Dr. A. Mihatsch Dr. J. Anschütz

Algebra I - Commutative algebra

4. Exercise sheet

Exercise 1 (4 points):

Let A be a ring.

1) Assume that $f_n \in A[[T]]$, $n \ge 0$, is a sequence of elements such that $f_n \in (T)^n$ for all $n \ge 0$. Show that there exists a unique element $f \in A[[T]]$ such that $f - \sum_{k=0}^n f_k \in (T)^{n+1}$ for all $n \ge 0$. 2) Assume that A is noetherian. Show that A[[T]] is noetherian.

Exercise 2 (4 points):

1) Let A be the ring of power series in $\mathbb{C}[[z]]$ with a positive radius of convergence. Show that A is noetherian.

2) Show that the ring of holomorphic functions $\mathbb{C} \to \mathbb{C}$ is not noetherian.

One possible approach is to use the relation $\sin(2x) = 2\sin(x)\cos(x)$.

Exercise 3 (4 points):

Let $n \ge 1$. For an $n \times n$ -matrix M over some ring A denote by $\chi_M(T) := \det(T \cdot \mathrm{Id} - M)$ its characteristic polynomial.

1) Let $A = \mathbb{Z}[a_{i,j} \mid 1 \leq i, j \leq n]$ and $M := (a_{i,j})_{i,j} \in \operatorname{Mat}_n(A)$. Show that

 $\chi_M(M) = 0.$

Hint: You may use the Cayley-Hamilton theorem from linear algebra. 2) Deduce a general form of the theorem of Cayley-Hamilton: Let A be a ring and let M be any $n \times n$ -matrix over A. Then $\chi_M(M) = 0$.

Exercise 4 (4 points):

Let A be a principal ideal domain.

1) Let $a \in A \setminus \{0\}$ and let $\pi \in A$ prime. Set B := A/a. For any $n \ge 0$ show that

$$\dim_{A/\pi} \pi^n B / \pi^{n+1} B = \begin{cases} 0 & \text{if } \nu_\pi(a) \le n, \\ 1 & \text{if } \nu_\pi(a) \ge n+1. \end{cases}$$

Here, $\nu_{\pi}(a) = \max\{m \mid \pi^m \mid a\}$ is the so-called π -adic valuation on A.

2) Assume that $M = A^r \oplus A/a_1 \oplus \ldots \oplus A/a_k$, $N = A^s \oplus A/b_1 \oplus \ldots \oplus A/b_l$ with $a_1, \ldots, a_k, b_1, \ldots, b_l \in A$ non-zero and $a_1|a_2|\ldots|a_n, b_1|b_2|\ldots|b_l$. Show that if $M \cong N$ as A-modules, then r = s, k = l and $a_i = u_i b_i$ for some units $u_i \in A$.

To be handed in on: Thursday, 04.05.2023 (during the lecture, or via eCampus).