Algebra I - Commutative algebra

3. Exercise sheet

Exercise 1 (4 points):

Let A be a principal ideal domain. The arguments for $A = \mathbb{Z}$ from the lecture work verbatim to show that the prime ideals of A[T] are

- (i) (0),
- (ii) $(f), f \in A[T]$ irreducible,

(iii) (π, g) with $\pi \in A$ prime and $g \in A[T]$ a polynomial whose image in $(A/\pi)[T]$ is irreducible.

Assume that A has infinitely many prime ideals. Prove that the heights of the primes in (i), (ii), (iii) are 0, 1, 2 respectively and that each maximal ideal of A[T] has height 2.
Let k be a field and set A := k[[u]]. Show that A[u⁻¹] is a field. Deduce that, in contrast to 1),

the height 1 ideal $(uT - 1) \subseteq A[T]$ is maximal.

Exercise 2 (4 points):

Let k be an algebraically closed field and let

$$\varphi \colon k[x, y] \to k[u, v], \ x \mapsto u, \ y \mapsto uv.$$

1) Use exercise 1 to show that the maximal ideals of k[x, y] are precisely the ideals

$$\mathfrak{m}_{\lambda,\mu} := (x - \lambda, y - \mu), \quad \lambda, \mu \in k.$$

2) Show that φ induces an isomorphism $k[x, y][x^{-1}] \to k[u, v][u^{-1}]$. 3) For each $(\lambda, \mu) \in k^2$ calculate $\operatorname{Spec}(\varphi)^{-1}(\mathfrak{m}_{\lambda,\mu})$.

Exercise 3 (4 points):

Let A be a ring of Krull dimension $n := \dim A$. Show that

$$n+1 \le \dim A[T] \le 2n+1.$$

Exercise 4 (4 points):

Let A be a ring and $S, T \subseteq A$ multiplicative subsets with $S \subseteq T$.

1) Let $\iota_S \colon A \to S^{-1}A$ be the natural ring homomorphism. Show that $\iota_S^{-1}((S^{-1}A)^{\times})$ is the saturation \overline{S} of S.

2) Show that there exists a unique ring homomorphism $\iota: S^{-1}A \to T^{-1}A$ such that $\iota \circ \iota_S = \iota_T$.

3) Deduce that ι is an isomorphism if and only if $\overline{T} = \overline{S}$.

To be handed in on: Thursday, 27.04.2023 (during the lecture, or via eCampus).