dX; which maps,

This is in the image of ®. For injectivity, we construct a derivation d : A — P,

of
el

Checking this is actually a derivation is basically Calculus 1. Hence we obtain a map

Uy — PA-dx;,
el

which is a spliting of our original map ®. Thus & is injective. O
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5 Kahler Differentials 08/05/2017

Recall the definitions of the module of Kéhler differentials from last lecture (Proposition and what
followed). Notice that assigning to a map R — A to QY /R is a functorial construction. In other words,
given the following commutative diagram,

AL w

[

R—— R

then we obtain a canonical morphism A’ ® 4 Q}LX/R — Q}LX’/R’ which sends o’ ® da — d'df (a). This can
be shown to be an isomorphism if the square above is a pushout (part 1 of Proposition [4.18]). The
following lemma compares liftings of a certain kind with derivations.

Lemma 5.1 (Derivations and Liftings). Given the following commutative diagram of ring homomor-
phisms,
R—— A

B —" B/I
with I* = 0 (so I is naturally a B/I-module) |
1. Given ¢1,¢s : A — B are two lifts of f (i.e. mod; = f), then §: ¢p1 — o : A — I is an R-linear

derivation.

2. Given ¢: A— B alift of f, and 6 : A — I an R-linear derivation, then ¢+ 0 : A — B is another
lift of f.

Notice that together, parts 1 and 2 imply that the set of R-linear derivation from A to I act freely and
transitively on the set of liftings of f, given a lifting exists.

Proof. Both proofs require some equations and some calculating. For part 1 let a,b € A, then we have
6(ab) = ¢1(ab) — g2(ab) = ¢1(a)¢1(b) — d1(a)P2(b) + ¢1(a)P2(b) — d2(a)P2(b) = ¢1(a)d(b) + ¢2(b)d(a).

The A-module action on I comes through either ¢ or ¢o, they give the same action, so the equality
above becomes,
d(ab) = ad(b) + bd(a),

and ¢ is a derivation since it is clearly R-linear. For the second part we consider if the map ¢ + ¢ is
really a map of algebras, since then it is clearly a lift. For a,b € A we have,

(¢ +6)(ab) = ¢(ab) + &(ab) = ¢(a)p(b) + ad(b) + bd(a) = d(a)d(b) + d(a)d(b) + B(b)d(a) + 5(a)d(b).
The last equality comes from the fact that §(a)d(b) = 0 as I? = 0. From here we immediately obtain,
(¢ +0)(ab) = (¢ + 0)(a) (¢ + 0)(D),
which finishes our proof. O

There are some corollaries that we quickly obtain from this lemma.

8Notice that this diagram becomes our lifting diagrams in our definition of formally smooth etc. See Definition
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Corollary 5.2. We have an isomorphism between the R-linear derivations from A to an A-module M
and morphisms ¢ such that ¢ is an R-linear section A — A[M] of the projection map A[M] — AE|

Corollary 5.3. A map Spec A — Spec R of affine schemes is formally unramified if and only if
QL. =0,
/R

The proof of the latter corollary comes exactly from considering the image of the diagram in Lemma 5.1
under the functor Spec, and then applying Definition [£.:3] Now we would like to localise our modules
of Kéhler differentials, which would enable us to discuss quasi-coherent sheaves of Kéhler differentials
in the long run.

Lemma 5.4. Given S C A a multiplicative subset, then
Qpyr @4 AIST = Qg1 5-

Proof. We could try to prove this by defining a bijection da ® % — %/d (%) with inverse determined
by the quotient rule,

1
d(g)»—>da®*+ds®%.
S S S

We then would have to check this is well defined etc. Alternatively, we can try to obtain an alternative

definition for the module of Kahler differentials 9114 R

Proposition 5.5. Let X = Spec A, S = Spec R, a map X — S, and Ax;s: X — X x5 X be diagonal
map, i.e. the closed embedding given by multiplication of A as an R-algebra, with corresponding ideal
I C A. Then we can identify the module of Kahler differentials of A/R as,

QY g = I/1% 2 A o(D)(X).
Using this proposition to finish the proof of Lemmal[5.4] we see,
I ®agpa (A[ST @r A[STY]) 2 ker (A[ST'|®@r A[S™!] — A[ST!]) =: J.
This gives us the following chain of isomorphisms,

O r®aAlST 2 I/ @4 A[STH = J/J* 2 QY g1 5.

Let us prove this proposition now.

Proof of Proposition[5.5. Given the hypotheses of Proposition [5.5] we consider the R-linear derivation
§:A— I/I? defined by a — 1 ®a — a® 1. We need to check this is a derivation first,

0(ab) =1Rab—ab®@1=1Qab—a®@b+a®b—ab®1=>0bd(a)+ ad(b),

where the A-module structure on I/I? is ai = (a ® 1)i = (1 ® a)i. From this we obtain a map
QL r— L /I? which explicitly sends da +— 1 ® a —a ® 1. To obtain a map in the opposite direction,

consider the universal derivation d : A — Q}A /R and from this we define maps,

$1, 02 A — Al g, $1(a) = (a,0), ¢2(a) = (a,da).
From the universal property of the tensor product we now obtain a map,

A®r A — Al g, a®br— a(b+ db),

9Here we are using the notation A[M] for the ring A ® eM, with multiplication (a,m)(a’,m’) = (aa’,am’ + a’m).
This means we have M — A[M] — A, where the latter map is the projection onto A, is a square zero extension since
M2 =0.
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which in turn gives us,
I/1* — QY g, > ai®@bi— > ai(b;+db;) =Y aidb;.

It is then a quick exercise to check these maps are mutual inverses. O

Remark 5.6. There is geometric motivation for this, which essentially notices (I/I?)" as the normal
bundle of the diagonal, and (Q}4 / )" as the tangent bundle of X, so the isomorphism between them is
simply a projetion of the diagonal onto one coordinate X xg X — X.

We will now use the localisation of Lemma [5.4] to globalise Kéhler differentials.

Corollary 5.7. The assignment D(f) — Q,lq[ffl]/R =~ 9114/}% @4 A[f71] on principle open sets of
X = Spec A over S = Spec R, determines a quasi-coherent sheank/S on X. Moreover, Qﬁ(/s & A}(T)
where I is the ideal corresponding to the closed embedding A : X — X xg X.

This motivates a general definition as well.

Definition 5.8. Let f : X — S be any morphism of schemes, then we have Ax;s: X — X x5 X is a
locally closed immersion, and hence can be factored as a closed immersion A%/S : X — U and an open
immersion U C X xg X. We then define,

O = (A)U(/S)* D),

where as usual, Z is the ideal subsheaf defining X inside U. If X 1is separated, then we can take
U = X xg X. Notice this statement is independent of U, and if we restrict Q%(/S to some open affine
U = Spec A we recover,

Q4 ’ ~Ql .
X/S|y A/R
The following proposition generalises exercise 4.1, (c.f. Proposition as well).
Proposition 5.9. Let f: X =Y and g: Y — S be morphisms of schemes.

1. There exists a canonical derivation d : Ox — Qﬁ(/s which restricts to the universal derivation in
the affine situation.

2. The sheaf Qﬁ(/s commutes with base change with respect to S.

3. The sequence,
[y s — Qx5 — Qx)y — 0,

where the first map sends da — df* (a) for some a € Oy, is exact.
4. If f is a closed immersion with ideal sheaf T C Oy, then the sequence,
T/1% = [T -5 f Q) — Qg — 0,
15 exact.
We obtain a useful generalisation of Corollary [5.3]
Corollary 5.10. Given any morphism f : X — S of schemes, then the following are equivalent.

1. The morphism f is formally unramifed.

2. The sheaf Q%{/S =0.
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Moreover, if [ is locally of finite type, then in addition we have the equivalent condition,

8. The diagonal Ax,s : X — X x5 X is an open immersion (recalling that locally closed immersions
are unramified).

Proof. Everything can be proved locally, so we have X = Spec A, S = Spec R and [ is the kernel of
A®pr A — A, the multiplication map. We have then seen the equivalence between 1 and 2, and the fact
that 3 implies 2 comes from the fact that I = 0, since i*Oxx,x — Ox is an isomorphism. We now
assume Part 2, then f is locally of finite type and Ay, g is locally of finite presentation. Indeed, for
R-algebra generators a;, the elements 1®a; —a; ® 1 generate I. Assume that I/1? = 0, then Nakayama
implies I, = 0 for all # € Ax/g(Spec A), which implies Ax /g is flat, and exercise 2.@ shows Ax/g is
then an open immersion.

Proposition 5.11. Given maps f: X =Y and g: Y — S of schemes. Then the sequence,
[y, — Qx5 — Qx)y — 0,
18 exact.

1. If f is formally smooth, then the sequence above is exact on the left (so the first map is injective)
and locally split.

2. If go f is formally smooth and the above exact sequence is locally split, then f is formally smooth.

Proof. All of these conditions are local, so we can set X = SpecC, Y = Spec B and S = Spec A. Then
we have to show,
0—C®pQpa — ya — s —0,

is exact and locally split when f is formally smooth. Specifically, we need some retraction p of the first
map which is defined as ¢ ® db + cdf# (b). Since f is formally smooth, we obtain the lifting n : C' —
ClC®p Q}B/A] defined by n = (¢, d) where § in particular is an A-linear derivation C — C' ®p Q}B/A.
Recall the codomain of 7 as a module is simply C @ (C ®p QlB/A). The universal properties of QE/A
gives us a map,

p: QlC/A — C®p QlB/A7

which is given by dc — d(c). To check that p is a retraction we see that,

p(edf* (b)) = ca(f#(b)) = cdf #(b),

which finishes part 1. For the second part, let g o f be formally smooth, and let the exact sequence in
question be locally split. To show f is formally smooth, we consider the following lifting problem,

R/I «— C

[

R«+—— B"

v

N#

A

where I2 = 0. Since go f is formally smooth, then we have u' : C' — R such that v/ o f# o g# = vo g#.
We need to find some A-linear derivation § : C' — I, such that (v’ +J) o f# = v, but this is equivalent
to v —u' o f#¥ = §o f# as an A-linear derivation from B to I. However, we have identified the

10Exercise 2.3 reads as follows. Given a closed immersion f : X — S. Show that f is flat and locally of finite
presentation if and only if f is an open immersion.



A-linear derivations from C' and I as Home (Qf, sad ) and the A-linear derivations from B to I as
HomB(Q}B/A,I) = Home (C ®p Q}B/A,I), and the map,

7 : Homg(Qg) 4, 1) = Dera(C, 1) — Dera (B, I) = Home(C @5 Qp 4, 1),

induced by C ®p Q}B /A = Qlc /A identifies withe restructing derivations from C to B. We have a
retraction of this map however, some

p: Home(C ®p Q}B/A,I) — Homc(Qlc/A,I),
hence the map ~y is an epimorphism and we can find our desired §. O
The following is a useful corollary, since next lecture we use it to talk about the Jacobi criterion.

Corollary 5.12 (Uniformising Parameters). Given a map of schemes g : X — S. Then g is smooth if
and only if for each x € X there is an open neighbourhood © € U C X and sections f1, ..., fn € T(U, Oy)
such that in the following diagram,

f:(flv--~7fn)

U AT
Ml’
S

the map f is étale and,
O%/slv =P ov - dfs.
i=1

Proof. One direction is simple, since if we work locally we notice that if f is étale, then g is automatically
smooth as A% is smooth over S. Conversely, assume g is smooth, then we will see next lecture that
Qk /s is projective and finitely presented, implies Qk /s is finite locally free. For each x € X we may

choose z € U C X and V C S small enough, so we can assume the restricted map g|y : U — V has
domain and codomain affine schemes, say U = Spec B and V = Spec R, such that on U the sheaf Qﬁf /s
is finite free. Possibly after shrinking further we have an isomorphism,

P B-dfi = 5,
=1

where f; € B. In fact, Q}g /R is generated by df; for f; € B and hence, locally around x, we can find a
basis of Q}B/R among the df;’s. These f;’s give us a map Spec B — Spec A, where A = R[X1,...,X,],
by sending X; — f;, which factor through the diagram,

Examining the exact sequence of Proposition [5.11
0— QY p®a B —>Qfp — Oy — 0, (5.13)

where the first map sends dX; — df;, is exact on the left, since this first map is clearly an isomorphism.
This sequence is also split, again from explicit isomorphism and a decomposition into direct sums.
Proposition then tells us f is smooth (as it is clearly finitely presented). Sequence and
Corollary tell us f is also unramified, hence étale. O
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Proposition 5.14. Given the following diagram of schemes,

Ze—" X

N

with i a closed immersion defined by the ideal sheaf T C Ox, then we consider the following sequence,
7/7° % "Dy sg — Qg — 0.

1. If f is formally smooth, then our sequence above is exact, the map d is injective, and this sequence
is locally split.

2. If g is formally smooth, our sequence is exact, locally split, and the map d is injective, then f is
formally smooth.

Proof. Just like any proof, we work locally, so let X = Spec B, S = Spec A and Z = Spec B/J for some
ideal J C B. For part 1 we need a retraction of d, so we set up the following lifting problem,

B/J B/J «"— B

[P

B/J?i— A

Since f is formally smooth, we have the dotted arrow u, but then we have two lifts of B — B/J?,
the canonical quotient map 7’ : B — B/J? sending b + b, and the composite u o 7. Hence we obtain
a derivation § = 7’ —uom : B — J/J?. This in turn gives us a map p’ : Q}B/A — J/J? of B-
modules sending db — 6(b), and then a map p : B/J ®p Qf B/A J/J? of B/J-modules, which maps
a®db— ad(b). If b € J, then p(db) = b modulo J, since 7(b) = 0, and hence we have a retraction of
d. For the final part, we need to solve a lifting problem of the form,

R/T B/J «— B
RE— A

for some ideal I C R such that 2 = 0. We have assumed g : A — B is formally smooth, hence we
obtain the lifting v : B — R, and we then procede to modify this such that v|; = 0, which would give
us our desired lift B/J — R. A different choice for v is of the form v + ¢ for some ¢ € Dera(B,I),
hence we need to find a derivation § € Der4 (B, I) such that 6|; = —v|;. However, we have the map,

Homp,;(B/J ©4 0,4, 1) = Homp(Qp, 4, 1) = Dera(B, I) — Homp(J/J?, 1),

which is an epimorphism as our sequence in the hypotheses is locally split. Hence we can lift the map
—v|; € Homp(J/J?,I) to some & € Dera(B,I). O
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6 Smoothness and the Jacobi Criterion 11/05/2017

We begin with another important proposition about modules of Kahler differentials which we have
forgotten until now.

Proposition 6.1. If f : Spec A — Spec R is formally smooth, then QZ/R s projective.

An immediate corollary of this is 9}4 /R is finite locally free if f is smooth, since finitely presented
projective modules are in particular finite projective, which is equivalent to finite locally free.

Proof. Take M — M’ to be a surjection of A-modules, then we have to show the induced map,
Derg(A, M) = Hom (Y, 5, M) — Homa (R} 5, M') = Derg(A, M'),

is surjective. In other words, given ¢’ : A — A[M'] = A® eM’ (with ¢ = 0) such that a — a + €§(a)
we would like a ¢ : A — A[M] which is mapped to ¢’ (recall that derivations § € Derg(A, M) identify
with sections ¢ : A — A[M] by Corollary We then set up the following lifting problem,

<LA
%T’
«~——— R

and since R — A is formally smooth we have the map ¢ which lifts ¢, and hence ¢ = id 4 + €d, where
0 — ¢’, and we’re done. O

A[M]

|

A[M]

Recall Proposition We want to view a concrete example of this. Let S = Spec R, X = A% = Spec B
where B = R[X1,...,X,] and Z = Spec A = V(I), where I = (f1,..., fr) is an ideal, and A = B/I.
Then we have the following commutative diagram with exact rows,

Di_1A-e —7 D14 dX;

l lg , (6.2)

)P —4— Aep Q) —— Q) — 0

where the first vertical map sends the generators e; — f; € I/I?. We now stare at this diagram, and
recognise the matrix J as the Jacobi matrix,

_ ([ 9fi
J= <8Xj>i ;

)

Choose some z € Z with corresponding prime ideal p C A, and assume f4, ..., f,. € I/I? form a basis
of I/I? ® k(z). Proposition implies that Z is smooth in a neighbourhood of z if and only if the
bottom row of Sequence is exact on the left (so the first map is injective) and locally split after we
tensor everything — ®4 A,. Lemma to come will then show us this is equivalent to Sequence
being exact on the left after tensoring with — ® 4 k(2), which is equivalent to J(z) is injective, thus
J (2) has maximal rank r.

Lemma 6.3. Given a local ring A and M : A" — A™ an A-linear matrixz. Then M is injective and
split if and only if M ® 4 k is injective, where k is the residue field of A.

Proof. If M is injective and split, then M ® 4 k is injective. Assume the converse now, so r < n and
without loss of generality we may take M to be of the form,

_( M
v=( )
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where M; is an r x r matrix with entries in A such that the determinant of M; in k is nonzero. As A
is local this implies M is invertible, since the determinant of M; lies in A*, which implies we have the
following commutative diagram,

and N clearly has a splitting. O
The above Lemma and Diagram [6.2] lead us to a classical smoothness criterion.

Theorem 6.4 (Jacobian Criterion). Given the following diagram of schemes,

Z : AR,

f ,
j )
Spec R

where i is a closed immersion which is locally of finite presentation, then for any z € Z, f is smooth at

z if and only if Z =V (f1,..., fr) locally around z and the rank of the Jacobi matriz J(z) = (%ﬁ)

ST,

Proof. |E| Lemma and the discussion proceeding it tells us that if f is smooth then the Jacobian
matrix has this particular property. For the other direction, we write Z = V(f1,...,fr), set I =
(fi,---,fr) € R[X;,...,X,] = B, S = SpecR and A = B/I. From this we obtain (locally) the
sequence with exact rows,

00— @I, A fi =I5 @I, A-dX;

i k- 7

)12 —2% 4 Ag Qpp — Qg — 0

where J = (%) is the Jacobian matrix. Our point x € X corresponds to a prime ideal p C A’,
J

and our hypothéses imply that J ® 4+ k(p) is injective, which implies that the left vertical arrow is an
isomorphism and also that d is injective and locally split at x. Spreading out this splitting, we then
use Proposition [5.14] part 2 to finish the proof. O

Notice that in the above proof we really used the projectivity to obtain splittings to make our arguments.
We now wish to state a corollary of Proposition [5.11

Corollary 6.5. Given a map f: X — Y in the category of schemes over S. If f is formally étale then
[ Qyrg — Qk/s which maps da — df#(a) is an isomorphism.

Proof. The map f is formally étale, so it is formally smooth and formally unramified. From the
former condition we use Proposition to obtain that the desired map is injective, and the fact f
is formally unramified implies the last term in the exact sequence of Proposition [5.11] is zero using

Corollary [5.10] O

11 This proof, and following lemma, and it’s proof were proved in lecture 7, as an amendment, but they obviously fit
here in the notes.
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Lemma 6.6. Given f : X — S which is formally étale, x € X and s = f(x) such that k = k(s) = k(z).
Then, R R
0575 = hmn (’)S,S/mgs — OX,z = hmn (’)X@/m}@,

is an isomorphism.

Proof. Consider the category C<, who has objects are local rings (A, my4) such that m% = 0 with an

isomorphism ¢ : k 5 A/my, and where the morphisms are local ring homomorphisms of local rings
commuting with these ¢’s. For example, both Og s/mg . and Ox ,/m’ , are both naturally elements
of C<,,. We have representable functors,

F, = HomCSW, (OX,m/mT)L(,x7 _)a Gn = HomCSW (OS,s/mg’,sa _)'

We also have a natural transformation n : F, = G, sending ¢ +— ¢ o f#. We want to see this is
an isomorphism for every n, so it suffices to show n is a bijection by induction, using the obvious
fact that C<, is a full subcategory of C<,. When n = 1 this is simply the fact that k(s) = k(zx),
so we proceed to the inductive step. Let A € C<,, and let A" = A/mﬁfl € C<p—1. We now look at
n: Fp(A") = G,(A’), which we know is a bijection from our inductive hypothesis as F,,(A") = F,,_1(A’)
and G, (A") = G,,—1(A’). However we have the following isomorphism,

Fn<A) = Fn(A/) XGn(A) Gn(A),

whose justification comes from the following lifting problem, which is solved uniquely using the fact f
is formally étale,

A —— OX,ac

-
-
-
-
-
-
-

A 0,

This tells us 7 is a natural isomorphism, and hence the objects representing these functors are iso-
morphic. Since these objects are the elements of the diagram defining the completion, we see the
completions of Ox , and Og s at their respective maximal ideals are isomorphic. O

Now we will start to think about smooth schemes over fields. The following proposition is exercise 5.2.
Proposition 6.7. Given a field k and f : X — Speck then the following are equivalent.

1. The map f is étale.
The map f is unramified.

The map f is smooth and locally quasi ﬁm’tﬁ,

™

The scheme X is simply a disjoint union,

X = H Specl,
where the | are finite separable field extensions of k.
We now come to a theorem we will prove today.
Theorem 6.8. Let k be a field, and f : X — Speck, then the following are equivalent.

1. The map f is smooth.

12A map g : Y — S is locally quasi finite if for all s € S, the fibre Y5 = Y x g Speck(s) is a discrete topological space
and g is locally of finite type. Essentially we would like the fibres to be finite, but this condition is not closed under base
change, so we come to this definition.
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2. The map f is geometrically regulmEI.

3. For one algebraically closed field extension K over k we have X is a reqular scheme.
To prove this theorem, we need some notes from commutative algebra.
Proposition 6.9 (Commutative Algebra Facts). Let A be a local noetherian ring.

1. The ring A is regular if and only if the completion A= lim,, A/m"; is regular.

2. If a map A — B is local and flat, and B is regular, then A is reqular.

3. Given A is regular then Ay is regular for all prime ideals p C A.

Proof of Theorem[6.8 To see part 1 implies part 2, we can take k to be algebraically closed since we
can just take a change of base, this means locally g : X — A} is étale (from Corollary . Pick some
x € X, then without loss of generality we can take z € X to be closed by part 3 of Proposition
We now have k = k(z) = k(g(x)) which implies by étaleness of our map g and Lemma [6.7] that

Ox.o = Oppog(a) 2 klltr, - tal],

which we know is clearly regular. Part 1 of Proposition@then implies Ox , is regular. The implication
that part 2 implies part 3 is clear, so now we assume part 3 is true. We claim in this case that f is
smooth if and only if fx : Xx — Spec K is smooth. Without loss of generality we can take X = Spec A
with Ax = A ®pg K, which implies,

VyrOr K= QY k.

In particular, Q) , is locally free of finite rank if and only if Q} /i 18 locally free of finite rank. We
need a quick lemma for this now.

Lemma 6.10. Let A — B be faithfully flat, and M be a A-module.

1. The module M is of finite type (resp. of finite presentation) if and only if M ®4 B is of finite
type over C (resp. of finite presentation,).

2. The module M is flat over A if and only if M ® 4 B is flat over B.

Proof of Lemma[6.10 For part 1, one direction is obvious. Conversely, we write M = colim N where
N C M are the finitely generated submodules of M, then we have,

M ®4 B = colim(N ®4 B) = N ®4 B,

since directed colimits commute with the tensor product. We notice N is finitely generated, then, using
the fact that A — B is faithfully flat, we see that M = N’. One direction of part 2 is also obvious,
so assume M ® 4 — is exact. Then, M ® 4 — is exact if and only if B ®4 M ® 4 — is exact by faithful
flatness, but we can rewrite this as,

BoaM®s—=2(BoaM)®p (B4 —),

where B ® 4 M is flat over B and B ®, — is also exact. O

13A map f: X — Speck is said to be geometrically regular if for all algebraically closed field extensions K over k we
have Xy = X Xgpeck Spec K is a regular scheme, so it’s stalks are all regular rings.
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Let us continue the proof of Theorem We want to show f is smooth if and only if fx is smooth.
Clearly if f is smooth then fx is smooth. Thus assume that fx is smooth, so then QY ;- is locally free
of finite rank. Let g : X — A} be a closed immersion with corresponding ideal I. Then f is smooth if
and only if the following sequence,

00— I/IZ i) g*Q/%:[Xl,...,X”]/k — Qh/k — 07

is exact and locally split, but since 9}4 Jk is locally free this is equivalent to asking the map d to be
injective. This however is equivalent to the map

2 * )l
di : Ix /I — Ix QK [x,,.... Xn] /K
being injective. This is true since fx is smooth, so we’re done. O
We now have another general theorem we will appeal to.

Theorem 6.11. Let k be a field, and X a scheme over k which is locally of finite type, and take some
closed v € X such that k(z) is a separable field extension of k and Ox , is regular, then X is smooth
in a neighbourhood of x.

Proof of Theorem[6.11 The field extension k(x) over k is separable, so this implies the map Spec k(z) —
Speck is étale, which gives us the following exact sequence (by Proposition [5.14)).

We note that Qi(x) k) = 0 since this field extension is separable (using Corollary and Proposi-

tion , so we have and isomorphism
My /m% , =2 k(@) @0y, (Vi)

Pick some closed immersion g : X < A} with corresponding ideal I. Then we obtain the exact
sequence,
2 *Ol 1
I/I" — g* Qo — Q. — 0.
Let d = dimmy ,/m% , = dimOx ,, where the latter equality comes from the fact that Ox . is a

regular ring. Take f1,..., fn_q € I such that df, are linearly independent after tensoring with k(x).
Then we define Xg = V(f1,..., fn_d). Clearly we have the containment X C X, and we see that X is
smooth and of dimension d from the linear independence of the basis we just chose (using the Jacobian
criterion). Then Ox, , is regular of dimension d by what we have shown and we have a surjection
Ox,,0 = Ox  of local regular rings of dimension d, hence an isomorphism. This recognises X = X
in a neighbourhood around z. O

There is one more theorem for today, which is a criterion for smoothness we have promised for a little
while now.

Theorem 6.12. Given a map f : X — S of locally finite presentation, then the following are equivalent,
1. The map f is smooth.
2. The map f is flat and has smooth fibres.
8. The map f is flat and has smooth geometric ﬁbreﬁ.

