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For any finite group G, we show that the 2-local G-equivariant stable ho-
motopy category, indexed on a complete G-universe, has a unique equivariant
model in the sense of Quillen model categories. This means that the suspen-
sion functor, homotopy cofiber sequences and the stable Burnside category
determine all “higher order structure” of the 2-local G-equivariant stable
homotopy category, such as the equivariant homotopy types of function G-
spaces. The theorem can be seen as an equivariant version of Schwede’s
rigidity theorem at the prime 2.
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1 Introduction

The homotopy theory of topological spaces has been developed since the beginning of
the last century and is a significant tool in various fields of mathematics. There are
notions in the classical homotopy theory that are very important in applications, like,
for example, weak homotopy equivalences, fibrations or CW-complexes. There are also
key facts that relate these concepts and make them very useful, like the Whitehead
theorem or the long exact homotopy sequences. Since the 1950’s people started to
observe that there are also other categories beside the category of topological spaces
with similar homotopical notions and where it is possible to develop homotopy theory.
Examples of such categories include the category of simplicial sets and the category of
chain complexes of modules over a ring. This led to an axiomatization of homotopy
theory.

In [Qui67], Quillen introduced model categories which are an abstract framework for
doing homotopy theory. (See Subsection 2.1 for a brief introduction to model categories.)
The key notions and facts from homotopy theory of topological spaces are axiomatically
encoded in the notion of a model category. Basic examples of a model category are
the category of topological spaces and the category of simplicial sets with weak homo-
topy equivalences and the category of chain complexes with quasi-isomorphisms. The
language of model categories also provides a unified and more conceptual treatment of
derived functors that generalizes the classical theory of derived functors which is very
useful in algebraic topology and algebraic geometry [Qui67].

The framework of model categories makes precise what it means to consider objects
up to a given notion of weak equivalence. More precisely, for any model category C , one
defines its homotopy category Ho(C ) which is the localization of C at the class of weak
equivalences. The objects which were weakly equivalent in C now become isomorphic in
Ho(C ). For example, if C is the model category of topological spaces or simplicial sets,
then Ho(C ) is the classical homotopy category of CW-complexes. If C is the category
of chain complexes of modules over a ring R, then Ho(C ) is the derived category of R.

Generally, when passing from a model category C to its homotopy category Ho(C ), one
looses “higher homotopical information” such as homotopy types of mapping spaces in C
or the algebraic K-theory of C . In particular, an existence of a triangulated equivalence
of homotopy categories does not necessarily imply that two given models are Quillen
equivalent to each other. Here is an easy example of such a loss of information. Let
Mod -K(n) denote the model category of right modules over the n-th Morava K-theory
K(n) and let dg Mod -π∗K(n) denote the model category of differential graded modules
over the graded homotopy ring π∗K(n). Then the homotopy categories Ho(Mod -K(n))
and Ho(dg Mod -π∗K(n)) are triangulated equivalent, whereas the model categories
Mod -K(n) and dg Mod -π∗K(n) are not Quillen equivalent. The reason is that the ho-
motopy types of function spaces in dg Mod -π∗K(n) are products of Eilenberg-MacLane
spaces which is not the case for Mod -K(n) (see e.g. [Pat12, A.1.10]).

Another important example which we would like to recall is due to Schlichting. It
is easy to see that for any prime p, the homotopy categories Ho(Mod -Z/p2) and
Ho(Mod -Fp[t]/(t2)) are triangulated equivalent. In [Sch02] Schlichting shows that
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the algebraic K-theories of the subcategories of compact objects of Mod -Z/p2 and
Mod -Fp[t]/(t2) are different for p ≥ 5. It then follows from [DS04, Corollary 3.10]
that the model categories Mod -Z/p2 and Mod -Fp[t]/(t2) are not Quillen equivalent.
Note that there is also a reinterpretation of this example in terms of differential graded
alegbras [DS09].

There are cases when one can recover the “higher homotopical information” from
the triangulated structure of the homotopy category. An important example for such a
recovery is provided by Schwede’s rigidity theorem [Sch01,Sch07] about the uniqueness
of models for the stable homotopy category. Before stating this theorem precisely we
review some historical background.

One of the most difficult problems of algebraic topology is to calculate the stable
homotopy groups of spheres. There has been an extensive research in this direction
establishing some remarkable results. A very important object used to do these kind of
computations is the classical stable homotopy category SHC. This category was first
defined in [Kan63] by Kan. Boardmann in his thesis [Boa64] constructed the (derived)
smash product on SHC whose monoids represent multiplicative cohomology theories.
In [BF78], Bousfield and Friedlander introduced a stable model category Sp of spectra
with Ho(Sp) triangulated equivalent to SHC. The category Sp enjoys several nice point-
set level properties. However, it does not possess a symmetric monoidal product that
descends to Boardmann’s smash product on SHC. This initiated the search for new
models for SHC that possess symmetric monoidal products. In the 1990’s several such
models appeared: S-modules [EKMM97], symmetric spectra [HSS00], simplicial (contin-
uous) functors [Lyd98] and orthogonal spectra [MMSS01]. All these models turned out
to be Quillen equivalent to Sp (and hence, to each other) and this naturally motivated
the following

Question. How many models does SHC admit up to Quillen equivalence?

In [Sch07], Schwede answered this question. He proved that the stable homotopy cat-
egory is rigid, i.e., if C is a stable model category with Ho(C ) triangulated equivalent to
SHC, then the model categories C and Sp are Quillen equivalent. In other words, up to
Quillen equivalence, there is a unique stable model category whose homotopy category
is triangulated equivalent to the stable homotopy category. This theorem implies that
all “higher order structure” of the stable homotopy theory, like, for example, homo-
topy types of function spaces, is determined by the suspension functor and the class of
homotopy cofiber sequences.

Initiated by Schwede’s result, in recent years much research has been done on es-
tablishing essential uniqueness of models for certain homotopy categories. In [Roi07],
Roitzheim shows that the K(2)-local stable homotopy category has a unique model. For
other theorems of this type see [BR12] and [Hut12].

The present work establishes a new uniqueness result. It proves an equivariant version
of Schwede’s rigidity theorem at the prime 2. Before formulating our main result, we
would like to say a few words on equivariant stable homotopy theory.

The G-equivariant stable homotopy category (indexed on a complete G-universe), for
any compact Lie group G, was introduced in the book [LMSM86]. Roughly speaking, the
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objects of this category are G-spectra indexed on finite dimensional G-representations.
In this thesis we will work with the stable model category SpOG of G-equivariant orthog-
onal spectra indexed on a complete G-universe [MM02]. The homotopy category of SpOG
is the G-equivariant stable homotopy category. The advantage of this model is that it
possesses a symmetric monoidal product compatible with the model structure. As in
the non-equivariant case, the G-equivariant stable homotopy category has some other
monoidal models, like, for example, the category of orthogonal G-spectra equipped with
the S-model structure (flat model structure) [Sto11, Theorem 2.3.27], the model cate-
gory of SG-modules [MM02, IV.2] and the model category of G-equivariant continuous
functors [Blu06]. For a finite group G, the model categories of G-equivariant topological
symmetric spectra in the sense of [Man04] and [Hau13] are also monoidal models for
the G-equivariant stable homotopy category. Note that all these model categories are
known to be G -Top∗-Quillen equivalent to each other (see [MM02, IV.1.1], [Blu06, 1.3],
[Sto11, 2.3.31], [Man04] and [Hau13]).

Now we return to the actual content of this thesis. Suppose G is a finite group and H
a subgroup of G. For any g ∈ G, let gH denote the conjugate subgroup gHg−1. Then
the map

g : Σ∞+ G/
gH −→ Σ∞+ G/H

in the homotopy category Ho(SpOG), given by [x] 7→ [xg] on the point-set level, is called
the conjugation map associated to g and H. Further, if K is another subgroup of G
such that K ≤ H, then we have the restriction map

resHK : Σ∞+ G/K −→ Σ∞+ G/H

which is just the obvious projection on the point-set level. Moreover, there is also a map
backwards, called the transfer map

trHK : Σ∞+ G/H −→ Σ∞+ G/K,

given by the Pontryagin-Thom construction (see e.g. [LMSM86, IV.3] or [tD87, II.8]).
These morphisms generate the stable Burnside (orbit) category which is the full preaddi-
tive subcategory of Ho(SpOG) with objects the stable orbits Σ∞+ G/H, H ≤ G [LMSM86,
V.9] (see also [Lew98]).

Let G be a finite group. We say that a model category C is a G-equivariant stable
model category if it is enriched, tensored and cotensored over the category G -Top∗ of
pointed G-spaces in a compatible way (i.e., the pushout-product axiom holds) and if the
adjunction

SV ∧ − : C
//
C :ΩV (−)oo .

is a Quillen equivalence for any finite dimensional orthogonal G-representation V .
All the models for the G-equivariant stable homotopy category mentioned above are

G-equivariant stable model categories. Different kinds of equivariant spectra indexed
on incomplete universes provide examples of G -Top∗-model categories which are not
G-equivariant stable model categories but are stable as underlying model categories.

Here is the main result of this thesis:

6



Theorem 1.1.1. Let G be a finite group, C a cofibrantly generated, proper, G-equi-
variant stable model category, and let SpOG,(2) denote the 2-localization of SpOG. Suppose
that

Ψ: Ho(SpOG,(2) )
∼ // Ho(C )

is an equivalence of triangulated categories such that

Ψ(Σ∞+ G/H) ∼= G/H+ ∧L Ψ(S),

for any H ≤ G. Suppose further that the latter isomorphisms are natural with respect to
the restrictions, conjugations and transfers. Then there is a zigzag of G -Top∗-Quillen
equivalences between C and SpOG,(2).

In fact, we strongly believe that the following integral version of Theorem 1.1.1 should
be true:

Conjecture 1.1.2. Let G be a finite group and let C be a cofibrantly generated, proper,
G-equivariant stable model category. Suppose that

Ψ: Ho(SpOG)
∼ // Ho(C )

is an equivalence of triangulated categories such that

Ψ(Σ∞+ G/H) ∼= G/H+ ∧L Ψ(S),

for any H ≤ G. Suppose further that the latter isomorphisms are natural with respect
to the restrictions, conjugations and transfers. Then there is a zigzag of G -Top∗-Quillen
equivalences between C and SpOG.

Note that if G is trivial, then the statement of Conjecture 1.1.2 is true. This is
Schwede’s rigidity theorem [Sch07]. (Or, more precisely, a special case of it, as the
model category in Schwede’s theorem need not be cofibrantly generated, topological or
proper.) The solution of Conjecture 1.1.2 would in particular imply that all “higher order
structure” of the G-equivariant stable homotopy theory such as, for example, equivariant
homotopy types of function G-spaces, is determined by the suspension functor, the class
of homotopy cofiber sequences and the basic π0-information of Ho(SpOG), i.e., the stable
Burnside (orbit) category.

The proof of Theorem 1.1.1 is divided into two main parts: The first is categorical and
the second is computational. The categorical part of the proof is mainly discussed in
Section 3 and essentially reduces the proof of Conjecture 1.1.2 to showing that a certain
exact endofunctor

F : Ho(SpOG) −→ Ho(SpOG)

is an equivalence of categories. The computational part shows that 2-locally the endo-
functor is indeed an equivalence of categories. The proof starts by generalizing Schwede’s
arguments from [Sch01] to free (naive)G-spectra. From this point on, classical techniques
of equivariant stable homotopy theory enter the proof. These include the Wirthmüller
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isomorphism, geometric fixed points, isotropy separation and the tom Dieck splitting.
The central idea is to do induction on the order of subgroups and use the case of free
G-spectra as the induction basis.

