1. Collection of previous results

These notes are a detailed exposition of a talk I have given at a workshop in Neckarbischofsheim about the Galois group of \mathbb{Q}_p as a geometric fundamental group. We will, building on the work of previous talks, introduce the algebraic Fargues-Fontaine curve $X_{E,F}$. For its construction we have to choose two fields E and F. We fix E/\mathbb{Q}_p a finite extension with residue field \mathbb{F}_q and an algebraically closed non-archimedean extension F/\mathbb{F}_q. In particular, F is perfectoid. We also fix a uniformizer $\pi \in E$.

Let $Y_{ad} := Y_{E,F} := \lim_{I \subseteq [0,1]} \text{Spa}(B_I)$ be the adic space associated with E and F, which was constructed in talk FF II, also see [Far, Definition 2.5].

Fact 1.1 (talk FF II). Y_{ad} has global sections $H^0(Y_{ad}, \mathcal{O}_{Y_{ad}}) = B$ and B is an integral domain. [Far, Definition 2.5]

The Frobenius $\varphi: F \to F: x \mapsto x^q$ induces an automorphism $\varphi : Y_{ad} \to Y_{ad}$ such that $\varphi^\mathbb{Z}$ acts properly discontinuously on Y_{ad}. In fact, for $\varpi \in F^\times$ with $|\varpi|_F < 1$ there exists a continuous map $\delta : Y_{ad} \to [0, \infty] : y \mapsto \frac{\log |\pi(\tilde{y})|}{\log |\varpi(\tilde{y})|}$ satisfying $\delta(\varphi(y)) = \delta(y)^{1/q}$ for $y \in Y_{ad}$, where \tilde{y} denotes the maximal generalization of the point y in Y_{ad} (compare with [Wei, Proposition 3.3.5]). We can conclude that the quotient space

$$X_{ad} := X_{E,F} := Y_{ad}/\varphi^\mathbb{Z}$$

is naturally provided with a structure sheaf making X_{ad} an adic space, the so-called adic Fargues-Fontaine curve $X_{ad} = X_{E,F}$. We denote by

$$\text{pr} : Y_{ad} \to X_{ad}$$

the natural morphism of adic spaces.

It is a formal consequence of the properly discontinuous action of $\varphi^\mathbb{Z}$ on Y_{ad} that the pullback pr^* induces an equivalence of the category of $\mathcal{O}_{X_{ad}}$-modules with the category of φ-modules over $\mathcal{O}_{Y_{ad}}$, i.e. $\mathcal{O}_{Y_{ad}}$-modules carrying a $\varphi^\mathbb{Z}$-equivariant
action. For example, the structure sheaf \(\mathcal{O}_{X^{ad}} \) corresponds to the \(\varphi \)-module \(\mathcal{O}_{Y^{ad}} \) with its canonical isomorphism \(\varphi_{\mathcal{O}_{Y^{ad}}} \colon \varphi^* \mathcal{O}_{Y^{ad}} \cong \mathcal{O}_{Y^{ad}}. \) More generally, for \(d \in \mathbb{Z} \) we denote by \(\mathcal{O}_{X^{ad}}(d) \) or just \(\mathcal{O}(d) \) the line bundle on \(X^{ad} \) corresponding to the \(\varphi \)-module \(\mathcal{O}_{Y^{ad}}(d) \) consisting of the sheaf \(\mathcal{O}_{Y^{ad}} \) with the twisted \(\varphi \)-action

\[
\varphi_{\mathcal{O}_{Y^{ad}}}(f) := \pi^{-d} \varphi_{\mathcal{O}_{Y^{ad}}}(f)
\]

for \(f \in \mathcal{O}_{Y^{ad}}. \) The global sections \(P_d := H^0(X^{ad}, \mathcal{O}_{X^{ad}}(d)) \) are thus given by

\[
P_d = B^{d \varphi_{\mathcal{O}_{Y^{ad}}}(d) = 1} = B^{d = \pi^d}.
\]

For example, \(P_0 = E \) and \(P_d = 0 \) for \(d < 0 \) (\cite{FFb} Corollary 1.15). Elements in \(P_1 = B^{d = \pi} \) can be constructed explicitly. Namely, let \(\mathcal{G} \) be the formal group over \(\mathcal{O}_E \) associated to a Lubin-Tate law \(\mathcal{L} \) over \(\mathcal{O}_E. \) Then \(\mathcal{G} \) comes equipped with a logarithm \(\log_{\mathcal{L}}(-) \in T \cdot E[[T]] \) and a twisted Teichmüller lift

\[
[-]_{Q} : \mathcal{G}(\mathcal{O}_E) \rightarrow \mathcal{G}(W_{\mathcal{O}_E}(\mathcal{O}_E))
\]

\[
\varepsilon \mapsto \lim_{n \to \infty} \pi^n |_{\mathcal{L}} ((\varepsilon^q)^n),
\]

(\cite{FFb} Proposition 2.11) where \(\pi |_{\mathcal{L}} (-) \) denotes multiplication with respect to the Lubin-Tate law.