Again, we are going to need a quick local criterion for flatness, so let us state it quickly.

A map X — S has smooth geometric fibres if for all algebraically closed fields k and maps Speck — S, we have
X Xg Speck — Speck is smooth.
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Theorem 6.13 (Local Criterion for Flatness). Given a local noetherian ring (C,m) and a C-module
M, then M if flat if and only if the multiplication map m ®c M — M is injective.

Proof of Theorem[6.12 The fact that part 3 implies part 2 is simply the descent of smoothness. To
show part 1 is equivalent to part 2 we can first reduce to the local case, so let S = Spec R, X = Spec A
and A = B/I for B = R[X1,...,X,] and some finitely generated ideal I C B. We can even reduce
to the case when all our rings are noetherian, by recalling the fact that if a map A — R is a finitely
presented map of rings, then there is a noetherian R’ and a finitely presented map A’ — R’ of rings
such that A’ = A®p R.

Now we assume part 1 is true, so locally we have X = V(fi,...,f.) C V(f1,...,fi;) =@ X; C AL
for © < r, both closed subschemes which are smooth over S by the Jacobian criterion. We use this as
our inductive step, so it suffices to show f : X — S is flat with smooth fibres. However, f is already
smooth and hence flat, so we only really need to show the smooth fibres condition. If we take x € X
with X flat and smooth over S and t € I'(X, Ox) such that dt # 0 inside Q5 ¢ ® k(s) and t(z) = 0,
then Z = V(f) — S is flat and smooth. Let s = f(z), then we have an exact sequence,

0 — K —0x,— 0z, —0.

We have to show mg s ®os, Oz, — Oz is injective. However, we know Ox ,/Os,s is flat, so then
the snake lemma and the local criterion for flatness mentioned above (Theorem [6.13)) imply it suffices
to show the morphism on the cokernel is injective. In other words, the map,

K/mS,sK I OX,I/mS,SOX,Iv
is injective. This map fits into the following commutative diagram however,

K/msvsK

OX,x/mS,sOX,x OX,:c/mS,sOX,:c ’

: | :

t
OXmW OXS;‘T

but ¢ is injective since ¢ # 0 and Oxg , is regular and hence integral. Now assume part 2, with A, B
and R as they are above. We then have to show that near z € X (let s = f(x) € S), the bottom row
of the sequence,

DA
A®BI:I/12 —_— A®BQ}3/R*> Q}4/R — 0

is exact on the left and locally split, i.e. the Jacobian J has rank r, where ¢1,...,t,. € I are such that
they form a basis of I/I? ® k(x). Notice the bottom row of the sequence,

@2:1 As : Ez

Lo, ,

T/ J? ——— A @B, U ) — L je) — 0

is exact on the left and locally split, where A, = A ®p k(s), Bs = B ®g k(s) = k(s)[X1,...,X,] and
J = ker(Bs; — A;). However, from tensoring the exact sequence I — B — A defining the ideal I with
k(s) over R we see that J = [ ®@p k(s). Now M; has rank r and I/I?> ®p k(s) = J/J?, which implies
M has rank r. This finishes our proof. O
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7 Smoothness is Local on Source 15/05/2017

We are reminded of three important results from last week; Proposition the Jacobi criterion
and our criterion for smoothness which was Theorem Today we want to cover two things, the first
being noetherian approximation, and the second is discussing the difficultly to why proving smoothness
is a local on the source property of a map of schemes. In the proof of Proposition we discussed
why if f : X — S is smooth and S noetherian, then f is flat. To eliminate this noetherian assumption,
we have the following arguments which constitute a general little trick.

Without loss of generality we consider X = SpecA — S = SpecR and A is a finitely presented
(and hence noetherian) R-algebra. The idea is to write any ring R as the filtered colimit of finitely
generated Z-algebras over R;, and then any finitely presented structures (modules, algebras, schemes,

..) are already defined over some R; (as it is defined by a finite piece of data). More precisely this
idea is captured by the following two lemmas and subsequent example.

Lemma 7.1. Let R be a ring, then R is a filtered colimit of finitely generated Z-algebras R,

Proof. We write R = Z[X;,i € I]/(f;,j € J) for I, J two arbitrary (potentially infinite) sets. For any
finite subset I’ C I we let J' C J be the set of all j such that f; € Z[X;,i € I']. We then set,

Ry =Z[Xy i€ I'/(f55€ ),
which is some finitely generated Z-algebra. These R form a filtered system and we have,
R = colimp/ ¢y finite 1+
O

Lemma 7.2. Given R;,i € I, some filtered system of rings and R its colimit, and A is a finitely
presented R-algebra, then there exists i € I and a finitely presented R;-algebra A; such that A =
A; @R, R.

Proof. We know A is of the form

A:R[le--an}/(flw'-afm)7

for some collection f; € R[Xy,...,X,], which involve finitely many elements of R. This means there
exists some ¢ such that f; is the image of f;; € R;[X1,..., X,], then we set,

A= Ri[ X1, ., X0l /(fr oo s fmi),
and we're done. O
Our general problem can then be stated as the following.
Given A has some property as an R-algebra then does A; have this property (up to enlargening i)?

For example, assume we know that smoothness implies flatness over noetherian schemes, then let us
see this works in the general case.

Smoothness implies Flatness. Without loss of generality we take X = Spec A — S = Spec R, and write
R = colimger Ry,
be a filtered colimit of noetherian R,. Now we use the Jacobi criterion, so locally on X we have

A:R[Xl""7Xn]/(glv'"agm)7
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for some m < n and look at the value

9gi )
A = det ( c AX,
aXJ Jj=1,...,n,i=1,....m

where the matrix in question is a minor of the Jacobian matrix. Now there exists an a € I and
91 9ma € Ra[X1,...,X,] mapping to g1, ..., gm so that

Aa - Ra[Xla e 7Xn]/(gl7a; DR 7gm,a)a

then the Jacobi criterion in the opposite direction tells us the value,

agi a)
Aa = det, ( - c Aa;
an i,5=1,....m

such that A, — A under the canonical map 4, — A. Since A = colim,>, A4 by the normal cofinality
arguments, we see A, becomes invertible for some large values of a’. After replacing a by a’ if necessary,
then A, is smooth over R,, then the noetherian case tells us A, are flat over R,, and then we have
A=A, ®gr, R is flat over R. O]

In the beginning of the proof of Theorem [6.12] we made a short argument to reduce our result to
the noetherian case, but the above method works in more generality. Now we turn our attention to
understanding why (formal) smoothness is local on the source (target). The only piece of data we will
not prove here is the following theorem of Raynoud and Gruson, alluded to after Proposition

Theorem 7.3. Given a ring A and an A-module M, then M is projective if and only if there is a
covering of Spec A = J; D(f;) such that M[fi_l] are all projective A[fi_l}—modules.

Note that M has no finiteness assumptions, which is the hardest and most subtle part of the proof.
This is relevant to our current goal as for f: X = Spec A — S = Spec R, then f being smooth implies
QL /r 18 a projective A-module (Proposition .

Now let f : X — S be a morphism of schemes such that there is an open cover X = (JU; with
U; = Spec A; such that all restrictions f|y, are formally smooth (hence Q}% /s is a projective A;-

module). Assume we are given such a diagram,

Toi}X

//’(
i o
-
.

T 258

where i : Ty — T is a closed immersion with 7" affine and associated ideal subsheaf 7 with Z? = 0.
We have U; C X open, so by continuity 7; o C Ty which are the preimage of the U;’s under ug, are
also open. Note that |T'| = |Tp| which implies that our lift will happen on open subschemes T; C T.
We know we locally have lifts u; : T; — X, but they need not agree on overlaps. This leads us to the
definition of a torsor.

Definition 7.4. We recall the local and global definitions of torsors here.

1. Let G be a group. A G-torsor is a set P equipped with an action G X P — P such that P is
nonempty and this action is simply transitive, so for each p € P we have G — P defined by
g — gp is a bijection.

2. Given a space T and G a sheaf of groups over T'. Then a G-torsor is a sheaf P on T equipped
with an action G X P — P such that all stalks of P are nonempty and for all open U ; T, and
each p € P(U), we have an isomorphism G(U) — P(U) defined by g — gp.
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Example 7.5. If T is the usual Mobius band and G = Z/27Z is the constant sheaf and P is the sheaf
of local orientations of T. Notice P(T) = & but locally the sections are Z/27Z with the transitive
7./ 2Z-action.

Proposition 7.6. Let T be an affine scheme and P be the sheaf defined by,

uo v
Vo —> X

V +— < set of all liftings of uglvs : \[ / i
v S

—
Then P is a torsor under the sheaf of groups,
G =Homr, (ugﬁ}(/s,l),
where I is the ideal subsheaf associated to Ty — T.

Proof. We define an action first. Let uy : V' — X be a local lift, and let ¢ € Homv(ugﬂﬁ(/s\vo,ﬂvo),

then we produce a lift u|y + ¢, where we use that we can classify all lifts in terms of one lift using
derivations (see Lemma . This classification also implies that given a section uy we obtain the
desired bijection. All the stalks of P are also non-empty as P(T;) # &, since f restricted to the U;’s is
formally smooth. O

Definition 7.7. Given a topological space T and G a sheaf of groups, then H*(T,G) can be identified
as,
HY(T,G) = {G-torsors P} /isomorphism,

the first cohomology of T with coefficients in G (just a set in general).

Notice there is a distinguished element * € H(T, G) given by the trivial G-torsor, which is just G itself
with left multiplication (hence H'(T,G) is actually a based set).

Remark 7.8. Moreover, P(T) # @ is equivalent to P = G, so [P] = x € HY(T,G). One direction is
obvious, since G(T') # &, and for the other direction, if p € P(T), then we can define G — P by g — gp
which by definition is an isomorphism.

Our goal here is to prove [P] = x € HY(T, Homr, (uéﬂk/s, T)). It suffices to prove this first cohomology
group is in fact just a point itself.

Proof. Given ugQy g1, , = (uol1,4)*Qy;, /5, Where Qp, /¢ are all projective A;-modules, so the whole

thing is projective over T;. Theoremnow implies uSQﬁ(/S = M with M some projective A/I-module.
We can now reduce this to the following proposition: O

Proposition 7.9. Given T = Spec A on an affine scheme (really Ty and A/I respectively using the
notation from above), M a projective A-module, N an A-module, then with M = M and N' = N we
have,

H' (T7 Homo, (MvN)) - {*}
Notice that if M is of finite rank (as it often is) then our hom-sheaf above is quasi-coherent.

Proof. We see M is a direct summand of @ A, so M is a direct summand of @ Or, which implies
Homo, (M, N) is a direct summand of

Homo, (@ OT,N) = HHom@T(OT,/\/) = HN
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We then obtain the following sequence of injections,
HY(T, Homo, (M, N)) s H* (T,HN) = [[H# @),

where we do need a little argument to justify the last injection using the definition of H! using torsors.
Hence we have reduced this whole problem to the following question about sheaf cohomology:

Proposition 7.10. Let A be a ring, N be an A-module and N = N a quasicoherent sheaf on T =
Spec A, then HY(T,N') = {*}.

O

We will prove the above proposition next lecture (see Propoosition [8.1]), and more generality when we
approach sheaf cohomology in a systematic way in lecture 12 (see Theorem [12.1)).
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8 The First Sheaf Cohomology Group 18/05/2017

Last time we spoke of G-torsors over a topological space X for a sheaf of abelian groups G. We defined,
H'(X,G) = {G—torsors},

which has the distinguished point G. Let us rephrase Proposition for today.

Proposition 8.1. Given X is an affine scheme and G = M is a quasi-coherent sheaf (of Ox-modules)
on X, then
HY (X, M) = {+}.

To see this we will prove a more general proposition.

Proposition 8.2. Given a scheme X and a quasi-coherent sheaf of Ox-modules M on X, then
H'(X, M) = {extensions of Ox-modules M,0 — M — M — Ox — 0}/ =,

the set of extensions of M and Ox modulo isomorphisms. More precisely, and more generally, we
actually have an equivalence of categories between that of M-torsors on X, say Torspq, and that of
extensions of M and Ox as Ox-modules, say Extenp,.

This proposition is in fact true for any ringed space (X, Ox), but we will not need this generality. The
maps in Extenyy are f: M — M’ such that the following diagram commutes,

0 M M Ox 0
J{ldM lf J{ldox
0 M M Ox 0

hence by the five-lemma, all such f are isomorphisms. Also notice that all extensions M are automat-
ically quasi-coherent, as the sequence that defines them is locally split.

Remark 8.3. Given a space X and a sheaf of groups G, where P and P’ are both G-torsors, then a
map f: P — P’ in Torsg, so it must commute with the G-actions, is an isomorphism. We can check
this locally, so we have P(X) # @ # P'(X), so we have P = G = P’ by Remark so we need to look
at maps f : G — G which commute with the G-action (which has always secretly been a left action).
Let g = f(1) € G(X), then for all U C X, h € G(U), from the necessary equivariance of f we obtain
the equality,

f(h) =f(1)-h.

Hence f is simply right multiplication by g, which is an isomorphism with inverse right multiplication

by g~ .

Notice that from this proof we also see that the group of automorphisms of G as a G-torsor is simply

G(X).

Proof of Proposition[8.34 We have a functor ® : Extenaq — Torsy( which sends M to the M-torsor
P 57 which is defined by,

U {s € M(U) | p(s) =1},

where p is the map M= Ox. So the local sections of Pj; are local sections of p. This is an M-torsor,

which we should of course justify. Let m € M(U) then our action sends a section s — s+ m inside
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P5(U), which is still inside P5(U) since m € M(U) means it is in the kernel of p. If s € P7(U) then
the map,
MU) — Pz(U), m— s+ m,

is an isomorphism since P57 (U) = s + M(U). To see the stalks are nonempty we let X = Spec A, then

our exact sequence defining M is equivalent to an exact sequence of A-modules,
0—M—M-—A— 0,

which splits as A is a projective A-module. Now we have to check this functor is fully faithful and
essentially surjective. For the former, let M and M’ be two elements of Exten, then we want to see,

HomExtenM (M, M/) = HomTorsM (PM7 ,P_/\’Z/ )7
through this functor ®. How ever both of these are global sections of the sheaves,
’HomExtenM (.//\;l/, M,) — HomTorsM (’Pﬂv Pﬂ/)a

respectively. We want to now see this is an isomorphism of sheaves, and we can do this locally, so let
X = Spec A. In the affine case though, we have

M 2XMoOx = M’.
This means,

idM Homox (Ox,./\/l)

HomExtenM(M@Ox,M@Ox)Z{( 0 ido
X

>} >~ M = Homroys (M, M),

where we notice that Pﬂ = M and Pﬂ’ = M in the affine case. This shows @ is fully faithful, so
for essential surjectivity let P be any M-torsor. Then locally on X = UU; there is a unique (up to
unique isomorphism) corresponding extension Mi on U; such that Py & Plu,, as locally P = G. This
is unique up to unique isomorphism, and by fully faithfulness all these extensions M; glue to a global
extension M with Pz = P. O

A fancy way to phrase this last step is to say that the assignment sending the open subset U of X to
the local category of extensions Exten q,, and the assignment sending U to Tors |, are stacks on X.
These are generalisations of sheaves, and the backbone of the Stacks Project [§].

Proof of Proposition[8.] If X = Spec A is affine, then H'(X, M) is simply the extensions of M, which
are simply A-module extensions,

0—>M—>J\7—>A—>O,

but M =M@ Aas Ais a projective A-module. O

Recall that if X is a topological space, and 0 -+ F' — F — F” — 0 is an exact sequence of abelian
groups, then the global sections functor is only exact on the left, and not on the right in general.

Proposition 8.4. Given the situation above, there is a natural exact sequence,
0—T(X,F) — T(X,F) — (X, F') - HY(X, F).

This exact sequence actually continues to the right two more places with our explicit definition of
H'(X, M) (see exercise 6.2), and infinitely on the right with the general tools of sheaf cohomology
we’ll soon see.
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Proof. Let s € (X, F") then we can produce an F'-torsor P, which is defined as U — {t € F(U)|p(t) =
slu}, with F'-action defined as ¢t +— ¢ + ¢’ for t' € F'(U). Checking this is an F’-torsor is similiar to
checking the functor ® above, using the fact also that F — F” is an epimorphism. We then set
§(s) = [Ps] € HY(X, F"), and checking § continues the exactness of our sequence is simple,

d(s) = * & Py = F' & Ps(X) # 2 & s € p(T(X, F)).
O

Our goal now is to produce a general theory of cohomology groups of quasi-coherent sheaves on schemes.
We would like to have cohomology groups (Ox (X )-modules) H¢(X, M) for all i > 0 such that,

0. HO(X, M) =T(X, M),

1. for each short exact sequence of Ox-modules 0 -+ M’ — M — M” — 0 we would like to obtain
a long exact sequence of cohomology groups,

0— H(X, M) — H"X,M) - H'(X,M") - H'(X,M') - H (X, M) - H (X, M") — --- .

2. The theory is minimal in some functorial sense.

This minimality condition means something like, given another theory H{ satisfying 1 and 2, then we
want to obtain a canonical injection,

H'(X, M) — Hj(X, M),

for all schemes X and quasi-coherent sheaves M. We have see that H!(X, M) is simply all the ex-
tensions of M, then we can define § : H'(X, M) — H}(X, M) by M + §(1), where & is the map
HY(X,0x) = I'(X,0x) — H}(X, M) defining M. This assignment is injective since if f(1) =
0 € H}(X, M) then 1 € im HY(X, ./,\/lv) = (X, M) by 1, so the extesion is split and hence 0 inside
H'(X, M). The minimality condition (2) should then say something like H} (X, M) = H'(X, M).

This theory is a special case of a much more general theory. If X is a any topological space (or
as Grothendieck prefered, a topos) and a sheaf of abelian groups F on X, then there are cohomology
(abelain) groups H'(X,F) satisfying conditions 0-2, where minimality here means H*(X,F) = 0 for
all ¢ > 0 if F is an injective. In algebraic topology we can look at a CW-complex X and the constant
sheaf Z, and then these groups H*(X,Z) become the singular cohomology groups topologists know and
love.

Definition 8.5. Let X be a space and F a sheaf of abelian groups on X. Then F is injective if for all
injections i : F — F, where F is also a sheaf of abelian groups, then there exists a section s : F — F,
so soi =idr.

Remark 8.6. Notice that F is injective if and only if the functor Hom —, F) from sheaves of abelian
groups on X to the category of abelian groups is exact. Indeed, if

0=-G =-G—-G¢" =0,

is exact, then Hom(—, F) is always left exact, so to show Hom(G, F) — Hom(G’, F) is an epimorphism,
let f:G— Fandlet F — F:=(F®G)/G'. If Fis injective then this injection splits and we obtain
a map G — F restricting to f: G’ — F. Conversely, we can look at the exact sequence,

0— F — F — F|F—0.
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Proposition 8.7. Given an exact sequence 0 — F' — F — F"” — 0 of sheaves of abelian groups on
X, and F' is injective, then

0 —I(X,F)—T(X,F) —TI(XF")—0,
18 exact.

Proof. Consider 7' — F, then we have a splitting s : F — F' so F = F' & F” and we’re done. O

Next we want to see there are enough injective inside the category of sheaves of abelian groups over X.
We'll see why we want this after the statement of this theorem.

Theorem 8.8 (Enough Injectives). Let X be a space and F a sheaf of abelian groups, then there exists
an injection F — F such that F is injective.

Remark 8.9. This is super useful, and essentially tells us what we want to do. Given F, we want
to compute H*(X, F), then we embed F into an injective F. This gives us a series of exact sequences
from the long exact sequence on cohomology from the short exact sequence 0 -+ F — F — F/F — 0.

0=H'(X,F) — H(X,F/F) — H* (X, F) — H* (X, F) = 0.

We know H'(X, F) from explicit calculations, and we can calculate H?(X, F) by calculating H*+1(X, F/F),
and apply the same process to the quotient sheaf F/F. Inductively we can calculate all the sheaf co-
homology groups of F.

Proof. First we consider the case when X = %, then F is simply any abelian group M. It should be
know that there exists an injective abelian group M and an injection M — M, and we’ll revisit this
proof next lecture. In general, for any x € X we choose injections F, < M,, where M, are all injective
abelian groups. Let i, : {x} < X be the inclusion of the point x, then we set

zeX

and define a map F — F by the collection of maps F — (zx)*Mx which are adjoint to the given
injections i3 F = F, — M,. This map is clearly injective since we can check this on stalks, and the
following lemma will see that F is an injective sheaf. O

Lemma 8.10. Let f: Y — X be a map of spaces.
1. Arbitrary products of injectives are injective.
2. If F is injective on 'Y, then f.JF is injective on X.

Proof. For part 1, take sheaves F; for i € I and notice,

Hom <, H‘/.'.z> = H HOHl(*, ./—'.l),
i
is exact as the product of exact functors is exact. For the second part, we have
HOIH(*, f*f) = HOIn(f*(*),f%
is as exact as f* is exact (easily checked on stalks) and F is injective by assumption. O

Notice that more generally, functors having exact left adjoints preserve injective objects (see Foot-
note ).
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9 Homological Algebra I (Derived Functors) 22/05/2017

Before we get into the meat of this lecture, we have some loose ends to wrap up from last time.

Theorem 9.1. For any abelian group M, there exists an injective map M — M, where M is an
injective abelian group. Moreover, an abelian group M is injective if and only if M is divisible.

Proof. First assume M is injective, then the map Z — Z defined by multiplication by some non-zero
n € Z is injective, hence we have a surjection

M = Hom(Z, M) — Hom(Z, M) = M,

which is just multiplication by n, so M is divisible. Assume now that M is divisible, and take N <« N
be any injection of abelian groups, then we want to show,

Hom(N, M) —s Hom(N, M),

is surjective. Given a map f: N — M, we consider the set of pairs (N', f : N’ — M) which extend f
in the sense that N C N’ C N. This creates a directed system and we apply Zorn’s lemma to obtain
a maximal such (N, '), so by replacing N by N’ we can assume (N, f) are a maximal pair. Assume
that N # N, and choose some z € N \ N, then we have the following diagram,

Z —— N
mZ —— N L5 M
where Z — N maps 1 — x, and m € Z is the restriction of this to N. The composite map mZ — M

extends to Z — M since if m = 0 we can do this trivially, and if m # 0 we need to divide an element
in M by m, which we can do since M is divisible. Hence we obtain an extension to,

(N @& Z)/mZ =N +Z{z} C N,

which contradicts the maximality of N, hence N = N. Now for the first statement, let 0 £ x € M,
then - Z C M is either Z or Z/nZ for some n > 0, and both these groups inject into the divisible
(and hence injective) groups Q and Q/nZ respectlvely For such an x € M we set M to be either of
these two options, depending on x. The map x-Z — M extends to M as M is injective, and we then

consider the map,

l_[fl’ r r
M — Ho;éweMMx:M .

This map is injective as all the product factors are, and M is also injective as the product of injective
things are injective (similar to part 2 of Lemma [8.10). O

Notice this proof uses Zorn’s lemma and hence is equivalent to using the axiom of choice. It is very
non-constructive.

Recall now the situation we were in last lecture, where we have a space X and consider the func-
tor of global sections from the category of sheaves of abelian groups on X to the category of abelian
groups, and we want to build some cohomology. Today we are going to go to pure abstraction (a la
Grothendieck and Cartan-Eilenberg) through homological algebra following the construction and the
basic theory of §-functors to find the answer.

Definition 9.2. Let A be a category.
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1. We say A is pointed if it has (up to unique isomorphism) an object which is both an initial and
a final object (called a zero object in A and denoted as 0).

2. This category is preadditive if it is pointed, and for any X,Y € A, the coproduct X [[Y and the

product X XY exist, and the canonical map,

idx 0 .
(0 idy).XHY—>X><Y,

is an isomorphism. We then write X @Y for either the product or the coproduct of X and Y .

3. If A is preadditive and for all X,Y € A the hom-monoid Hom4(X,Y) is an abelian group with
its natural monoid structure (see the remark below), then we call A additive.

4. Finally, we say A is abelian if it is additive and for oll f : X =Y in A, both

0 x 1oy
ker(f) := lim l , and  coker(f) := colim l ,
x 1oy 0

exist, and the natural map coim(f) := coker(ker(f) — X) — ker(Y — coker(f)) =: im(f) is an
isomorphism.

Remark 9.3. Notice that all of the above definitions are properties of categories, and not extra datum,
which is sometimes how this material is presented.

1. If A is pointed, then for each X, Y € A we have a canonical zero maps X — 0 — Y, hence
Hom4(X,Y) is a pointed set. Notice the categories of sets and topological spaces are not pointed,
but the categories of based topological spaces, rings, R-modules, groups, etc. are pointed.

2. If A is preadditive, then for any X,Y € A, the pointed hom-sets Hom 4(X,Y") can be given the
structure of an abelian monoid through the following composite,

Frg:X 25 X x X e— x[[x THS v
Given X,Y and Z € A, the composite map Hom 4(X,Y) x Hom4 (Y, Z) — Hom 4(X, Z) is a map
of abelian monoids.

3. If A is additive, then it is canonically enriched over abelian groups.

4. The categories of abelian groups, R-modules, finitely generated R-modules if R is noetherian,
sheaves of abelian groups on a space X, quasi-coherent sheaves on a scheme X, or coherent
sheaves on a noetherian scheme X are all abelian categories.

Also notice the duality involved in all of these definitions. A category A is abelian if and only if AP
is abelian. Hence everything we say in this generality from now on will dualise (e.g. left exact to right
exact, injective to projective, etc.).

Definition 9.4. Given two abelian categories A and B, then an additive functoﬁ F:A— Bisleft
exact if for all f : X — 'Y the canonical map F(ker(f)) — ker(F(f)) is an isomorphism.

15 An additive functor is the obvious thing: A functor ' : A — B between additive categories has to preserve the direct
sum @ and zero objects. An additive functor then gives us group homomorphisms Hom 4 (X,Y) — Homp(FX, FY).
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To make the above definition more memorable, we can equivalently say an additive functor F' : A — B
is left exact if given a short exact sequence,

0—A—B—C—0,
in A, then we have the follow exact sequence in B,
0 — F(A) — F(B) — F(C).