The only part of the proof of Theorem 1.1.1 which uses that we are working 2-locally
is the part about free G-spectra in Section 4. The essential fact one needs here is that
the self map 2 · id : M(2) −→M(2) of the mod 2 Moore spectrum is not zero in the stable
homotopy category. For p an odd prime, the map p · id : M(p) −→M(p) is equal to zero
and this makes a big difference between the 2-primary and odd primary cases. Observe
that the nontriviality of 2 · id : M(2) −→M(2) amounts to the fact that M(2) does not
possess an A2-structure with respect to the canonical unit map S −→M(2). In fact, for
any prime p, the mod p Moore spectrum M(p) has an Ap−1-structure but does not admit
an Ap-structure. The obstruction for the latter is the element α1 ∈ π2p−3S(p). This is
used by Schwede to obtain the integral rigidity result for the stable homotopy category
in [Sch07]. It seems to be rather nontrivial to generalize Schwede’s obstruction theory
arguments about coherent actions of Moore spaces [Sch07] to the equivariant case.

This thesis is organized as follows. Section 2 contains some basic facts about model
categories and G-equivariant orthogonal spectra. We also review the level and stable
model structures on the category of orthogonal G-spectra. In Section 3 we discuss
the categorical part of the proof. Here we introduce the category of orthogonal G-
spectra SpOG(C ) internal to an equivariant model category C and show that if C is
stable in an equivariant sense and additionally satisfies certain technical conditions, then
C and SpOG(C ) are Quillen equivalent. This allows us to reduce the proof of Theorem
1.1.1 to showing that a certain exact endofunctor F of Ho(SpOG,(2) ) is an equivalence of
categories. In Section 4 we show that F becomes an equivalence when restricted to the
full subcategory of free G-spectra.

In Section 5 we prove that it is sufficient to check that the induced map

F : [Σ∞+ G/H,Σ
∞
+ G/H]G∗ −→ [F (Σ∞+ G/H), F (Σ∞+ G/H)]G∗

is an isomorphism for any subgroup H of G. This is then verified inductively in Section 7.
The results of Section 4 are used for the induction basis. The induction step uses
geometric fixed points and a certain short exact sequence which we review in Section 6.
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2 Preliminaries

2.1 Model categories

A model category is a bicomplete category C equipped with three classes of morphisms
called weak equivalences, fibrations and cofibrations, satisfying certain axioms. We will
not list these axioms here. The point of this structure is that it allows one to “do
homotopy theory” in C . Good references for model categories include [DS95], [Hov99]
and [Qui67].

The fundamental example of a model category is the category of topological spaces
([Qui67], [Hov99, 2.4.19]). Further important examples are the category of simplicial
sets ([Qui67], [GJ99, I.11.3]) and the category of chain complexes of modules over a ring
[Hov99, 2.3.11].

For any model category C , one has the associated homotopy category Ho(C ) which
is defined as the localization of C with respect to the class of weak equivalences (see
e.g., [Hov99, 1.2] or [DS95]). The model structure guarantees that we do not face set
theoretic problems when passing to localization, i.e., Ho(C ) has Hom-sets.

A Quillen adjunction between two model categories C and D is a pair of adjoint
functors

F : C
//
D :Eoo ,

where the left adjoint F preserves cofibrations and acyclic cofibrations (or, equivalently,
E preserves fibrations and acyclic fibrations). We refer to F as a left Quillen functor and
to E as a right Quillen functor. Quillen’s total derived functor theorem (see e.g., [Qui67]
or [GJ99, II.8.7]) says that any such pair of adjoint functors induces an adjunction

LF : Ho(C ) // Ho(D) :REoo .

The functor LF is called the left derived functor of F and RE the right derived functor
of E. If LF is an equivalence of categories (or, equivalently, RE is an equivalence), then
the Quillen adjunction is called a Quillen equivalence.
Next, recall ([Qui67], [Hov99, 6.1.1]) that the homotopy category Ho(C ) of a pointed
model category C supports a suspension functor

Σ: Ho(C ) −→ Ho(C )

with a right adjoint loop functor

Ω: Ho(C ) −→ Ho(C ).

If the functors Σ and Ω are inverse equivalences, then the pointed model category C is
called a stable model category. For any stable model category C , the homotopy category
Ho(C ) is naturally triangulated [Hov99, 7.1]. The suspension functor is the shift and the
distinguished triangles come from the cofiber sequences. (We do not recall triangulated
categories here and refer to [GM03, Chapter IV] or [Wei94, 10.2] for the necessary
background.)
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Examples of stable model categories are the model category of chain complexes and
also various model categories of spectra (S-modules [EKMM97], orthogonal spectra
[MMSS01], symmetric spectra [HSS00], sequential spectra [BF78]).

For any stable model category C and objects X,Y ∈ C , we will denote the abelian
group of morphisms from X to Y in Ho(C ) by [X,Y ]Ho(C ).

Next, let us quickly review cofibrantly generated model categories. Here we mainly
follow [Hov99, Section 2.1]. Let I be a set of morphisms in an arbitrary cocomplete
category. A relative I-cell complex is a morphism that is a (possibly transfinite) com-
position of coproducts of pushouts of maps in I. A map is called I-injective if it has the
right lifting property with respect to I. An I-cofibration is map that has the left lifting
property with respect to I-injective maps. The class of I-cell complexes will be denoted
by I-cell. Next, I-inj will stand for the class of I-injective maps and I-cof for the class
of I-cofibrations. It is easy to see that I-cell ⊂ I-cof. Finally, let us recall the notion of
smallness. An object K of a cocomplete category is small with respect to a given class
D of morphisms if the representable functor associated to K commutes with colimits of
large enough transfinite sequences of morphisms from D . See [Hov99, Definition 2.13]
for more details.

Definition 2.1.1 ([Hov99, Definition 2.1.17]). Let C be a model category. We say that
C is cofibrantly generated, if there are sets I and J of maps in C such that the following
hold:

(i) The domains of I and J are small relative to I-cell and J-cell, respectively.
(ii) The class of fibrations is J-inj.
(iii) The class of acyclic fibrations is I-inj.

Here is a general result that will be used in this thesis:

Proposition 2.1.2 (see e.g. [Hov99, Theorem 2.1.19]). Let C be a category with small
limits and colimits. Suppose W is a subcategory of C and I and J are sets of morphisms
of C . Assume that the following conditions are satisfied:

(i) The subcategory W satisfies the two out of three property and is closed under
retracts.

(ii) The domains of I and J are small relative to I-cell and J-cell, respectively.
(iii) J-cell ⊂ W ∩ I-cof.
(iv) I-inj = W ∩ J-inj.
Then C is a cofibrantly generated model category with W the class of weak equivalences,

J-inj the class fibrations and I-cof the class of cofibrations.

Note that the set I is usually referred to as a set of generating cofibrations and J as
a set of generating acyclic cofibrations.

Further, we recall the definitions of monoidal model categories and enriched model
categories.
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Definition 2.1.3 (see e.g. [Hov99, Definition 4.2.6]). A monoidal model category is a
closed symmetric monoidal category V together with a model structure such that the
following conditions hold:

(i) (The pushout-product axiom) Let i : K −→ L and j : A −→ B be cofibrations in
the model category V . Then the induced map

i� j : K ∧B
∨
K∧A

L ∧A −→ L ∧B

is a cofibration in V . Furthermore, if either i or j is an acyclic cofibration, then so is
i� j.

(ii) Let q : QI −→ I be a cofibrant replacement for the unit I. Then the maps

q ∧ 1: QI ∧X −→ I ∧X and 1 ∧ q : X ∧QI −→ X ∧ I

are weak equivalences for any cofibrant X.

Definition 2.1.4 (see e.g. [Hov99, Definition 4.2.18]). Let V be a monoidal model cate-
gory. A V -model category is a model category C with the following data and properties:

(i) The category C is enriched, tensored and cotensored over V (see [Kel05, Section
1.2 and Section 3.7]). This means that we have tensors K ∧X and cotensors XK and
mapping objects Hom(X,Y ) ∈ V for K ∈ V and X,Y ∈ C and all these functors are
related by V -enriched adjunctions

Hom(K ∧X,Y ) ∼= Hom(X,Y K) ∼= Hom(K,Hom(X,Y )).

(ii) (The pushout-product axiom) Let i : K −→ L be a cofibration in the model
category V and j : A −→ B a cofibration in the model category C . Then the induced
map

i� j : K ∧B
∨
K∧A

L ∧A −→ L ∧B

is a cofibration in C . Furthermore, if either i or j is an acyclic cofibration, then so is
i� j.

(iii) If q : QI −→ I is a cofibrant replacement for the unit I in V , then the induced
map q ∧ 1: QI ∧X −→ I ∧X is a weak equivalence in C for any cofibrant X.

Finally, let us recall the definition of a proper model category.

Definition 2.1.5. A model category is called left proper if weak equivalences are pre-
served by pushouts along cofibrations. Dually, a model category is called right proper if
weak equivalences are preserved by pullbacks along fibrations. A model category which
is left proper and right proper is said to be proper.
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2.2 G-equivariant spaces

Convention 2.2.1. In this thesis G will always denote a finite group.

Convention 2.2.2. By a topological space we will always mean a compactly generated
weak Hausdorff space.

The category G -Top∗ of pointed topological G-spaces admits a proper and cofibrantly
generated model structure such that f : X −→ Y is a weak equivalence (resp. fibration)
if the induced map on H-fixed points

fH : XH −→ Y H

is a weak homotopy equivalence (resp. Serre fibration) for any subgroup H ≤ G (see
e.g. [MM02, III.1]). The set

(G/H × Sn−1)+ −→ (G/H ×Dn)+, n ≥ 0 , H ≤ G

of G-maps generates cofibrations in this model structure. The acyclic cofibrations are
generated by the maps

incl0 : (G/H ×Dn)+ −→ (G/H ×Dn × I)+, n ≥ 0 , H ≤ G.

The model category G -Top∗ is a closed symmetric monoidal model category [MM02,
III.1]. The monoidal product on G -Top∗ is given by the smash product X ∧Y , with the
diagonal G-action, for any X,Y ∈ G -Top∗, and the mapping object is the nonequivari-
ant pointed mapping space Map(X,Y ) with the conjugation G-action.

2.3 G-equivariant orthogonal spectra

We start by reminding the reader about the definition of an orthogonal spectrum [MMSS01]:

Definition 2.3.1. An orthogonal spectrum X consists of the following data:
• a sequence of pointed spaces Xn, for n ≥ 0;
• a base-point preserving continuous action of the orthogonal group O(n) on Xn for

each n ≥ 0;
• continuous based maps σn : Xn ∧ S1 −→ Xn+1.

This data is subject to the following condition: For all n,m ≥ 0, the iterated structure
map Xn ∧ Sm −→ Xn+m is O(n)×O(m)-equivariant.