Fact 1.2. The map

\[
\mathcal{G}(\mathcal{O}_E) = (m_F, +_{\mathcal{L}}) \rightarrow P_1 = B^{d = \pi}
\]

\[
\varepsilon \mapsto \log_{\mathcal{L}}((\varepsilon |_Q)
\]

is an isomorphism of \(E \)-vector spaces (\cite{FFb} Theorem 4.6.).

We will however just use the existence of the map \(\mathcal{G}(\mathcal{O}_E) \rightarrow B^{d = \pi}. \) Up to convergence issues (see \cite{FFb} Remark 4.8) its well-definedness can be deduced as follows

\[
\varphi(\log_{\mathcal{L}}((\varepsilon |_Q)) = \log_{\mathcal{L}}((\varepsilon^q |_Q) = \log_{\mathcal{L}}((\pi |_{\mathcal{L}} (\varepsilon |_Q)) = \pi \log_{\mathcal{L}}((\varepsilon |_Q).
\]

By definition, a point \(y \in Y^{ad} \) is called classical, if its support

\[
\text{supp}(y) := \{ f \in B \mid f(y) = 0 \} \subseteq B
\]

is a maximal ideal. Similarly, define classical points in the open sets \(\text{Spa}(B_I) \subseteq Y^{ad}, \) \(I \subseteq [0,1[\) with extremities in \(F^\times |_F \subseteq \mathbb{R}_{>0}, \) as the points whose support is a maximal ideal. Let \(Y^{ad}_{cl} \subseteq Y^{ad} \) be the subset of classical points of \(Y^{ad}. \) By \cite{FFb} Theorem 3.9, \(Y^{ad}_{cl} = \lim_{I \subseteq [0,1[} \text{Spa}(B_I)_{cl}. \) We want to point out, that for a classical point \(y \in Y^{ad}_{cl} \) the valuation on \(k(y) \) is of rank one, i.e. \(y \) is the only point in \(Y^{ad} \) with support \(\text{supp}(y). \) In fact, by \cite{FFb} Theorem 4.3, \(\) and \cite{FFb} Corollary 3.11 each closed maximal ideal of \(B \) is generated by a primitive element of degree 1. Then by \cite{FFb} Theorem 2.4, the image of \(W_{\mathcal{O}_E}(\mathcal{O}_E) \subseteq H^0(Y^{ad}, \mathcal{O}_{Y^{ad}+}) \) in \(k(y) \) is already a valuation ring of rank one, and hence \(\text{Spa}(k(y), k(y)+) = \{ y \}. \) In particular, we obtain a bijection

\[
Y^{ad}_{cl} \xrightarrow{1:1} \{ m \subseteq B \text{ closed maximal ideal} \}.
\]

Fact 1.3 (talks FF I, FF III). If \(y \in Y^{ad}_{cl} \) is classical, then the residue field \(k(y) \) is perfectoid with a canonical identification \(k(y)^{\flat} \cong F \) of its tilt with the field \(F \) (\cite{FFb} Theorem 2.4). In particular, \(k(y) \) is algebraically closed. Moreover, the local ring \(\mathcal{O}_{Y^{ad},y} \) is a discrete valuation ring whose \(\mathfrak{m}_{Y^{ad},y} \)-adic completion is Fontaine’s ring \(B_{dR,y}^{+} \) associated to the perfectoid field \(k(y). \) (\cite{FFb} Theorem 3.9, \) and \cite{FFb} Definition 3.1)
Let $\text{Div}(Y^{\text{ad}})$ be the group of divisors on Y^{ad}, i.e. locally finite sums of classical points in Y^{ad}.

Fact 1.4 (talk FF III). *The map*

$$\{ a \subseteq B \text{ non-zero closed ideal} \} \rightarrow \text{Div}^+(Y^{\text{ad}})$$

$$a \mapsto V(a)$$

is an isomorphism ([FFb, Theorem 3.8.]).

