Dr. A. Mihatsch Dr. J. Anschütz

Algebra I - Commutative algebra

8. Exercise sheet

Exercise 1 (4 points):

Let A be a ring and $\mathfrak{a} \subseteq A$ an ideal. Show that A/\mathfrak{a} is a finitely presented A-algebra if and only if \mathfrak{a} is a finitely generated ideal.

Exercise 2 (4 points):

Let k be a field. Show that the ring extensions $k[X + Y] \rightarrow k[X, Y]/XY$ and $k[X^2 - 1] \rightarrow k[X]$ are integral.

Exercise 3 (4 points):

Let $A \to B$ be a finite morphism of rings, i.e., $A \to B$ is a ring homomorphism, which makes B into a finite A-module. Show that the map $\operatorname{Spec}(B) \to \operatorname{Spec}(A)$ has finite fibers. Remark: The morphism $\mathbb{Z} \to \mathbb{Q}$ shows that the converse is not true.

Exercise 4 (4 points):

Let A be a ring and let

$$M_{1} \xrightarrow{f_{1}} M_{2} \xrightarrow{f_{2}} M_{3} \xrightarrow{f_{3}} M_{4} \xrightarrow{f_{4}} M_{5}$$

$$\downarrow^{\alpha_{1}} \cong \downarrow^{\alpha_{2}} \qquad \downarrow^{\alpha_{3}} \cong \downarrow^{\alpha_{4}} \qquad \downarrow^{\alpha_{5}}$$

$$N_{1} \xrightarrow{g_{1}} N_{2} \xrightarrow{g_{2}} N_{3} \xrightarrow{g_{3}} N_{4} \xrightarrow{g_{4}} N_{5}$$

be a commutative diagram of A-modules with exact rows and α_2, α_4 isomorphisms.

1) Assume that α_1 is surjective. Show that α_3 is injective.

2) Assume that α_5 is injective. Show that α_3 is surjective.

To be handed in on: Thursday, 08.06.2023 (during the lecture, or via eCampus).