Next, let us recall the definition of G-equivariant orthogonal spectra (here we mainly
follow [Sch13]. See also [MM02] which is the original source for G-equivariant orthogonal
spectra):

Definition 2.3.2. An orthogonal G-spectrum (G-equivariant orthogonal spectrum) is
an orthogonal spectrum X equipped with a categorical G-action, i.e., with a group
homomorphism G −→ Aut(X).
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The category of orthogonal G-spectra is denoted by SpOG. Any orthogonal G-spectrum
X can be evaluated on an arbitrary finite dimensional orthogonal G-representation V .
The G-space X(V ) is defined by

X(V ) = L(Rn, V )+ ∧O(n) Xn,

where the number n is the dimension of V , the vector space Rn is equipped with the
standard scalar product and L(Rn, V ) is the space of (not necessarily equivariant) linear
isometries from Rn to V . The G-action on X(V ) is given diagonally:

g · [ϕ, x] = [gϕ, gx], g ∈ G, ϕ ∈ L(Rn, V ), x ∈ Xn.

For the trivialG-representation Rn, the pointedG-spaceX(Rn) is canonically isomorphic
to the pointed G-space Xn. Next, let SV denote the representation sphere of V , i.e.,
the one-point compactification of V . Using the iterated structure maps of X, for any
finite dimensional orthogonal G-representations V and W , one can define G-equivariant
generalized structure maps

σV,W : X(V ) ∧ SW −→ X(V ⊕W ).

These are then used to define G-equivariant homotopy groups

πGk X = colimn [Sk+nρG , X(nρG)]
G
, k ∈ Z,

where ρG denotes the regular representation of G. Furthermore, for any subgroup
H ≤ G, one defines πHk X, k ∈ Z, to be the k-th H-equivariant homotopy group of
X considered as an H-spectrum.

Definition 2.3.3. A map f : X −→ Y of G-equivariant orthogonal spectra is called a
stable equivalence if the induced map

πHk (f) : πHk X −→ πHk Y

is an isomorphism for any integer k and any subgroup H ≤ G.

2.4 Comparison of different definitions

Before continuing the recollection, let us explain the relation of Definition 2.3.2 with the
orginal definition of G-equivariant orthogonal spectra due to Mandell and May. For this
we first recall G-universes:

Definition 2.4.1 (see e.g. [MM02, Definition II.1.1]). Let U be a countable dimensional
real inner product space with an invariant G-action. Then U is said to be a G-universe
if it satisfies the following conditions

(i) The trivial representation R embeds into U ;

(ii) If an orthogonal G-representation V (equivariantly) embeds into U , then the
countable sum of copies of V also embeds into U .

A G-universe is called complete if all irreducible G-representations embed into U and
is called trivial if only trivial representations embed into U .
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The sum ∞ρG of countable copies of the regular representation ρG is an example of a
complete G-universe. The euclidean space R∞ with the trivial G-action is an example
of a trivial universe.

In [MM02, II.2], Mandell and May define G-equivariant orthogonal spectra indexed
on a universe U . Such a G-spectrum is a collection of G-spaces indexed on those
representations that embed into U together with certain equivariant structure maps.
It follows from [MM02, II.4.3] that the category of G-equivariant orthogonal spectra
indexed on a universe U is equivalent to a certain equivariant diagram category. We
will now compare these diagram categories with the category SpOG. For this we have to
recall the definition of the indexing G -Top∗-category OG,U . Note that this category will
be also important in Section 3 for defining orthogonal G-spectra in equivariant model
categories. The objects of OG,U are finite dimensional orthogonal G-representations
that embed into the universe U . For any such orthogonal G-representations V and W ,
the pointed morphism G-space OG,U (V,W ) is defined to be the Thom complex of the
G-equivariant vector bundle

ξ(V,W ) −→ L(V,W ),

where L(V,W ) is the space of linear isometric embeddings from V to W and

ξ(V,W ) = {(f, x) ∈ L(V,W )×W |x ⊥ f(V )}.

For more details about this category see [MM02, II.4]. (Note that in [MM02], the
category OG,U is denoted by JG.)

Remark 2.4.2. If U is a complete universe, then we will denote the category OG,U just
by OG. Further, since the Thom spaces OG,U (V,W ) do not really depend on U , the
subscript U will be omitted in the sequel and we will denote these spaces by OG(V,W ).

Theorem II.4.3 of [MM02] tells us that the category of OG,U -spaces (which is the cat-
egory of G -Top∗-enriched functors from OG,U to G -Top∗) is equivalent to the category
of G-equivariant orthogonal spectra indexed on a universe U . Next, consider any trivial
G-universe, for example R∞. Then for an arbitrary G-universe U , there is an obvious
fully faithful inclusion

OG,R∞
� � // OG,U .

This embedding is in fact a G -Top∗-enriched embedding and hence induces a G -Top∗-
enriched adjunction between the categories of OG,U -spaces and OG,R∞-spaces. The
right adjoint is the precomposition with the inclusion and the left adjoint is given by
a G -Top∗-enriched left Kan extension [Kel05, Section 4.1]. In fact, [MM02, Theo-
rem V.1.5] (see also [HHR09, Proposition A.18]) implies that this G -Top∗-enriched
adjunction is a G -Top∗-enriched equivalence of categories. On the other hand, one can
immediately see that the category of OG,R∞-spaces is equivalent to the category SpOG
(Definition 2.3.2). Hence, for any G-universe U , the category of orthogonal G-spectra
indexed on U , the category of OG,U -spaces and the category SpOG are equivalent. This
shows that universes are not really relevant for the point-set level definition of an or-
thogonal G-spectrum. However, they become really important when one considers the
homotopy theory of orthogonal G-spectra (see Subsection 2.6).
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Next, the category SpOG is a closed symmetric monoidal category. The symmetric
monoidal structure on SpOG is given by the smash product of underlying orthogonal spec-
tra [MMSS01] with the diagonal G-action. Similarly, for any universe U , the category
of G-equivariant orthogonal spectra indexed on a universe U as well as the category
of OG,U -spaces are closed symmetric monoidal categories (see Subsection 3.2 for the
detailed construction of the smash product). It follows from [MM02, Theorem II.4.3,
Theorem V.1.5] (see also [HHR09, Proposition A.18]) that all the equivalences discussed
above are in fact equivalences of closed symmetric monoidal categories.

From this point on we will freely use all the results of [MM02] for the category SpOG
having the above equivalences in mind.

2.5 The level model structures on SpOG

In this subsection we closely follow [MM02, III.2].
Let U be a G-universe. For any finite dimensional orthogonal G-representation V ,

the evaluation functor EvV : SpOG −→ G -Top∗, given by X 7→ X(V ), has a left adjoint
G -Top∗-functor

FV : SpOG −→ G -Top∗

which is defined by (see [MM02, II.4])

FVA(W ) = OG(V,W ) ∧A.

We fix (once and for all) a small skeleton skOG,U of the category OG,U . Let IG,Ulv

denote the set of morphisms

{FV (G/H × Sn−1)+) −→ FV ((G/H ×Dn)+) | V ∈ skOG,U , n ≥ 0, H ≤ G}

and JG,Ulv denote the set of morphisms

{FV ((G/H ×Dn)+) −→ FV ((G/H ×Dn × I)+) | V ∈ skOG,U , n ≥ 0, H ≤ G}.

In other words, the sets IG,Ulv and JG,Ulv are obtained by applying the functors FV , V ∈
skOG,U , to the generating cofibrations and generating acyclic cofibrations of G -Top∗,
respectively. Further, we recall

Definition 2.5.1. Let f : X −→ Y be a morphism in SpOG. The map f is called a
U -level equivalence if f(V ) : X(V ) −→ Y (V ) is a weak equivalence in G -Top∗ for any
V ∈ skOG,U . It is called a U -level fibration if f(V ) : X(V ) −→ Y (V ) is a fibration
in G -Top∗ for any V ∈ skOG,U . A map in SpOG is called a U -cofibration if it has the
left lifting property with respect to all maps that are U -level fibrations and U -level
equivalences (i.e., U -level acyclic fibrations).

Proposition 2.5.2 ([MM02, III.2.4]). Let U be a G-universe. The category SpOG to-
gether with U -level equivalences, U -level fibrations and U -cofibrations forms a cofi-
brantly generated, proper model category. The set IG,Ulv serves as a set of generating

cofibrations and the set JG,Ulv serves as a set of generating acyclic cofibrations.
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2.6 The stable model structures on SpOG

The reference for this subsection is [MM02, III.4].
Recall that for any G-equivariant orthogonal spectrum X we have the generalized

structure maps
σV,W : X(V ) ∧ SW −→ X(V ⊕W ).

Let σ̃V,W : X(V ) −→ ΩWX(V ⊕W ) denote the adjoint of σV,W .

Definition 2.6.1. Suppose U is a G-universe. An orthogonal G-spectrum X is called
a G-U -Ω-spectrum if the maps σ̃V,W are weak equivalences in G -Top∗ for any V and
W in skOG,U .

Further, for any G-universe U and any orthogonal G-spectrum X, Mandell and May
define H-equivariant homotopy groups πH,Uk (X), k ∈ Z, H ≤ G [MM02, Definition
III.3.2]. We do not give the details here. A map f : X −→ Y of orthogonal G-spectra

is called a U -stable equivalence, if πH,Uk (f) is an isomorphism for any k ∈ Z, H ≤ G.
Note that if the universe U is complete, then [MM02, Definition III.3.2] recovers the
definition of H-equivariant homotopy groups we gave in Subsection 2.3 and a U -stable
equivalence is the same as a stable equivalence (see Definition 2.3.3).

Before formulating the theorem about the U -stable model structure on SpOG, let us
introduce certain sets of morphisms in SpOG that will serve as generating sets for cofibra-
tions and acyclic cofibrations for this model structures. Let V,W ∈ skOG,U and

λV,W : FV⊕WS
W −→ FV S

0

denote the map of G-equivariant orthogonal spectra that is adjoint to the map

SW −→ EvV⊕W (FV S
0) = OG(V, V ⊕W )

that sends z ∈ W to ( V
� � (1,0) // V ⊕W , z) (see [MM02, III.4.3, III.4.5]). Using the

mapping cylinder construction, the map λV,W factors as a composite

FV⊕WS
W

κV,W //MλV⊕W
rV⊕W // FV S

0,

where rV⊕W is a G-equivariant homotopy equivalence and κV,W a cofibration and a
stable equivalence [MM02, III.4.5-4.6]. Now consider any generating cofibration

i : (G/H × Sn−1)+ −→ (G/H ×Dn)+.

Let i� κV,W denote the pushout-product induced from the commutative square:

(G/H × Sn−1)+ ∧ FV⊕WSW //

��

(G/H × Sn−1)+ ∧MλV⊕W

��
(G/H ×Dn)+ ∧ FV⊕WSW // (G/H ×Dn)+ ∧MλV⊕W .
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Define
KG,U = {i� κV,W | H ≤ G, n ≥ 0, V,W ∈ skOG,U }.

Let JG,Ust stand for the union JG,Ulv ∪KG,U . For convenience, we will also introduce the

notation IG,Ust = IG,Ulv .
Finally, before formulating the main theorem of this subsection we need the following

definition:

Definition 2.6.2. A map f : X −→ Y of orthogonal G-spectra is called a U -stable fibra-
tion, if it has the right lifting property with respect to the maps that are U -cofibrations
and U -stable equivalences.

Theorem 2.6.3 ([MM02, III.4.2]). The category SpOG together with U -cofibrations, U -
stable equivalences and U -stable fibrations forms a proper, cofibrantly generated, stable
model category. The set IG,Ust generates cofibrations and the set JG,Ust generates acyclic
cofibrations. Furthermore, the fibrant objects are precisely the G-U -Ω-spectra.