Quintessential examples are the left exact functors Hom4 (M, —) and T'(X,—), and the right exact
functor — ® 4 M. There will be many more examples throughout the course.

We have made the above definition explicit, but we leave the following definitions up to the reader
to define. In an abelian category A, it makes sense to define cochain complexes, the cohomology of
these cochain complexes, and exact sequences.

Definition 9.5. Let F' : A — B be a left exact functor of abelian categories, then a cohomological
d-functor extending F is a sequence F* : A — B of additive functors such that F© = F, together with
boundary maps (natural in the following short evact sequences) 6 : F(Z) — FiTH(X ) for all short
exact sequences 0 - X —Y — Z — 0 in A, such that for all such short exact sequences we obtain the
following complex,

0— FOX) = FO(Y) = F*(2) S FY(X) - FY(Y) — FY(Z) S FX(X) > -+,

which is exact. Moreover, such a 0 is called universal if it is initial in the category of cohomological
d-functors extending F.

A §-functor extending a left exact functor F' in a way measures how much F fails to be an exact functor.
In practice it is hard to check if a given J-functor is universal, it is somehow just a nice categorical
definition to benefit the theory. The following is a definition of Grothendieck from [4], which turns out
to be a practical way of checking if a given d-functor is universal.

Definition 9.6. An additive functor G : A — B is effaceable if for each X € A there exists an
injectioX — X such that G(X) = 0. A cohomological §-functor is effaceable if F* are effaceable for
alli > 1 (not including F* = F).

Definition 9.7. Let A be an abelian category.

1. We say X € A is injective if Hom 4 (—, X) is exact, which is equivalent to the condition that for

all injections f : X — X f is split (a direct generalisation of Deﬁmtwn.} Dually we have
projective objects.

2. We say A has enough injectives if for each X € A there is an injection X — X where X is
injective.

Remark 9.8. Notice that if G : A — B is effaceable and X € A is injective, then G(X) =0. To see

this, choose an injection X < X such that G(X ) = 0 from the effaceability of G. The object X is

injective, so we obtain a section XX which allows us to see X as a direct summand of X. Since G
is additive, G(X) is a direct summand of G(X), which implies G(X) = 0.

Notice that if A has enough injectives, then G : A — B is effaceable if and only if for all injective X € A
we have G(X) = 0. This follows from Remark[9.8f Theorem 8.8]saw that the category of abelian groups
over a space X has enough injectives and we will prove in exercise 7.2 that the categories of A-modules
and Ox-modules for a ringed space (X, Ox) both have enough injectives.

The following theorem justifies the definition of an effaceable J-functor.

16 An injection here is a monomorphism. A monomorphism u in a category C is a map in C such that uo f =uog
implies f = g for any maps f and g such that these equations make sense. The dual concept is that of an epimorphism.
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Theorem 9.9. If (F');>¢ is an effaceable cohomological §-functor, then it is universal.

Proof. Let G be any cohomological §-functor extending F', then we want to produce a series of natural
transformations F* — G* for all ¢ > 0, which we will do by induction. Since F* = GY = F we have
the base case. Assume that we can produce these natural transformations for i = 0,...,7 — 1. For any
X € A we choose an injection X < X such that F(X) = 0, which we can do since F* is effaceable.
From this we obtain the following diagram with exact rows,

FiY(X) =% Fi-}(X/X) 25 Fi(X) — Fi(X) =0
| | e
GHX) 5 X /X) 25 GiI(X) —— Gi(X)

By the functorality of the cokernel, we obtain a map F(X) = coker(a) — coker(b), where the equality
comes from the exactness of the top row and the fact that F*(X) = 0, and this actually maps to G#(X)
by the exactness of dg, and hence we obtain a unique map ¢ : F {(X) — GY(X). To check this map is
independent of our choice of X we see that two different X X' injective into their direct sum modulo
the diagonal image of X, so it suﬂices to check when we enlarge X, and this is clear. We then need to
check for naturality in X, and that these maps commute with § and stuff, but this is not so hard and
just a little tedious. O

This theorem directly leads us to the next.

Theorem 9.10. Let F': A — B be a left-exact functor of abelian categories, and assume A has enough
injectives. Then an effaceable (and hence universal) cohomological §-functor extending F exists.

Definition 9.11. The ith right derived functor of F : A — B is denoted as R'F : A — B, and is
defined as the ith effaceable functor in the theorem above. For F =T we write H® = R'T

Proof. Let us see now that we essentially have no choice in our definition of these right derived functors

dO
of F. Let X € A, then we choose an injective I° € A and an injection X =: X? < I° so we have an
exact sequence
0— X% —71% -5 X' —o,

where X! is the cokernel. From this we obtain the exact sequence,
F(I°) — F(X') — FY(X") — 0,

if such a F'* was to exist, using the fact that F*(I) = 0 when I is injective. By continuing this process
we obtain exact sequences, . ‘ ‘
0— X' — T — X" 0.

We can summarise this information as the following diagram,
0 & It @ I2 -
X! X2 \“ .

where the top row is a complex which we call an injective resolutiorm of X. We then have the chain
of isomorphisms,

0 x -2

Fi(XO =2 i~ i(xY) ~...2 FY(X"1) = coker(F(I'™!) — F(XY)).

17 An injective resolution of X is an exact sequence 0 — X — I9 — I'... such that X — I is an injective map, and
all I" are injective.
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Our only problem with this is this depends on our choice of injective resolution. Let us first remark
though that we can rewrite this cokernel as H*(F(I®)). This is because Xt — I**! is injective by
construction so
i i d i

0 — X" —I'—1I"",

is exact, and by left exactness of F' we see that F((X') = ker(F(d**!)), and then it is clear,
HY(F(I*) = F(X")/im(F(d")) = coker(F(I'"') — F(X")).
The recipe for construction F* is then forced to be the following: For each X € A we choose an injective
resolution,
0—X —I1" 1t —712——...

then apply F to I*® and we have F*(X) := H'(F(I*®)), but we still need to show this is independent of
our choice of I°. This well-definedness comes from the following theorem though. O

Theorem 9.12. Let A be an abelian category, and consider the following solid diagram in A,

0 x4, @, pn_d
lf | ! ’
0 y e g0 <, e

where I* and J* are injective resolutions for X and Y respectively. Then the dotted arrows f? exist
such that the whole diagram commutes, and between any two choices of f* and f'* we have a chain
homotopy between them.

Proof. To define f° we start with the injection X < I and the composition X — Y — J, then the

fact JO is injective gives us a map f°: I — J° which that the corresponding diagram commutes. For
f1, we know that e o f0 factors through X' = coker(d) since

o flod=e"ceof=0.

We then look at X' <+ I' and then this factored map to J' and use the injectivity of J' to obtain
ft:I' — J'. We then repeat this construction inductively to obtain f® : I®* — .J® of chain complexes.
For the chain homotopy, we want maps h? : I — J*~! for all 4 > 1 such that fO — ' = h! 0 d° and
fi—flt=h"tod + e~ toh! for all i > 2. We will consider chain homotopies with more rigour next
lecture. For the first map we consider the following diagram,

00— X —— IO

Jf lfo,f'o :

0——Y —— JO°

We then have f0 — f’0 factor over X by exactness, so they are maps from I°/X — J° but I°/X = X!
which injects into I', and hence we obtain a map h' : I' — J° as JO is injective. In the next step we
consider the diagram,

0
70 d It

foyf/ol V lflffll y
0

€

JO —<=— Jt
then f1 — f! restricted to I° is simply €® o (fO — f°) = e® o h' 0 d°. Hence (f! — f'* —e® o hl)|;0 =0,
so fl — f1 — €% o h! factors over the image of d°, and d' : I'/I° < I? is an injection, so the map
fr—ft—eohnt: I'/I° — J' and the injectivity of J! give us h? : 12 — J'. We then continue
inductively, making the small remark that e’ o (f* — f'*) = e’ o (hiTtod! +ei"Lohl) = el o hitlod' as
J*® is a complex. O

Note that we didn’t strictly need I® to consist of injective objects. This will prove a useful observation
in the future.
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10 Homological Algebra II (Homotopy Categories) 29/05/2017

Recall Theorem from last time. A key step in the proof was to see the association X — I® sending
an object X € A to an injective resolution defines a functor,

A — K=%Inj(A)),

where the latter category is the homotopy category of non-negatively graded complexes of injectives
from A (we will define this shortly). We are going to follow this observation in much more detail now.

Definition 10.1. Let A be an additive category.

1. We define C(A) to be the category of (cochain) complexes, so sequences - - — X* o xir
of maps and objects in A such that d'° o d"=' = 0 for all i € Z. Within C(A) we have full
subcategories CZ°(A) of non-negatively graded complexes, and C*(A) of complexes with some
j € Z such that X* =0 for all k < j.

2. Gwen f,g: X* —=Y* in C(A) (maps in C(A) are levelwise maps commuting with differentials),
then a (cochain) homotopy from f to g is a collection of maps h* : X* — Y*~! such that for all
1 € Z we have
f7—92:dzy_10h7+hl+lodfx

If such an h exists, we say f is homotopic to g, and write f ~ g.

3. We define K(A) to be the category of complexes up to homotopy, which has the same objects of
C(A) and the same maps too, but now considered up to homotopy defined above. Notice this is
still an additive category, even if there are a few well-definedness checks to be done. We have
bounded variants too, such as K=°(A) which are all objects in K(A) literally with X* =0 for all
1 < 0. This is not a full subcategory in the sense that it is not closed under z'somorphz'smﬂ.

In the topological setting of singular cochain complexes, if two spaces are homotopic, then we can cook
up a cochain homotopy as defined above. The following lemma justifies this definition.

Lemma 10.2. If f ~ g in C(A), then f* =g* : H'X — H'Y for alli € 7Z.

Proof. Consider f* — g* as a map from Z*(X) — Z!(Y), the i-cocycles of X to the i-cocycles of Y.
We know f* — g° = di ' o h' + hitl ody. On Z(X) we have hit! o dy = 0, and once we quotient
by the i-boundaries B*(X) and B*(Y) on each side we have di ' o h' is also zero, hence f* = g' on
cohomology. O

This produces the following immediate corollary.
Corollary 10.3. The map H': C(A) — A factors through K(A).

The following theorem then rephrases some of the work we did last time, in particular Theorems [9.10]
and which we’ll explain after the proof.

Theorem 10.4. Given an abelian category A with enough injectives, then there is an equivalence of
categories from the full subcategory of K=°(Inj(.A)) of all objects with at most one nonzero cohomology
group in degree zero, a category we’ll call C for now, and A itself via the cohomology functor H® : C — A.

Proof. Essential surjectivity is provided by the existence of injective resolutions. For fullness, if I® and
J* are in C, then for any given f: HO(I*) — H°(J*) we can try to construct f®:I® — J*. For f° we
use the fact that HO(I*) = Z°(I°*) C I°, and similarly for .J, hence we use the inclusion H°(I*) C I°,

18For example the complex C® with C~1 = C? = Z joined by the identity map and C* = 0 for all other levels is
homotopic to an element of C=°(A), but does not lie inside this category.
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the composite H?(I*) — H(J*) < J°, and the fact that J° is injective to produce a map f° : 1° — J°.

If we have built f?: I — J¢ for all i < n, then we consider the following diagram,

1 ar~! ntl
et fm In/ lm(In 1 ifn+1 .
Wn i
Jnfl dn—?! Jn d" Jn+1

The factorisation of d” and f™ through im(/™ 1) comes from the fact I*® is a complex and the fact the
left hand square commutes, and we obtain f"*! since J"*! is injective. For faithfulness now, we need
only show that if f: I* — J*® induces the zero map on zeroth cohomology, then f was the zero map in
C, since we are working with categories enriched over abelian groups (additive categories here). This
is where we need to use the homotopy category structure. If H°(f) = 0, then we have the following

commutative diagram,

HO(I*)

\/

0 o I1o/H )

e

HO(J®) —— JO -7~

For similar reasons to the previous diagram, we obtain h' : I' — J° such that f° = h' o d°.

Set

hi = 0 for all i < 0. For the inductive step, assume h’ exists for i« < n, then we have the following

(non-commutative) diagram,

dn+1

In—l ar! I In+1

fn71

A 1 h" fn

Jn—2 a"~ Jn—1 dmt Jn

We notice that,

[l =dy o frh =dy o (df 2o k" 2+ B odyp ™) = dy T o "

hence (f™ —d’y~' o h™)|fn-1 = 0 so we can factor this as,

\/

FrednT Lopn In/lm(ln 1 /

[TL+1

From this we have f* —d’}~" o h™ = h"*! o d}, hence f ~ 0.

od?_l,

O

Notice this is essentially the same argument as used in the proof of Theorem [0.12] which was a critical
argument in the proof of Theorem [9 From this we now define the ith derived functor of a left-exact
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functor F': A — B as the following composite,

HO -1 3
A%CLKZO(B) A, B,
which matches Definition since the inverse of H? is taking an injective resolution. We haven’t
actually seen yet that these derived functors form a J§-functor, so consider the following lemma.

Lemma 10.5. Let 0 — X Ly % 75 0 be a short exact sequence inside an abelian category A
with enough injectives. Then we can find injective resolutions for X, Y and Z such that the following
diagram commutes and has exact rows and columns,

0 0 0 0
0 X 1° It I?
f
0 Y Jo J! J? R (10.6)
g
0 A K° K! K?
0 0 0 0

with all I', J* and K' injective objects of A.

Sketch of a Proof. We only provide a proof sketch here, but the proof can be found in [9] as the dual
of Lemma 2.2.8. First we choose an injective resolution for X, and then an injective resolution for Y
and extend the map f to an injective map I*® — J*® using Theorem and a little more work. Then
we can set K*® = J®/I°®, which certainly comes with an exact sequence,

0—1I*—J*—K*—0,

but I® is injective so this splits and K* can then be seen as a direct summand of J? and hence is also
injective. O

This theorem gives us a commutative diagram similar to Diagram [10.6] after applying a left-exact
functor F' with not necessarily exact rows, but still with exact columns, since all the columns except
the first were split exact before we applied F' and F is additive. Hence we have a short exact sequence
of complexes, and when we take the cohomology of a short exact sequence of complexes we obtain a
long exact sequence on cohomology. Let us consider our original desired application of derived functors
and homological algebra. Let (X, Ox) be a ringed space, then we’ll see in exercise 7.2 that the category
of Ox-modules has enough injectives, hence we can consider the following diagram of functors,

OX(X)
Ox—mod ox Ox(X)—mod

Ab
o o

4> Ab
Ab(X)

We can now derive the global sections functor of an Ox-modules M in three different ways, using the
three different global sections functors. The following proposition says they are all the same. We will
only use this clumsy notation for the a priori different types of sheaf cohomology for the rest of this
lecture.
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Proposition 10.7. For any Ox-module M over a ringed space (X,Ox) we have,
inOx (X 7 7
(H)ox ™ (X, M) = (H)E, (X, M) = (H)R} ) (X, M).

Proof. First we’ll prove the first equality. This is easy though by contemplating the following, obviously
commutative, diagram of functors and categories,

Ox (X)—mod

where L = KZ°%(Ox (X)—mod) (for typographical reasons). For the other equality, it is enough to show
(H i)ﬁ‘g( X) is still an effaceable §-functor of Ox-modules. For this is is enough to prove the following
lemma, by the definition of effaceable. O

Lemma 10.8. If M is an injective Ox -module, then Hgb(X)(X,M) =0 fori>0.

Proof. This proof is quite classical, and is completed by first observing that if M is injective then M
is flasque, and if M is flasque then M is acyclic (H*(X, M) = 0 for ¢ > 0). This will be the content of
the rest of the lecture. O

Note that there is no shortcut we can take here. It is not automatically true that an injective O x-module
is an injective sheaf of abelian groups over X. This detour is necessary.

Definition 10.9. A sheaf F on a space X is called flasque (welk auf Deutsch) if for all open subsets
U CV C X the restriction map F(V) — F(U) is surjective.

Lemma 10.10. If M is an injective Ox -module, then M is flasque.

Proof. We will prove in exercise 7.3 that if j : U — X is an inclusion of an open subset, then the
functor j* from O x-modules to Oy-modules has a left adjoint j; which sends M to ji M, which in turn
is the sheafification of the presheaf that sends V C X to 0if V € U and M(V) if V. C U. Notice that
(iM), = M, if € U and zero otherwise. For this reason this sheaf is called extension by zero. The
adjunction in particular implies,

M(U) = Homop,, (OU,j*./\/l) = Homop (jUgOU, M),

and likewise M(V) = Homoe , (j11Oy, M), but jy1Oy — jinOyp is injective by inspection. In particu-
lar, if M is injective, then we obtain a surjection

M(U) = Homop, (leoU,./\/l) — Homop (jV!OV,M) = M(V)

Lemma 10.11. If F is a flasque sheaf of abelian groups, then H*(X,F) =0 for all i > 0.
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Proof. Assume that 0 — F — F — G — 0 is a short exact sequence of sheaves where F is flasque,
then we claim F(X) — G(X) is surjective. To see this, pick some ¢ € G(X) and choose a maximal
pair (U, ) of an open subset U C X and 5 € F(U) which maps to t|y, which is given to us by Zorn’s
lemma, using the fact that 7 — G is an epimorphism of stalks. Assume U # X, and let z € X\U, and
let 3 € F(V) for some z € V with 3 + t|y, which again exists since F' — G is an epimorphism on
stalks. Then we notice s’ = 3|yny — 5 |unv € ker(F — G)(UNV), and this kernel is simply F(U NV)
by exactness. Let s € F(V) be a lift of s’, which exists as F as flasque, then 5 + s+ t|y and

(& + 8)luvnv =5 |uav + 8" =5luav.

This means that 5 and 3 + s together glue to a section of (U U V') which restricts to t|yuy, contra-
dicting the maximality of (U,3). Hence U = X. This shows our claim.

We now choose an injection F — F where F is injective and set G = JZ'/]-' to be the cokernel,
then we have the exact sequence,

F(X)— G(X) — H'(X,F) — H'(X,F) =0,

which implies H' (X, F) = 0 and H(X,G) = H"" (X, F) for all i > 1. We can conclude the argument
here by induction if we know that G is also flasque, and we claim this is true. Now F is flasque by
assumption, and F is flasque by an argument similar to Lemma [10.10} The restrictions F|y and Fly

are flasque on the space U and we then know F (U) — G(U) is surjective by the previous claim. For
U CV C X we then have the following commutative diagram,

which recognises G(V) — G(U) as being surjective. O

We could also look at the diagram,
QCoh(X)

l Y@

Ox—mod —25 Ab

but in general these two global sections functors do not have the same derived functors. This is
because injective quasi-coherent sheafs are not in general flasque or even acyclic. The moral of the
story is to forget about quasi-coherent sheaves when we apply these homological algebra formalism.
The argument fails as j; does not preserve quasi-coherence, hence it does not exist as we used it in the
proof of Lemma Moreover, it is a non-trivial theorem (due to Gabber) that there even exists
enough injective quasi-coherent Ox-modules on a scheme.
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11 Homological Algebra III (Derived Categories) 01/06/2017

Last time we focused on the derived functors of the global sections functor(s), because these give us
sheaf cohomology. Today we are going to look at another left exact functor we have been using for
eight months now and derive this. Doing this will lead us part of the way down two rabbit holes; one
of derived categories, and another of spectral sequences.
Let f: (Y,0y) = (X,0x) be a map of ring spaces. We have a left exact functor

f+ : Oy—mod — Ox—mod,
the direct image functor, and we know from exercise 7.2 that the domain category has enough injectives.

Definition 11.1. We define the higher direct image functors, R'f,, to be the ith derived functor of f.
fori>0.

This is a totally acceptable formal definition, and the following lemma makes it a little more concrete.
Lemma 11.2. For any Oy -module N, then R f, N is the sheafification of U — H'(f~*(U),N|;-1v))-

We will prove later that in the world of algebraic geometry, in other words if f is a qcqs map of schemes,
N is quasi-coherent, and U is affine, then R’ f,N'(U) = H*(f~"(U), N|s-1(1))- See Propositionm

Proof. We first choose an injective resolution 0 — N — J° — J' — ... of A/, and note that for all
open V C Y, the restriction is still an injective resolution. This is shown in exercise 7.3(ii). We then
consider the following commutative diagram,

(= w),-)

Oy —mod —— KT (Inj(Oy —mod)) SELEN Kt (Ox—mod) ) Kt (Ox(U)—mod)

R'f. Jw lw
Ox—mod Ox (U)—mod

H'(f71(U),~)

Above we have written #’ and H® for what are formally the same functor, simply taking cohomology
in an abelian category, however we like to emphasize that H’ is a sheaf. This proof is then finished by
the following lemma. O

Lemma 11.3. Let A* € K(Ox—mod). Then the ith cohomology sheaf H'(A®) € Ox—mod is the
sheafification of the presheaf U — H'(A*(U)) € Ox(U)—mod.

The proof of this lemma is essentially just unpacking all our definitions, such as how we define the
cokernel of sheaves.

Proof. Let A®* € K(Ox—mod), so

. di—l . d? .
A= s AT AT S AT

each differential d* and each A? live inside the category of O x-modules. We then define the cohomology
sheaf H?(A®) to simply be the kernel of d* modulo the image of d'~!, which is the same as

coker(A"! ¢, ker(d")).
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We then see that H?(A®) is the sheafification of

U — coker (A“(U) 2O ker(di)(U)> — Hi(AY(U)),

since the cokernel of sheaves has to be sheafified. O

We now make a very natural consideration, which will occupy us for the rest of the lecture. Consider
the following commutative diagram of ringed spaces,

(Z,07) (Y, Oy)

\lf

(X,0x)

Then we have (f o g)« = fi« o g« as functor from Oz-modules to Ox-modules, so we then ask the
following natural question.

Does (f 0 g)« = fx 0 gs imply that R*(f o g), = R'f. 0 Rig.?

The answer is no, but there is still a lot we can salvage from this idea. Let us assume for a second that
all the structure sheaves of X,Y and Z are the constant Z sheaf, so that modules over these structure
sheaves are simply sheaves of abelian groups. Then f, has an exact left adjoint f* = f~!, and hence it
preserves injectiveleI In this case we have the following commutative diagram, but the dashed functor
does not necessarily exist such that the diagram commutes,

(fog)s=fs0gx

K*(Inj(Oz—mod)) *>K+ (Inj(Oy —mod)) —— SELEN K*(Inj(Ox—mod))

b

Ri(fog)*

Remark 11.4. If f, is exact, then R'(fog), = f. o R'g,, since the ?-functor can simply be f., as then
f« commutes with cohomology. In general we need to consider a different type of derived functor.

Definition 11.5. Let A be an abelian category. A map f: X®* —Y* in C(A) is a quasi-isomorphism
if H(f) is an isomorphism for all i € Z. The derived categorﬂ of A is then defined to be

D(A) = C(A)|quasi-isomorphisms™],
which is C(A) with all quasi-isomorphisms inverted (localising C'(A) at the class of quasi-isomorphisms).

Notice there is an obvious functor C'(A) — D(A) (our localisation functor) which is essentially surjec-
tive, and this factors through K(A), which produces a unique factorising functor K(A) — D(A).

et F : A — Bbe an additive functor of abelian categories, which admits an exact left adjoint G, then if I is injective
in A, we see FI is injective in B since,
HomB(fv FI) = HomA(G(f)v I)v
is exact.
20The reader is advised to read chapter 10 of [9] or Tag 05QI of [§].
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Theorem 11.6. If A has enough injectives, then the functor K+ (Inj(A)) — D(A) is fully-faithful,
with essential image DT (A), the full subcategory of X € D(A) such that H(X) = 0 for all sufficiently
negative 1.

The proof of this theorem is not much harder than the proof of Theorem and the equivalence of
categories DT (A) — K1 (Inj(A)) is similar to taking an injective resolution.

Definition 11.7. Let F : B — A be a left exact functor of abelian categories where B has enough
injectives. Then the (total) derived functor of F,

RF : D™ (B) — Dt (A),
is defined as the following composite,

DT (B) <~ KT (Inj(B)) - KT (A) — DT(A),

where the first functor is the inverse of the functor from Theorem [11.6, and the last functor is the
unique functor factoring the canonical localisation functor CT(A) — DT (A).

Remark 11.8. We can recover the individual derived functor RiF as B — D+(B) 5 D+(A) LYY
Also notice that if F' happens to preserve injectives, then we can avoid all these derived notions, since
the following diagram commutes,

K*(Inj(B)) —— K*(Inj(A))

: :

D*(B) —1E— D*(A)
In this way, RF is a generalisation to when F' does not preserve injectives.
Now we can again ask ourselves the following question.
Given two left exact functors C “Bh A, does the following diagram commute?

Dt () £ DT (B)

R(F% JRF (11.9)
D*(A)

In almost all practical cases this diagram will commute, but it will not in general.

Proposition 11.10. Assume G preserves injectives, then R(F o G) = RF o RG, i.e. Diagram
commautes.

Proof. We simply observe that the following diagram commutes, since G preserves injectives.

D+ () —EY 5 DH(B) —E DH(A)

S~
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We can generalise this slightly, as Grothendieck does in his famous Toéhoku paper, [4].

Proposition 11.11. Assume G maps injectives to F-acyclic objects, i.e. for all injective Z € C we
have (R'F)(G(Z)) =0 for all i > 0. Then R(F oG) = RF o RG.

Notice that this condition is necessary. Let Z € C be injective, then R (FoG)(Z) = 0 and R'G(Z) =0
for all ¢ > 0 as both are derived functors and Z is injective, then RG(Z) = G(Z)[0]. We are using the
notation X[i] for X € A an object in an abelian category to represent the complex of C(A) with a
single X concentrated in degree —i. This implies that we have R'F(G(Z)) = 0 for all i > 0.