The fact 1.4 was used to analyse the multiplicative structure of the graded E-algebra

$$P := P_{E,\pi} := \bigoplus_{d=0}^{\infty} B^{\varphi^d} = \bigoplus_{d=0}^{\infty} B^{\varphi^d}.$$

Define the set of classical points in X^{ad} as $X^{\text{ad}}_{\text{cl}} := \text{pr}(Y^{\text{ad}}_{\text{cl}}) \subseteq X^{\text{ad}}$ and let $\text{Div}(X^{\text{ad}})$ be the group of divisors on X^{ad}, i.e. locally finite sums of classical points on X^{ad}. As X^{ad} is quasi-compact, being the image of the quasi-compact set $\text{Spa}(B_I)$ for some compact interval $I \subseteq [0,1]$, divisors on X^{ad} are actually finite sums of classical points on X^{ad}. By definition, divisors on X^{ad} are in bijection with φ-invariant divisors on Y^{ad}

$$\text{Div}(X^{\text{ad}}) \cong \text{Div}(Y^{\text{ad}})^{\varphi=1}$$

as $\text{pr}^{-1}(X^{\text{ad}}_{\text{cl}}) = Y^{\text{ad}}_{\text{cl}}$.

Fact 1.5 (talk FF III). *The algebra P is graded factorial with irreducible elements of degree 1, i.e. every non-zero homogeneous element can be written uniquely (up to the units $E^* \times P = P_1^* \times 0$) as the product of homogeneous elements of degree 1. More precisely, the divisor map*

$$\text{div} : \left(\bigcup_{d \geq 0} P_d \setminus \{ 0 \} \right)/E^* \rightarrow \text{Div}^+(X^{\text{ad}})$$

$$f \mapsto \text{div}(f)$$

is an isomorphism ([FFb, Theorem 4.3]). In particular, there is a bijection

$$\text{div} : (P_1 \setminus \{ 0 \})/E^* \xrightarrow{1:1} X^{\text{ad}}_{\text{cl}}.$$

2. The Algebraic Fargues-Fontaine Curve

We now define the algebraic Fargues-Fontaine curve.

Definition 2.1. *The algebraic Fargues-Fontaine curve* (for given E, F and π) is defined as the E-scheme

$$X := X_{E,F} = \text{Proj}(P),$$

with $P = P_{E,F,\pi} := \bigoplus_{d \geq 0} B^{\varphi^d}$. Note, the ring B depends on E and F, but not on π.

The curve $X_{E,F}$ is independent of π in the sense that the choice of another uniformizer π' yields a curve X' canonically isomorphic to X as the following lemma shows. (see also [FFa, Section 7.1.4.])

Lemma 2.2. *Let $\pi_1, \pi_2 \in E$ be uniformizers with corresponding algebras*

$$P_{\pi_i} = \bigoplus_{d \geq 0} B^{\varphi^d}$$

The curve $X_{E,F}$ is independent of π in the sense that the choice of another uniformizer π' yields a curve X' canonically isomorphic to X as the following lemma shows. (see also [FFa, Section 7.1.4.])
for \(i = 1, 2 \). Then
\[
\text{Proj}(P_{\pi_1}) \cong \text{Proj}(P_{\pi_2}),
\]
canonically and \(P_{\pi_1} \cong P_{\pi_2} \) non-canonically.

Proof. The field \(F \) is algebraically closed, hence the closure \(L := \mathbb{F}_q \subseteq \mathcal{O}_F \) lies in \(F \). As the ring \(W_{\mathcal{O}_E}(L) \) is henselian with algebraically closed residue field there exists \(u \in W_{\mathcal{O}_E}(L)^{\times} \) with
\[
\frac{\varphi(u)}{u} = \frac{\pi_1}{\pi_2}.
\]
Note that \(W_{\mathcal{O}_E}(L) \subseteq B \). In particular, the multiplications
\[
B^{\varphi=\pi_2^d} \to B^{\varphi=\pi_1^d},
\]
\[
f \mapsto u^d f
\]
for \(d \in \mathbb{Z} \) combine to an isomorphism \(\alpha_u : P_{\pi_2} \to P_{\pi_1} \). The element \(u \) is unique up to invertible elements \(v \in W_{\mathcal{O}_E}(L)^{\varphi=1} = \mathcal{O}_F \). For \(v \in \mathcal{O}_E^{\times} \) the isomorphisms \(\alpha := \alpha_u \) and \(\beta := \alpha_{vu} \) satisfy
\[
v^d \alpha(f) = \beta(f)
\]
for \(f \in P_{\pi_2,d} \) homogenous of degree \(d \). It is easy to see that two morphisms
\[
\alpha, \beta : A \to A'
\]
between non-negatively graded algebras, satisfying the above equation for some unit \(v \in A_0^{\times} \) and every \(d \geq 0 \) induce the same morphism on Proj. This proves the lemma. \(\square \)

