Dr. I. Gleason Dr. J. Anschütz

Algebraic Geometry II

4. Exercise sheet

Exercise 1 (4 points):

Let A be a ring. Let $M \xrightarrow{f} N \to Q \to 0$ be a sequence of finitely generated A-modules. Assume that N is finite projective and M finitely generated. Let $x \in X := \text{Spec}(A)$ such that

 $0 \to M \otimes_A k(x) \to N \otimes_A k(x) \to Q \otimes_A k(x) \to 0$

is an exact sequence. Show that there exists an open, affine neighborhood $U \subseteq X$ of x such that $f \otimes_A \mathcal{O}(U)$ is split injective.

Hint: Choose a morphism $g: F \to M$ of A-modules with F finite free and $F \otimes_A k(x) \xrightarrow{\cong} M \otimes_A k(x)$. Localize to represent $f \circ g$ by a matrix.

Exercise 2 (4 points):

Compute $\Omega_{B/A}^1$ for i) B = A[X]/(f(X)) with $f(X) \in A[X]$ a polynomial. ii) $B = \mathbb{Z}[i], A = \mathbb{Z}$. iii) $B = k[x,y]/(y^2 - x^3 - x)$ with A = k not of characteristic 2. iv) B = k[x,y]/(xy), A = k. Hint: Use one of the short exact sequence for $\Omega_{-/-}^1$ that where established in the lecture.

Exercise 3 (4 points):

Let A be a perfect \mathbb{F}_p -algebra, i.e., the Frobenius $\operatorname{Fr}_A \colon A \to A, \ x \mapsto x^p$ of A is bijective. Prove that $\operatorname{Spec}(A) \to \operatorname{Spec}(\mathbb{F}_p)$ is formally étale.

Hint: If R is a ring of characteristic p, $I \subseteq R$ an ideal with $I^2 = 0$ and $R_0 = R/I$, then for $x \in R$ the element x^p only depends on the image $x_0 \in R_0$ of x.

Exercise 4 (4 points):

Let A be a ring. Let $f_{\bullet}: C_{\bullet} \to D_{\bullet}$ be a morphism of complexes of A-modules. Let $0 \to D_{\bullet} \xrightarrow{g_{\bullet}} C(f_{\bullet}) \to C_{\bullet}[1] \to 0$ be the natural short exact sequence considered on sheet 3, exercise 4 (note that $d_n^{C_{\bullet}[1]} = -d_{n+1}^{C_{\bullet}}$). Show that there exists a natural homotopy equivalence

$$C(g_{\bullet}) \to C_{\bullet}[1].$$

Hint/Remark: Write down the definitions and have stamina. For the notion of a homotopy equivalence of chain complexes see Tag 010V in the Stacks project, which is available at stacks.math. columbia.edu.

To be handed in on: Thursday, 09.05.2024 (via eCampus).