Sketch of the Proof. Let B’ C B be the full subcategory of F-acyclic objects, then the following diagram
commutes,

K+ (B) —£= K*(A)

| I
D*(B) —= D¥(A)
since derived functors can be computed not just by injective resolutions, but by acyclic resolutions. This
is clear for complexes in B’ concentrated in one degree by the definition of acyclicity, and in general we

induct using some big exact sequence. This gives us the following commutative diagram, which would

finish our proof,
FoG

/_\

K*(Inj(C)) —%— K+(B) —£5 K*(A)

[

D*(C) —H%— DH(B) 5 DH(A)

\R(M

Let us take all of this abstractness back to the world of ringed spaces and derived direct images.

Corollary 11.12. Let g : (Z,0z) — (Y,Oy) and f : (Y,0y) — (X,0Ox) be maps of ringed spaces,
then R(f o g)« = Rfx o Rg. as functors from DT (Oz—mod) to DT(Ox—mod).

Proof. We need to see that if M is an injective O z-module, then g, M is fi-acyclic. From Lemma[T0.10]
we know M is flasque and we can quickly check this implies g, M is flasque. Obviously then g.M|y
is flasque for all open V' C Y, hence ¢g. M|y is I'(V,—)-acyclic, so for all open V' C Y we have
H¥(V,g.M) =0 for all i > 0. Using Lemma [11.2] we see that R’ f,(g.M) = 0. O

In some sense this does not answer our initial question about R‘(fog)., R'f. and R'g,. Let us consider
a few cases and try to come to some conclusions about these functors, before stating the general result.

Case 0: If f, is exact, then we have seen in Remark that R'(f o g)s = f« o Rig,.

Case 1: Let M be an Oz-module which is g,-acyclic, i.e. R'g.M = 0 for all i > 0. Then we claim
R(f 0 g)«M = R'f.(g.M), and to see this, we notice that Rg.M = g..M|0], and thus

Rv(f 0g) M= /H7(R(f 0g)M) = Hi(Rf* o Rg. M) = ’Hi(Rf*(g*M[O])) = Rif*(g*./\/l).
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Case 2: For our final test case, let M be an Oz-module with Rig,M = 0 for all i > 1. We claim
there is a long exact sequence,

i RUf(goM) — Ri(f o )M — R (R'g M) -2 R (g M) — -+ . (11.13)
To try to figure this out, let us think about Rg,M. It is represented by a complex N 4 Nt

concentrated in degrees 0 and 1, with ker(d) = g.M and coker(d) = R'g.M. This gives us the
following short exact sequence of complexes,

0 g+ M NO N°/g M —— 0
[ |
0 0 N1 N1 0

We notice that the complex N°/g. M — N is quasi-isomorphic via the obvious map to R*g,M][—1].
This “remains a short exact sequence” (which means a distinguished triangle in triangulated categorical
language) after applying Rf., which gives us a long exact sequence on cohomology H*, so we have

o HRE(gM0]) — HARE(N®)) — HI(RE(R g M[-1])) > HTYRE (g M0]) — -
Once we make the identifications,
H'(Rf.(9.M[0])) = R fu(gM),  H(Rf(R'g.M[-1])) = R f(R'g. M),
and H'(Rf.(N*)) = H'(Rf.(Rg.M)) = R'(f 0 g). M,

we see the long exact sequence above directly translates to Sequence [T1.13]

In general though, Rg.M has a filtration with graded pieces R’g..M|—i], which is a complex whose
only nonzero cohomology sheaf is H' and is exactly R‘g,M. Filtrations are like “many short exact
sequences” which induce “many long exact sequences” on cohomology, which gives us a spectral se-
quencelﬂ Our spectral sequence has an Es-page indexed by two non-negative integers p and ¢, which
looks like E2"Y = RP f,(R9g.M). The Ey-page of our spectral sequence has maps dy : E2'? — EET271
which are called differentials, since any composition of two of these maps is zero. It turns out these
ds-differentials are just generalisations of § from Sequence Since we have differentials, we can
take cohomology, and the E3-page is defined exactly as that,

EP? =ker(dy : ED? — EVT*971) Jcoker(dy : EE™27T — EPY),

Again we have differentials, called d3 : E?? — EPT972 and this process continues to the E;-page. In
general we have an F,.-page of our spectral sequence defined in the obvious way. This is a first quadrant
spectral sequence, so we can see that since these differentials grow larger as r increases, eventually an
element E?'? where r > p, ¢ cannot be hit or receive nonzero differentials, and hence EF'? = E}*? for all
k > r in this case. In this situation we define £2: = EP*9  where this position has stabilised. All of this
information come to the following theorem, which is true also in the generality of Proposition [11.11

Theorem 11.14. The sheaf R'(f o g)..M has a decreasing filtration,
FPR'(fo0g):M C R'(f 0 g).M,

with F~Y = RY(f 0 g)«M and F* = 0 such that the associated graded gr’ R'(f o g).M = ER'"P in the
spectral sequence defined above. In the usual language of spectral sequences we may write,

B} = RPf.(R'g.M) = RPT(f o g). M.

21See chapter 5 of [J] for more on spectral sequences.
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Let us consider this spectral sequence for case 2 above, and see that we come to the same conclusion.
We have R?%g.M = 0 for all ¢ > 1, so the spectral sequence looks as follows, where the horizontal axis
is the p-axis and the vertical that g-axis,

0,1 1,1 2,1 3,1
1 E; E; E5 £y

0 ES° BEy° EX° "EY°
0 1 2 3
We will have EY? = 0 for all ¢ > 1, so the only possible differentials amoung the whole spectral

sequence are the ds-differentials indicated. Our spectral sequence stabilises on the Es-page for degree
reasons and we then get

ker(dy) ¢=1
EPY = FEY?T= ¢ coker(ds) ¢=0
0 otherwise

If we unpack every, such as the identification of the E.-page with the associated graded of R*(fog)..M
we obtain the following short exact sequence,

0 — coker(f,(R'g. M) = R>f,(gsM)) = R%*(fog)sM — ker(R' f.(R*g.M) — R3f.(g.M)) — 0,

and a collection of other, similar short exact sequences, which exend to the long exact sequence of

Sequence of Case 2.
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12 Cech Cohomology 12/06/2017

Let us start today with a theorem.

Theorem 12.1. Let X = Spec A be an affine scheme and M = M be a quasi-coherent sheaf, then
HY{(X, M) =M fori=0 and zero for all higher i.

We already know that H°(X, M) = M since these are simply the global sections, and H(X, M) = 0
since we have alternative definitions of this in terms of M-torsors and certain isomorphism classes of
extensions. We want to embed M into an injective sheaf in order to compute the long exact sequence
and prove Theorem To prove general results, we need to be able to compute H*(X, F), and to do
this we are going to use Cech cohomology.

Let X be a topological space, and let & = {U; C X,i € I'} be a certain collection of open subsets of X,
such that they form a cover of X. Assume that I is totally ordered, where usually I = {1,2,...,n}.
Let F be an abelian sheaf on X.

Definition 12.2. The Cech complex of F with respect to U is then defined as,

(H]—" ) — [[ 7w, nus, )

i€l i1 <1
where the differentials are simply the alternating sum of restriction maps, so this first differential is a

U; U;
1 2
product of resy ., I8y, u, -

Notice that by the sheaf condition, the kernel of the first differential is F(X), since this is exactly all
the local sections that glue to global sections because they agree on restrictions.

Definition 12.3. We then define the Cech cohomology of F with respect to U to be the cohomology of
the above Cech complex, 5 3
HYU,F)=HYC*U,F)).

The idea now to to make this definition independent of our chosen cover U, so we would look at the
colimit colimy; H4(U, F) over all collections of covers U, and sometimes, but not all the time, this turns
out to be H1(X, F).

Lemma 12.4. Let X be a topological space with some cover U, and F be an abelian sheaf on X.
1. IfU; = X for some i € I, then HI(U,F) = F(X) for ¢ =0, and zero otherwise.
2. For general U we have H'(U, F) = F(X).
3. If F is injective then HI(U, F) = F(X) if ¢ = 0, and zero otherwise, so Hi(U,F) = HI(X,F).

Proof. For part 2 we simply appeal to the sheaf condition as previously remarked. For the first and
third parts, we start by letting f;, . . : Uiy N---NU;, — X be the open immersion, and we claim
there is a natural long exact sequence of abelian sheaves on X,

c— P firriZ — PFNT — Z— 0, (12.5)
i1 <i2 iel

where the first map is the sum of differences of natural maps (f;, i, \Z — (fi,1\Z and (f;, i, W2 —
(fis)1Z, and (f;)1 is adjoint to Z — fF7Z = Z. To check this claim, we need to see exactness on stalks,
but this is easy since ((fi)1Z), = Z if z € U; and 0 otherwise. For each x there is some ¢ with x € U,
so we can replace X by U;, and U; by U; N Uj;, so without loss of generality we have U; = X for some
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i € I. This reduces us to the following claim; if U; = X for some i € I, then the identity is homotopic
to zero on the complex [12.5] i.e. there is the following diagram,

B @11<12 flwz ‘Z — @ fl).Z — s 7Z —— 0

%l/l/l’

— @ (fllﬂz)!Z — @x.ﬂ)!z — Z — 0

11 <12

such that id = dh'~! + h'd. To see this, we take h’ : Z = (fi,\Z — @,(fi)1Z to be the canonical
inclusion. For higher homotopies, like A~!, we also define it to be the canonical inclusion,

@(fi)!z = @(fz io 'Z — @ le,zz
7 i i1 <2

with a plus sign if ¢ < ip and a minus sign if iy < 4. This gives us both of our claims. To show part
1 and part 3 we consider the complex C'® of and then the complex of homomorphisms of abelian
sheaves on X from C*® into F,

Hom(C*, F) =0 — F(X —>H}‘ ) — [[ 70, nUi,) — -, (12.6)
i1 <i2

using the identification,
Hom (@(fi)!Z,}') HHom (finz,F) = HHom (Z,ffF) = H]:(U)

Notice that the complex to the right of F(X) in is precisely the Cech complex of F with respect to
U. For part 1 we notice that the complex [I2.5]is zero in the homotopy category of abelian sheaves on
X, and we see that the complex is then exact. For part 3, we also use that the functor Hom(—, F)
is exact to obtain our desired result. O

What can we do for a general 77 We need to take a quick detour now through some more homological
algebra which we do not have time to cover to full detail.

0
We can choose an injective resolution 0 — F — I° St~ MUisan open cover of X where I is
totally ordered, then we have the following double complex,

0 0 0

| | |
0 —— [ F(Ui)) ———— HiIO(UZ-) _ Hijl(Ui) - ..
|

‘F(Uil mUiz) — Hi1<i2 IO(Uil mU’Lé) E— Hi1<i2 Il(Uil mULé) —_—

! | |

0 —— Hi1 <iz

(12.7)
The first row gives us the sheaf cohomology of [ [, H*(U;, F), since restricting injective resolutions gives
us an injective resolution, and similarly the second row gives us the product of the sheaf cohomology
[;,<i, H (Ui, NUi,, F). The first column gives us the Cech cohomology of U, so H*(U, F), the second
and third columns give us the Cech cohomology of I° and I' respectively, which we can calculate from
Lemma A double complex is just the obvious thing.
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Definition 12.8. A double complex X** (in an abelian category A) is a commutative diagram,

h
Sy xpatl 4T xpletl

dv a
.7. p—
X = Y ,

such that the composition of two vertical, or two horizontal maps is zero, and each small square is
commutative up to a sign, i.e. d” od? = —d" od".

For us we will have XP9 = 0 unless p,q > 0. We'll call this a first quadrant double complex.
Definition 12.9. The total complex of a (first quadrant) double complex X** is defined as
(TOtX.’.)i — @ XP4 = H XPa
pt+g=i pt+g=i
where the differentials are alternating sums of the differentials coming from X*® as a double complex.

Theorem 12.10. The total complexr TotX** of a double complex X** has a filtration, which in turn
gives us two spectral sequences,

BP = HI(X*?) = HP¥9(TotX**), (B0 = HP(X0%) = HPHI(TotX"*).

These are essentially built by first taking cohomology in the horizontal direction or the vertical direction
(see chapter 5.6 of [9] for more on the spectral sequences of a double complex). Notice that both of
these spectral sequences converge to the cohomology of the total complex. If we apply these spectral
sequences to the double complex without the column expressing the Cech complex of F, we need
to first take cohomology in the vertical direction, in which case we obtain the global sections of I*(X)
and nothing in higher degrees. Due to lack of higher differentials and extension problems, this implies
the cohomology of the total complex is

HY(0 — I°(X) —» IY(X) = ---) = HY(X, F).

Corollary 12.11. We have a spectral sequence,

Eri= I H'(NUF| = HBXF).
JCI,|J|=p+1 JEJ

Proof. Take the spectral sequence where we look at the cohomology in the horizontal direction first,
and compare this to the fact discussed above that H?(TotX**) = H(X,F). O

Note that the ¢ = 0 line of this page is exactly the Cech complex C (U, F). This leads us to the following
corollary, which is essential to any explicit sheaf cohomology calculations we do in this course.

Corollary 12.12. Assume that for all 0 # J C I such that J is finite we have H? (njeJ Uj,}') =0
for all ¢ > 0, then HI(X,F) = HY(U,F).
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After the proof of Theorem we will see that if we have all ("), U; are affine and F is quasi-coherent,
then we can use Cech cohomology, e.g. for projective space P with the standard covering.

Proof. The spectral sequence of Corollary [12.11] degenerates immediately after the F;-page, hence
FE> = FE, and we're done. O

Proof of Theorem[12.1} Let X = Spec A and M = M be a quasi-coherent sheaf on X. For induction,
assume that for all affine schemes X and all quasi-coherent M over X we have H'(X, M) = 0 for all
t=1,...,q— 1. We want to show that in our case, H4(X, M) = 0. Choose some o € H?(X, M) # 0,
then we claim there is a cover U = {U;} of X such that 0 = aly, for all U; inside H4(U;, M). To
see this, take 0 — M — I°® to be an injective resolution of M, then a comes from an element
a € ker(d? : 19(X) — I971(X)), which is exact as a complex of sheaves, so & is locally the image of
d?~!, which proves our claim. Without loss of generality, we take U; = D(f;) fori =1,...,n. We then
look at the spectral sequence of Corollary [I2.11] which gives us

B = @ B D([]H] M| = m" X M)
JC{1,...,n},|J|=p+1 jeJ

We easily see the ¢’ = 0 row is again the Cech complex C'(U, M), and between the ¢ =1 and ¢’ = ¢ —1
rows of the Ej-page of this spectral sequence, we have only zeros by induction. The FEs-page then
has H*(U, M) on the ¢ = 0 row. By inspection, we have a [, H4(U;, M) in the qu-position. Upon
considering the convergence of this spectral sequence, and the fact that these qu and Ego terms will
survive to the F..-page for degree reasons, we obtain the extension problem,

0 — HI(X,M) — HY(X,M) — [[H(U:;, M) — 0.
As a € ker(HY(X, M) — [[; H/(U;, M)) by the construction of the cover U;, then a has to come from
H1(X, M). This theorem then follows quickly from the next lemma. O

Lemma 12.13. Let X = SpecA, U; = D(f:;) be a cover of X by open affines, and M be a quasi-
coherent sheaf on X. Then HI(U, M) =0 for ¢ > 0.

Proof. Since M = M , then we only need to prove the exactness of,

0= M= @M = D M(fiufi) =

i1 <ig

the Cech complex for M. As A — [, A[f; '] is faithfully flat for this finite product, then it is enough
to check everything after tensoring with — ®4 A f;l] for all ¢ by descent. In other words, we may
assume U; = X for some i € I, but then we always have H?(U, M) = 0 for ¢ > 0 by Lemma part
1. O

As a final corollary, let us see this all in an algebro-geometric light.

Corollary 12.14. Let X be a sepqrated scheme, U be an affine open cover of X, and M a quasi-
coherent sheaf. Then H(X, M) = H4(U, M) for all ¢ > 0.

Proof. Since X is separated, then U,V C X being affine implies that U NV is affine. O
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13 Finiteness in Cohomology I 19/06/2017

Today we will explore finiteness results in sheaf cohomology, which consists of two main results, and the
two big proofs the accompany them. Last semester (for example in the formulation of the Riemann-
Roch Theorem) we state that if a scheme X over a field k is projective, and F is a coherent sheaf over
X, then dimT'(X, F) is finite. Today we will prove a generalisation of this theorem which requires us
to use sheaf cohomology.

Theorem 13.1. Let A be a noetherian ring, and X a projective scheme over A, i.e. there is a closed
immersion i : X — P for some n > 1. Let F be a coherent sheaf over X, then for all ¢ > 0 the
cohomology group H'(X,F) is finitely generated as an A-module.

The proof will proceed by descending induction on i, so as a first step we need vanishing of the sheaf
cohomology for large degrees of i. There are two ways we could do this.

We could use Cech cohomology, take P% = Ul,U; to be the standard open affine cover, then
X = Uio(U; N X), where U; N X = V; are all open affines of X. As X is separated we can use
the Cech complex to compute cohomolgy, and this looks explicitly like,

CH{ViL,F)= 0-@FV) - EPFVinV;) == FVon---NV,) =0,
i=0 i<j
and it follows that H*(X,F) = H'({V;},F) = 0 for all i > n. There is another method though,

originally due to Grothendieck in the case that X is a noetherian space, and later generalised to all
spectral spaces in 1994 by Scheiderer. We will only state and prove the noetherian case.

Theorem 13.2. If X is a noetherian spectral space, and F an abelian sheaf on X, then H (X, F) =0
if i > dim X.

Proof. The proof proceeds with many reduction steps. First, recall exercise 8.4(iii) which states that if
F; is a direct filtered system of abelian sheaves on a spectral space X, then for any i > 0 we have,

colim; H (X, F;) = H'(X, colim; F;).

We will now run with an induction argument on dim X = n. First we notice that we can assume
X is irreducible. If not, then the fact X is noetherian implies that it has finitely many irreducible
components, Z1, ..., Z, C X. By induction on m we may assume the result holds for Z; = Z, and let
X' =ZyU---UZy. Let U=X\Z C X', withi:Z < X and j : U < X the canonical immersions. If
F is an abelian sheaf, then we have a short exact sequence,

0— Hj*"F — F — i, i* F — 0.
On cohomology we obtain the exact sequence,
HY(X,jij* F) — H(X,F) — H(X,i,i*F).

In exercise 9.1 we will show that if f : ¥ — X as a closed immersion of schemes and F is an abelian
sheaf on Y, then the canonical map

H"(X, fo.F) — H"(Y, F),

is an isomorphism for all n > 0. This means H*(X,i,i*F) = H*(Z,i*F) = 0 for k > dim Z < dim X.
If we now let i’ : X’ — X be the closed immersion, then as U C X’ we have jj*F = i, (¢')*(j1j*F),
since i, (i")* preserves stalks on U and is 0 elsewhere, the same effect as ji. So we obtain an exact
sequence,

0 — iL (") " F — il ()* F — il(i")*i,i* F — 0,
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where we can identify the last term as ¢, (¢')*i,i*F = i(ZmX/)*iE‘ZﬁX’)F' On cohomology we then have
the exact sequence,

HT N (X, iznxniznxF) — HUX, jij* F) — HY(X, i ()" F) = HI(X', ()" F),

where we have made the now obvious identification of the first term. The first term is zero if ¢ — 1 >
dim(Z N X’) which itself is strictly less than the dimension of X, and the last term is zero if ¢ >
dim X’ < dim X by induction on m. Hence H?(X, jij*F) = 0 for ¢ > dim X and thus H%(X,F) =0
for ¢ > dim X. Hence we can assume X is irreducible. If dim X = 0, then X is a point, since X is
irreducible, and we are done here too. We may also assume that F is generated by one single section.
To see this, let s € F(U) and let jy : U < X be the open immersion, then we obtain Z — j;;F, where
Z is the constant sheaf, which is equivalent to a map jyZ — F. The map

Pivz — F,
B

is surjective, where B is the set of all open subsets U C X and all s € F(U). For any finite subset
S C B of sections, let Fg be the image of the above map when restricted to only those direct summands
where s € S. Then Fg, and S C B form a filtered direct system, with F = colimg Fg, thus by the
commutivity of cohomology with filtered colimits, we are reduced to the case where F = Fg. We can do
another induction now on the number of elements of S. If s € S, then we have a short exact sequence,

0—>}—S\{s} —>]:S —>]:/ —)0,

where j;nZ — F' is a surjection, for some open immersion jy : U — X since F' is generated by one
element. On cohomology we then obtain,

Hq(X, fS\{s}) — Hq(X, ]'-5) — Hq(X, ]'-/)

We know when the first term dies by induction, and the last term brings us down to our reduction that
F can be assumed to be generated by one element. We now want to look at the exact sequence

0—G — HyZ—F —0,

where j : U < X is some open immersion. For each z € X we see that G, < (jiZ), is injective, and
the later stalks is simply Z if x € U and zero elsewhere. Now any x € X is a specialisation of the
unique generic point n € X, so we have the following commutative diagram,

N

gn — (j!Z)TI

where the hooked arrows indicate injections. We now set some d € Z such that G, =dZ C Z. If d = 0,
then G =0 and F = jiZ. If d > 0 we then obtain the short exact sequence,

0—G— jy(dZ)=4yZ — F —0,

such that JF7 is exactly the cokernel of G,, — dZ which is simply zero. Hence F’ = i.7*F" for some closed
Z C X and Z # X, since 7' = 0 on an open subset of X. We then have HY(X, F) = HY(Z,i*F) =0
for ¢ > dim Z < dim X — 1. Hence we have an exact sequence,

HI™YX,F) — HYX,G) — HYX,j7Z),

where the first term is zero for ¢ > dim X. If H4(X, #Z) = 0 for ¢ > dim X, then H4(X,G) = 0 for all
g > dim X. On the other hand we have the exact sequence,

HYX,jZ) — HY(X,F) — H"(X,G).
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Again, we have HY(X,F) = 0 for ¢ > dim X if this holds for jZ. It remains to show that if X is
irreducible, j : U — X is open then H4(X, jiZ) = 0 for ¢ > dim X. To do this, we look at the short
exact sequence,

0 — N2 — 72— 1.2 — 0,

with 4 : Z = X\U — X. This gives us the following exact sequence on cohomology,
Hl_q(Za Z) — Hq(Xaj’Z) — Hq(X7 Z)a

where the first term is zero for ¢ — 1 > dim Z < dim X by induction on the dimension of X, and the
final term is zero since Z is flasque as X is irreducible (we could not play this game for Z on Z as Z
may not be irreducible). This finishes our proof. O

We now go back to Theorem so recall the notation of that theorem.

Proof of Theorem[13.1} Since we have H*(X,F) = HI(P",i,F) we may assume without loss of gen-
erality that X = P%. We then have H?(P%,F) = 0 for ¢ > n, so we now assume that this holds for
q > ¢, and start a downward induction argument. For some N >> 0 we know F ® O(N) =: F(N)
is generated by global sections, so we have a surjection O%” — F(N) which is equivalent to a map

Opr (=N)®™ — F. We then have a short exact sequence
0—G— Opn (—N)¥" — F — 0,
where G is coherent, so we have the associated long exact sequence on cohomology,
HY(P%, Opn (—N)®™) — HY(P}, F) — HTY(X,G).

Now the final term is finitely generated over A by induction, and the following proposition explicitly
calculates the first term using the isomorphism,

H(Py, Opy (—N)®™) 2= H (P, Opy (—N))®™.

In particular, we see the first and last terms are finitely generated, hence so is the middle one, and
we’re done. O

Proposition 13.3. Let d > 0, then we have,

P 0 i#nord<n
H' (P}, Opn (—d)) = < 1At afﬂ) i=n,d>n ’
o Tn d

) n

where each x; has degree 1. In particular they are all finitely generated as A-modules.
This proposition appears as exercise 9.3, so we only prove the case for n = 1 to get a feel for what is

going on.

Proof. We use the Cech complex for this calculation, since P"} is proper, so in particular separated. Let
n = 1, then we have P4 = Uy U U; where Uy = Spec A[t] and U; = Spec A[t~1] (where we could think
of t = x9/x1 and t~! = x1/x0). The local sections of O(—d) are then,

(U, O(=d)) = Aft]t~" = Alt], D(U1,0(=d)) = At~ 1t? = A[t™1),

which have obvious maps to T'(Uy N Uy, O(—d)) = A[t*']. In the Cech complex though, the map from
the local sections of O(—d) at Uy to those at Uy N Uy is t~?-times the obvious (algebraic map). We
then have Cech complex as follows,

C({Uo, U1}, 0(—d)) = 0 — Aft] @ A[t™'] — A[tT'] — 0,

where the map sends (fo, f1) to fo —t~?f1. This map is certainly injective and the image are finite
sums Y a,t"™ with a, = 0 if —d < n < 0, simply by inspection. Hence the global sections are empty
(which we already knew), and the first cohomology group is EB;{ a1 At O
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For fun we can calculate the cohomolgy of O(d) for non-negative d as well.

Proposition 13.4. Let d > 0, then we have,

i n o A[Z‘O,...,Jjn]d 'L:O
H( 4, Oz (d)) = { 0 otherwise
Proof. For i = 0 we know this already, since we calculated it last semester. We now prove that
H(P%,0(d)) = 0 for d > 0 and i > 0 by induction on n and d. For n = 0 we have P% = Spec A and
we’re done by Theorem For n > 0 we look at one of the obvious closed immersions 7 : Pﬁ_l — P73,
so we can look at the short exact sequence,

0—0d-1) — O(d) — i,.0(d) — 0,

which comes by tensoring the canonical sequence when d = 0 with O(d). On cohomology this gives us
the exact sequence,

H'(P},0(d — 1)) — H'(P}%,0(d)) — H'(P~", O(d)).
The first term is zero by induction on d if d > 0, and the last term is zero by induction on n. Hence

we only need to calculate H(P7%, Opr, ) = 0 for ¢ > 0, and this is done with an explicit Cech complex
calculation. |
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14 Finiteness in Cohomology II 22/06/2017

Soon we want to talk about Serre duality, the Riemann-Roch theorem, the theorem of formal functions,
Stein factorisations and Zariski’s main theorem, but first we need to finish our work on finiteness and
base change results. Last time we proved Theorem A key calculation we didn’t clarify last time
is the following lemma.

Lemma 14.1. Let I be a non-empty totally ordered set, and M be an abelian group. Then,

OHMHHM*) H M—-..,

i€l i1 <2
1s exact.