We will see that \(X \) is indeed a “curve”, i.e. one-dimensional. In some respect, \(X \) behaves like the curve \(\mathbb{P}^1_E \) over the field \(E \) although \(X \) is not of finite type over \(E \). As \(X \) is defined via the Proj construction there are natural line bundles on \(X \) obtained by the shifted graded \(P \)-modules \(P[d] \) for \(d \in \mathbb{Z} \). Let
\[
\mathcal{O}(d) := \mathcal{O}_X(d) := \check{P}[d].
\]
Then the \(\mathcal{O}(d) \) are line bundles on \(X \) as \(P \) is generated by \(P_1 \). The global sections of \(\mathcal{O}(d) \) can be computed, using that \(P \) is graded factorial \([1.3] \) as
\[
P_d = H^0(X, \mathcal{O}_X(d)).
\]
In fact, \(P_d \) injects into \(H^0(X, \mathcal{O}_X(d)) \) as \(P \) is an integral domain. Let conversly, \(a \in H^0(X, \mathcal{O}_X(d)) \) be a global section. For \(t \in P_1 \) there exists \(d_t \geq 0 \) and \(g_t \in P_d \) with \(a_{|D^+(t)} = \frac{g_t}{t^{d_t}} \). We may assume that \(g_t \) is not divisible by \(t \) as \(P \) is graded factorial. Choose some \(t' \notin E^\times \). Then restricting to the intersection \(D^+(t) \cap D^+(t') = D^+(t \cdot t') \) yields \(\frac{g_{tt'}}{t^{d_t}} = \frac{g_{tt'}}{t'^{d_t}} \) as \(P \) is an integral domain. As \(P \) is graded factorial and \(t, t' \) are relatively prime, we can conclude \(d_t = d_{t'} = 0 \) and hence \(g := g_t = g_{t'} \) so that \(a \) is induced by the section \(g \in P_d \) as \(t \) was arbitrary.

For completeness we introduce a proof of the following lemma. To proof it we will use the adjunction
\[
\text{Hom}(Z, \text{Spec}(A)) \cong \text{Hom}(A, \Gamma(Z, \mathcal{O}_Z))
\]
for a ring \(A \) and an arbitrary locally ringed space \(Z \) (\([3.1] \text{ Proposition 1.6.3}] \)).

\footnote{If such a \(t' \) does not exists, the claim is trivial, as then \(P = E[t] \). But actually such a \(t' \) exists: by \([3.1] \) the \(E \)-vector space \(P_1 \) is infinite dimensional.}
Lemma 2.3. Let $S = \text{Spec}(R)$ be an affine scheme and

$$A = \bigoplus_{d \geq 0} A_d$$

be a graded R-algebra, generated by A_1. Let $h : \text{Proj}(A) \to S$ be the canonical morphism. Then for any locally ringed space $g : Z \to S$ the map

$$\eta : \text{Hom}_S(Z, \text{Proj}(A)) \to \{(L \in \text{Pic}(Z), \gamma : g^*A \to \bigoplus_{d \geq 0} L^\otimes d \text{ surjective}) / \cong\}$$

is a bijection, where $O(1) \in \text{Proj}(A)$ denotes the canonical line bundle $O(1) = \tilde{A}[1]$ and $\gamma_{\text{can}} : h^*(\tilde{A}) \to \bigoplus_{d \geq 0} O(d)$ the canonical surjection.

Proof. We first prove that the morphism γ_{can}, which is induced by the canonical morphism

$$A \to H^0(\text{Proj}(A), \bigoplus_{d \geq 0} O(d)),$$

is indeed surjective. As the open sets $D^+(t)$ for $t \in A_1$ cover $\text{Proj}(A)$ and the question is local, we may restrict to $D^+(t)$ for some $t \in A_1$. Then the morphism γ_{can} is given by the multiplication

$$A[1/t]_\alpha \otimes_R A \to \bigoplus_{d \geq 0} A[1/t]_d,$$

which is easily seen to be surjective. We denote by $F(Z)$ the target of η. Then F is a sheaf with respect to local isomorphisms. We define for $t \in A_1 \setminus \{0\}$ the subfunctor

$$F_t(Z) := \{(L, \gamma) \in F(Z) \mid \gamma(t) \text{ generates } L\}$$

of F. The inclusion $F_1 \to F$ is represented by open immersions. Indeed, for a morphism $(L, \gamma) : Z \to F$ the fiber product $Z \times_F F_1$ is represented by the open subset

$$D(\gamma(t)) := \{z \in Z \mid \gamma(t) \text{ generates } L_z\}.$$

We claim that F_t is represented by the scheme $\text{Spec}(A[1/t]_\alpha)$ by sending a morphism $f : Z \to \text{Spec}(A[1/t]_\alpha)$ corresponding to the morphism $f : A[1/t]_\alpha \to \Gamma(Z, O_Z)$ to the pair