The category SpOG together with the latter model structure is referred to as the model
category of orthogonal G-spectra indexed on the universe U .

Remark 2.6.4. Since in this thesis we will mostly consider complete universes, let us
introduce some notational conventions which will simplify the exposition. From this
point on the notation SpOG will stand for the model category of orthogonal G-spectra
indexed on the complete universe ∞ρG (ρG is the regular representation of G) and this
model structure will be referred to as the stable model structure on SpOG. Next, we will
mostly omit the symbol U from all subscripts and superscripts if U is complete. In
particular, the sets IG,∞ρGlv , JG,∞ρGlv , KG,∞ρG , IG,∞ρGst , JG,∞ρGst will be denoted by IGlv ,
JGlv , KG, IGst , JGst , respectively. Similarly, G-∞ρG-Ω-spectra will be referred to as G-Ω-
spectra. A cofibration in SpOG will mean an ∞ρG-cofibration, a stable fibration in SpOG
stands for an ∞ρG-fibration and as we already observed an ∞ρG-stable equivalence is
exactly a stable equivalence in the sense of Definition 2.3.3.

Finally, we recall that the stable model category SpOG together with the smash product
forms a closed symmetric monoidal model category [MM02, III.7]. In particular, the
following holds:

Proposition 2.6.5. Suppose that i : K −→ L and j : A −→ B are cofibrations in SpOG.
Then the pushout-product

i� j : K ∧B
∨
K∧A

L ∧A −→ L ∧B

is a cofibration in SpOG. The map i � j is also a stable equivalence if in addition i or j
is a stable equivalence.
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2.7 The equivariant stable homotopy category

In this subsection we list some well known properties of the homotopy category Ho(SpOG).
Note that the category Ho(SpOG) is equivalent to the Lewis-May G-equivariant stable
homotopy category of genuine G-spectra (see [MM02, IV.1]) introduced in [LMSM86].

As noted in the previous subsection, the model category SpOG is stable and hence the
homotopy category Ho(SpOG) is naturally triangulated. Further, since the maps

λV = λ0,V : FV S
V −→ F0S

0

are stable equivalences [MM02, Lemma III.4.5], it follows that the functor

SV ∧ − : Ho(SpOG) −→ Ho(SpOG)

is an equivalence of categories for any finite dimensional orthogonal G-representation V .

Next, before continuing, let us introduce the following notational convention. For any
G-equivariant orthogonal spectraX and Y , the abelian group [X,Y ]Ho(SpOG) of morphisms
from X to Y in Ho(SpOG) will be denoted by [X,Y ]G.

An adjunction argument immediately implies that for any subgroup H ≤ G and an
orthogonal G-spectrum X, there is a natural isomorphism

[Σ∞+ G/H,X]G∗
∼= πH∗ X.

As a consequence, we see that the set

{Σ∞+ G/H | H ≤ G}

is a set of compact generators for the triangulated category Ho(SpOG). Note that since
G is finite, for ∗ > 0 and any subgroups H,H ′ ≤ G, the abelian group

[Σ∞+ G/H,Σ
∞
+ G/H

′]G∗

is finite (see e.g. [GM95, Proposition A.3]).
Finally, we recall the stable Burnside category. For any g ∈ G, let gH denote the

conjugate subgroup gHg−1. Then the map

g : Σ∞+ G/
gH −→ Σ∞+ G/H

in Ho(SpOG), given by [x] 7→ [xg] on the point-set level, is called the conjugation map
associated to g and H. Further, if K is another subgroup of G such that K ≤ H, then
we have the restriction map

resHK : Σ∞+ G/K −→ Σ∞+ G/H

which is just the obvious projection on the point-set level. Moreover, there is also a map
backwards, called the transfer map

trHK : Σ∞+ G/H −→ Σ∞+ G/K,
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given by the Pontryagin-Thom construction (see e.g. [LMSM86, IV.3] or [tD87, II.8]).
These morphisms generate the stable Burnside (orbit) category which is a full preadditive
subcategory of Ho(SpOG) with objects the stable orbits Σ∞+ G/H, H ≤ G [LMSM86, V.9]
(see also [Lew98]).

The stable Burnside category plays an important role in equivariant stable homotopy
theory as well as in representation theory. Indeed, the contravariant functors from this
category to abelian groups are exactly Mackey functors. Note that the stable Burnside
category shows up in the formulation and proof of Theorem 1.1.1.
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3 Categorical Input

3.1 Outline

Recall that G is a finite group. We start with

Definition 3.1.1. A a G -Top∗-model category C (see Definition 2.1.4 and Subsection
2.2) is said to be a G-equivariant stable model category if the adjunction

SV ∧ − : C
//
C :ΩV (−) = (−)S

Voo

is a Quillen equivalence for any finite dimensional orthogonal G-representation V .

Examples of G-equivariant stable model categories are the model category SpOG of
G-equivariant orthogonal spectra [MM02, II-III], the model category of G-equivariant
orthogonal spectra equipped with the S-model structure [Sto11], the model category
of SG-modules [MM02, IV.2], the model category of G-equivariant continuous func-
tors [Blu06] and the model categories of G-equivariant topological symmetric spectra
([Man04], [Hau13]).

The following proposition is an equivariant version of [SS03, 3.8].

Proposition 3.1.2. Let C be a cofibrantly generated (Definition 3.3.2), proper, G-
equivariant stable model category. Then the category SpOG(C ) of internal orthogonal
G-spectra in C (Definition 3.2.1) possesses a G-equivariant stable model structure and
the G -Top∗-adjunction

Σ∞ : C
//
SpOG(C ) : Ev0oo

is a Quillen equivalence.

The proof of this proposition is a straightforward equivariant generalization of the
arguments in [SS03, 3.8]. However, we still decided to provide details here as they don’t
seem to appear in the literature. The proof of Proposition 3.1.2 will occupy a significant
part of this section.

The point of Proposition 3.1.2 is that one can replace (under some technical assump-
tions) any G-equivariant stable model category by a G-spectral one (Definition 3.5.1),
i.e., by an SpOG-model category. This in particular implies that Ho(C ) is tensored over
the G-equivariant stable homotopy category Ho(SpOG).

To stress the importance of Proposition 3.1.2, we will now sketch a general strategy
how one should try to prove Conjecture 1.1.2. Recall that we are given a triangulated
equivalence

Ψ: Ho(SpOG)
∼ // Ho(C )

with certain properties. By Proposition 3.1.2, there is a G -Top∗-Quillen equivalence

Σ∞ : C
//
SpOG(C ) : Ev0 .oo
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LetX be a cofibrant replacement of (LΣ∞◦Ψ)(S). Since SpOG(C ) isG-spectral (Definition
3.5.1), there is a G -Top∗-Quillen adjunction

− ∧X : SpOG
//
SpOG(C ) : Hom(X,−).oo

Hence, in order to prove Conjecture 1.1.2, it suffices to show that the latter Quillen
adjunction is a Quillen equivalence. Next, it follows from the properties of Ψ that we
have isomorphisms

Ψ(Σ∞+ G/H) ∼= R Ev0(Σ∞+ G/H ∧L X)

which are natural with respect to transfers, conjugations, and restrictions. Using these
isomorphisms, we can choose an inverse of Ψ

Ψ−1 : Ho(C ) −→ Ho(SpOG)

such that Ψ−1(R Ev0(Σ∞+ G/H ∧L X)) = Σ∞+ G/H. Moreover, since the isomorphisms
above are natural with respect to the stable Burnside category (Subsection 2.7), we get
the identities

Ψ−1(R Ev0(g∧LX)) = g, Ψ−1(R Ev0(resHK ∧LX)) = resHK , Ψ−1(R Ev0(trHK ∧LX)) = trHK ,

where g ∈ G and K ≤ H ≤ G. Now let us consider the composite

F : Ho(SpOG)
−∧LX// Ho(SpOG(C ))

REv0 // Ho(C )
Ψ−1

// Ho(SpOG).

Since the functors R Ev0 and Ψ−1 are equivalences, to prove that (− ∧X,Hom(X,−))
is a Quillen equivalence is equivalent to showing that the endofunctor

F : Ho(SpOG) // Ho(SpOG)

is an equivalence of categories. By the assumptions of Conjecture 1.1.2 and the properties
of Ψ−1, we see that F enjoys the following properties:

(i) F (Σ∞+ G/H) = Σ∞+ G/H, H ≤ G;

(ii) F preserves transfers, conjugations, and restrictions (and hence the stable Burnside
category);

(iii) F is an exact functor of triangulated categories and preserves infinite coproducts.

Similarly, if we start with the 2-localized genuine G-equivariant stable homotopy cat-
egory Ho(SpOG,(2) ) and an equivalence Ho(SpOG,(2) ) ∼ Ho(C ) as in the formulation of

Theorem 1.1.1, we obtain an endofunctor Ho(SpOG,(2) ) // Ho(SpOG,(2) ) which also

satisfies the properties (i), (ii) and (iii) above (see Subsection 3.7 for more details).
The following proposition which is one of the central results of this thesis, immediately
implies Theorem 1.1.1:
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Theorem 3.1.3. Let G be a finite group and F : Ho(SpOG,(2) ) // Ho(SpOG,(2) ) an

exact functor of triangulated categories that preserves arbitrary coproducts and such that

F (Σ∞+ G/H) = Σ∞+ G/H, H ≤ G,

and
F (g) = g, F (resHK) = resHK , F (trHK) = trHK , g ∈ G, K ≤ H ≤ G.

Then F is an equivalence of categories.

The proof of this proposition will be completed at the very end of this thesis. In this
section we will concentrate on the proof of Proposition 3.1.2 and on the p-localization
of the stable model structure of [MM02] on the category of G-equivariant orthogonal
spectra.

Before starting the preparation for the proof of Proposition 3.1.2, let us outline the plan
that will lead to the proof of Proposition 3.1.2. We first define the category SpOG(C ) of
orthogonal G-spectra internal to a G -Top∗-model category C and discuss its categorical
properties. Next, for any cofibrantly generated G -Top∗-model category C we construct
the level model structure on SpOG(C ). Finally, using the same strategy as in [SS03], we
establish the G-equivariant stable model structure on SpOG(C ) for any proper, cofibrantly
generated, G -Top∗-model category C that is stable as an underlying model category.

3.2 Orthogonal G-spectra in equivariant model categories

Recall from Subsection 2.4 the G -Top∗-category OG. The objects of OG are finite
dimensional orthogonal G-representations. For any finite dimensional orthogonal G-
representations V and W , the pointed morphism G-space from V to W is the Thom
space OG(V,W ). Recall also that the category SpOG is equivalent to the category of
OG-spaces (which is the category of G -Top∗-enriched functors from OG to G -Top∗).

Now suppose that C is a G -Top∗-model category (in particular, C is pointed). We
remind the reader that this means that we have tensors K ∧ X, cotensors XK and
pointed mapping G-spaces Map(X,Y ) for K ∈ G -Top∗ and X,Y ∈ C , which are
related by adjunctions and satisfy certain properties (Definition 2.1.4). In particular,
the pushout-product axiom holds: Let i : K −→ L be a cofibration in the model category
G -Top∗ and j : A −→ B a cofibration in the model category C . Then the induced map

i� j : K ∧B
∨
K∧A

L ∧A −→ L ∧B

is a cofibration in C . Furthermore, if either i or j is an acyclic cofibration, then so is
i� j.