Proof. Let X be a point, and let it be covered by a point as well U;, then I # & is a cover and we
see that the sequence of the lemma is the Cech complex of the constant sheaf M on X. We know the
cohomology of this space is trivial except in the zero degree, so this Cech complex is exact. O

Today we plan to prove the following theorem.

Theorem 14.2. Let f : X — Y be a proper morphism of noetherian schemes, and F be a coherent
sheaf on X. Then R'f.F are all coherent for i > 0.

To prepare us for this theorem we will use the following proposition.

Proposition 14.3. Let f : X — Y be a qcgs morphism of schemes and let F be a quasi-coherent
sheaf on X. Then R'f.F is quasi-coherent and for all open affine V = Spec B C Y with preimage
U=f"YV)C X we have,

(R'fo. F)(V)=H"(U,F).

Proof. Recall that R f.F is the sheafification of V +— H*(U, F) (see Lemma|11.2)). We can work locally
on Y, so we may assume Y = Spec B is affine. We now claim that for all g € B we have,

H'(f~(D(9)),F) = H'(X, F)lg~"]-

—_~—

Given the claim, it follows that D(g) — H*(f~(D(g)),F) defines a quasi-coherent sheaf H(X,F)

—~—

giving us R'f.F = Hi(X,F) which gives us the result. To prove this claim we first assume that X is
separated, which implies that for J # @ we see that all intersections of affine opens covering X is again

affine, so

ﬂ Ui=Uy,

ieJ
is affine. We then choose a finite open affine cover X = U, U;, then H*(X,F) is computed by the
Cech complex C({U;}, F), whose terms are € ;=) F(Us) with k > 0. We also see F~YD(g)) =
Ui—, Du,(g) is separated, so for all J # & we have

n DUi,(g) = DUJ(Q)?
ieJ

is again affine. Again, we see that H'(f~'(D(g)),F) is then computed in terms of the Cech complex
C({Du,(9)},F), whose terms are similar to the above Cech complex. In fact, we notice a relation
between these two Cech complexes,

C({Du.(9)}, F) = C{U:}, P)lg~"].

Since localisation is exact we obtain the desired claim. Now consider a general X, i.e. not assumed to

be separated. We can cover X by affines U; but Uy = (,c; U; for J # @ might not be affine, but it
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will be separated, as an open subset of an affine scheme. We then have two spectral sequences, and
maps between them as indicated

Efq = @ng,m:pﬂ Hq<UJ7]:) Hp+q(Xv ]:)

l

(B = @ ey 1—per HUU N f71(D(g)), F) — H*¥(£(D(g)), F)

From the separated case we know that H4(U; N f~1(D(g)),F) = HY(Uy;, F)[g~'], thus we see that
(E??) = EP?[g~!], and using the fact that localisation is exact we see that (EP?)’ = EP9[g~1] for all
r > 1, i.e. for all the pages of our spectral sequence. From this we get the r = oo case, and from this
we use the convergence of our spectral sequence to see that

H(f~1(D(9)), F) = H (X, F)lg~"].
This shows our claim, and thus our proposition too. O]

We have been trying to prove Theorem [I4.2} By the Proposition [I4.3] we know that these higher direct
images are quasi-coherent, so without loss of generality we can take Y = Spec A (as in Theorem .
We then need to show that (R'f.F)(Y) = H*(X,F) is a finitely generated A-module. When f is
projective we did this last time, Theorem[I3.1] For the general case we could use one of two approaches.
The first is to use Chow’s lemma to reduce this to the projective case. However this feels like cheating,
since we just make many reductions and then compute H?(P";, O(—d)). Alternatively there is also the
Cartan-Serre argument which is used in complex geometry. This uses a little functional analysis, using
a variant of the following statement.

Proposition 14.4. IfV is a Banach space with a compact automorphism, then V' is finite dimensional.

This argument was first used by Kiehl in the 1960’s with regard to non-archimedean geometry (e.g.
over the p-adic numbers), and by Faltings in the 1990’s in algebraic geometry. The trick is to base
change from Z to the ring of Laurant power series Z((t)) and then use the topology we can place on
this ring.

Example 14.5. If X = P as a complex manifold and 7 = Ox is the structure sheaf, then we can
choose two nice open covers IE”}C(C) = UZ U, = UiVi such that V; C U;. Then we have the Cech
complexes which both compute H*(X,F), and this containment condition on U; and V; means we
obtain a map of complexes,

C({Ui}, F) — C{Vi}, F),

which is just restriction. All the levels of our chain complex are Banach spaces and the restriction maps
are compact operators on each level. We then apply a proposition similar to Proposition which
states that if C* and D*® are complexes of Banach spaces, and f® : C'* — D® is a quasi-isomorphism
such that all the f? are compact operators, then the cohomology of both C* and D*® are isomorphic
through f and level-wise finite dimensional.

To finish Theorem [I4:2] we will take the path of Chow’s Lemma.

Theorem 14.6 (Chow’s Lemma). Let f : X — Y = Spec A be a proper map of noetherian schemes,
then there exists some f' : X' — Y that is projective, and a proper birational map g : X' — X such
that fog= f', i.e. the following diagram commutes,

X/
I’ .
N

X —Y
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To prove this we will recall a few definitions, including an adjective in the above theorem.

Definition 14.7. A birational map of schemes is a map f : X — Y of schemes such that for some
open dense subset V. CY we have f|y-1vy: f7H(V) = V is an isomorphism.

Recall that given a map f : X — Y of schemes, then the scheme theoretic imagﬂ of f is the smallest
closed subscheme of X over which f factors. This can be identified as Spec(Oy /Z) where [ is the kernel
of Oy — f.Ox when f is qcgs.

Definition 14.8. An open subscheme U C X is scheme theoretically dense if the scheme theoretic
image of U — X s equal to X.

This definition behaves as one would hope.

Lemma 14.9. Given two schemes X,Y over another scheme Z, two maps f,g: X — Y as schemes
over Z, such that Y — Z is separated, and a scheme theoretically dense U C X, then f|y = glu implies
that f = g.

Proof. Consider Y — Y X Y, which is closed as Y is separated, and the map (f,g): X - Y xz Y.
Pulling back along these maps gives us a scheme X’ with a map X’ — X that is closed. Since f and
g agree on U, we have a map U < X', which commutes with the inclusion U < X and the closed
immersion X’ < X. The fact that U is scheme theoretically dense in X now implies that X’ = X, so
f=gonallof X. O

This gives us all the ammunition we need to prove Chow’s Lemma.

Proof of Theorem[I].6 We can reduce to the case that X is irreducible quite easily. Since X is noethe-
rian we know X = J;_, X; with each X; irreducible. Notice the map [[ X; — X is a proper birational
map, since it is an isomorphism when restricted to X\ U, ;(X; N X;). Hence we may replace X be
this disjoint union, and then we may restrict our attention to one single X;. Since X is irreducible and

noetherian, we take X = U?:l U; for U; some open affine cover, with open immersions
ng Uz
U, — AA — IPA .

Let P; C P'}' be the scheme theoretic image of these maps above. Let U = N}_,U;, then we have a

map,
h:U< (Pyxag-xaP,)xaX,

which is an open embedding since it factors through Uy X 4 - -+ X 4 U,, X4 X through open embeddings.
It is also an immersion, since it factors through Uy X 4 - -+ X 4 U, x U through first a closed immersion,
followed by an open immersion. Let X’ be the scheme theoretic image of h, so X’ is closed inside
Py x4 - x4 P, x4 X, and this is proper over X, so g : X’ — X is proper (even projective). Notice
that we have the following commutative diagram,

U—— X'
\P’
X

and U is scheme theoretically dense inside X’. We claim this implies g is birational. To see this, we
have a section s : U — g~(U) of a restriction of g, and since g is proper we see that s is closed, hence
s(U) is closed and U = s(U) = g~ *(U). We now claim that g : X’ — Y = Spec A4 is projective. More
precisely, we want to show,

ZZX/‘—>P1 Xa- - XaPy,xaX— P XA"'XAPTH

228ee footnote 43 on page 101 of 7]
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is a closed immersion, since this is followed by the closed immersion Py X 4+ - - X 4 P,, < ]P’z1 XA X APZ",
recognising g as projective. We notice the composition [ is obviously proper, as projections and closed
immersions are proper, so we only need to see if it is a locally closed immersion. Let V; = g~ }(U) C X",
which as a set cover X’. Notice that the following diagram commutes when restricted to U C V;,

Vi ——————— U,

l [

Py xpg- XaP,xyu X — P

but since U is scheme theoretically dense inside these V;’s, we apply Lemma and see that it actually
commutes on the nose. Without loss of generality now, we restrict our attention to ¢ = 1, and consider
the following commutative diagram,

Vi s Uy xa PyXa-xaPyxal

e o)

Ui xaPoxa--xaPy

The map 7 is a closed immersion since it was defined by a base change, and ¢ is a closed immersion
since the diagram map of Uy, A is. This means that [ is a locally closed immersion, and we’re done. [

We can now finally prove Theorem [14.2

Proof of Theorem[1].2 Assume for simplicity for now that dim X < oo, then we induct on dim X. We
may assume the result is true for all 7 with dimsuppF < dim X. We then use Chow’s lemma to obtain
a map X’ — X which is proper and birational (on say U C X) and another map f’ : X’ — Y which
is projective. This implies that H*(X’, g*F) are finitely generated A-modules from Theorem and
we obtain the following commutative diagram,

X X, X X x4 P = P

|

X

Hence all the R'g,(g*F) are coherent, and also zero on U if i > 0, since g is an isomorphism there.
This means these coherent sheaves are concentrated on X\U, and we know the result holds here by
induction. We now consider the spectral sequence,

B} = HP(X, Rg.(¢"F)) = H"™(X',g"F),

using the fact that RT'(X, —)oRg. = RT'(X’,—) on g* F. We know what our spectral sequence converges
to is a finitely generated A-modules, and that for ¢ > 1 the FEs-page is finitely generated. This means
we have a spectral sequence, where only the bottom row is not known to be finitely generated. However,
each position is only possibly hit by finitely many differentials from the finitely generated parts of our
spectral sequence. Since this spectral sequence converges to something finitely generated, this implies
that this bottom row is also finitely generated, i.e. HP(X, g.g*F) is finitely generated. We have a short
exact sequence now,
0—G—F — g9 F—G —0,

by forming kernels and cokernels. We know that G and G’ are concentred on X\U, so the result
holds there, and we just saw by a spectral sequence argument that if holds for g.g*F too. Hence the
conclusion holds for F. O
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15 Affine Criterion and Base Change 26/06/2017

We would like to prove some fundamental theorems about sheaf cohomology. Specifically Serre’s crite-
rion for affine schemes, and the cohomological criterion for ample line bundles.

Theorem 15.1 (Serre’s Affine Criterion). Let X be a qcgs scheme, then the following are equivalent;
1. X is affine.
2. For all quasi-coherent sheaves F on X we have H'(X,F) =0 for all i > 0.
3. For all ideal subsheaves T C Ox, we have H'(X,T) = 0.

Proof. We have seen in Theorem [12.1] that part 1 implies part 2, and the fact that part 2 implies part 3
is logic. To show part 3 implies part 1 we let A = T'(X, Ox), then we have a map g : X — Spec A. We
claim that there exists fi,..., f, € A generating the unit ideal such that the pre-image g~ 1(D(f;)) =
Dx(f;) is affine. Notice that this claim implies g in particular is affine, which implies X is affine. To
prove this claim, let z € X be a closed point of X, then we can find an open affine neighbourhood
xz € U C X, and we then set Z = X\U. This gives us the short exact sequence,

0 — Tzu(ey — Iz — isk(z) — 0,

which is easily checked on stalks, where i : {} < X is the inclusion of x into X. The corresponding
long exact sequence on cohomology then gives us

HY(X,T7) — H°(X,i.k(z)) — H'(X,Zz04})-

The first map is surjective since Hl(X,IZu{x}) = 0 by assumption. Thus we can find an f € H°(X,Zz)
such that f(x) = 1 inside k(z). Thus Dx(f) = Dy(f) > z, since f vanishes on Z, we see Dy (f) is
affine, since it is a principal open subset of an affine scheme U. Since X is quasi-compact, we can
cover X with finitely many f; € A such that X = (JI_, Dx(f;), with each Dx (f;) affine. Note that it
obviously suffices to do this for closed points, which we assumed z is, using the fact that X is qcgs so
it has a closed point. Notice also that at this point we can only conclude that X < Spec A is an open
immersion, so X is quasi-affine. We still need to prove that these f;’s generate A. We have a short
exact sequence,
0 —F — 0% — Ox — 0,

where the last map sends (a1,...,a,) — >, a;f; and F is defined to be the kernel, simply since these
Dx(f;)’s cover X. This gives us the long exact sequence on cohomology,

HY(X,0%) —— HY(X,0x) — H'(X,F)

F ok

An (f1;~~7fn) A

Hence it is enough to show here that H'(X,F) = 0 to obtain surjectivity of h. Let F; = F N O% be
a filtration of F, where O% < O% includes elements into the first 4 coordinates, then 0 = Fy C --- C
Fn = F. We now have an injection

Fiv1/Fi — OE}H/@& ~ Ox.

Hence F;11/F; is an ideal sheaf, so it’s first cohomology is zero by assumption. By induction on long
exact sequences defining these ideal sheaves we obtain H'(X,F) = 0. O

We have a little bit of machinery built up now, so we can continue proving theorems.
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Theorem 15.2. Let A be a noetherian ring, and g : X — Spec A a projective map, and L an ample
line bundlﬁ on X. Then for all coherent sheaves F over X, there is some ng € Z such that for all
n>ng and i > 0 we have H (X, F ® L&) = 0.

The definition of a projective scheme X over a noetherian ring is only a slight generalisation to that of
Definition 25.2 of [7].

Definition 15.3. If X is a scheme of finite type over a noetherian ring A, then X is quasi-projective if
X admits an ample line bundle, which is equivalent to asking for a locally closed immersion h : X — P'}.

The proof of the equivalence in the above definition is very similar to the same statement over a field
presented in Theorem 25.7 from [7].

Proof of Theorem[I5.2 Let m be some sufficiently large integer, and h : X — PY a closed immersion
such that £&™ = h*O(1). We may assume that m = 1, since we can always reach the LZ™ case by
induction. Without loss of generality we have £ = h*O(1), then we have,

HY(X,F® L") = H(X,F @ h*O(n)) = H(PY, h,(F @ k*O(n))) = H\(PY, h.F @ O(n)).

Notice that one can construct a canonical map h.(F ® h*O(n)) — h.F ® O(n) using adjunctions,
which one can also check is an isomorphism by looking at stalks. Without loss of generality we can
take X = P&. We will now procede by descending induction on i. We see that for all F there is some
no such that for all n > ng and ¢/ > i we have H (PY, F(n)) = 0, where we write F(n) = F @ O(n).
For i = N 41 we see from the Cech complex that H* (PY, F(n)) = 0. Now assume this is true for i 41,
then there is some j such that F(j) is globally generated, so that we have a short exact sequence,

O—>Q—>(’)I§,X — F(j) — 0,

where G is simply the kernel. We now choose some ng > 0 such that H (PY,G(n)) = 0 for all n > ng
and all ¢’ > ¢ + 1. We then obtain the following short exact sequence by twisting,

0—G(n) — O}?JX(”) — F(j+n) —0.
This implies, since ¢’ > i + 1 that the first term in the following exact sequence is zero,
H'(PY, Opy (n)) — H' (PY, F(j +n)) — H' ' (PY,G(n)),
by our calculations of Proposition The last term is also zero by assumption, so we see
H' (PY, F(j +n)) =0,
for n > ng and 7 > ¢, and we’re now done. O

There is a stronger converse to this theorem, but we want the reader to notice the change in hypotheses.

Proposition 15.4. Let X be a qcgs scheme and L a line bundle on X. Assume that for all quasi-
coherent sheaves F, there exists an n > 0 such that H' (X, F @ L&) = 0. Then L is ample.

Proof. We can prove that X is covered by open affine subsets of the form D(s) where s € T'(X, £L®")
for some n > 0 (again, recall Definition 25.4 from [7]). Let 2 € X be a closed point, which exists as
X is qcgs, and take some open affine neighbourhood x € U C X, and set Z = X\U. Denoting the
inclusion {z} < X by ¢ we obtain the following short exact sequence,

0 — ZTzu(ey — Lz — isk(xz) — 0.

23Recall what an ample line bundle is from Definition 25.4 in [7].
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Choosing n correctly, we have the following diagram,

HO(X, Ty @ L&) —— HO(X,iuk(x)) —— HY(X, Zz040) ® LO7)

j - |

HO(X,L8") — 5 k(x)

where the left vertical map is an inclusion. Since the right-most term is zero by assumption, we obtain
s € H°(X, £®") such that s vanishes on Z, and s # 0 on z. This implies that * € Dx(s) = Dy(s)
which is affine by Lemma 26.2 in [7]. O

As hinted at before the statement of this proposition, this is not generally an equivalent definition of
an ample line bundle. If X is not projective, then £ can be ample, but H™(X, F @ L&™) £ 0 for n > 0.

Example 15.5. If X is quasi-affine, then £ = Ox is ample. If one had H!(X, FQL®") = HY (X, F) =0
for all n > 0 then Theorem [I5.1] would say that X is affine. We know explicit examples of schemes that
are quasi-affine and not affine, for example X = A?\(0,0). In this case we have H!(X,Ox) # 0, which
is closely related to exercise 10.]@

We now move onto a slightly different idea, which ties together with some remarks we tried to make
at the beginning of the semester. Recall that if f : X — Y is a qcqs map of schemes and F is a
quasi-coherent sheaf on X, then Proposition tells us that R!f,F are all quasi-coherent. Sometimes
we like to think of a map f : X — Y of schemes to be a parametrised family of schemes X, each a
scheme over Speck(y) for all y € Y. If we let g, : X;, — X, then we can now formulate the following
natural question:

How are R'f.F and H (X, g;F) related?
We can abstract this a little too. Let f: X — Y be a qcgs map of schemes and g : Y/ — Y be any

map, then we have the following pullback diagram,

X 245X

L

vy 2.y
Given a quasi-coherent sheaf F over X, we can now consider g*R’f,F or R'f’¢"*F and think about
how they are related.

Construction 15.6. We are going to construct a natural map g*R!f,F — R'f.g"* F, which is natural
in F, which is going to be called the base change map. First we let ¢ = 0 to get an idea of what is
going on. We want a map in

Hom(g" f.F, f;g/*]:) = Hom(f..F, g*f;gl*]:) = Hom(f.F, f*g;gl*]:)a
using the obvious identifications,

g fig™ = (9f)<9" = (fd')+9" = [:9.9"""

Consider the natural map F — ¢.¢* F adjoint to the identity map ¢’*F — ¢’*F, then applying f. to
this gives us our natural base change map for ¢ = 0. For general i, we need to use the edges maps of
spectral sequences. In general, for any maps f: X — Y, g:Y — Z of topological spaces we have edge
maps,

R'g.f.F — R'(gf)+F — g.R'f.F,

24Ex 10.1: Let k be a field and j : X — Ai be the natural open immersion. For ¢ > 0, compute Rij*OA%\{(o,O)}'
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natural in F. This is part of the spectral sequence,
EY = RPg. RIf.F = RP9(go f).F.

By definition of the convergence of this spectral sequence we have an inclusion E0 < RP(g o f)..F,
and by the definition of the E..-page we see that EZ) is a quotient of RPg, f.F by the image of various
differentials. This gives us the natural edge map RPg. f.F — RP(go f).F. Dually, we see that E%? is
a submodule of g.R?f.F as the kernel of various differentials, and RY(g o f).F surjects onto E% by
definintion of convergence. Composition then gives the second edge map RI(g o f).F — ¢g.RIf.F.

Once again, we would like a natural map inside Hom(g* R’ f,.F, R' f.g"*F), so we start with the map
F — ¢'.¢’* F adjoint to the identity, and apply R'f, to obtain R'f,F — R'f.g.¢'*F. Post-composing
this with our first edge map, then identifying R*(fg’) and R'(gf’), and then post-composing with the
second edge map, we obtain R’ f,F — g, R f.g'* F, which by adjunction gives us a natural map between
the desired objects.

These definitions of the base change map are quite abstract. In the outline of the proof of the following
theorem we are going to use a different, but equivalent description of this base change map. The proof
that both of these descriptions are the same amounts to an enormous diagram chase, as one should
expect given the above definition. It is nice to know the definition is natural, and have a concrete
description written down.

Theorem 15.7 (Flat Base Change). Consider a gegs map of schemes f : X — Y, and a flat map
g:Y' =Y. For all quasi-coherent sheaves F over X, the base change map

g R f.F — R flg*F,
s an isomorphism.

Example 15.8. Let X be a qcgs scheme over a field k, and k' be a field extension of k, where the map
g is the flat map of schemes Spec k' — Speck. Then for

g+ X' = X Xspeck Speck’ — X,
and any quasi-coherent sheaf F over X we have,
HY(X,F)®, k' = H(X', ¢*F).

Proof of Theorem[15.7 This is local on Y’, so we may assume that Y’ = Spec A’ and Y = Spec A are
affine schemes (so A’ is a flat A-algebra). We have to prove that H (X', ¢"*F) = H (X, F)®4 A’. The
proof is identical to the proof we did last time (in the proof of Proposition [14.3]) that

H(f~1(D(h))) = HI(X, F)[h~"],

for h € A, where we first did the separated case and then used a Cech to sheaf cohomology spectral
sequence to finish it off. We will only repeat the separated case here, so assume that X is separated.
We can then write X = |J!_, U; for U; a collection of open affines and for all @ # J C I ={1,...,n},
Ujs =je;s Uj is affine. We can compute H?(X, F) by C*({U;}, F), which has terms

b Fwu.

JCI,|J|=k>0

We also have ){’ = Ui, U/, where U/ = U; Xgpec 4 Spec A’ are also open affines, hence HY(X', g"*F) is
computed by C*({U/}, ¢"*F), which has terms,

D WHU).

JCI,|J|=k>0
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We notice now that (¢"* F)(U}) = F(Us)®@a A, so Fly, = M, with M some (U, Oy, ) = Bj-module.
Let B, =T'(U},0p,) = By @4 A'. We then see

gl*]'—|U’J =M®p, B, =M®y A

This implies that,
(" F)U)) = F(Us) ®a A,

and our whole Cech complex has simply been base changed, i.e.
C*({U}},g"F) = C*({Ui}, F) @a A'.
Since A’ is a flat A-algebra, then — ® 4 A’ is exact, and we obtain the result,

HY(X',g*"F)= H'(X,F) @4 A'.
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16 Generalised Base Change and ®" 03/07/2017

Let f: X - Y and g : Y/ — Y be maps of schemes, with f qcgs, and M be a quasi-coherent sheaf
on X. We will denote f’: X’ — Y’ as the base change of f along g. The question we want to ask for
today is:

When is the canonical map g* R f,M — R f.g"* M from Constmction an isomorphism?

Without loss of generality we take Y/ = Spec A’ and Y = Spec A be to affine, which reformulates the
above question to asking when,

HZ(X,M) ®a A/ N H?,(X/’g/*M)

is an isomorphism. The most interesting cases are when Y’ = Speck(y) for some y € Y. Last time
we proved Theorem [I5.7] which says that if g is a flat map of schemes then we have this isomorphism.
However, this does not usually include the case of Y/ = Spec k(y) unless y is a generic point and Y is
reduced at y. One needs some type of flatness hypothesis to hope for a base change result, but this
requires a little added generality involving the derived tensor product

_®]L_

the left derived functor of — ® —. This apporach needs to be formulated with derived schemes, which
enters into the area of derived algebraic geometry. If one wants to study in the usual world, we would
need to assume that

-t -=-®-,

which amounts to flatness assumptions. Let us begin this new approach now.

Definition 16.1. Let f: X — Y be a morphism of schemes and M be a quasi-coherent Ox -module.
We say M is flat over Y if one of the following two equivalent conditions are satisfied,

1. There exists a cover of X by open affines U; = Spec A; C X mapping into open affines V; =
Spec B; C Y such that M(U;) is a flat B;-module.

2. For all open affines U = Spec A C X mapping into an open affine V.=Spec B CY, M(U) is a
flat B-module.

Proposition 16.2. Given the following pullback diagram of schemes,

X 25 x

bl

y %5y

where f is qcgs, and let M be flat over Y with Y = Spec B an affine scheme. Then there exists a
bounded complex N* of flat B-modules (independent of g) such that for all g : Y’ = Spec B’ =Y we
see HY(X', g"* M) is computed by N®* @p B’. More precisely, RU(X', g"*M) = N® ®@p B’ in D(B), the
deried category of B-modules.

Proof. Assume just for simplicity that f is separated, as to avoid a Cech to sheaf cohomology spectral
sequence for now. Let X be covered by open affines U; = Spec A; C X indexed on the finite set I such
that for all non-empty J C I we have Uy = (., U; is affine, then we can compute RI'(X, M) with

Cech cohomology. Define N'* = C'({U;}, M), so the terms are,

NE= P MUy

JCI,|J|=k+1

71



From our assumptions we see that each M(Uj) is a flat B-module. Similarly, for all g : Y/ = Spec Bi’ —
Y we hav? X" = U,e; Ui with U] = U; xy Y" affine opens, so RI'(X, g"* M) is computed by the Cech
complex C({U/}, g"* M) with terms,

D WM.

JCI,|J|=k+1

From Theorem we see that each (¢”* M)(U’}) =2 M(U,;)®p B'. Hence we see that C({U!}, g"*M) =
N*®p B'. O

We would like to take the word flat out of the above proposition.

Lemma 16.3. Let A be a ring, M*®, N® be complexes of flat A-modules which are bounded above, i.e.
M’ = N' = 0 for all sufficiently large i. Let f : M® — N® be a quasi-isomorphism, then for all
A-modules L the map

f®AL:M.®AL—)N.®AL,

s a quasi-isomorphism.
Remark 16.4. There are a few observations to be made about this lemma.
1. This fails without flatness! For example, take A = Z and the following f : M®* — N°,

-2

0 Z Z 0
0 0 7)2 0
Setting L = Z/2 we obtain the map f ®4 L,
0 72 =% 7./2 0
0 0 zZ)2 0 .

which is clearly not a quasi-isomorphism.