$$(O_Z, \gamma : \tilde{A}|_Z \to \bigoplus_{d \geq 0} O_Z)$$

where γ maps a local section represented by $a \in A_d$ to $f(a/\alpha^d) \in O_Z$. As $\gamma(t^d) = 1$ for $d \geq 0$ the morphism γ is surjective. Let conversely, $(L, \gamma) \in F_t(Z)$ be given. Define $f(a/t^d) \in \Gamma(Z, O_Z)$ for $a \in A_d$ by the formula

$$\gamma(a) = f(a/t^d) \gamma(t^d) \in L^\otimes d(Z).$$

Then $f : A[1/t]_\alpha \to \Gamma(Z, O_Z)$ is well-defined and a homomorphism of rings. It can be checked that these morphisms $\text{Spec}(A[1/t]_\alpha) \to F_t$ and $F_t \to \text{Spec}(A[1/t]_\alpha)$ are mutually inverse. Moreover, the F_t for $t \in A_1$ cover F as A is generated by A_1 and $\gamma : g^*A_1 \to L$ surjective. We can conclude that η is an isomorphism of functors as for every $t \in A_1$ the pullback

$$\text{Spec}(A[1/t]_\alpha) = D^+(t) = \text{Proj}(A) \times_F F_t \to F_t$$

is an isomorphism. □
As \(H^0(X^\text{ad}, \bigoplus_{d \geq 0} \mathcal{O}(d)) = p \) we obtain by \ref{2.3} a morphism
\[
\alpha : X^\text{ad} \to X
\]
of locally ringed spaces satisfying \(\alpha^*(\mathcal{O}_X(d)) \cong \mathcal{O}_{X^\text{ad}}(d) \). More precisely, it has to be checked, that the open sets
\[
D(t) := \{ x \in X^\text{ad} | t \text{ generates } \mathcal{O}_{X^\text{ad}}(1) \}
\]
for \(t \in P_1 \) cover \(X^\text{ad} \). We first show that for \(t \in P_1 \setminus \{0\} \) the vanishing locus
\[
V(t) := \{ x \in X^\text{ad} | t(x) = 0 \}
\]
consists of classical points. This property can be checked on \(Y^\text{ad} \) and because \(Y^\text{ad} = \lim_{t \in [0,1]} \text{Spa}(B_t) \), we may restrict to \(U := \text{Spa}(B_I) \subseteq Y^\text{ad} \) for some interval \(I \subseteq [0,1) \) whose extremities lie in \(|F^\times| \). By \cite[Theorem 3.9.]{FFb} the ring \(B_I \) is a principal ideal domain. Assume \(y \in V(t) \) for \(t \in P_1 \subseteq B_I \). If \(t \neq 0 \), then \(t \) does not vanish at the generic point of \(U \), and hence \(V(t) \) consists of points, whose support is maximal. In other words, \(V(t) \subseteq X^\text{ad} \) consists of classical points. By \ref{1.5} there is the bijection
\[
\text{div} : (P_1 \setminus \{0\})/E^\times \to X^\text{ad}.
\]
For \(t, t' \in P_1 \setminus \{0\} \) with \(t' \notin E^\times t \) (such \(t, t' \) exist as \(P_1 \) is infinite-dimensional over \(E \)), see \ref{3.1} we therefore get
\[
V(t) \cap V(t') = \emptyset,
\]
which was our claim.

3. THE FUNDAMENTAL EXACT SEQUENCE

In order to understand \(X \) we need the fundamental exact sequence. Fix an effective divisor
\[
D = \sum_{i=1}^{n} a_i y_i \in \text{Div}^+(Y^\text{ad})
\]
of degree \(d := \sum_{i=1}^{n} a_i \). Assume that \(y_i \notin \{ y_j \}^{\neq \text{x}} \) for \(i \neq j \) and let \(x_i := \text{pr}(y_i) \in X^\text{ad} \).

By \ref{1.5} we know that \(\{ x_i \} = V(t_i) \) for some \(t_i \in P_1 \setminus \{0\} = H^0(X^\text{ad}, \mathcal{O}_{X^\text{ad}}(1)) \), which is unique up to multiplication by \(E^\times = P_1^\times \). Let \(t := \prod_{i=1}^{n} t_i^{a_i} \). Then the divisor of \(t \in H^0(X^\text{ad}, \mathcal{O}_{X^\text{ad}}(d)) \) is precisely \(\sum_{i=1}^{n} a_i x_i \).