Definition 3.2.1. Let C be a G -Top∗-model category. An orthogonal G-spectrum in
C is a G -Top∗-enriched functor ([Kel05, 1.2]) from the category OG to C .
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The category of orthogonal G-spectra in C will be denoted by SpOG(C ). Note that by
[MM02, II.4.3] (see also Subsection 2.4), the category SpOG(G -Top∗) is equivalent to SpOG.
Next, since C is complete and cocomplete, so is the category SpOG(C ) (see [Kel05, 3.3])
and limits and colimits are constructed levelwise.

Remark 3.2.2. The category OG is skeletally small. We can fix once and for all a
small skeleton of OG. In particular, when talking about ends and coends over OG and
using the notations

∫
V ∈OG and

∫ V ∈OG , we will always implicitly mean that the indexing
category is the chosen small skeleton of OG.

Next, we want to check that SpOG(C ) is enriched, tensored and cotensored over SpOG.
For this we first review the closed symmetric monoidal structure on SpOG. The main
reference here is [MM02, II]. Recall, that the category OG has a symmetric monoidal
product ⊕ given by the direct sum of orthogonal representations on objects and by the
continuous G-map

OG(V,W ) ∧OG(V ′,W ′) −→ OG(V ⊕ V ′,W ⊕W ′), (α,w) ∧ (β,w′) 7→ (α⊕ β, (w,w′))

on morphisms. In fact, the product ⊕ can be interpreted as a G -Top∗-functor

⊕ : OG ∧OG −→ OG.

Here the category OG ∧OG has pairs of finite dimensional orthogonal G-representations
as its objects. The morphisms in OG ∧OG are given by

OG ∧OG((V, V ′), (W,W ′)) = OG(V,W ) ∧OG(V ′,W ′).

The product ⊕ on OG together with the smash product on G -Top∗ gives a symmetric
monoidal product on SpOG(G -Top∗). This construction is a special case of the Day
convolution product [Day70]. More precisely, let X and Y be objects of SpOG(G -Top∗).
Then we have the external smash product

X Z Y : OG ∧OG −→ G -Top∗,

defined by (X Z Y )(V,W ) = X(V ) ∧ Y (W ). The G -Top∗-enriched left Kan extension
[Kel05, Section 4.1, Proposition 4.33] of X Z Y along ⊕

OG ∧OG
⊕
��

XZY // G -Top∗

OG

Lan⊕(XZY )

88qqqqqq

is called the smash product of X and Y and is denoted by X ∧ Y . This is a symmetric
monoidal product [Day70] (see also [MM02, II.3.7-3.8]). It follows from [Kel05, Section
4.2, (4.25)] that one can describe this smash product as a G -Top∗-enriched coend (see
Remark 3.2.2)

X ∧ Y ∼=
∫ V,W∈OG

OG(V ⊕W,−) ∧X(V ) ∧ Y (W ).
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In fact, SpOG(G -Top∗) is a closed symmetric monoidal category and the internal Hom-
objects are given by the G -Top∗-enriched end construction

Hom(X,Y )(V ) =

∫
W∈OG

Map(X(W ), Y (W ⊕ V )).

Note that the equivalence of [MM02, II.4.3] is an equivalence of closed symmetric
monoidal categories and in particular, the latter Day convolution product corresponds
to the smash product of [MM02, II.3]. As noted in Subsection 2.4, we will once and for all
identify the symmetric monoidal category SpOG(G -Top∗) with the symmetric monoidal
category SpOG having [MM02, Theorem II.4.3] in mind.

The generality of constructions we recalled here allows us to prove the following Propo-
sition:

Proposition 3.2.3. Let C be a G -Top∗-model category. The category SpOG(C ) is en-
riched, tensored and cotensored over the symmetric monoidal category SpOG of equivariant
orthogonal G-spectra.

Proof. Let K be an object of SpOG(G -Top∗) and X an object of SpOG(C ). Mimicking
the construction of the smash product on SpOG(G -Top∗), we define an object in SpOG(C )

K ∧X =

∫ V,W∈OG
OG(V ⊕W,−) ∧K(V ) ∧X(W ).

This product is unital and coherently associative. The proof uses the enriched Yoneda
Lemma [Kel05, Section 3.10, (3.71)] and the Fubini theorem [Kel05, Section 3.10, (3.63)].
We do not provide the details here as they are standard and well-known. Next, one
defines cotensors by a G -Top∗-enriched end

XK(V ) =

∫
W∈OG

X(W ⊕ V )K(W ).

Finally, for any X,Y ∈ SpOG(C ), one can define Hom-G-spectra by a G -Top∗-enriched
end

Hom(X,Y )(V ) =

∫
W∈OG

Map(X(W ), Y (W ⊕ V )).

It is an immediate consequence of [Kel05, Section 3.10, (3.71)] that these functors satisfy
all the necessary adjointness properties:

Hom(K ∧X,Y ) ∼= Hom(X,Y K) ∼= Hom(K,Hom(X,Y )).

3.3 The level model structure on SpOG(C )

We start with the following well-known lemma which is an important technical ingredient
for establishing the level model structure on SpOG(C ). The author was unable to find a
reference for this lemma and decided to provide a proof.
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Lemma 3.3.1. Let G be a finite group and V and W finite dimensional orthogonal
G-representations. Then the pointed G-space OG(V,W ) admits a structure of a pointed
G-CW complex.

Proof. Assume that L(V,W ) 6= ∅. Nonequivariantly the space L(V,W ) is a Stiefel
manifold and the trivial vector bundle

L(V,W )×W −→ L(V,W )

is smooth. Moreover, this bundle has a structure of a smooth Euclidean vector bun-
dle induced from the scalar product on W . Let ζ(V,W ) ⊂ L(V,W ) ×W denote the
subbundle defined by

ζ(V,W ) = {(α,w) ∈ L(V,W )×W | w ∈ Imα}.

In fact, ζ(V,W ) is a smooth trivial subbundle of L(V,W ) ×W . This follows from the
fact that any fixed basis of V gives us a set of everywhere linearly independent smooth
sections of ζ(V,W ) that fiberwise span ζ(V,W ) (see [Lee13, Lemma 10.32]). The bundle

ξ(V,W ) = {(f, x) ∈ L(V,W )×W | x ⊥ f(V )}

is the orthogonal complement of ζ(V,W ). Since the metric on L(V,W )×W is smooth
it follows that ξ(V,W ) is a smooth Euclidean vector bundle. Next, O(V ) and O(W )
act smoothly on L(V,W ) and this implies that the action of G on L(V,W ) and hence
on ξ(V,W ) is smooth. Consequently, the disc bundle Dξ(V,W ) is a smooth G-manifold
with boundary the sphere bundle Sξ(V,W ). Now Illman’s results [Ill83, Theorem 7.1,
Corollary 7.2] imply that (Dξ(V,W ), Sξ(V,W )) is a G-CW pair and hence

OG(V,W ) = Dξ(V,W )/Sξ(V,W )

admits a structure of a pointed G-CW complex.

In order to establish the stable model structure on SpOG(C ), one needs an additional
assumtion on C . We have to assume that C is a cofibrantly generated G -Top∗-model
category.

Definition 3.3.2. Let C be a G -Top∗-model category. We say that C is a cofibrantly
generated G -Top∗-model category, if there are sets I and J of maps in C such that the
following hold:

(i) Let A be the domain or codomain of a morphism from I. Then for any subgroup
H ≤ G and any n ≥ 0, the object

(G/H ×Dn)+ ∧A

is small relative to I-cell (and hence relative to I-cof by [Hov99, 2.1.16]).
(ii) Domains of morphisms in J are small relative to J-cell and I-cell.
(iii) The class of fibrations is J-inj.
(iv) The class of acyclic fibrations is I-inj.
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The model categoryG -Top∗ is a cofibrantly generatedG -Top∗-model category [MM02,
Theorem III.1.8]. Other important examples of cofibrantly generated G -Top∗-model
categories are the model category SpOG of G-equivariant orthogonal spectra [MM02, The-
orem III.4.2], the model category of G-equivariant orthogonal spectra equipped with the
S-model structure [Sto11, Theorem 2.3.27], the model category of SG-modules [MM02,
Theorem IV.2.8], the model category of G-equivariant continuous functors [Blu06, The-
orem 1.3] and the model categories of G-equivariant topological symmetric spectra
([Man04], [Hau13]).

Remark 3.3.3. If a G -Top∗-model category C is cofibrantly generated as an underlying
model category (Definition 2.1.1), then it doesn’t necessarily follow that C is a cofibrantly
generated G -Top∗-model category in the sense of Definition 3.3.2.

The conditions in Definition 3.3.2 are essentially needed at the end of the proof of
Proposition 3.4.10. In fact, all the claims in this section that come before Proposition
3.4.10 do not really use that C satisfies all the conditions of Definition 3.3.2. They still
hold if we only assume that C is a G -Top∗-model category and cofibrantly generated as
an underlying model category. However, for the rest of the thesis, we decided to concen-
trate only on cofibrantly generated G -Top∗-model categories in the sense of Definition
3.3.2 since more general model categories are irrelevant here.

Remark 3.3.4. Note that some conditions are redundant in Definition 3.3.2 if the
group G is finite. Indeed, Condition (i) of Definition 3.3.2 can be simplified. If we
assume that for any A which is the domain or codomain of a morphism from I, the object
Dn

+∧A is small relative to I-cell, then Condition (i) automatically holds. This follows by
adjunction and from the fact that fixed point functors commute with sequential colimits
for finite groups. Since Condition (i) is essentially used in the proof of Proposition 3.4.10,
for convenience, we decided to put it in the definition.

Now suppose that C is a cofibrantly generated G -Top∗-model category with I and J
generating cofibrations and acyclic cofibrations

Definition 3.3.5. Let f : X −→ Y be a morphism in SpOG(C ). The map f is called a
level equivalence if f(V ) : X(V ) −→ Y (V ) is a weak equivalence in C for any V ∈ OG.
It is called a level fibration if f(V ) : X(V ) −→ Y (V ) is a fibration in C for any V ∈ OG.
A map in SpOG(C ) is called a cofibration if it has the left lifting property with respect to
all maps that are level fibrations and level equivalences (i.e., level acyclic fibrations).

The level model structure on SpOG(C ) which we will construct now is a cofibrantly
generated model structure. Before stating the main proposition of this subsection we
would like to introduce the set of morphisms that will serve as generators of (acyclic)
cofibrations in the level model structure on SpOG(C ).

The evaluation functor EvV : SpOG(C ) −→ C , given by X 7→ X(V ), has a left adjoint
G -Top∗-functor

FV : C −→ SpOG(C )

which is defined by
FVA = OG(V,−) ∧A.
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For any finite dimensional orthogonal G-representation V , consider the following sets of
morphisms

FV I = {FV i | i ∈ I} and FV J = {FV j | j ∈ J}.

Next, fix (once and for all) a small skeleton skOG of the category OG. We finally define

FI =
⋃

V ∈skOG

FV I and FJ =
⋃

V ∈skOG

FV J.

The following proposition is a special case of [GM11, Theorem 2.12]. For the sake of
completeness, we provide a proof.