2. If N* is a bounded above complex of A-modules, then we can choose a quasi-isomorphism f :
M?® — N°® where M* is a bounded above complex of flat A-modules then define,

N @Y L=M*®4L,

which is well-defined in the derived category D(A)E This lemma tells us that this definition is
independent of our choice of quasi-isomorphism f if M*® is “flat”. For example, if we take N® to
be the complex concentrated in degree zero for some A-module N, then

Tor (N, L) = H;(N &% L),

for all i > 0, as the left derived functor of — ®% L (notice left derived functors are homological).

25This is a type of “flat” replacement, which occasionally allows one to define left derived functors in the derived
category of many abelian categories.
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Proof of Lemma[16.3 Recall that if f : M*®* — N*® is a map of complexes, then we can define the
complex C'% which has entries and differentials,

Ci = M @ N, do, = ( __d}” " ) .
This fits into a short exact sequence,
0— N*— C} — M°*[1] — 0,
which gives us a long exact on cohomologyiﬂ7

H™H(S)

- —— H'N —— H'C; —— H""'M HHN —— ...

In particular, note that f is a quasi-isomoprhism if and only if C is acyclic (i.e. H(Cy) = 0 for all ).
Notice that Ctg, = Cf ®4 L, so it is enough to prove the following claim.

Let M*® be a bounded above, acyclic complex of flat A-modules, then for all A-modules L we have
M*® ®,4 L is again acyclic. To see this, without loss of generality we can set M’ = 0 for all i > 1.
Let Z! = ker(d’ : M* — M*t') and B = im(d*~! : M*~! — M?) = Z! then H' = Z'/B* = 0 by

assumption, so we have an exact sequence,

0— Z' — M — B =741 0.
By descending induction we want to prove that all these Z*’s are flat. This is true for i > 1 as Z* = 0,
and we then want to use the following proposition.

Proposition 16.5. If0 — My — My — M3 — 0 is a short exact sequence of A-modules with My and
M3 flat over A, then M; is flat.

Proof of Propsition Using the fact that Tor?(N,L) = Torf‘(L,N we see that — ®4 M7 is
exact if and only if Tor? (L, M;) = 0 for all A-modules L, if and only if Tor{:(M;, L) = 0. If we apply
the long exact sequence of Torff(f, L) to the short exact sequence in the statement of this proposition,
we obtain the exact sequence

-+« — Torg (Ms, L) — Tor{ (M, L) — Tor{(My, L) — - -

The outer two terms are zero by Theorem and the fact that My and Ms are flat. To show all
higher Tor vanish we need to see that the sequence,

0—Z2"@sL — M@sL— Z" @4 L —0,

is still exact, as then Z? ®4 L = ker(d' ®4 L) = im(d*~! ® .4L). This follows since the obstruction
to the first map being injective is the existence of Torf(Z”l, L), but this is zero since Zi*! is flat by
induction. O

The proof of this lemma is then finished by the following theorem. O

Theorem 16.6. Let A be a ring, and M and N some A-modules. Recall that Torf‘(—,N) 1s the ith
left derived functor of M — M ®4 N. There is a natural isomorphism

Tor (M, N) = Tor (N, M).

26Recall exercise 8.3.
27This might seem almost tautological since N @4 L = L ® 4 N, but what we are really saying here is that we can
calculate the Tor functor by taking projective resolutions in either variable. See Theorem

73



Proof. Let P* — M and Q®* — N be projective resolutions of M and N respectively, and consider the
double complex CP?7 = MP ® 4 N1. We have two spectral sequences which compute the cohomology
of the total complex of C'**®*. One spectral sequence looks at C** and calculates cohomology in the
horizontal direction first, which, using the fact that — ® N* is exact (as N* is projective which implies
it is flat) we obtain an Fy-page with only entries M ® 4 NP along the ¢ = 0 column. Hence this spectral
sequence collapses immediately and we obtain Tor;' (N, M) = H~*(TotC'**). Similarly from the other
spectral sequence we obtain TorZ-A(]W7 N) =2 H=#(TotC**), which gives us our result. O

There should be a nice way of proving Lemma [16.3| without using Theorem but the proof of
Lemma [16.3]is quite nice and Theorem [16.6] is interesting in its own right.

Remark 16.7. Lemma is a special case of the assertion that derived functors (such as — ®% L)
can be computed by acyclic resolutions. We now reformulate Theorem to obtain a fully derived
statement. Consider the set-up from the beginning of the lecture, where Y’ = Spec B’ and Y = Spec B
and M is a quasi-coherent sheaf on X, which is flat over Y, then obtain the statement

RT(X, M) ®% B’ = RT(X', g"* M).

Theorem 16.8. Let f : X — Y = Spec B be a proper map, with B noetherian, and let M be a coherent
sheaf on X which is flat over Y. Then RT'(X, M) is computed by a complex N* of finite projective
B-modules. Moreover, N'* can be used in the previous base change proposition (Pmposition and
one can assume N* = 0 for i > dim f = Sup, ¢y dim ).

We can reformulate this theorem in slightly nicer language.

Definition 16.9. Let A be a ring. An object C € D(A) is called a perfect complex if it can be
represented by a complex of finite projective A-modules.

Hence the theorem above simply says RI'(X, M) is a perfect complex of B-modules, and this theorem
is equivalent to the following lemma.

Lemma 16.10. Let B be a noetherian ring and N® a bounded (in both directions!) complex of flat
B-modules such that all H'(N®) are finitely generated for all i € Z. Then N® € D(B) is a perfect
complez.

We will prove this next lecture, and in the meantime we make an observation.

Remark 16.11. We can calculate H*(X, M) = 0 for i > dim f. If not, let i > dim f be the maximal i
with H*(X, M) # 0. Then let y € Y be in the support of some non-zero section of H*(X, M), then we
have H/(X, M)®pk(y) = H(Xy, M,). As —®pk(y) is right exact this implies that H*(X,, M,) # 0,
which is a contradiction.
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17 Finiteness of RI'(X, M) and Riemann-Roch 06/07/2017

A corollary of Remark is the following.

Corollary 17.1. There is a spectral sequence
EY? = Tor) (HY(X, M), B') = H"*' (X', " M),
which is non-zero only if p <0 and ¢ > 0.
By looking at the upper right corner for maximal i such that H*(X, M) # 0 we have
H'(X',¢*M)=H(X,M)@p B

and H7 (X', g* M) = 0 for all j > i. Also notice that if all H9(X, M) are flat over B, then Torf(f, -) =
0 for p # 0, so we obtain H1(X',¢g*M) = H1(X, M) ®p B’. This gives us the following corollary.

Corollary 17.2. If f : X — Y s proper, and M a coherent sheaf on X which is flat over Y, then
R f,M =0 for all i > dim f.

This is true in more generality, but we only need it as stated.

Proof. Without loss of generality we can take Y = Spec B to be affine. Consider a maximal i such
that H(X, M) # 0, and notice this cohomology is a finitely generated B-module. Take y € Y in the
support of H*(X, M) so that H* (X, M) ®p k(y) # 0. However, by the above we have

H'(X, M) ®p k(y) = H'(Xy, 9" M),

where 1/ : X, = X Xy Speck(y) - X and H*(X,,¢*M) = 0 for i > dim X,. Thus i < dim X, <
dim f. O

This is essentially the proof outlined at the end of the last lecture. Now we would like to prove the
most important finiteness result we have seen, or will see in this course.

Theorem 17.3. Let f: X — Y = Spec B be a proper map, with B noetherian, M and coherent sheaf
over X which is flat over Y, and set d = dim f. Then RI'(X, M) is quasi-isomorphic to a bounded
complex N*® of finite projective B-modules, with N* =0 for i < 0 ori > n.

Proof. We know that RI'(X, M) is quasi-isomorphic to a complex of the form,
i3 0— N — ... 5 N™ 50—,

where all N’¢ are flat B-modules which are acyclic in degrees greater than d. All we need to know now
(since H*(X, M) is finitely generated) is the following.

For all 0 < i < d, there is a commutative diagram, whose rows are complexes and N7 are finite
free B-modules,

0 N? cu Nd 0 .
l l l l , (17.4)
0 N0 o N7i-1 N7 .. N'é N+ L.

such that the cone of the vertical map of complex is acyclic in degrees larger than :. We will show
this by descending induction on i. For i = d we consider ker(N'® — N’+1) — H4(X, M) and let
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S1y.-.,8k € Hd(X,/\/l) be generators. We lift these to elements in this kernel and we obtain a map
f: N?= B* — N'? which does the job. To check this we see the differentials of the cone are

0?71 — Ndfl o Nd SN C}i _ N/d SN C}i+1 _ ]\]’/d#»l7

and this is exact. Now assume we have a situation as in Diagram [I7.4] then we obtain the following
exact sequence, . ‘ 4

HI(N™) — HI(Cp) — HH(N?),
which implies the cohomology H*(C}) is finitely generated. We can then find a N* which surjects onto
H(C}), which gives us the following diagram,

Ni Ni+ 1 N1'+2

Nli N/i+ 1 N/i+2

as desired. This shows our claim, so we have Diagram [I7.4] for i = 0. We now consider the cone Cy
which is a bounded complex of flat B-modules which are acyclic outside of degree 0, so we have the
following diagram,

oy 0

NN T

Zm

where Z7 are the kernels (and also images) of the differentials of Cy. Observe the map Z™ — cis
flat. As we did last time, we would use descending induction to see that all Z* are flat B-modules. Now
let N° =ker(C? — Z') = H°(Cy). This is alse a flat B-module, as a kernel of a surjective map of flat
modules, which is also finitely generated over a noetherian ring B, at which stage we recall that flat
and finitely presented is equivalent to finite projective. Notice that N® = H?(C) = ker(N"® & N? —
Nt @ N?), so the diagram,

0 N° Nt . N 0
0 N/O Nll . N/d 0
gives us the map of complexes which does the job. O

We then obtain the following corollaries of this theorem.

Corollary 17.5. In the situation of Theorem[I7.5 we see the function

yEY o x(Xy, Mx,) =Y (=1)" dim H* (X, M|x,),
i>0

is locally constant.

Corollary 17.6. In the situation of Theorem[I7.3 we see the function,
y €Y — dim H' (X, M|x,),

for all i > 0 is upper semi-continuous (may jump up under specialisation).
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We come back to the latter corollary above one of these in lecture 22, see Corollaries and
and a version of Corollary in exercise 11.4. Now we move onto the big finale of this course; the
Riemann-Roch Theorem and Serre Duality.

For the rest of this lecture we let k be algebraically closed, and X be a smooth projective curv@
Recall that Div(X) is the free abelian group on the closed points of X, and K (X) is the function field
of X. We then have the following theorem proved last semester as Theorem 28.7 in [7].

Theorem 17.7. The following sequence is exact,
0 — k* — K* — Div(X) — Pic(X) — 0.

We will skip a proof of the following proposition. A similar statement can be found in [6], Proposition
11.6.4.

Proposition 17.8. The degree map Div(X) — Z which sends Y ng[z] — > n, factors over Pic(X).
The Riemann-Roch theorem can then be stated as follows.
Theorem 17.9 (Riemann-Roch). For any line bundle £ on X, we have

dimy, H*(X, L) — dimy H (X, L) = x(X,£) =deg L+ 1 — g,
where g = dimy H'(X, Ox).
Proposition and the Riemann-Roch Theorem are equivalent to the following theorem.
Theorem 17.10. For any divisor D we have,

X(X,0(D))=degD+1—g.

Indeed, Theorem|17.10/implies that deg(D) depends only on the line bundle O(D), thus Proposition
amounts to choosing D such that £ = O(D).

Proof of Theorem [17.10, We first do the base case, where D = 0, from which we obtain x(X,Ox) =
dimy H°(X,Ox)—dim H}(X,Ox) = 1—g since deg D = 0. For some induction we assume D’ = D+[z].
We then have the short exact sequence,

0 — O(D) — O(D") —» ivk(z) — 0,
where i : {x} < X is the inclusion of a point. This gives us a long exact sequence on cohomology,
0 — H°(O(D)) — H°(O(D")) — H (i.k) — H'(O(D)) — H'(O(D')) — H'(i.k) = 0,

where all the cohomologies are taken over X. This implies x(O(D')) = x(O(D)) + 1, which gives us
what we want. Similarly we induct in the other direction by “subtracting” [z], but this is a similar
computation. O

Notice that with the power of sheaf cohomology we have just proved the Riemann-Roch theorem in
a few lines. Suppose now that k is not algebraically closed, X is a smooth projective curve which is
geometrically connected (i.e. X ®j k is connected), then we still have,

0—k* — K(X)* — Div(X) — Pic(X) — 0.
However, we need to define the degree function slightly differently,

deg (" nafal) = " n. deg(k(x)/).

28Recall a curve over k is an integral scheme over Spec k of dimension 1 (see Definition 20.9 in [7].
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This is clearly a generalisation of the previous definition of the degree map when k is algebraically
closed. Again we see the degree function factors over Pic(X) and we have x(X,£) = deglL+1—g
and the proof is the same, just noting that x(C,i.k(z)) = dimg k(x) = deg(k(x)/k). Notice that
X(X, L) = x(Xz, L5), as H(Xg, L) = H(X, L) ® k, which implies these degrees, deg £ and deg L1
are also equal. We could also check this directly and deduce the Riemann-Roch theorem over k from
the Riemann-Roch theorem over k. To get the Riemann-Roch theorem in terms of the language of last
semester, we actually need some more machinery.

Theorem 17.11 (Serre Duality I). Let k be a field and X a proper smooth scheme over k, then for
any vector bundle & over X there is a canonical isomorphism

H' (X, wx/; ®€Y) = Homy, (H (X, €), k),

where 0 < i < d=dim X and wy,, = Adﬁﬁ(/k is the highest exterior power of Qk/k, which we call the
canonical line bundle.

Specialising X to a curve, i = 0 and £ = L we obtain
dimy, H' (X, £) = dimy, H(X, Q% ® LY).

There is a even a formulation for all coherent sheaves M in the case that M"Y is well-behaved. We
need to use the Ext-functor in this case.

Definition 17.12. Let A be a ring and M, N two A-modules. Then we define Ext'(M,N) to be the
ith right derived functor of N +— Hom(M,N). Similarly, if (X,Ox) is a ringed space, then we define
Ext(x 0, (M, N) to be the ith right derived functor of N~ Hom(M, N).

Proposition 17.13. Let X be a scheme and N a quasi-coherent sheaf. Then
Ext’ (Ox,N) = H(X,N).
More generally, if £ is an vector bundle (a locally finite free Ox-module), then
Exti (6,N) = H'(X,N @ ¢Y).
Proof. For the first claim we notice that both sides of the equation are the derived functors of
N — Homx (Ox,N) = N(X),

where the last isomorphism is obtained by the Yoneda lemma. For the second part we notice that
— Roy £ is exact and preserves injectives (as it has an exact left adjoint, — ®o, &) and hence both
sides are derived functors of

N — Homx (¢, N) =2 Homx (Ox, N @ £Y) = (N @ £V)(X).

Serre duality can now be reformulated as the following theorem.

Theorem 17.14 (Serre Duality II). Let k be a field, X a proper smooth scheme over Speck with
H(X,0x) 2=k, d=dimX, and Wx/k = Adﬂﬁ(/k, the canonical line bundle (dualising sheaf).

1. There is a (canonical) isomorphism for any coherent sheaf €,
HY X, wx/x) — k.
2. The natural pairing,
Ext’ (& wx/r) x H7H(X,€) — HY (X, wxp) 2k,

is perfect, i.e. it induced a canonical isomorphism Ext’(—, —) = H* /(- —)V.

The full proof of this will occupy the next few lectures.
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18 Ext Functor and Serre Duality 10/07/2017

Recall Theorem which in a way is like an algebraic Poincaré duality. Today we will focus on
studying these Ext groups in Theorem and from this we will obtain our natural pairing. Let A
be an abelian category with enough injectives (such as the category of Ox-modules over a scheme X).

Definition 18.1. The functor Exti4(X7 —): A — Ab is the ith right derived functor of Hom4(X, —)
for some X € A.

Recall the following diagram of subcategories and equivalences,

DT (A) —— CT(A)/{quasi — iso.}

[ [ |

D(A) —— C(A)/{quasi — iso.}
and recall we saw in Theorem [IL.6] that D*(A) = K+ (Inj(A)). In fact, if X* € C(A) is any complex,
I* € C*(Inj(A)), then we have
Homp 4y (X*®,I°) = Home(4)(X®, I*) /homotopy.

This is related to the observation that in all lemmas about complexes of injectives (from lectures 10
and 11) it was only really necessary to assume that target was injective.

Moral: Mapping into injectives, and mapping out of projectives is well-behaved.

If X is any object in A and i € Z, then we have a complex X[i] which has a single X concentrated in
degree —i. Given a complex C, we define C[i] to be C shifted to the left by —i where the differentials
have a sign of (—1). This gives us a functor D(A) — D(A), and we want to analyse the maps to and
from the image of this functor in D(A).

Proposition 18.2. Let X, Y € A, then we have

. Ext%4(X,Y) i>0
Homp ) (X, Vi) = { P20

Proof. Let Y < I*® be an injective resolution of Y so that Y = I*® inside D(A). Then we have,
Homp 4y (X, YTi]) = Homp(a) (X, I*[i]) = Home(4)(X, I*)/homotopy.

What is a map between these complexes though? It is simply a map X — I’ inside A, such that
X — I' — I't! is zero, up to homotopy. This is then exactly,

ker(Hom 4 (X, I') — Hom 4 (X, I*™1))/im(Hom 4 (X, I'™') — Hom4(X, '),
which by definition is Ext’y(X,Y). O

Notice that this proposition allows us to define Extil in an abelian category A even if 4 does not have
enough injectives. Notice also that this shift functor X — X[1] is a self-equivalence of categories on
C(A) and D(A), so for all X,Y € A and i,j € Z we obtain,

Ext/, "(X,Y) j>i

Homp (X [i], Y[j]) = Hompa) (X, Y[j — i]) = { 0 j<i

Corollary 18.3. Given X,Y,Z € A and i,j € Z, there is a natural bilinear pairing,

Ext’,(X,Y) x Ext’, (Y, Z) — Ext'{7 (X, ).
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Proof. The left hand side is simply Homp4)(X,Y[i]) x Homp4)(Y[i], Z[i + j]), and we can apply
composition and obtain a map into Homp4) (X, Z[i + j]) = Ext'}”? (X, Z). O
Just like in the case where A is the category of R-modules, there is an explicit description of Exti‘ (X,Y),

from which the functor gets its name

Proposition 18.4. For X,Y € A we have the group Exti‘(X, Y') can be identified with the isomorphism
classes of extensions of the form,
0—-Y—>7Z—-X—0,

where Z € A, and two extensions are isomorphic if we have an isomorphism Z — Z' which commutes
with all the maps between Y and X.

Proof. Let YEXt}L‘(X ,Y) denote the isomorphism classes of extensions, then we have a natural map,
a: YExtY (X,Y) — Ext4(X,Y),

which assigns to an extension 0 — Y — Z — X — 0 the element 6 (idx) from the long exact sequence
of Ext’y associated to the short exact sequence,

-+ — Hom4 (X, X) - Extly(X,Y) — -

This is clearly well-defined under isomorphism classes of extensions. First notice « is injective, since if
0(idx) = 0 then idx : X — X lifts to a map X — Z, i.e. associated exact sequence splits, hence was
zero inside YExtY (X,Y). Next notice that « is surjective. To see this, we first embed Y < I where I
is something injective, and by taking the cokernel we obtain the short exact sequence,

0—Y —1—@Q—0.
From this we obtain the following long exact sequence on cohomology,
oo — Homy (X, Q) — Exty (X,Y) — Extly (X, I).

This last group is zero since I is injective so we have a map X — (. By pulling back we obtain
Z =1 xg X, which fits into the follow commutative diagram with exact rows,

0 Y Z X 0
0 Y I Q 0
This gives us an element in YExt}L‘(X ,Y) with the desired image. O

We now make a quite formal argument about the functor Ext.

Proposition 18.5. Let X € A and given the following short exact sequence in A,
0—Y —Y —Y"—0,
then we have the following long exact sequences,
0 — Homy(X,Y’) — Homy(X,Y) — Homu(X,Y") — Ext}4(X, YY) — -,

and
0 — Hom4(Y", X) — Homy (Y, X) — Hom(Y', X) — Exth(Y”,X) —

29There is a similar description for higher Exti\(X7 Y) in terms of exact sequences starting with Y, ending with X and
with i-many pieces in between, but the actual description becomes a little cumbersome and is relatively unuseful. This
is sometimes called the Yoneda extension, hence the YExt notiation appearing here.
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Proof. The first long exact sequence comes from the fact that Extf4(X ,—) is defined as a right derived
functor, so it is in fact a d-functor. For the second sequence, let X < I® be an injective resolution then
we have the following diagram with exact rows,

This diagram actually also has exact columns since taking a Hom 4 into an injective object is exact.
From this diagram we obtain a short exact sequence of complexes, and then the desired long exact
sequence on cohomology. O

Proposition 18.6. Let A have enough projectives, then Extil(—, X) is the ith right derived functor of
Hom4(—, X) : AP — Ab.

Proof. The second long exact sequence of Proposition [I8.5 says that this is a d-functor, so it suffices to
see it is also effaceable, for which it suffices to see whenever Y € A is projective we have Ext’ (Y, X) =0
for ¢ > 0. For ¢ = 1 we have Proposition which say that EX‘E}L\(Y7 X) = 0 since all the short exact

sequences
0—X—>272—Y —0,

are split as Y is projective. For i > 1 we choose a short exact sequence 0 - X — I — @ — 0 with [
injective, and then look at the associated long exact sequence,

s — Ext (Y, Q) — Bxty (Y, X) — Ext' (Y, I) — -~ .
The first group is zero by induction, and the last group since I is injective. O

This proposition is not super useful to use, since the category of Ox-modules does not always have
enough projectives, but R-mod always does, so there is some salvation. Let us specialise now. Consider
the pairing of Corollary in the case where A is the category of Ox-modules, i =d — j, X = Ox,
Y = £ is some coherent sheaf, and Z = wx is our dualising sheaf,

HY(X,€) x Ext'(€,wx) = Ext?™ (O, €) x Ext'(¢,wx) — BExt!(Ox,wx) = HY(X, wx).

Before we tackle this, let us consider the isomorphism H%(X,wx) = k in the case when k = C and
d = 1, since this example contains a lot of geometry that is lost in the general case.

Let X be a projective smooth connected curve over C, then we call X(C) a (compact) Riemann
surface. The goal of this little excursion is going to be to construct a natural map

HY(X, Q% )c) — C.

Let A* = {z € C|0 < |z| < 1} be the punctured open unit disc in C, then we say f : A* — C is
meromorphic at 0 if there exists some n > 1 such that f(z) - 2" extends to a holomorphic function on
d = {z € C||z| < 1}. This is equivalent to the existence of n > 1 such that |f(z)| < |z~"| as |z] — 0 by
Riemann’s theory of bounded holomorphic functions extending over a puncture. Let w = f(z)dz be a
meromorphic differential form on A*, i.e. f(z) is a meromorphic function on A*.
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Definition 18.7. The residue of w at 0 is res,—ow = a_1 € C where f(z) = ZZO:_N anz™, with a, € C
and some growth condition.

A priori, it is not clear this is invariant under coordinate transformations such as z — z + 22, which is
an auotmorphism in a small ball around 0.

Theorem 18.8 (Cauchy’s Residue Theorem). Let v : [0,1] — C be a smooth small circle around 0,
e.g. t— e>™ then
/w = 27 Tes,—ow.
2t

Proof. Simply calculating we obtain,

/w_/ f 27rzt 27mt Z / 2777,t(n+1)27mdt_27ma 1

where the second equality comes from some convergence result in analysis, and fol e2™itmdt is zero if
m # 0 and one if m = 0. We then do some complex analysis to show this integral is invariant under
small perturbation. O

Corollary 18.9. The map C((z))dz — C which sends a Laurent series to a_y is invariant under
automorphisms of C((z)) = QL. that are given by z + bz + byz? + -+ for by € C* and b; € C for
1> 2.

A priori this only holds if all these series converge, but all such series are dense here. The same statement
holds true for any field, but at least the classical proofs reduce this to the case over C (see exercise
12.4). Back to our curves X over C. Let z,y € X be two distinct points, then U = X\{z} = Spec A
and V = X\{y} = Spec B are afﬁnﬂ opens covering X. We then see that H*(X, QX/C) is computed
by taking the cokernel of,

Q A/C EBQB/C — QD/(C’

by Meyer-Vietoris, where UNV = Spec D. One can think of Q} pc as differential forms on X (CO\{z,y}

which are meromorphic at  and y. We have two maps Q! pjc C, taking the residues at x or y
respectively. We claim these maps only differ by a sign.

Lemma 18.10. Given the set-up above, we have
res, +resy = 0: QE/C — C.

Proof. Take some z € X(C) and integrate some w € Q}) /C around some small disc with boundary ~,

which contains z but not « or y. Then we have f w = 0 since v doesn’t contain either poles of w, but
by changing the orientation of v we obtain

0=-— / w = 2mi(resyw + res,w).
8!

A corollary of this lemma is the following.

Corollary 18.11. The map res, : Q})/C — C vanishes on the image of Q4,c © Qpc, so it factors
over a map,
H'(X,Q%/c) — C.

30Removing a point from any proper smooth curve over a field is an affine curve. To see this we notice that O(nz) is
ample for some n sufficiently large, hence we obtain a closed embedding into P} for some n. With this embedding there
is a hyperplane H C P} with the property that H N X = {x} set theoretically, and so X\{xz} CPR\P} = A7,
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Proof. This is clear for Q}B /c 88 these are holomorphic at x and res, = —res,, and a similar argument

works for 9114/@' O

This approach to constructing this map relating duality is worked out in full generality in Hartshorne’s
“Residues and Duality”. We will now give a short proof outline of Theorem [I7.14]

Sketch of a Proof of Theorem[17.1. Let X be projective (a hypothesis we really need for this argue-
ment). We then procede in a few steps.