Theorem 3.1 (Fundamental exact sequence). For \(r \geq 0 \) the sequence
\[
\begin{array}{cccccc}
0 & \to & H^0(X^\text{ad}, \mathcal{O}(r)) & \overset{t}{\to} & H^0(X^\text{ad}, \mathcal{O}(d + r)) & \overset{u}{\to} & \prod_{i=1}^{n} \mathcal{O}_{X^\text{ad}, x_i} / m_{X^\text{ad}, x_i}^{a_i} \\
& & \cong & & \cong & & \cong \\
0 & \to & P_r & \overset{t}{\to} & P_{d+r} & \overset{u}{\to} & \prod_{i=1}^{n} B_{\text{dir}, y_i}^{+} / m_{Y^\text{ad}, y_i}^{a_i} B_{\text{dir}, y_i}^{+} \\
\end{array}
\]
is exact, where \(u \) is the canonical evaluation morphism
\[
P_{d+r} \subseteq B = H^0(Y^\text{ad}, \mathcal{O}_{Y^\text{ad}}) \to \mathcal{O}_{Y^\text{ad}, y_i} / m_{Y^\text{ad}, y_i}^{a_i} \cong B_{\text{dir}, y_i}^{+} / m_{Y^\text{ad}, y_i}^{a_i} B_{\text{dir}, y_i}^{+}.
\]
Proof. We first show \(\ker(u) = tP_r \). Let \(f \in P_{d+r} \) be an element with \(u(f) = 0 \). We consider \(f \) as a function on \(Y^{ad} \) and look at its divisor \(\text{div}(f) \in \text{Div}^+(Y^{ad}) \). As \(u(f) = 0 \) we get

\[
\text{div}(f) \geq \sum_{i=1}^{n} a_i y_i.
\]

But \(\text{div}(f) \) is \(\varphi \)-invariant because \(\varphi(f) = \pi^d f \), and hence

\[
\text{div}(f) \geq \sum_{i=1}^{n} a_i \sum_{n \in \mathbb{Z}} \varphi(y_i) = \text{div}(t)
\]

where \(t \) is considered as a function on \(Y^{ad} \). Hence, by fact 1.3

\[
f = gt
\]

for some \(g \in B \). We get \(\varphi(g)\pi^d t = \pi^{d+r} gt \) and thus \(g \in P_r \) as \(B \) is an integral domain.

Factoring \(t = t_1 \cdot t' \) and considering for \(r \geq 0 \) the diagram

\[
\begin{array}{ccc}
P_r & \xrightarrow{t_1} & P_{r+1} \\
\downarrow & & \downarrow \quad t' \\
P_r & \xrightarrow{t} & P_{r+d}
\end{array}
\]

reduces the proof for surjectivity to the case \(d = 1 \) and \(t = t_1 \). Furthermore, we may assume \(r = 0 \). In fact, if \(a \in C := k(y_1) \) and \(u(t) = a^{1/r+1} \) for some \(t \in P_1 \), then \(u(t^{r+1}) = a \). We thus have to show that the map

\[
u : B^{p=\pi} \to C = k(y)
\]

is surjective. By fact 1.3 \(C \) is perfectoid and algebraically closed with tilt \(F \). In particular, \(\mathcal{O}_C/\pi \cong \mathcal{O}_F/\pi^\flat \) for some \(\pi^\flat \in F \) with \(|\pi^\flat|_F = |\pi|_C \). We will use the description \(\mathcal{G}(\mathcal{O}_F) \cong B^{p=\pi} \) from fact 1.2. We get the sequence of maps

\[
\lim_{[\pi]_{LT}} \mathcal{G}(\mathcal{O}_C) \to \lim_{[\pi]_{LT}} \mathcal{G}(\mathcal{O}_C/\pi) \cong \lim_{[\pi]_{LT}} \mathcal{G}(\mathcal{O}_F/\pi^\flat) \cong \lim_{[\varphi]_{LT}} \mathcal{G}(\mathcal{O}_F) = \mathcal{G}(\mathcal{O}_F).
\]

We used that \(F \) is perfectoid to conclude

\[
\lim_{[\varphi]_{LT}} \mathcal{G}(\mathcal{O}_F/\pi^\flat) \cong \lim_{[\varphi]_{LT}} \mathcal{G}(\mathcal{O}_F) \cong \mathcal{G}(\mathcal{O}_F).
\]

Putting things together we get the map

\[
\Psi : \lim_{[\pi]_{LT}} \mathcal{G}(\mathcal{O}_C) \to C \\
(z_n)_n \mapsto \log_{LT}(z_0)
\]