Proposition 3.3.6. Suppose C is a cofibrantly generated G -Top∗-model category. Then
the category SpOG(C ) of orthogonal G-spectra in C together with the level equivalences,
cofibrations and level fibrations described in Definition 3.3.5 forms a cofibrantly generated
model category. The set FI generates cofibrations and the set FJ generates acyclic
cofibrations.

Proof. The strategy is to apply Proposition 2.1.2. If f(V ) : X(V ) −→ Y (V ) is a weak
equivalence (resp. fibration) for any V ∈ skOG, then f is a level equivalence (resp.
fibration) (see Definition 3.3.5). Hence, by adjunction, the class FJ-inj coincides with
the class of level fibrations and the class FI-inj with the class of level acyclic fibrations.
In particular, if we let W lv denote the class of level equivalences, then FJ-inj ∩ W lv=
FI-inj. Further, recall that for any finite dimensional orthogonal G-representations V
and W and any object A in C ,

FVA(W ) = OG(V,W ) ∧A.

Since the evaluation functors preserve colimits, Lemma 3.3.1 together with the pushout-
product axiom implies that any morphism in FI-cell is a levelwise cofibration and any
morphism in FJ-cell is a levelwise acyclic cofibration. By [Hov99, Proposition 2.1.16],
the domains of maps in I are small relative to the class of cofibrations in C . Hence, by
adjunction, the domains of morphisms in FI are small relative to FI-cell. The same
argument also applies to FJ . It remains to check that

FJ-cell ⊂ W lv ∩ FI-cof.

We have already verified that FJ-cell ⊂ W lv. To see the second inclusion, note that
J ⊂ I-cell. Since FV is a left adjoint for any V ∈ OG, one gets the inclusion

FV J ⊂ FV I-cell

which implies that FJ ⊂ FI-cof. As FI-cof is closed under coproducts, pushouts and
transfinite compositions, we conclude that the class FJ-cell is included in FI-cof. By
Proposition 2.1.2 this completes the proof.

Recall that Proposition 3.2.3 tells us that SpOG(C ) is enriched, tensored and cotensored
over the category SpOG. We conclude this section with the following compatibility result:
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Proposition 3.3.7. Let C be a cofibrantly generated G -Top∗-model category. Suppose
that i : K −→ L is a cofibration in SpOG and j : A −→ B a cofibration in SpOG(C ). Then
the pushout-product

i� j : K ∧B
∨
K∧A

L ∧A −→ L ∧B

is a cofibration in SpOG(C ). Moreover, if in addition i or j is a level equivalence, then so
is i� j.

Proof. By [Hov99, Corollary 4.2.5], it suffices to prove the claim for generating cofi-
brations and generating acyclic cofibrations. For any finite dimensional orthogonal G-
representations V and W , there is a natural isomorphism

FVK ∧ FWA ∼= FV⊕W (K ∧A)

which follows from the Fubini theorem and the enriched Yoneda lemma [Kel05, Section
3.10, (3.63), (3.71)]. Now the functors FV preserve colimits and cofibrations. Further-
more, they send acyclic cofibrations to cofibrations which are additionally level equiva-
lences. Combined with the latter isomorphism this implies the desired result.

Proposition 3.3.7 together with Proposition 3.2.3 yields

Corollary 3.3.8. Let C be a cofibrantly generated G -Top∗-model category. Suppose
that i : K −→ L is a cofibration in SpOG and p : X −→ Y a level fibration in SpOG(C ).
Then the following hold:

(i) The induced map

Hom(L,X) −→ Hom(K,X)×Hom(K,Y ) Hom(L, Y )

is a level fibration of G-equivariant orthogonal spectra. Moreover, this map is also a level
equivalence if in addition i or p is a level equivalence.

(ii) The induced map
XL −→ XK ×Y K Y L

is a level fibration in SpOG(C ). Moreover, this map is also a level equivalence if in addition
i or p is a level equivalence.

3.4 The stable model structure on SpOG(C )

This subsection establishes the stable model structure on SpOG(C ). For this one needs
more assumptions than in Proposition 3.3.6. More precisely, we have to assume that the
cofibrantly generated G -Top∗-model category C is proper and stable as an underlying
model category. The strategy is to generalize the arguments given in [SS03, 3.8].

Let W be a finite dimensional orthogonal G-representation and

λW = λ0,W : FWS
W −→ F0S

0 = S
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denote the stable equivalence of G-equivariant orthogonal spectra that is adjoint to the
identity map

id: SW −→ EvW (S) = SW

(see [MM02, III.4.3, III.4.5] or Subsection 2.6).

Definition 3.4.1. Let C be a G -Top∗-model category. An object Z of SpOG(C ) is
called an Ω-spectrum if it is level fibrant and for any finite dimensional orthogonal G-
representation W , the induced map

λ∗W : Z ∼= ZF0S0 −→ ZFWSW

is a level equivalence.

Since ZFWSW ∼= Z(W⊕−)S
W
, this definition recovers the definition of a G-Ω-spectrum

in the sense of [MM02, Definition III.3.1] when C = G -Top∗ (see also Definition 2.6.1).
Now suppose again that C is a cofibrantly generated G -Top∗-model category. By

Proposition 3.3.6, the level model structure on SpOG(C ) is cofibrantly generated. Hence
we can choose (and fix once and for all) a cofibrant replacement functor

(−)c : SpOG(C ) −→ SpOG(C ).

Definition 3.4.2. A morphism f : A −→ B in SpOG(C ) is a stable equivalence if for any
Ω-spectrum Z, the map

Hom(f c, Z) : Hom(Bc, Z) −→ Hom(Ac, Z)

is a level equivalence of G-equivariant orthogonal spectra.

Lemma 3.4.3. Let K be a cofibrant G-equivariant orthogonal spectrum, A a cofibrant
object in SpOG(C ) and Z an Ω-spectrum in SpOG(C ). Then Hom(A,Z) is a G-Ω-spectrum
and ZK is an Ω-spectrum in SpOG(C ).

Proof. Corollary 3.3.8 (i) implies that Hom(A,Z) is level fibrant. Next, it follows from
Proposition 3.2.3 that there is a natural isomorphism

Hom(A,Z)L ∼= Hom(A,ZL)

of G-equivariant orthogonal spectra. Hence, the map

λ∗W : Hom(A,Z)F0S0 −→ Hom(A,Z)FWSW

is isomorphic to the map

Hom(A, λ∗W ) : Hom(A,ZF0S0
) −→ Hom(A,ZFWSW ).

By Corollary 3.3.8 (ii), the objects ZF0S0
and ZFWSW are level fibrant as Z is. Since Z

is an Ω-spectrum, the morphism

λ∗W : Z ∼= ZF0S0 −→ ZFWSW
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is a level equivalence. Consequently, the latter morphism is a level equivalence be-
tween level fibrant objects. Now using Corollary 3.3.8 (i), Ken Brown’s Lemma (see
e.g. [Hov99, Lemma 1.1.12]) and that A is cofibrant, we conclude that Hom(A, λ∗W ) and
hence

λ∗W : Hom(A,Z)F0S0 −→ Hom(A,Z)FWSW

is a level equivalence. This implies that Hom(A,Z) is an Ω-spectrum.
The proof for ZK is similar. We use the natural isomorphism (ZL)K ∼= (ZK)L,

Corollary 3.3.8 (ii) and Ken Brown’s Lemma.

Lemma 3.4.4. Let C be a left proper and cofibrantly generated G -Top∗-model category.
Then a cofibration i : A −→ B is a stable equivalence if and only if for any Ω-spectrum
Z in SpOG(C ), the orthogonal G-spectrum Hom(B/A,Z) is level weakly G-contractible.

Proof. Recall that (−)c denotes the cofibrant replacement functor on SpOG(C ). By
Proposition 3.3.6, the map ic : Ac −→ Bc admits a factorization into a cofibration
j : Ac −→ B followed by a level acyclic fibration p : B −→ Bc. The morphism p is
a level equivalence between cofibrant objects. Therefore, by Corollary 3.3.8 (i) and Ken
Brown’s Lemma, the map Hom(p, Z) is a level equivalence of G-equivariant orthogonal
spectra. Hence, i : A −→ B is stable equivalence if and only if the map

Hom(j, Z) : Hom(B,Z) −→ Hom(Ac, Z)

is a level equivalence for any Ω-spectrum Z. Next, for every Ω-spectrum Z, the cofiber
sequence

Ac
j // B // B/Ac

induces a level fiber sequence

Hom(B/Ac, Z) // Hom(B,Z)
Hom(j,Z) // Hom(Ac, Z),

where all G-spectra are G-Ω-spectra by Lemma 3.4.3. Consequently, i : A −→ B is
a stable equivalence if and only if the G-spectrum Hom(B/Ac, Z) is level weakly G-
contractible. Thus, to complete the proof it suffices to check that Hom(B/Ac, Z) and
Hom(B/A,Z) are level equivalent. Since C is left proper and the maps Ac −→ A and
B −→ B are level equivalences, the induced map on the cofibers

B/Ac −→ B/A

is a level equivalence. The objects B/Ac and B/A are cofibrant in SpOG(C ) and therefore,
Corollary 3.3.8 (i) and Ken Brown’s Lemma imply that the latter morphism induces a
level equivalence between Hom(B/Ac, Z) and Hom(B/A,Z). Hence i is a stable equiva-
lence if and only if the G-spectrum Hom(B/A,Z) is level weakly G-contractible for any
Ω-spectrum Z.

Corollary 3.4.5. Let C be a left proper and cofibrantly generated G -Top∗-model cat-
egory. Then a cofibration i : A −→ B is a stable equivalence if and only if for any
Ω-spectrum Z in SpOG(C ), the G-spectrum Hom(B/A,ΩZ) is level weakly G-contractible.
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Proof. By Lemma 3.4.3, for any Ω-spectrum Z in SpOG(C ), the object

ΩZ = ZS
1

= ZF0S1

is an Ω-spectrum. Hence, Lemma 3.4.4 implies that if the cofibration i : A −→ B is a
stable equivalence, then the G-spectrum Hom(B/A,ΩZ) is level weakly G-contractible.

Conversely, suppose that for any Ω-spectrum Z, the G-spectrum Hom(B/A,ΩZ) is
level weakly G-contractible. By Lemma 3.4.3, the cotensor ZF1S0

is an Ω-spectrum and
Definition 3.4.1 tells us that the map

Z −→ Ω(ZF1S0
) ∼= ZF1S1

is a level equivalence between level fibrant objects. Since B/A is cofibrant, Corollary
3.3.8 (i) and Ken Brown’s Lemma imply that Hom(B/A,Z) and Hom(B/A,Ω(ZF1S0

))
are level equivalent. According to the assumption, Hom(B/A,Ω(ZF1S0

)) is level weakly
G-contractible and by Lemma 3.4.4 this finishes the proof.

The next proposition is very important. After showing that under certain assump-
tions the category SpOG(C ) has a stable model structure, the proposition will imply that
SpOG(C ) is an SpOG-model category (i.e., a G-spectral category see Definition 3.5.1).

Proposition 3.4.6. Let C be a left proper and cofibrantly generated G -Top∗-model
category. Suppose that i : K −→ L is a cofibration in SpOG and j : A −→ B a cofibration
in SpOG(C ). Then the pushout-product

i� j : K ∧B
∨
K∧A

L ∧A −→ L ∧B

is a cofibration in SpOG(C ). The map i� j is also a stable equivalence if in addition i or
j is a stable equivalence.

