
Dr. A. Mihatsch SS 2023
Dr. J. Anschütz

Algebra I - Commutative algebra

8. Exercise sheet

Exercise 1 (4 points):

Let A be a ring and a ⊆ A an ideal. Show that A/a is a finitely presented A-algebra if and only if
a is a finitely generated ideal.

Exercise 2 (4 points):

Let k be a field. Show that the ring extensions k[X + Y ] → k[X,Y ]/XY and k[X2 − 1] → k[X]
are integral.

Exercise 3 (4 points):

Let A → B be a finite morphism of rings, i.e., A → B is a ring homomorphism, which makes B
into a finite A-module. Show that the map Spec(B)→ Spec(A) has finite fibers.
Remark: The morphism Z→ Q shows that the converse is not true.

Exercise 4 (4 points):

Let A be a ring and let
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be a commutative diagram of A-modules with exact rows and α2, α4 isomorphisms.
1) Assume that α1 is surjective. Show that α3 is injective.
2) Assume that α5 is injective. Show that α3 is surjective.
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