More precisely, take \((z_n)_n \in \lim_{[\pi]_{LT}} \mathcal{G}(\mathcal{O}_C/\pi) \) with reduction \((\tau_n)_n \in \lim_{[\pi]_{LT}} \mathcal{G}(\mathcal{O}_C/\pi) \)

and \(\varepsilon \in \mathcal{G}(\mathcal{O}_F) \) with \(\varepsilon^{1/q^n} = \tau_n \in \mathcal{O}_F/\pi^\flat = \mathcal{O}_C/\pi \) for all \(n \). Then

\[
[z]_Q = \lim_{n \to \infty} [\pi^n]_{LT}([\varepsilon^{1/q^n}]) = \lim_{n \to \infty} [\pi^n]_{LT}(z_n) = z_0,
\]

showing that

\[
\Psi((z_n)_n) = \log_{LT}([\varepsilon]_Q) = \log_{LT}(z_0).
\]
The map Ψ is surjective as C is algebraically closed and we can conclude. Indeed, the formula
\[\log_{LT}(\pi_{LT}(x)) = \pi \log_{LT}(x) \]
for $x \in G(O_C)$ and the surjectivity of $[\pi]_{LT}: m_C \to m_C$ (C is algebraically closed) shows that the image of $\log_{LT}: m_C \to C$ contains elements of arbitrary large absolute value. But then the logarithm \log_{LT} has to be surjective as it has the Artin-Hasse-exponential as a local inverse near 0. □

Theorem 4.1 yields the following corollary.

Corollary 3.2. Let $t \in P_1 \setminus \{0\}$ with vanishing locus $V(t) = \{x\} \subseteq X^{\text{ad}}$ and $y \in Y^{\text{ad}}$ a classical point over x. Then for $C := k(y)$ the map
\[\theta : P/tP \to \{g \in C[T] \mid g(0) \in E\} \]
\[\sum_{d \geq 0} f_d \mapsto \sum_{d \geq 0} f_d(y)T^d \]
is an isomorphism of graded algebras. In particular, $\text{Proj}(P/tP) = \{(0)\}$ has one element.

Proof. It is clear that θ is a morphism of graded algebras. Moreover, it is an isomorphism in degrees $d \geq 1$ by 3.1 and trivially for $d = 0$. Finally, let $p \neq 0$ be an homogenous prime ideal of the right hand side $\{g \in C[T] \mid g(0) \in E\}$. Then $cT^d \in p$ for some $d \geq 1$ and $c \in C^\times$. Multiplying by $c^{-1}T$ yields $T^{d+1} \in p$ such that $p = (T)$, a contradiction. □

4. Properties of the algebraic Fargues-Fontaine curve

Now we are ready to prove the main theorem of this talk.

Theorem 4.1. The scheme X is noetherian, integral and regular of Krull dimension one. More precisely, for $t \in P_1 \setminus \{0\}$

- $D^+(t) = \text{Spec}(B_t)$ with $B_t := P[1/t]_0 = B[1/t]^{x=1}$ a principal ideal domain.
- $V^+(t) = \{\infty_t\}$ with $\infty_t \in X$ the closed point given by the homogenous prime ideal generated by t, so $\infty_t = (t) \subseteq P$.

The map
\[\text{div} : (P_1 \setminus \{0\})/E^\times \to |X| := \{x \in X \text{ closed}\} \]
\[t \mapsto \infty_t \]
is bijective.

Proof. As B is an integral domain, the curve X is integral. Pick $t \in P_1 \setminus \{0\}$. Then
\[V^+(t) \cong \text{Proj}(P/tP) = \{tP\} \]
by 3.2 showing one claim. The description of B_t is clear and we can conclude that B_t is factorial as P is graded factorial. Moreover, the irreducible elements in B_t are exactly the fractions t'/t with $t' \in P_1$ not lying in $E^\times t$. We now want to prove that the ideal $(t'/t) \subseteq B_t$ is maximal. For this we use the exact sequence
\[0 \to t' \cdot P_r \to P_{r+1} \overset{\theta}{\to} k(x') \to 0 \]
\[2 \text{as for } \mathbb{P}^1_k \]
coming from \[3.1\]. Here, \(x' \in X^{ad}_d\) denotes the unique point on \(X^{ad}_d\) with \(t'(x') = 0\) \([1.5]\). As \(\theta(t) \neq 0\), by \[3.1\] the morphism \(\theta\) factors over
\[P_1[1/t] \to k(x')\]
showing that \(B_t/(t'/t) \to k(x')\) is surjective. Assume \(f \in B_t\) satisfies \(\theta(f) = f(x') = 0\). Then there exists \(d \geq 1\) with
\[f = \frac{g}{t^d}\]
for some \(g \in P_d\) and \(g\) automatically satisfies \(g(x') = 0\). Hence \(g \in t'P_{d-1}\) by the fundamental exact sequence \[3.1\] showing
\[B_t/(t'/t) \cong k(x').\]
We can conclude that \(B_t\) is a principal ideal domain as it is factorial with every irreducible element generating a maximal ideal. Covering \(X\) by two sets of the form \(D^+(t)\) with \(t \in P_1\) shows that \(X\) is noetherian and regular of Krull dimension one.
Because \(t\) generates the ideal \(\ker(P \xrightarrow{eval} k(\infty_t)[T]) \subseteq P\) by \[3.1\] resp. \[3.2\] and \(P\) has units \(E^\times\) the map
\[\text{div} : (P_1 \setminus \{0\})/E^\times \to \{x \in X \text{ closed}\} \]
\[t \mapsto \infty_t\]
is injective. But for some \(t \in P_1 \setminus \{0\}\) every irreducible element in \(B_t\) is of the form \(t'/t\) for some \(t' \in P_1\) and hence \(\text{div}\) is surjective as \(B_t\) is a PID. \(\square\)