Proof. The morphism i� j is a cofibration by Proposition 3.3.7. The cofiber of i� j is
isomorphic to

(L/K) ∧ (B/A).

Hence, by Lemma 3.4.4, it suffices to show that the G-equivariant orthogonal spectrum

Hom((L/K) ∧ (B/A), Z)

is level weakly G-contractible for any Ω-spectrum Z if i or j is a stable equivalence. First
suppose that the morphism j : A −→ B is a stable equivalence in SpOG(C ). According to
Proposition 3.2.3, we have an isomorphism

Hom((L/K) ∧ (B/A), Z) ∼= Hom(B/A,Z(L/K)).

By Lemma 3.4.3, for any Ω-spectrum Z, the spectrum Z(L/K) is an Ω-spectrum as L/K
is cofibrant. Since j : A −→ B is a stable equivalence, it follows from Lemma 3.4.4 that
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Hom(B/A,Z(L/K)) is level weakly G-contractible for any Ω-spectrum Z. This completes
the proof of the first case.

Now suppose that i : K −→ L is a stable equivalence in SpOG. Proposition 3.2.3 yields
an isomorphism

Hom((L/K) ∧ (A/B), Z) ∼= Hom(L/K,Hom(A/B,Z)).

Lemma 3.4.3 implies that Hom(A/B,Z) is a G-Ω-spectrum. On the other hand, since
i : K −→ L is a stable equivalence and the model category SpOG is left proper [MM02,
III.4.2], the orthogonal G-spectrum L/K is G-stably contractible (i.e., πH∗ (L/K) = 0,
H ≤ G). Hence, by [MM02, Proposition III.7.5], the G-spectrum

Hom(L/K,Hom(A/B,Z))

is a G-stably contractible G-Ω-spectrum. Since any G-stably contractible G-Ω-spectrum
is level weakly G-contractible [MM02, Lemma III.9.1], it follows that the orthogonal
G-spectrum Hom(L/K,Hom(A/B,Z) is level weakly G-contractible and this completes
the proof.

Next, we introduce the set Jst which will serve as a set of generating acyclic cofibrations
for the stable model structure on SpOG(C ) that we are going to establish. Let W be a
finite dimensional orthogonal G-representation. Consider the levelwise mapping cylinder
MλW of the map λW : FWS

W −→ F0S
0. The map λW factors as a composite

FWS
W

κW //MλW
rW // F0S

0,

where rW is a G-equivariant homotopy equivalence and κW a cofibration and a stable
equivalence [MM02, III.4.5-4.6] (see also Subsection 2.6). Define

K = {κW � FV i | i ∈ I, V,W ∈ skOG},

where � is the pushout-product, I is the fixed set of generating cofibrations in C (see
Definition 3.3.2) and skOG the fixed small skeleton of OG as in Subsection 3.3. Next,
recall from Proposition 3.3.6 that we have sets FI and FJ , generating cofibrations and
acyclic cofibrations, respectively, in the level model structure. Define

Jst = FJ ∪K.

For the convenience we will denote the set FI by Ist. The cofibrations in the stable
model structure on SpOG(C ) will be the same as in the level model structure and thus
Ist = FI will serve as a set of generating cofibrations for the stable model structure.

The following proposition is an important technical statement used to establish the
stable model structure on SpOG(C ).

Proposition 3.4.7. Let C be a left proper and cofibrantly generated G -Top∗-model
category. Then any morphism in Jst-cell is an Ist-cofibration (i.e., a cofibration) and a
stable equivalence.
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Proof. By Proposition 3.3.7, the morphisms in K are cofibrations. Next, Proposition
3.3.6 implies that FJ ⊂ FI-cof. Hence, one has

Jst = FJ ∪K ⊂ FI-cof = Ist-cof.

Since Ist-cof is closed under coproducts, pushouts and transfinite compositions, we get

Jst-cell ⊂ Ist-cof.

It remains to check that all maps in Jst-cell are stable equivalences in SpOG(C ). We
claim that for any Jst-cofibration A −→ B and any Ω-spectrum Z, the induced map

Hom(B,ΩZ) −→ Hom(A,ΩZ)

is a level acyclic fibration of orthogonal G-spectra. Before proving the claim, let us show
how it completes the proof. Indeed, if the latter map is a level acyclic fibration, then
its fiber Hom(B/A,ΩZ) is level weakly G-contractible by the long exact sequence of
homotopy groups of a fibration. Hence, Corollary 3.4.5 applies and we conclude that
A −→ B is a stable equivalence.

We will now show that the above claim holds. The property of inducing a level acyclic
fibration after applying Hom(−,ΩZ) is obviously closed under coproducts, pushouts,
transfinite compositions and retracts. Thus, it suffices to show that for any Ω-spectrum
Z, the functor Hom(−,ΩZ) gives level acyclic fibrations when applied to morphisms
from Jst = FJ ∪K. For morphisms from FJ this follows immediately from Proposition
3.3.6 and Corollary 3.3.8 (i). For K we proceed as follows. By Proposition 3.4.6, for
any V,W ∈ skOG and i ∈ I, the morphism κW � FV i is a stable equivalence and a
cofibration in SpOG(C ). Hence, Corollary 3.3.8 (i) implies that Hom(κW � FV i, Z) is
a level fibration and Lemma 3.4.4 implies that the fiber of Hom(κW � FV i, Z) is level
weakly G-contractible. Together with the long exact sequence of homotopy groups of a
fibration this allows us to conclude that Ω Hom(κW �FV i, Z) is a level acyclic fibration.
The desired result now follows from the isomorphism

Ω Hom(κW � FV i, Z) ∼= Hom(κW � FV i,ΩZ).

The next Lemma provides a lifting property characterization of Ω-spectra in SpOG(C ).
After establishing the stable model structure on SpOG(C ), this lemma will describe the
fibrant objects in the stable model structure.

Lemma 3.4.8. Let C be a cofibrantly generated G -Top∗-model category and X an object
of SpOG(C ). Then the map X −→ ∗ is Jst-injective if and only if X is an Ω-spectrum.

Proof. By Proposition 3.3.6, the morphism X −→ ∗ is FJ-injective if and only if X is
level fibrant. Now we assume that X is level fibrant and show that X −→ ∗ is K-injective
if and only if X is an Ω-spectrum. By adjunction the map X −→ ∗ is K-injective if
and only if for any W , the map XκW : XMλW −→ XFWSW has the right lifting property
with respect to FI, i.e., if and only if it is a level acyclic fibration. Since the map XκW is
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always a level fibration for any W and a level fibrant X (according to Corollary 3.3.8 (ii)),

it follows that X −→ ∗ is K-injective if and only if XκW : XMλW −→ XFWSW is a level
equivalence in SpOG(C ). Further, the map rW : MλW −→ F0S

0 = S is a G-equivariant
homotopy equivalence [MM02, III.4.6] and hence the induced map XrW : X −→ XMλW

is a level equivalence. On the other hand, we have the equality λW = rW ◦κW and thus,
for a level fibrant X, the map X −→ ∗ is K-injective if and only if XλW : X −→ XFWSW

is a level equivalence. That is, for a level fibrant X, the map X −→ ∗ is K-injective if
and only if X is an Ω-spectrum.

The following proposition is the last major technical statement used for constructing
the stable model structure. Here we have to assume that our cofibrantly generated
G -Top∗-model category C is right proper and stable as an underlying model category.

Proposition 3.4.9. Let C be a right proper and cofibrantly generated G -Top∗-model
category which is stable as an underlying model category. Then a map in SpOG(C ) is
Jst-injective and a stable equivalence if and only if it is a level acyclic fibration.

Proof. By Corollary 3.3.8 (i), every level equivalence in SpOG(C ) is a stable equivalence.
Hence, every level acyclic fibration is a stable equivalence. Further, the class Jst is
contained in Ist-cof and hence,

Ist-inj ⊂ Jst-inj.

The class Ist-inj = FI-inj coincides with the class of level acyclic fibrations (Proposition
3.3.6). Thus, every level acyclic fibration is Jst-injective and a stable equivalence. The
converse statement needs much more work.

Suppose a morphism E −→ B in SpOG(C ) is Jst-injective and a stable equivalence.
Since FJ ⊂ Jst, it follows from Proposition 3.3.6 that the map E −→ B is a level
fibration. Next, let F denote the fiber of E −→ B. Choose a cofibrant replacement

F cof
'lv // F in the level model category and factor the composite F cof

'lv // F // E
in the level model structure

F cof
##

##GGGGGGGG
// E

Ecof

'lv

=={{{{{{{{

as a cofibration followed by a level equivalence. We get a commutative diagram

F cof // //

'lv
��

Ecof //

'lv
��

Ecof/F cof

��
F // E // B.

The upper sequence in this diagram is a homotopy cofiber sequence. Since the model
category C is right proper, the lower sequence is a levelwise homotopy fiber sequence.
The stability of C implies that homotopy cartesian and cocartesian squares are the same
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in C (see e.g. [Hov99, Remark 7.1.12]). Therefore, the induced map Ecof/F cof −→ B is
a level equivalence. As the morphism E −→ B is a stable equivalence, it follows that the
map Ecof −→ Ecof/F cof is a stable equivalence as well. Now let Z be any Ω-spectrum
in SpOG(C ) and consider the sequence

Hom(Ecof/F cof , Z) −→ Hom(Ecof , Z) −→ Hom(F cof , Z).

Corollary 3.3.8 (i) implies that the second map in this sequence is a level fibration and
hence this sequence is a level fiber sequence of orthogonal G-Ω-spectra. Further, the
first map in this fiber sequence is a level equivalence since Ecof −→ Ecof/F cof is a stable
equivalence. This implies that Hom(F cof , Z) is level weakly G-contractible for any Ω-
spectrum Z. Since F −→ ∗ is a pullback of E −→ B along the map ∗ −→ B, we see that
the morphism F −→ ∗ is Jst-injective and thus F is an Ω-spectrum according to Lemma
3.4.8. Consequently, one concludes that the G-Ω-spectrum Hom(F cof , F ) is level weakly
G-contractible. This in particular implies that πG0 (Hom(F cof , F )(0)) = 0. But the set
πG0 (Hom(F cof , F )(0)) is isomorphic to the set of endomorphisms of F in the homotopy
category of the level model structure on SpOG(C ), yielding that F is level equivalent to
a point. Thus we conclude that E −→ B is a level equivalence and this completes the
proof.

Finally, we are ready to establish the stable model structure. The following proposition
constructs the desired model structure. The proof of the fact that this model structure
is stable is postponed to the next subsection.

Proposition 3.4.10. Let C be a proper and cofibrantly generated G -Top∗-model cate-
gory which is stable as an underlying model category. Then the category SpOG(C ) admits
a cofibrantly generated model structure with stable equivalences as weak equivalences.
Moreover, the sets Ist and Jst generate cofibrations and acyclic cofibrations, respectively.

Proof. The strategy of the proof is to verify the conditions of Proposition 2.1.2. Let
W st denote the class of stable equivalences in SpOG(C ). It immediately follows from
Definition 3.4.2 that the class W st satisfies the two out of three property and is closed
under retracts. Next, Proposition 3.4.7 implies that we have an inclusion

Jst-cell ⊂ W st ∩ Ist-cof

(this uses that C is left proper) and Proposition 3.4.9 tells us that the following holds
(here we use that C is right proper and stable as an underlying model category):

Jst-inj ∩W st = Ist-inj.

