Algebra I - Commutative algebra

9. Exercise sheet

Exercise 1 (4 points):

Assume that $d \in \mathbb{Z}$ is not a square. Determine all $x, y, z \in \mathbb{Z}$ with $\operatorname{gcd}(x, y, z)=1$ and $x^{2}-d y^{2}=z^{2}$. Hint: Follow the arguments in the lecture and consider lines through the point $(-1,0) \in \mathbb{Q}^{2}$.

Exercise 2 (4 points):

Let k be an algebraically closed field and let $f(x) \in k[x]$ be a polynomial. Determine the set $\operatorname{Spec}\left(k[x, y] /\left(y^{2}-f(x)\right)\right)$ and the cardinality of all fibers of the map

$$
\operatorname{Spec}\left(k[x, y] /\left(y^{2}-f(x)\right)\right) \rightarrow \operatorname{Spec}(k[x])
$$

that is induced by the k-algebra homomorphism $k[x] \rightarrow k[x, y] /\left(y^{2}-f(x)\right), x \mapsto x$.

Exercise 3 (4 points):

Let $m, n \geq 1$ and let $\zeta_{m}=e^{2 \pi i / m} \in \mathbb{C}$ be a primitive m-th root of unity. Set $G:=\left\langle\zeta_{m}\right\rangle \subseteq \mathbb{C}^{\times}$. We let G act on $A:=\mathbb{C}\left[T_{1}, \ldots, T_{n}\right]$ via $\left(g, f\left(T_{1}, \ldots, T_{n}\right)\right) \mapsto g \cdot f:=f\left(g T_{1}, \ldots, g T_{n}\right)$.

1) Determine the ring of invariants $A^{G}:=\{f \in A \mid g \cdot f=f$ for all $g \in G\}$.
2) Set $m=n=2$. Find a presentation $A^{G} \cong \mathbb{C}\left[X_{1}, \ldots, X_{k}\right] /\left(h_{1}, \ldots, h_{l}\right)$.

Exercise 4 (4 points):

Let A be a ring and M a finitely presented A-module. Let $n \geq 1$ and let $f: A^{n} \rightarrow M$ be a surjection. Show that $K:=\operatorname{ker}(f)$ is finitely generated.
Hint: Let $0 \rightarrow Q \rightarrow A^{m} \rightarrow M \rightarrow 0$ be a short exact sequence of A-modules with Q finitely generated. Construct a commutative diagram

and use the snake lemma.
To be handed in on: Thursday, 15.06.2023 (during the lecture, or via eCampus).