1. Let X =P}, then wx = O(—n — 1) and we explicitly know H" (P}, O(—n — 1)) = k, and we then
use a reduction argument to reduce this to the case when & = O(d) for some d > 0. In this case
it is again an explicit computation. This is duality for P} — Speck.

2. In general, we now choose a closed embedding i : X < P7. We then know that
Extggz (i wpn) x H" (PR i,€) = Exté,g, (& wpp) x H" (X, 8) — k,

is a perfect pairing, and what remains is an identification Ext%%'"_d(i*f,wpz) = Ext])}(g,wx).
This is duality for i : X — P.
3. The previous two parts then combine to give us duality for X — Speck.

O

This is a standard embedding trick, used to prove Poincaré duality and Grothendieck-Hirzebruch-
Riemann-Roch.
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19 E&xt Functor and the Proof of Serre Duality 13/07/2017

Let us reformulate Serre Duality on more time which drops the condition that H°(X,Ox) = k. Today
we will see a proof of this theorem in full.

Theorem 19.1 (Serre Duality III). Let k be a field and X a smooth projective scheme over k of
dimension d. There is a trace map,
tr: HY(X,wx) — k,

such that for all coherent sheaves & on X, 0 <1 < d,
Ext’(¢,wx) x HH(X,€) — HY(X,wx) — k,

is a perfect pairing.

Proof of Theorem[19.1] where X = P}l. Recall the short exact sequence,
v
0— Opp — O(1)"*! — (Qﬁyz) = Tpp — 0,

where we call the dual of the sheaf of Kéhler differentials Tpy the tangent bundle of P}. Passing to
determinants (so taking the highest exterior powers possible), we obtain,

O(n+1) = A" (O(1)" ) = A Opp @ A" Ty = wiy,

using the fact that if we have an exact sequence of finite locally free modules, then the det is mul-
tiplicative in the sense indicated above, and det commutes with duals. The above explicitly implies
that wpr = O(-—n — 1). Recall that we have calculated the cohomology of O(—m) for m > 0 in
Proposition [I3:3] In particular we have,

H"(P},O(—n —1)) :kz-xal---m;1 i>k:,

and this is our trace map. Notice that the identification of wpr = O(—n — 1) and this trace map are
not, canonical, but the composite H n(PZ7WP2) — k is canonical. We can see this by taking an explicit

generator of H"™ (Pﬁ,w]pz) such as,
g z z
Od(l) A.../\d<”>7
L1+ Tp Zo i)

in the Cech complex. One can then check this is independent of coordinate transformations. We now
have maps,
Bxt'(¢,wpp) — (H(X,9)) ",

coming from our pairing of Corollary and this trace map. We claim both sides of the above can
be regarded as J-functors from the opposite category of coherent sheaves on P} to abelian groups, with
zeroth functor Ext (& ,wpp) = Hom(§, wpy ) respectively H™ (P}, £)Y. It is clear the left-hand-side is a
S-functor, and for the right-hand-side we have H7(P7,£) = 0 for all j > n and H* (P}, ) are all finite
dimensional k-vector spaces, so V + V"V is exact. This information together tells us that given a short
exact sequence,

0—¢ —¢&—¢ —0,

of coherent sheaves on P} we obtain the long exact sequence,

0 — H"(P},€")Y — H"(P,€)" — H"(P},€)" — H" (P, €)" — -+,
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hence the right-hand-side is also a d-functor. To see these functors are equal, if suffices to check they
agree for i = 0 and they are effaceable, hence universal. First for effaceability. For any £, we can find
a surjective O(—N)" — £ for some large N, and then we have

Ext!(O(—N),why) 2 Ext'(Osy,wep (N)7) 2 H (P}, wey (N)7).

These are zero for ¢ > 0 and N sufficiently large though by the calculation of Proposition or the
vanishing statement of Theorem So the left-hand-side is effaceable. For the right-hand-side we
want H'(P?, O(—N)") = 0 for i < n, but this follows by direct computation (essentially from similar
calculations to Proposition. To show these universal §-functors agree for i = 0 we choose an exact

sequence,
O(—Nl)rl — O(—N())TO — g — 0.

We look at the result of this sequence after applying the functor Hom(—wpg),

0 —— Hom(¢, wpp) —— Hom(O(—No)™,wpp) —— Hom(O(—N1)™, wer)
[ J "
0 —— H™(P}, &)Y —— H"(P},O0(—=Ny)™)" —— H"(P},O(—Ny)™)V

Now ¢ is an isomorphism once ¥ and 7 are isomorphisms, so we have reduced this question to something
about these twisted sheaves. We want to check that

H(P?,O(N —n —1)) x H(P},O(~N)) = Hom(O(—N), O(—n — 1)) x H*(P},O(~N)) — k

is a perfect pairing. A basis for the first factor on the left is [];_, 21" where n; > 0and Y n; = N—n—1,
and a basis for the other factor is []}_, 2" with n; < 0 and Y n; = N. This pairing is then given by
multiplying two polynomials together and looking at the coefficient of (xq - - x,)~! from the definition
of tr. However n; — —1 — n; gives a map from the left factor to a dual basis, hence this is a perfect
pairing. O

For the general step, we need to work with localised Ext’s, so sheaf variants of Ext.
Definition 19.2. Let (X,Ox) be a ringed space and M an Ox-module, then we define
Extly (M, —) : Ox—Mod — Ox—Mod,
to be the ith right derived functor of Homeo, (M, —).
Proposition 19.3. There is a spectral sequence (a Grothendieck spectral sequence)
B} = HP(X, Exth (M, N)) = Exti (M, N).
Proof. The Grothendieck spectral sequence for F' = Homp, (M, —) and G =T'(X, —), and note that
I'(X,Homoy (M, —)) = Hom(M, —),

by definition. Of course, we also have to check that Home, (M, —) maps injective sheaves to acyclic
sheaves, which follows from the next lemma. O

Lemma 19.4. Let M be an Ox-module and T an injective Ox -module, then Homo, (M, T) is flasque.
Proof. We need to check for U C V', that the following map is surjective,

HOm(jV!Mh/,I) = HOIH(M|V,I|V) i> Hom(M|U,I|U) = HOm(jU!./\/”U,I),

where jy : U — X and jy : V < X are the inclusions. We have a natural map j M|y — jyiM|y
which is injective by inspection on stalks, such that ¢ is simply equal to precomposition by this map,
followed by a restriction. Since I is injective, we conclude that ¢ above is surjective. O
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For schemes we want to relate Ext’ to Ext’, and we can do this on an affine level.

Proposition 19.5. For X a noetherian scheme, and M, N quasi-coherent schemes, such that M is
coherent, then Extlbx (M, N) are quasi-coherent, and coherent if N is also coherent. We also have that
for all open affines U = Spec A C X, our sheaf ext Ext’bX (M, N)|u restricted to U is isomorphism to
the sheaf associated to the A-module Ext’y(M(U),N'(U)).

Compare this with Example 17.4 in [7].

Proof. 1t follows from the definitions of £xt? that it commutes with localisation, meaning for all U C X
open, then Exty, (M, N)|y = Exty, (M|u, N|v), since restrictions of injective resolutions are injective,

and restricting is also exact. Without loss of generality then, we may take X = Spec A with M = M
and N = N. Fix N, then we have two J-functors from the opposite abelian categor of coherent
sheaves on X, which is equivalent to the opposite category of finitely generated A-modules, to the
category of Ox-modules,

M — Ext’y (M, N), M — Extl, (M, N).

They agree for i = 0 by the Example 17.4 in [7], so we again just need to check that both these functors
are effaceable. Given some M € A-mod, which is finitely generated then we have a surjection A" — M,
so it suffices that both functors vanish for M = A", or by additivity of both functors, if they vanish
for M = A. However A is a projective A-module, so by Proposition we have Ext’ (A, N) = 0 for
all ¢ > 0. For the other functor, we have

Exth (A, N) = Exth (Ox,N),

is the ith derived functor of N +— Homeo, (Ox,N) = N, which is exact, hence zero for ¢ > 0. If N is
coherent, then N is finitely generated and we can check for coherence of Extlbx (M, N). For this, recall
X = Spec A with A noetherian and M and N are finitely generated A-modules, then Exti‘(M ,N) is
finitely generated for all i > 0. To obtain this explitly we compute Ext’, here using projective resolutions
of M which we can do in A-mod using Proposition [I8.6] We can choose projective resolutions of N and
M such that each entry P is finite free, from which we notice Hom 4 (P, N) is also finitely generated. The
functors Ext are then computed by taking cohomology of this complex of finitely generated A-modules,
hence finitely generated. O

Back to the proof of Serre duality. For the moment we let 7 : X — P! = PP be any closed subscheme
(like our X in Theorem [19.1), and & be a coherent sheaf on X.

Proposition 19.6. There is a spectral sequence,
EY? = Exth (€, Exto, (i.Ox,wp)) = Exth™(i,.&, wp),
where we are purposely ommiting some ©*.

Something like Exth (£,7) should arise in the Serre duality for our X, so after we prove this we will
have to explicitly identify this ? with something more desirable. This will happen after we finish the
proof of Serre duality, but first things are first.

Proof. The same proposition holds with wp replaced by any Op-module M,
EY? = Ext% (€, Exto, (1.0x, M)) = Extb"(i,&, M).
This is simply the Grothendieck spectral sequence again, from the equality at the p = ¢ = 0 level
Homy (&, Homp(i.Ox, M)) = Homp(i.§, M). (19.7)

31Note that this is only an abelian category because X is noetherian here.
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This equality holds true as Homp(i.Ox, M) C M = Homp(Op, M) as Op — i.Ox. Hence we have
one containment for this equality, and the other containment comes from the fact that any i.§ — M
factors over the subsheaf i,Ox as i.£ is an Ox-module. We still have to check the injectives to acyclics
condition for the Grothendieck spectral sequence, but we can do better hand show that if Z is an
injective Op-module, then Homp(i.Ox,Z) is an injective O x-module. Using Equation we obtain,

Homx (§, Homp(i.Ox, T)) = Homp(i.£,T),
and the latter is exact in & since ¢ is a closed immersion and Z is injective. O
Let us identify an Ext term which will give us Serre duality.

Proposition 19.8. Assume that X is a smooth projective scheme over a field k, with r = n — d where
n is the dimension of the projective space X embeds into and d is the dimension of X. Then

. w =7r
SXt%(Z*OXMP) = { )(() lee

Proof of Theorem[19.1 In this case the spectral sequence of Proposition [I9.6] degenerates into a simple
isomorphism
Ext% (&, wx) = ExtBt" (1., wp).

In particular, for £ = Ox and p = d we obtain,
tr: HY (X, wx) = Ext% (Ox,wx) = Extit="(i,0x,wp) = H'(P,i,0x)" = H(X,0x)" — k.

The third isomorphism of the above composition is Serre duality on P (= P}), which we have already
seen, and the last map is dual to the canonical map k — HY(X,0Ox). This is our trace map. For
general £ we see that for 0 < i < d we have,

Ext’y (&, wx) = Bxth (1,6, wp) = H" 77 (P,i,6)Y = H7{(X, €)Y,

To check this comes from the trace map we defined above is a simply a big diagram chase. It should
seem reasonable though, since this trace pairing was defined in essentially the same way as the perfect
pairing above. O

Remark 19.9. More generally, if X is not smooth, but we have Exth(i.Ox,wp) = 0 for ¢ # r (i.e.
mimicing Proposition [19.8)), then if we define w% = Exth(i.Ox,wp), the dualising sheaf on X, we still
have a Serre duality. We have a trace map,

tr: HY(X,w%) — k,
and for all coherent £ a perfect pairing,
Extle (&,w%) x HIH(X, &) — HYX, W) - k.

The proof essentially follows from the argument above. This happens if and only if X is Cohen-
Macauley, and w% is a line bundle if and only if X is Gorenstein.

Proof of Proposition[19.8 We can check that Extf(i,Ox,wp) is zero for ¢ # r and a line bundle for
q = r locally, so without loss of generality we swap out wp with Op and work in little open affine
neighbourhoods Xy C X and Py C P. These fit into the following commutative pullback diagram,

Spec A = Xy — Py = Spec B

l Jf , (19.10)

Spec Ag = Aﬁ —— A} = Spec By
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where we choose f such that it is étale and the bottom map is the inclusion of the first d-coordinates.
We want to compute Exth (A, B), where A = B ®p, Ao, where B is flat over By since f is étale. This
flatness means we have Ext}(A, B) = Exth (Ao, Bo) ®p, B. This is because we can just choose a
projective resolution Py of Ay over By, and then by flatness of B over By the complex P* = Py ®p, B
gives us a projective resolution of A. We then notice Homp(P*, B) = Homp, (P;, Bo) ® g, B, and then
the fact B is flat over By implies — ® g, B commutes with cohomology. It then remains to compute,

EXtZ[Xl,...,X”}(k[Xl’ . ,Xd}, k?[Xl, e ,Xn]) = EXtZ[Xd+1,...,Xn](k’ k[Xd+1, e ,Xn]) ®k k[Xl, e ,Xd],

where the isomorphism above comes from a similar flat base change argument. This is just an explicit

calculation, which we will see now. Next lesson we will see Extf (i, Ox,wp) = wx explicity. O
Lemma 19.11. Let k be a field, then EXtZ[Xl XT](k,k:[Xl, ., X)) =0 forq# 7 and k for q=r.

Proof. For this explicit computation, it is best to use the Koszul complex, we looks as follows,
e P kXX PR X R Xk — 0.
11 <ig =1

This is always a finite free resolution. The maps are simply alternating sums where we omit one basis
element at a time. For example, if 7 = 1 we have,

0 — k[z] - k[z] — k& — 0,

where the map is multiplication by z. For r = 2 we have,

0 — k[X1, Xo] 25 kX0, Xo) @ kX0, Xo] Y8 kX Xo) s k0.

When we take Homy(—, k[ X1, ..., X,]) we again obtain a Koszul-like complex, where the cohomology
is concentrated in the top degree, . We will discuss this in more detail next lecture, and chapter 4.5
of [9] also has more information. O
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20 Formal Functions 17/07 /2017

Before we get onto the main topic of this lecture, the theory of formal functions, we need to finish
Proposition from last time, which comes with a little more theory too.

Remark 20.1. Let ¢ : Z < X be a closed immersion of schemes, then the functor i, : Oz—mod —
Ox—mod does not just have a left adjoint i*, but also a right adjoint i'. We define the latter as,

i'M = Homo, (1,07, M),
which can be explicitly written as,
PPM(U) = {m e MU) | YV CU,Yf € ker(Ox (V) = i.0z(V)), f -m|y = 0}.
A motto for this could be,
i'tM C M is the subsheaf of sections killed by T = ker(Ox — i.0z).

We then notice that 5xtqox (i.Oz, —) is the gth right derived functor of i', which is now clear from our
definitions. As i' is a right adjoint, it is left exact and is therefore entitled for right derived functors.

We can then reformulate Proposition as follows.

Proposition 20.2. Let X be a smooth projective scheme over a field k, and r be the codimension of
X inside P}. Then

ol o fwx o g=r
lePk_{ 0 else

Proof. We already saw the beginning of this proof in the proof of Proposition [19.8] but recall that we
are working locally with Spec B C P} and the following diagram,

V(fi,..., fr) = Spec A —— Spec B

!

Speck

The vertical map is smooth of dimension n and the diagonal map is smooth of dimension d = dim X,
and fi,..., f, form a regular sequence{ﬂ in B. We come to this local situation by find a pullback
diagram such as Diagram [I19.10] as we have previously seen. We then want to form the Koszul complex
K(f1,...,fr; B) by induction. This is a different approach to last time, where we hide the potentially
confusing maps in the Koszul complex in some previously defined machinery; the cone of a map of

complexes. First we let K(f1;B) = Cf, = cone(B i B), considering B as complexes concentrated in
degree zero. We then define,

K(fl, .. .7fT;B) = cone(fr : K(fl,. . .,fol;B) — K(fl, .. .,frfl;B)).

For example, for r = 2 we have,

BB
K(fi, f2; B) = cone(fo : K(fi; B) » K(f B =Tot | | |
B-I. B
32 A sequence of elements a, ..., a, form a regular sequence in a ring A if a1 is not a zero divisor of A, and inductively

a; is not a zero divisor of A/(a1,...,a;—1).
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By induction we can easily see all the terms of these complexes are finite free B-modules. We can also
show by induction that,

K(fi,.... fi;B) = B/(f1,..., fi)[0],
where ~ means quasi-isomorphic. For ¢ = 1 we have,
0— B L) B — 0,
and the cokernel of this is B/ f; since fi is not a zero divisor. For ¢ > 1 we have,
K(f1,...,fi;B) =cone(f; : K(f1,..., fi—1;B) = K(f1,..., fi—1;B))
=~ cone(f; : B/(f1,..., fi-1)[0] = B/(f1,.... fi-1)[0]),

which is quasi-isomorphic to B/(f1,..., fi)[0] since f; is part of this regular sequence. In particular,
K(f1,...,fr; B) is a finite free resolution of A = B/(f1,..., fr). We want to compute

-l q ;
R wpr = 5xtoﬂm (Z*Ox,sz),
k

which is locally given by Ext% (A, wp), which we can now compute using Hompg(K (f1,. .., fr; B),ws),
with an application of Proposition Another piece of induction starts with,

Homp(K(f1; B),wp) = wg/fi[-1],

since the Homp gives us a shift of —1. Induction continues by identifying Hompg (K (f1,..., fi; B),ws)
as,
= cone(f; : Homp (K (f1,..., fi—1; B),wp) = Homp(K(f1,..., fi—1; B),wn))[—1]

~ cone(f; :wp/(f1,--., fim) =i+ 1] 2 wp/(f1,.-., fi-)[=i+ 1]) 2 wp/(f1,- .., fi)[—i].

From this we see that Ext% (A, wp) = wp/(f1,...,fr) = wp ®p A for ¢ = r, and zero for ¢ # r. We
need to analyse this dependence on f1,..., f., i.e. we need to show that

EXtTB(A, wB) = wp X A,

is a canonical isomorphism. Choosing fi,..., f, gives us a trivialisation of I/I? = @._, A - fi, where
I =ker(B — A). The outcome is then that

Ext’z(A,wp) = (wp ®p A) @ A"(I/1?)Y,
is canonical. Essentially the choices in both isomorphisms cancel each other out. For r = 1 we have,
0—f-B=1—B—A—0, (20.3)

which is a finite free resolution of A, and applying Hompg(—,wpg) gives us,

0—>wp —wgRI' — Ext}:;(A,wB) — 0.
This is the same sequence as Sequence tensored with wg ® I'V over B, which implies that,

Exth(A,wp) = (wp ®@p A) @ (I/1%)V.
Recall the short exact sequence of finite projective A-modules,
0—I/I? — Qp,, ®8 A — Q) — 0,
from Proposition for example. Taking determinants of this we obtain,
wpRBAX2waA® AT(I/IQ)7

which implies that,

wa = (wp®@p A) @A (I/1?)Y,
using the fact that exterior powers commute with duals. This gives us our proposition locally, and since
we have seen this is a canonical choice, then it glues uniquely. O
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This is the end of our chapter on Riemann-Roch and Serre Duality. So for the rest of today we are
going to talk about formal functions, which will give us Zariski’s main theorem and Stein factorisations
eventually. For now, let f : X — Y be a proper map of noetherian schemes, with £ a coherent sheaf on
X. Given some y € Y, then in general the canonical map,

(R'f.8) ®oy k(y) — H'(Xy,¢€|x,)

may not be an isomorphism. The situation improves when we restrict to infinitesimally small neigh-
bourhoods of y. Let m, C Oy, be the maximal ideal, and X,, = X Xy Spec(Oy,,/my), then we have
another canonical map,

X.):

Theorem 20.4 (Theorem on Formal Functions). The canonical map on inverse limits induced from
the map above is an isomorphism,

(le*f);\ = hmn(le*f) Koy OY,y/mZ — lim,, Hz(XnvﬂXn)

mnoy

(R f.F) ®oy Oyy/my — H(

This can be thought of as a base change result along {Spec Oy, / mZ}nZO — Y, so maybe a pro-scheme
base change, or some result about pro-flatness over Y. We will talk about this “pro-” language shortly.
Let us try to reduce this statement to something a little easier to handle. We may assume Y = Spec A
is affine, and then we have,

Hi(Xa é)g/;\ := lim, Hi(Xv f) XA Ay/mz = lim,, Hi(XmﬂXn)'

By flat base change we may replace A by A,, so without loss of generality A is a local ring and y € ¥
is the unique closed point. Now

HY(X,€)) =lim, H(X,£) ®4 A/m’,

is simply the m4-adic completion of A. If A is noetherian, and I C A an ideal, then A is flat over A
(recall example, and M @4 A — M is an isomorphism for M finitely generated, thus

H(X,&)) = H'(X,€) @4 A.

Flat base change again allows us to assume that A is a complete local ring, so our theorem has been
reduced to the following statement.

Theorem 20.5. Let A be a complete local noetherian ring, f : X — Spec A be a proper map, X,, =
X Xspeca Spec A/m™, and & a coherent sheaf on X. Then the canonical map,

HY(X,€&) — lim,, HY( X, )

mnsy
is an isomorphism.
Actually something stronger is true.

Definition 20.6. Let {M,},>0 and {Ny,}n>0 be sequences of abelian groups with sequential maps
between therﬂ called pro-abelian groups, then a map

{fn}nZO : {Mn}nZO — {Nn}n207

of pro-abelian groups, which is just a sequences of maps f, : M, — N, of abelian groups commuting
with the maps within {M, }n>0 and { N, }n>0, is called a pro-isomorphism if {ker, },,>0 and {coker, }n>0
are all pro-zero. A pro-abelian group {K,}n>0 is pro-zero if for all n > 0 there is a m > n such that
K,, — K, is zero.

33 A neater definition might be; let {Mpn}n>0 be a functor PoN°? — Ab, from the opposite poset PoN°? of natural
numbers to the category of abelian groups.
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The same definition goes for sheaves of Ox-modules or R-modules, but we hesitate before we work
with this “pro-“setting in a general abelian category. If {K,,},>0 is pro-zero, then it is a consequence
that lim,, K,, = 0 and lim}l K, = O Notice that lim,, K,, = 0 for diagramatic reasons.

Remark 20.7. An improvement on Theorem [20.5|is the statement; the canonical pro-map,

{H'(X,€)/m" }nz0 — {H'(Xn,€]x,) }nz0,

is a pro-isomorphism.
Now we can try to prove Theorem for which we need the following two lemmas.

Lemma 20.8. For A a noetherian ring, I C A an ideal, then the functor from finitely generated A-
modules to pro-A-modules, sending M to {M/I"M},>¢ is pro-ezact, i.e., if we have an exact sequence
of finitely generated A-modules,

00— M — M— M'"—0,
then the cohomology groups of the pro-compler,
0— {M'/T"M"}p5>0 — {M/I"M},>0 — {M"JT"M"},50 — 0,
are pro-zero.
Notice that now the phrase “A — {A4/I"},,>0 is pro-flat” makes sense.

Proof. We always have exactness on the right, so we just need to show exactness on the left. In other

words, letting
K, =ker(M'/I"M' — M/T"M) = (M'NnI"M)/I"M’,

we want to show {K, },,>0 is pro-zero. This is a consequence of the following lemma.

Lemma 20.9 (Artin-Rees Lemma). In this situation, there is some integer ¢ > 0 such that for all
n >c,
M NI"M =1""°(M' NI°M).

Assuming this is true for now, then the map,
Kpio = (M N I"FeM)/ I M = (M 0 IEM) /I M — K, = (M' 0 I"M)/I" M,
is zero, as I" (M’ NI°M) C I"M’, and this is clearly killed inside K,,. Hence {K,,},>¢ is pro-zero. O

Proof of Lemma[20.9. Consider B=A®I®I*®---. If f1,..., f- generate I, then B is a quotient of
A[X1,...,X,] by X; — f;, so B is noetherian. Let N = M & IM & I?M & - - -, then N is a B-module
which is finitely generated as an B-module, as M is a finitely generated A-module. Consider now,

N =@u"MmnM)CN,
n>0

which is a B-submodule of N. Now N’ is a finitely generated B-module, so let t1,...,t; be generators.
Without loss of generality, we may take each t; to be in I™* M N M’ so each t; is homogeneous of degree
n;, simply by decomposing them into their homogeneous components. Let ¢ = maxn;, then for n > ¢
any x € I"M N M' C N’ is of the form,
S
T = Z hjtj7
j=1

for some h; € I"~" C I"~¢. This implies that M'NMI™ C I"¢(M’'NI°M). The converse containment
is clear. 0

34Notice that lim as a functor is only left exact, so it deserves a right derived functor, whose first level we simply call

lim®.
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We can now prove our important theorem of the day, Theorem [20.5

Proof of Theorem[20.5 Assume that X is projective (this can be proved for X — Spec A only a proper
map, but our proof need X to be projective.). Without loss of generality then, we can take X = PX
by replacing & by i.£ for i : X — P a closed immersion. First we verify the result for £ = O(—d)
for d > 0. This can be done in one of three ways. First, we could use explicit calculations of the

cohomology of O(—d) over P and ]P’g mn using Proposition Second, we could use a generalised
at

base change result from lecture 16 in the highest degree to see
H'(P,0(—d)) @4 A/m" — H' (B )y, O(=d))

is an isomorphism. Third, we could use that the cohomology of O(—d) is free, which gives us our
naive base change results. Regardless, we have the desired result for £ = O(—d) and we now want to
come back to general £, which we will approach using descending induction on the dimension of our
cohomology. Let ¢ > N, then everything is zero and we’re done, so assume the result holds for i’ > .
We obtain the following short exact sequence using the usual tricks,

0 —F —0(-d) —&—0.
Let &, = £ ®o, Ox,, and the same for F,, and O(—d)", then we have a complex,
00— {Futnzo — {O(=d)p}nz0 — {&ntnzo — 0,
which is pro-exact. More explicitly, we have,
0 — K, — F, — O(=d);, — &, — 0,

is exact, where K,, — F,, factors through some F,, — G, — O(—d)%,, simply by taking the cokernel of
K, — F,. By Lemma we see that for all n, there is some m such that K,, — K, is zero. We then
take our exact sequence above and look at the effect on cohomology groups,

HY(X,F) ———— H'(X,0(-d)") ———— H'(X,{) ——— H(X,F)
I I

lim H (X, F,,) lim H Y (X, Fy) >
rx I

lim, H(X,,,Gpn) — lim H(X,,, O(—d)") — lim H'(X,,,&,) — lim H+(X,,,Gy)

n

1R
A

where we let X = PY for typographical reasons. The lower line is exact as lim is exact when the
Mittag-Leffer condition is satisfied (see Definition 3.5.5 in [9]). The maps above that are isomorphisms
come from either induction or the & = O(—d) case, but we need to work a little harder before we can
apply the five-lemma. The maps « and [ are isomorphisms, as the only possible obstruction terms
are lim H7(X,,, K,,) = 0 as {H7(X,,, K;,) }n>0 is pro-zero (we need {K,, },>0 to be pro-zero here, as it
would not suffice to see lim K,, = 0!). This then formaly implies ¢ is surjective by a diagram chase. We
apply this argument to F as well to see that 1 is also an epimorphism, and this puts us in the correct
situation to apply the five-lemma. The five-lemma comes from extending this sequence one more term
to the right which is an isomorphism by our £ = O(—d) calculations. O

We didn’t prove the pro-isomorphism discussed in Remark but this is possible.
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21 Zariski’s Main Theorem and Consequences 20/07 /2017

We will now try to apply Theorem to prove Zariski’s main theorem.

