Dr. A. Mihatsch Dr. J. Anschütz

Algebra I - Commutative algebra

2. Exercise sheet

Exercise 1 (4 points):

Define $\zeta := \frac{-1+\sqrt{-3}}{2} \in \mathbb{C}$.

1) Show that ζ is a primitive 3rd root of unity.

2) Show that the norm (for the field extension $\mathbb{Q}(\zeta)/\mathbb{Q}$) of an element $x + y\zeta \in \mathbb{Q}(\zeta), x, y \in \mathbb{Q}$, is given by $x^2 - xy + y^2$, and that this is non-negative for all $x, y \in \mathbb{Q}$.

3) Following the discussion of $\mathbb{Z}[i]$ from the lecture, show that a prime $p \neq 3$ is of the form $p = x^2 - xy + y^2$ for some $x, y \in \mathbb{Z}$ if and only if $p \equiv 1 \mod 3$.

Exercise 2 (4 points):

1) Let A be a principal ideal domain that is not a field, and let $\mathfrak{m} \subseteq A$ be a maximal ideal. Prove that $\mathfrak{m}^n/\mathfrak{m}^{n+1}$ is a one-dimensional vector space over A/\mathfrak{m} for any $n \ge 0$.

2) Let $A = \mathbb{C}[x, y]$ and $\mathfrak{m} = (x, y)$. Compute $\dim_{A/\mathfrak{m}} \mathfrak{m}^n/\mathfrak{m}^{n+1}$ for $n \ge 0$. Deduce that A is not a principal ideal domain.

3) Let $A = \mathbb{Z}[\sqrt{-3}]$. Show that A has a unique maximal ideal \mathfrak{m} with $\mathfrak{m} \cap \mathbb{Z} = (2)$. Compute $\dim_{A/\mathfrak{m}}\mathfrak{m}/\mathfrak{m}^2$. Deduce that A is not a principal ideal domain.

Exercise 3 (4 points):

Let A be a unique factorization domain.

1) Show that for any prime element $\pi \in A$ the ideal $\mathfrak{p} := (\pi)$ is prime and only contains the prime ideals $\{0\}$ and \mathfrak{p} .

2) Conversely, let $0 \neq \mathfrak{p} \subseteq A$ be a prime ideal, such that $\{0\}, \mathfrak{p}$ are the only prime ideals of A which are contained in \mathfrak{p} . Show that $\mathfrak{p} = (\pi)$ for some prime element $\pi \in A$.

3) Assume that each non-zero prime ideal $\mathfrak{p} \subseteq A$ satisfies the assumption in 2). Show that A is a principal ideal domain.

Exercise 4 (4 points):

1) Let A be any ring. Show that A has minimal prime ideals.

Hint: You will have to use Zorn's Lemma.

2) Determine the minimal prime ideals of $\mathbb{Z}[x, y]/(xy)$.

To be handed in on: Thursday, 20.04.2023 (during the lecture, or via eCampus).