For \(x \in \{x \in X \text{ closed}\}\) we define
\[\deg : \text{Div}(X) \to \mathbb{Z} : \sum_{x \in \{x \in X \text{ closed}\}} n_x x \mapsto \sum_{x \in \{x \in X \text{ closed}\}} n_x.\]
In other words, \(\deg(x) := 1\) for \(x \in \{x \in X\}\). Then for every \(f \in k(X)^\times\) in the function field \(k(X)\) of \(X\) we have
\[\deg(\text{div}(f)) = 0,\]
which can be reinterpreted as the statement that the curve \(X\) is “complete”. Indeed, as \(P\) is graded factorial the case for general \(f \in k(X)^\times\) is reduced to the case \(f = t/t'\) with \(t, t' \in P_1 \setminus \{0\}\), where it follows from \[4.1\] namely \(\text{div}(f) = \infty_t - \infty_{t'}\). All in all, we can conclude, as \(X \setminus \{\infty_t\} = \text{Spec}(B_t)\) with \(B_t\) a principal ideal domain, that similar to the case for \(\mathbb{P}_E^1\) the degree map yields an isomorphism
\[\text{Pic}(X) \cong \text{Cl}(X) \xrightarrow{\deg} \mathbb{Z}\]
sending the line bundle \(\mathcal{O}_X(d)\) to \(d \in \mathbb{Z}\).
But not everything for \(X\) is similar to the projective line \(\mathbb{P}_E^1\). For example, if \(x \in \{x \in X\}\) is a closed point, then the sequence
\[0 \to \mathcal{O}(-1) \to \mathcal{O} \to k(x) \to 0\]
is exact showing that the non-zero \(E\)-vector space \(k(x)/E\) embeds into the space \(H^1(X, \mathcal{O}(-1))\), which is therefore in particular not zero contrary to the case for \(\mathbb{P}_E^1\). But still \(H^1(X, \mathcal{O}_X(d)) = 0\) for \(d \geq 0\) (see \[FFb\] Proposition 6.5.).

We can now compare the algebraic curve \(X\) with the adic curve \(X^{ad}\). Recall that by \[2.3\] the identity \(P = H^0(X^{ad}, \bigoplus_{d \geq 0} \mathcal{O}_{X^{ad}}(d))\) corresponds to a morphism
\[\alpha : X^{ad} \to X.\]
of locally ringed spaces such that $\alpha^*(\mathcal{O}_X(d)) \cong \mathcal{O}_{X^{ad}}(d)$.

Theorem 4.2. The morphism $\alpha : X^{ad} \to X$ induces bijections

$$
\alpha : X^{ad} \to |X| \\
\alpha : \tilde{\mathcal{O}}_{X,x} \to \tilde{\mathcal{O}}_{X^{ad},x^{ad}}
$$

for $x^{ad} \in X^{ad}$ with $x := \alpha(x^{ad}) \in X$. In particular, for $x \in |X|$ the residue field $k(x)$ is algebraically closed and perfectoid with tilt $k(x)^\flat \cong F$ canonically up to a power of the Frobenius $\varphi : F \to F$.

Proof. By 1.5 and 4.1 sending a section $t \in P_1 = H^0(X, \mathcal{O}_X(1)) = H^0(X^{ad}, \mathcal{O}_{X^{ad}})$ to its vanishing set $V(t) \subseteq X$ resp. $V(t) \subseteq X^{ad}$ induces bijections of $|X|$ resp. X^{ad} with the set $(P_1 \setminus \{0\})/E^\times$. In the proof of 4.1 we have seen that α induces an isomorphism

$$
\alpha : k(x) \to k(x^{ad})
$$

for $x^{ad} \in X^{ad}$. Moreover, if $\{x\} = V(t)$ with $t \in P_1$, then t is a uniformizer in $\mathcal{O}_{X,x}$ and $\mathcal{O}_{X^{ad},x^{ad}}$ showing that the completions

$$
\tilde{\mathcal{O}}_{X,x} \cong \tilde{\mathcal{O}}_{X^{ad},x^{ad}}
$$

are isomorphic. \hfill \Box

References