Theorem 21.1 (Zariski’s Main Theorem). Let f : X — Y be a birational projective morphism of
integral noetherian schemes, where Y is normal. Then, for ally € Y, X, is connected.

Remark 21.2. A stronger statement is that the fibres X, are actually geometrically connected, which
means that X,, Xy Speck is connected where k is any algebraically closed field extension of k(y). See

Remark 2T.3]

Proof. This is a local claim, so without loss of generality we can take Y = Spec A for some noetherian
ring A. We first claim that f,Ox = Oy, or equivalently that A — H%(X,Ox) is an isomorphism.
We now that H°(X,Ox) = A is a finite A-algebra, i.e. finitely generated an A-module, by general
finiteness in cohomology, see Theorem m We know A is also integral, and K — A ®4 K where
K = Frac(A) is an isomorphism since f is birational. We see this last point by noticing that f being
birational implies the base change map X Xgpec 4 Spec K — Spec K is an isomorphism, since Spec K
only has one point, and this map corresponds to the isomorphism advertised above. Using the fact that
A is integral now, we soon that A C A C A®4 K = K, but A is normal, and A C A is finite, so then
A= A. Hence A= H°(X,Ox).

Now notice, that more generally if f : X — Y is simply a projective map of noetherian schemes
and f,Ox — Oy is an isomorphism, then for all points y € Y we see X, is connected. To show this,
assume it is false, that X, = Zo L Z; is a chosen disjoint union of X, into two subsets, both of which
are open and closed. Then once we set

X,, = X xy Spec (’)y“y/m;'j7

we see this is disconnected as |X,| = |Xy|, so X,, = Zo, U Z1,. So for all n we get idempotents
€on,e1n € H(X,,Ox, ), such that

. 1 on Zy, o — 0 on Zy,

0" =0 onZi, ’ Tl 1 on Zy,

These are compatible for varying n, so we obtain eg, e; € lim H°(X,,, Ox, ) which by Theorem is
simply ( f*OX)/\ ~ OQy, where the second isomorphism come from the f,Ox = Oy assumption. So
we have eg,e; € Oy’y This is a local ring, but Spec (’){})y is connected, however ey and e; define a
disconnection, a contradiction. O

Remark 21.3. To obtain the statement with geometrically connected fibres, we use the assumption
that f,Ox = Oy is preserved under flat change change Y’ — Y, and if k is the algebraic closure of
k(y), one can find a flat map Y’ — Y, mapping a point 3’ + y such that k(y’) = k. Then we simply
write up the above result for Y/ and we’re done. To see a flat map Y’ — Y exists, we can without loss of
generality take Y = Spec Oy, to be local, then k is the increasing union of (z) for z € k, k(z) = k[z]/p
for some p € k[z] a monic polynomial. One can lift p to p € Oy,y[z] another monic polynomial, then
Oy y[z]/p is finite free over Oy, so we may assume k = k(z). We then “take the union” to obtain the
desired map.

Another application of Theorem is the following theorem, called Stein factorisations.

Theorem 21.4 (Stein Factorisations). Let f : X — Y be a projective map of noetherian schemes.
Then there is a unique (up to unique isomorphism) factorisation,

x —1L v

N

Y
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such that g is finite and ﬁ@x = 0y.

Proof. For uniquenness, it suffices to work locally, so withoutl oss of generality we take Y = Spec A, so
the fact g is finite implies Y = Spec A affine so f,Ox = Oy, i.e. A= H(X,Ox). Existence can now
be shown locally, and as this existence is unique up to unique isomorphism, we can glue to a global
statement for free. Let Spec A = Y be affine, and set Y = Spec H(X,Ox). This is finite over X by
Theorem again. A map X — Y is equivalent to a map H°(X,Ox) — H°(X,Ox), so we take the
identity map here and obtain the following diagram,

x— 1 .y

N

Also we have f,Ox 22 O as this is equivalent to H%(X,Ox) 2 A, our definition of Y. O

The upshot here is that possible variations of connected components of geometric fibres of a projective
morphism are completely controlled by a finite morphism. One interpretation of Zarkiski’s main theorem
is then that if the base is normal, then there are no non-trivial finite birational extensions. For example,
if we have a family of curves over a base scheme that is also a proper smooth curve, then singularities
may occur from time to time, but the fibres will never ‘become’ disconnected.

Corollary 21.5. For f : X — Y a projective morphism of noetherian integral schemes, where Y is
normal, and X Xy Speck(y) is connected for each y € Y (i.e. X, is geometrically connected for n € X
the unique generic point), then for ally € Y, X, is geometrically connected.

Proof. Let Y = Spec A, then we can take a Stein factorisation of f to obtain the diagram,

X—>Y

N

We have A = H(X,0x), so it is enough to show now that Y = Y. We notice that A is finite
over A, and is also integral, and also A ®4 k for k = k(y) is connected over k. Similar to the proof of
Theorem 1| by flat base change we also have A@ 4k = HO(X xy Speck OXXySpcck) If X xy Speck

was reduced, then we get A® A k = k which by faithfully flat descent implies that A®4k = k. We then
have A C A C k where A C A is finite and A is normal, so A = A. In general though, we only have

(g ®A E)red = E

Then setting k= Frac(g) we then only have that the field extension k& C k is purely inseparable, so we
need to use the following lemma.

Lemma 21.6. If A is normal and noetherian, and K = Frac(A) and K'/K is a purely separable field
extension, and A C ACK is finite, then SpecA — Spec A is a universal homeomorphism.

Assuming this lemma, we then see for each y € Y we have k = k(y), and then we base change our
whole Stein factorisation to obtain,




The lemma above then implies that |}~/g| is a point, and Stein factorisation implies | X%| is connected. [

Remark 21.7. If k in the proof above is a perfect field, then X being reduced as a scheme over Spec k
implies that X Xgpeck Spec k is also reduced. To see this, we see for any finite field separable field ex-
tension k' of k, then Speck’ is finite étale over Speck as k is perfect. This implies that X Xgpeck Speck
is finite étale over Spec k. We then use the fact that if X is reduced, and Y — X is a finite étale map,
then Y is reduced. Now if X = Spec A if affine now, we have X Xgpeck Speck = Spec A ®;, k, and
A ®y, k is simply the colimit of A ®;, k over all finite separable extensions k' over k. The elements of
this colimit are reduced, hence the colimit is reduced.

For general fields though, notice this fails. For example if k£ = F,(7") and X = Spec IE‘p(Tl/ P), then we
have
X Xgpeck Speck = Speck[X]/(XP — T) = Speck[X]/(X — TY/P)?,

is not reduced. This is why we had to include Lemma [21.6]in the proof above.

Remark 21.8. Everything we have done so far in the lecture also works with proper replacing the
adjective projective. We also notice at this stage that we have not seen a definition of a projective
morphism in general, i.e. when the target scheme is non-affine, but it is somewhat unclear what the
best globalisation is. Peter notices that is is not true that if X — Spec A =Y is proper and locally on
Y projective, then f is projective. Strange things can happen with families of curves of genus 1. For
example, the following proposition.

Proposition 21.9. Let f : X — Spec A =Y be a smooth proper morphism of dimension 1 of noetherian
schemes, where Y is connected and f.Ox = Oy. Then g, = g(X,) is independent of y € Y, and if
g # 1 then f is projective. If g =1 and we have a section Y — X, then f is projective also.

Note that this proposition doesn’t hold in general if g = 1, and we will see the obstacle clearly exhibited
during the course of the proof.

Proof. We have 1 — g, = x(X,,0x,), by Ox is flat over Ox, so RI'(X,Ox) is a perfect complex and
it was shown in exerciseﬁ that this implies x(Xy,Ox,) is locally constant. If Y is connected, then
X(Xy,Ox,) is simply constant, so g, is also constant. Now we set g = g, for some y € Y, and we
want to find an ample line bundle over these fibres to show X is quasi-projective (see Theorem 25.7
in [7]), and hence projective since it is proper. Since f is smooth of dimension 1, then Qﬁ( Iy is a line
bundle. We then claim that if ¢ = 0 then (Qﬁ(/y)v is ample, and if g > 2 then Q% is ample. This
is clear when Y = Speck for k a field, since then we have the Riemann-Roch Theorem to tell us that
deg Qk/k = 2¢g — 2, and the statement that a line bundle £ is ample if and only if deg £ > 0, which
is a corollary of the Riemann-Roch Theorem again (seen in Peter’s seminar “Jacobians of Curves” for
example). For a general Y though, we have the following proposition.

Proposition 21.10. Let f : X — Y = Spec A be a proper smooth map of noetherian schemes, with Y
connected, f.Ox = Oy and L a line bundle on X. Then,

1. The map y — deg L|x, is constant, so let d = deg L|x, for anyy €Y.
2. If d > 0, then L is ample.
Proof of Proposition|21.1(} For the first part, notice the Riemann-Roch Theorem tells us that

X(Xy, Llx,) =deg L|x, +1— g,.

35Exercise 11.4(i) reads: Let A be a ring and C' € D(A) be a perfect complex. Prove the function,

p € Spec A = > (—1)"dimy () H'(C @' k(p))
1E€EL

is locally constant on Spec A.
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Both the genus and Euler characteristic functions have been seen to be locally constant on Y, so this
degree function is constant as well, as Y is connected. For part 2, we claim that if deg £ > 2g — 2, then
R'f.L =0 and f.L is locally free. To see this, notice that R’ f,£ = 0 for i > 1, and by base change in
the highest degree we see that,

le*ﬁ ® k(y) — Hl(Xya‘Cle)a

is an isomorphism. However, the latter is zero by Serre duality, indeed this cohomology group is dual to
HY(X,, £|X(y ® Q}(y / k(y)) which is zero for degree reasons by hypothesis. Hence all fibres vanish and we

have R'f.L£ = 0. This then implies R['(X, £) is computed by a complex of finite projective A-modules
of length 1, so f.L is locally free. This proves our claim. We then notice that we can compute,

rk(f.L) = dim H*(X,, L|x,) =d+1—g.

In particular, H%(X,£) = HO(Y, f.L) is a finitely generated A-module of rank d + 1 — g. Setting
M = H°(X,L) and using highest degree base change to obtain M ®4 k(y) — H°(X,,L|x,) is an
isomorphism, gives us our ampleness from Theorem [22:2] which we’ll prove next time. O

If g = 1, but we have a section s : Y — X, then notice s is a closed immersion since f is proper, and
we notice (Zy )V is an ample sheaf, since this line bundle has degree 1. O

Remark 21.11. In the situation of Proposition [21.9] above, we notice that f,Ox = Oy if and only
if f has geometrically connected fibres. One direction was hidden in the proof of Theorem [21.1} so
conversely, we have for all y € Y,

=

HO(X Xy Spec@,@ = k(y).

XxYSpec@)
The scheme X xy Speck is connected and smooth, hence reduced. We then have
H°(X xy Speck(y), Ox xyspeck(y)) = k(y).
We then have the factorisation diagram,
k(y) — f.O0y @ k(y) = H°(X Xy Speck(y), Oxxyspeck(y)) = k(y),

where the composition is an isomorphism. The map « is then surjective so then some base change
in cohomology that we will talk about next lecture implies that Oy — f,Ox is an isomorphism in a
neighbourhood of y, and then an isomorphism everywhere.
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22 Relatively Ample Line Bundles 24/07/2017

We need to prove some statements to wrap up some lose ends from last time. This leads us to the
following generalised definition of an ample line bundle.

Definition 22.1. Let f : X — S be a map of schemes and L a line bundle on X. Then L is relatively
ample if the following equivalent conditions hold.

1. For all open affines V = Spec A C S the restricted line bundle L|y-1(yy is ample.

2. There exists a cover of S by open affines V.= Spec A C S such that the restricted line bundle
Ll|s-1¢vy s ample.

The equivalence of these definitions is standard practice by now, but it is not immediate.

Proof. The fact that condition 1 implies condition 2 is obvious. For the other direction we notice the
statement is local, so we take S = Spec A is affine, so f : X — S is quasi-compact and separated (as
it is so locally), which implies X is quasi-compact and separated. Let Z C X be a closed subset, and
chose a point z € U = X\Z. We want to find some s € L®"(X) for some n > 1 such that s = 0
on Z but is nonzero at x. Denote by y € S the image of x under f, then for some i we have y € V;,
and without loss of generality we can take V; = Spec A[f; '] since such open affines form a basis of the
topology on Spec A. We then see there exists s’ € L& (f~(V;)) such that s’ =0 on Z N f~1(V;) and
s’ is also nonzero at z, from the fact £ is ample when restricted to f=1(V;). As f is qcqs, we see
LE(fHVa) = L2 O,
from the proof of Proposition [14.3] and so s’ = f/f* for some s € L&"(X). We then see sf; € LZ(X)

vanishes
(Znf V) U (v(fi) 2 2,

and sf; is nonzero at x. O
We then have the following proposition which finishes our proof from last time officially.

Theorem 22.2. Let f : X — Y be a proper map of schemes, L a line bundle on X, y € Y a point
with fibre X,y = X xy Speck(y) and L, the pullback of L to X,. If L, is ample, then there exists an
open neighbourhood x € V- C'Y such that L|g-1 vy is relatively ample. In particular, if L, is ample for
all y € Y, then L is relatively ample.

Proof. This proof begins with several reductions. Without loss of generality we can let Y = Spec A,
and we can use the usual noetherian approximation argument, so we can assume A is noetherian. Next
we would like to restrict to the case when A is local, and y € Y is simply the closed point of Spec A.
To see this, let Y/ = Spec A, where p corresponds to y € Y. Then if we know the result in this case,
we get that the base change of £ to X Xy Y’ is ample and we’re off.

So we know there is some n >> 0 and sections so, ..., s, € [(X xyY’, L2") defining a closed immersion,

it X xy Y — Py,

We already have I'(X xy Y/, L&) = T'(X, L®")®4 A, by flat base change (Theorem[15.7). This means
we can find a principal open subset D(f) = V C Y of y, and sections tg,...,t. € T'(X xy V,L®")
mapping to s;. We then have,

D(tp)U---UD(t,) C X,

is open, and contains X,. Thus the complement is closed and the image in Y is still closed, since
our map f is proper, and does not contain y. After shrinking to V’ if necessary, we may assume that
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X =D(tp)U---UD(t.). We now replace Y by V, and X by X xy V|, then the sections to,...,t, give
us a map,

j: X — Py,
with i = j7 Xy Y’. It remains to show that after replacing Y by an open neighbourhood of y, j is a
closed immersion. To see this, we need to show Opy — j.Ox is surjective, and |7] is a closed immersion
topologically. For the former, we know j is proper, so j,Ox is coherent, so we know the kernel F of

the map in question
Opr, — j.Ox

is coherent. This means the support of F is closed, but we know suppF N X, = &, so y € f(suppF)
which is closed inside Y. We then base change to Y\ f(suppF), and we see F = 0 hence our required
map is surjective. We know |j] is closed, so it remains only to see that j is injective. Assume we have
21 # 22 € X which are mapped to the same z € P}, then we consider the following diagram,

X(—>X><HMX

N,

Since j is separated, we know A; is a closed immersion, and we also know that the scheme theoretic
product |X xpy X| surjects onto the topological product |X| x|pr| |X|. There then exists some z’ €
|X xpr X which maps to (z1,72) and 2’ is not in the image of A;. Hence, it is enough to see that A;
is an isomorphism after base change to an open neighbourhood of y. For this we need the map,

OXXH»;/X — A;.Ox,

is an isomorphis. This is already surjective, and the kernel is a coherent sheaf not supported on the
fibre X, so by the same argument to show a certain cokernel is zero, we see this kernel is also zero.
This long diversion has now shown us that we can assume A is a noetherian local ring. We now have
the following statement.

Let f: X — Spec A be a proper map, where A is noetherian and local, y € Y is the unique closed
point, and £ a line bundle on X. If £, is ample, then £ is ample. Equivalently, for all coherent sheaves
F on X there is some ng > 1 such that for all n > ng, ¢ > 1,

H (X, F® L") =0,

from Proposition[15.4 This cohomology is finitely generated as an A-module from a slight generalisation
of Theorem , so it is enough to show H(X, F ® ,C@");\ = 0 as this is simply our cohomology under

the faithfully flat base change A — A. Hence, without loss of generality, we may also assume that A is
complete. By the affine version of the theorem on formal functions, Theorem [20.5] we then have,

HY (X, F® L") =lim, H(X,, F ® L%"|x,),

where X, = X Xgpeca Spec A/m”, where m corresponds to the closed point y of Y = Spec A. It is
enough to show that if £, is ample then there exists some ng > 1 for that for all n > ng,t > 1,7 > 1,

HY(X,, F®L®"|x.)=0

We need a trick here though, because if we go in blindly, our ny will depend on r, and that won’t help
us evaluate the inverse limit above. We need to go to associated gradeds, and base change to grA. Let

grA = EB gr’ A, where gr' A = mr/m”l,
r>0
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which we call the associated graded of A. Now grA is a k algebra, where k = A/m, which is generated
by gr!A = m/m?, which is a finite dimensional k-vector space, hence grA is a finitely generated k
algebra. We then have the sheaf,

o F = Pw F/m 1 F,
r>0

which is a sheaf of grA-modules on X; = X xy Speck = X,,. This is finitely generated over Ox, ®grA,
since as an module over this sheaf it is generated by F/m. Hence grF corresponds to a coherent sheaf
F' on X1 Xgpeck SpecgrA. Notice the maps

J': X1 Xgpeck SpecgrA — SpecgrA, g X1 Xspeck Specgrd — X,

are proper, and so gL is ample, as it is a pullback of £,. The cohomological criterion then implies
there is some ng > 1 such that for all n > ng and i > 1,

HY (X1 Xspeck Specgrd, F @ L&) = H (X, grF @ LO") = @Hi(Xhmr}-/mTH]:) =0,
r>0

where we have not notated any restrictions of the sheaves above. In other words, for all r» > 0,
Hi(X,m"F/m" T F L) = H(X,m"F/m" M F @ L£5) =0.
However, we have the following equality,
H (X, F® L") = H (X, F/m"F® L®") = H'(X,F/m"F @ L"),
so looking at the long exact sequence,
0 — m'F/m™Fe Lo — F/m™Fe L8 — F/m"F@ L5 — 0,

we see by induction on r that H (X, F/m"F @ L&) =0 for all n > ng,i > 1 and r > 1. This finishes
this proof. O

Recall the situation of our lectures on base change. We have a map f : X — Y = Spec A which is
proper, and where the schemes are noetherian, and F is a coherent sheaf on X which is flat over Y.
We then know the cohomology RT'(X,F) is computed by a perfect complex of A-modules,

= 00— M — s M0 —

with d = dim f and each M' is a finitely generated projective A-module. For any A — A’, then
RT(X Xgpec aSpec A', F) is computed by M*®®4 A’. This was the content in and around Theoremm

We are going to now state and prove Corollary from lecture 17.
Corollary 22.3. The function Y — Z>q defined by,
y — dimy,,) H (X, Fy),
for Fy = Flx, and all i > 0, is upper semicontinuous, i.e. for all v € Z, the set,
{yeY | dimy) H (X,,F,) <r},
18 open.

The idea is that the dimension is sort of locally constant, but it can jump up under specialisation of
points.
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Proof. We will begin this proof with a reminder of some commutative algebra, and then we will restrict
the general case to this one. Recall that if N is a finitely generated A-module, then y — dimy,) (N ®a
k(y)) is upper semicontinuous, i.e. if o}, ..., x) freely generate N ®4 k(y), then in a neighbourhood of
Y, x4, .., x, all lift to x1,...,2, € N. We then take N’ to be the cokernel A” — A defined using the
elements x4, ..., x,, which is also a finitely generated A-module, with N’ ® 4 k(y) = 0. By Nakayama’s
lemma, we see that N’ ®4 A, =0, so N’ = 0 in a neighbourhood of y. Hence A" — N is a surjection
locally around y, so for ¢’ in this neighbourhood, k(y')" — N ®4 k(y’) is surjective, hence,

dimyyn (N @ k(y')) <.

For the general case, we choose a perfect complex (from Theorem [17.3]) as above, and let W* be the
cokernel of the differentials d*~! : M*~! — M?" of this complex. We then have W' = M?/B* D Z'/B* =
H' = H (X, F). From, and a quick observation, we have the following exact sequence,

0— H — Wi L5 ppt it g,
For all A — A’, we see that
(Wi)/ = Coker(di_1 QA MTRu A — M@y Al = Wiy A,
and our exact sequence above becomes,
0 — HM* @A) — W' @s A — MM o A/ — W oA —0.
In particular, take A’ = k(y) for some y € Y = Spec A, we obtain the equation,

dinny ) (H(M® @4 k(y))) = dimpy) (W' @ k(y)) + dingqy (W @4 k(y)) — dimy) (M @4 k(y)).

(22.4)
Since the first two terms on the right-hand-side of the above equation are upper semicontinuous by
our commutative algebra observation above, and the last term is simply locally constant, we see the
left-hand-side is upper semi-continuous. O

Corollary 22.5. Consider the same hypotheses as discussed before Corollary [22.3, with the added
condition that A is integral. If the function,

Yy dimk(y) Hi(va}_y)a

is locally constant, then H' (X, F) is a finite projective A-module, and H' (X, F) @4 k(y) — H (X, Fy)
s an isomorphism for ally € Y.

Proof. Again, we will start with a fact from commutative algebra, and then apply this to the general
case with the help of Theorem If A is a noetherian integral domain, and N is a finitely generated
A-module such that the function which sends y € Spec A to dimy,) (N ®4 k(y)) is constant, then N is
a finitely projective A-module. Equivalently, is a locally free A-module of finite rank. To see this, pick
some y € Y, and z1,...,z, € N such that z},...,2,. € N ®4 k(y) form a basis, then we see the map
A" — N is surjective after further localisation. This gives us the short exact sequence,

0— N — A" — N —0.

If N # 0, then we have the following commutative diagrams,

N — A"

l [

N @ K —— K"
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where K = Frac A and the arrows with hooks are injections, since A is an integral domain. Hence
N' ®4 N #0, and K is flat over A we obtain the short exact sequence,

0— N@UK-—-K —Nx4 K —0.

By counting the dimensions of the above modules as K-vector spaces, we see that N' @4 K = 0, a
contradiction, so N’ = 0 and N = A". In general, we use Equation [22.4] and our hypotheses about
locally constant functions to conclude that the functions,

y +— dimy ) (W' @4 k(y)), dimg, (W' @4 k(y)),

are constant. Our commutative algebra proposition above then states that W* and Wt! are both
finite projective A-modules, so we have the following exact sequence,

0— H — W' — M 5wt 0.

Since Wi+l M1 and W? are all finite projective A-modules, we can conclude that H' is a finitely
projective A-module. We then notice that we can compute H*(M*® ®4 k(y)) by tensoring the exact
sequence above with k(y) over A, which will stay exact, hence

HY (M®) @4 k(y) = H(M® @4 k(y)).
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23 Left Derived Functors and Tor 27/07/2017

Today was mostly a problems session, with Peter answering various questions, one of which is the
following.

Since Ox-mod does not have enough projectives, how do we define left derived functors?

The answer is we cannot with the general machinary of homological algebra, but there are some excep-
tions.

Lemma 23.1. Let (X,0x) be a ringed space. For any Ox-module M, there is a flat Ox-module M
and a surjective map M — M.

Proof. We suggest the Ox-module and map,

M = @ jU!OU — M.
juiU—=X,se M(U)

This is clearly surjective by construction, and direct sums of flat Ox-modules are flat O x-modules, so
we only need to see jy Oy is flat. For any A, then we have an isomorphism,

juN v = N @0y juiOu,

which can be checked on stalks. The domain of the isomorphism above is clearly exact in N, as jy is
exact. Thus ji Oy is flat. O]

We then define Tor?* (M, N) for Ox-modules M and N by taking flat resolutions in either of the
variables. This works as if M is flat, then Tor?* (M, N) = 0 for i > 0. This is not obvious, and the
justification comes from the next lemma.

Lemma 23.2. Consider the following exact sequence of Ox -modules,
e M2 s M MO — 0.
Then for all Ox-modules N, the following sequence is eract,
i M2 R0, N — M @0, N — M@0, N — 0.

The proposed proof is essentially a sheafified version of Lemma where we don’t care that Torzox
is not necessarily well-defined, i.e. not independent of the choice of flat resolution. Notice that the
name Tor?x is appropriate, since if X = Spec A, then M is a flat A-modules if and only if M is a flat
Ox-module, i.e.

—~—

Tor (M, N) = Tor?x (M, N).
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