Algebra I - Commutative algebra

2. Exercise sheet

Exercise 1 (4 points):

Define $\zeta:=\frac{-1+\sqrt{-3}}{2} \in \mathbb{C}$.

1) Show that ζ is a primitive 3 rd root of unity.
2) Show that the norm (for the field extension $\mathbb{Q}(\zeta) / \mathbb{Q})$ of an element $x+y \zeta \in \mathbb{Q}(\zeta), x, y \in \mathbb{Q}$, is given by $x^{2}-x y+y^{2}$, and that this is non-negative for all $x, y \in \mathbb{Q}$.
3) Following the discussion of $\mathbb{Z}[i]$ from the lecture, show that a prime $p \neq 3$ is of the form $p=x^{2}-x y+y^{2}$ for some $x, y \in \mathbb{Z}$ if and only if $p \equiv 1 \bmod 3$.

Exercise 2 (4 points):

1) Let A be a principal ideal domain that is not a field, and let $\mathfrak{m} \subseteq A$ be a maximal ideal. Prove that $\mathfrak{m}^{n} / \mathfrak{m}^{n+1}$ is a one-dimensional vector space over A / \mathfrak{m} for any $n \geq 0$.
2) Let $A=\mathbb{C}[x, y]$ and $\mathfrak{m}=(x, y)$. Compute $\operatorname{dim}_{A / \mathfrak{m}} \mathfrak{m}^{n} / \mathfrak{m}^{n+1}$ for $n \geq 0$. Deduce that A is not a principal ideal domain.
3) Let $A=\mathbb{Z}[\sqrt{-3}]$. Show that A has a unique maximal ideal \mathfrak{m} with $\mathfrak{m} \cap \mathbb{Z}=(2)$. Compute $\operatorname{dim}_{A / \mathfrak{m}} \mathfrak{m} / \mathfrak{m}^{2}$. Deduce that A is not a principal ideal domain.

Exercise 3 (4 points):

Let A be a unique factorization domain.

1) Show that for any prime element $\pi \in A$ the ideal $\mathfrak{p}:=(\pi)$ is prime and only contains the prime ideals $\{0\}$ and \mathfrak{p}.
2) Conversely, let $0 \neq \mathfrak{p} \subseteq A$ be a prime ideal, such that $\{0\}, \mathfrak{p}$ are the only prime ideals of A which are contained in \mathfrak{p}. Show that $\mathfrak{p}=(\pi)$ for some prime element $\pi \in A$.
3) Assume that each non-zero prime ideal $\mathfrak{p} \subseteq A$ satisfies the assumption in 2). Show that A is a principal ideal domain.

Exercise 4 (4 points):

1) Let A be any ring. Show that A has minimal prime ideals.

Hint: You will have to use Zorn's Lemma.
2) Determine the minimal prime ideals of $\mathbb{Z}[x, y] /(x y)$.

To be handed in on: Thursday, 20.04.2023 (during the lecture, or via eCampus).