Hence, the only things that still have to be checked are the smallness conditions. That
the domains of morphisms from Ist are small relative to Ist-cell follows from the equality
Ist = FI and Proposition 3.3.6. Next, recall that Jst = FJ ∪K. We will now verify that
the domains of morphisms from Jst are small relative to levelwise cofibrations. This will
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immediately imply that the domains of morphisms in Jst are small relative to Jst-cell
since

Jst-cell ⊂ Ist-cof

by Proposition 3.4.7 and any morphism in Ist-cof is a levelwise cofibration as we saw in
the proof of Proposition 3.3.6. That the domains of morphisms in FJ are small relative
to levelwise cofibrations follows from an adjunction argument, Definition 3.3.2 (ii) and
[Hov99, 2.1.16]. It remains to show that the domains of morphisms from K are small
relative to levelwise cofibrations. Any morphism in K is a pushout-product of the form

κW � FV i : (MλW ∧ FVA)
∨

FWSW∧FV A

(FWS
W ∧ FVB) −→MλW ∧ FVB.

where the morphism i : A −→ B is from the set I and V and W are finite dimensional
orthogonal G-representations. For any finite G-CW complex L and any object D which
is the domain or codomain of a map from I, the spectrum FWL∧FVD is small relative
to levelwise cofibrations. Indeed, we have an isomorphism

Hom(FWL ∧ FVD,X) ∼= Map(L ∧D,X(V ⊕W )).

Since a pushout of small objects is small, Definition 3.3.2 (i) implies that L∧D is small
with respect to I-cof and hence FWL ∧ FVD is small relative to levelwise cofibrations.
Now we use twice that pushouts of small objects are small. First we conclude that
MλW ∧ FVA is small relative to levelwise cofibrations and then we also see that

(MλW ∧ FVA)
∨

FWSW∧FV A

(FWS
W ∧ FVB)

is small relative to levelwise cofibrations.

3.5 G-equivariant stable model categories and the proof of Proposition
3.1.2

We start with the following

Definition 3.5.1. An SpOG-model category is called G-spectral. In other words, a model
C category isG-spectral if it is enriched, tensored and cotensored over the model category
SpOG and the pushout-out product axiom for tensors holds (see Definition 2.1.4).

By Proposition 2.6.5 the model category SpOG is G-spectral. Next, Proposition 3.4.6
shows that the model structure of Proposition 3.4.10 on SpOG(C ) is G-spectral.

Recall from Definition 3.1.1 that a G-equivariant stable model category is a G -Top∗-
model category such that the Quillen adjunction

SV ∧ − : C
//
C :ΩV (−)oo

is a Quillen equivalence for any finite dimensional orthogonal G-representation V . Before
stating the next proposition, note that every G-spectral model category is obviously a
G -Top∗-model category.
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Proposition 3.5.2. Let C be a G-spectral model category. Then C is a G-equivariant
stable model category.

Proof. Consider the left Quillen functors

SV ∧ − : C −→ C and FV S
0 ∧ − : C −→ C

and their derived functors

SV ∧L − : Ho(C ) −→ Ho(C ) and FV S
0 ∧L − : Ho(C ) −→ Ho(C ).

Since the map λV : FV S
V −→ S is a stable equivalence [MM02, III.4.5], for every cofi-

brant X in C , one has the following weak equivalences

SV ∧ FV S0 ∧X ∼= FV S
V ∧X '

λV ∧1 // X

and

FV S
0 ∧ SV ∧X ∼= FV S

V ∧X '
λV ∧1 // X.

This implies that the functors SV ∧L− and FV S
0∧L− are mutually inverse equivalences

of categories.

Corollary 3.5.3. Let C be a proper and cofibrantly generated G -Top∗-model category
which is stable as an underlying model category. Then the category SpOG(C ) together with
the model structure of Proposition 3.4.10 is a G-equivariant stable model category.

From this point on, the model structure of Proposition 3.4.10 will be referred to as
the stable model structure on SpOG(C ).

Finally, we are ready to prove Proposition 3.1.2:

Proof of Proposition 3.1.2. We want to show that the G -Top∗-adjunction

F0 = Σ∞ : C //
SpO(C ) : Ev0oo

is a Quillen equivalence for every cofibrantly generated (in the sense of Definition 3.3.2)
and proper G-equivariant stable model category C . This adjunction is a Quillen adjunc-
tion since F0I ⊂ FI = Ist and F0J ⊂ FJ ⊂ Jst. By [Hov99, 1.3.16], in order to show
that this Quillen adjunction is a Quillen equivalence, it suffices to check that the functor
Ev0 reflects stable equivalences between stably fibrant objects (i.e., between Ω-spectra
according to Lemma 3.4.8) and that for any cofibrant A in C , the composite

A −→ Ev0(Σ∞A) −→ Ev0(R(Σ∞A)),

is a weak equivalence. Here R is a fibrant replacement in the stable model structure on
SpOG(C ), the first map is the adjunction unit and the second map is induced by the stable
equivalence Σ∞A −→ R(Σ∞A). So suppose that f : X −→ Y is a map of Ω-spectra in
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SpOG(C ) with f0 : X0 −→ Y0 a weak equivalence in C . Since X and Y are Ω-spectra, it
follows that for any finite dimensional orthogonal G-representation V , the map

ΩV f(V ) : ΩVX(V ) −→ ΩV Y (V )

is a weak equivalence in C and X(V ) and Y (V ) are fibrant in C . The G-equivariant
stability of C implies that the functor ΩV : C −→ C induces a self-equivalence of the
homotopy category Ho(C ). Hence, the map f(V ) : X(V ) −→ Y (V ) is a weak equivalence
for any finite dimensional orthogonal G-representation V . In other words, f : X −→ Y
is a level equivalence. As every level equivalence is a stable equivalence we conclude that
f is a stable equivalence.

We now check the second condition. Let A be a cofibrant object of C and Σ∞fibA denote
a fibrant replacement of Σ∞A in the level model structure. For any finite dimensional
orthogonal G-representation V , we have

Σ∞A(V ) = F0A(V ) = OG(0, V ) ∧A = SV ∧A.

Therefore, Σ∞fibA(V ) = (SV ∧A)fib, where (−)fib is a fibrant replacement in C . The fibrant
replacement Σ∞fibA comes with a morphism of spectra g : Σ∞A −→ Σ∞fibA which is a level
equivalence. Therefore, for V and W finite dimensional orthogonal G-representations,
we get a commutative diagram

SV ∧A //

g(V )

��

ΩW (SW ∧ SV ∧A)

ΩW (g(V⊕W ))
��

(SV ∧A)fib // ΩW (SW ∧ SV ∧A)fib,

where the left vertical map is a weak equivalence and horizontal maps are the adjoint
structure maps. By the G-equivariant stability of C , the adjunction (SW ∧ −,ΩW (−))
is a Quillen equivalence. Since the map

SV ∧A // ΩW (SW ∧ SV ∧A)
ΩW (gV⊕W ) // ΩW (SW ∧ SV ∧A)fib

is the evaluation of the derived unit of this adjunction on SV ∧ A, it follows that it is
a weak equivalence [Hov99, 1.3.13]. Hence, this together with the latter commutative
square tells us that the composite

SV ∧A
gV // (SV ∧A)fib // ΩW (SW ∧ SV ∧A)fib

is a weak equivalence. Now as the map gV is a weak equivalence, by the two out of three
property, the morphism

(SV ∧A)fib // ΩW (SW ∧ SV ∧A)fib

is a weak equivalence for any finite dimensional orthogonal G-representations V and W .
This means that Σ∞fibA is an Ω-spectrum and that the map g : Σ∞A −→ Σ∞fibA is a model
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for the stably fibrant replacement Σ∞A −→ R(Σ∞A). This completes the proof, since
g is a level equivalence and hence the map

A
∼= // Ev0(Σ∞A)

g0 // Ev0(Σ∞fibA)

is a weak equivalence. �

Remark 3.5.4. The Quillen equivalence

Σ∞ : C
//
SpO(C ) : Ev0oo

is in fact a G -Top∗-Quillen equivalence. Indeed, (Σ∞,Ev0) is a G -Top∗-enriched ad-
junction and an enriched adjunction which is an underlying Quillen equivalence is an
enriched Quillen equivalence by definition. Next, since enriched left adjoints preserve
tensors [Kel05, Sections 3.2 and 3.7], the functor Σ∞ preserves tensors. Similarly, the
right adjoint Ev0 preserves cotensors. Further, the equivalence

LΣ∞ : Ho(C ) //
Ho(SpO(C )) :R Ev0oo

is a Ho(G -Top∗)-enriched equivalence. Finally, we note that the functor LΣ∞ preserves
derived tensors and since R Ev0 is an inverse of LΣ∞, it is also compatible with derived
tensors.

3.6 The p-local model structure on G-equivariant orthogonal spectra

This subsection discusses the p-localization of the stable model structure on SpOG for any
prime p. Although this model structure is well-known, we give a detailed proof here
since we were unable to find a reference. Note that one can construct the p-local model
structure on SpOG by using general localization techniques of [Hir03] or [Bou01]. We
will not use any of these machineries here and give a direct proof by generalizing the
arguments of [SS02, Section 4] to the equivariant context.

Definition 3.6.1. (i) A map f : X −→ Y of orthogonal G-spectra is called a p-local
equivalence if the induced map

πH∗ (f)⊗ Z(p) : πH∗ X ⊗ Z(p) −→ πH∗ Y ⊗ Z(p)

is an isomorphism for any subgroup H of G.
(ii) A map p : X −→ Y of orthogonal G-spectra is called a p-local fibration if it

has the right lifting property with respect to all maps that are cofibrations and p-local
equivalences.

Proposition 3.6.2. Let G be a finite group and p a prime. Then the category SpOG
of G-equivariant orthogonal spectra together with p-local equivalences, cofibrations and
p-local fibrations forms a cofibrantly generated model category.
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We need some technical preparation before proving this proposition.
Recall from Section 2 that the stable model structure on SpOG is cofibrantly generated

with IGst = IGlv and JGst = KG ∪ JGlv generating cofibrations and acyclic cofibrations,
respectively. Further, we also recall that the mod l Moore space M(l) is defined by the
following pushout

S1 ·l //

��

S1

��
CS1 //M(l).

(C(−) = (I, 0) ∧ − is the pointed cone functor.) Let ι : M(l) −→ CM(l) denote the
inclusion of M(l) into the cone CM(l). Define JG(p) to be the set of maps of orthogonal
G-spectra

Fn(G/H+ ∧ Σmι) : Fn(G/H+ ∧ ΣmM(l)) −→ Fn(G/H+ ∧ ΣmCM(l)),

where n,m ≥ 0, H ≤ G and l is prime to p, i.e., invertible in Z(p). We let JGloc denote

the union JGst ∪ JG(p). This set will serve as a set of generating acyclic cofibrations for the

p-local model structure on SpOG.

Lemma 3.6.3. Let X be a G-equivariant orthogonal spectrum. Then the map X −→ ∗
is JGloc-injective if and only if X is a G-Ω-spectrum and the H-equivariant homotopy
groups πH∗ X are p-local for any H ≤ G.

Proof. By definition, X −→ ∗ is JGloc-injective if and only if X −→ ∗ is JGst -injective and
JG(p)-injective. It follows from [MM02, III.4.10] that the map X −→ ∗ is JGloc-injective if

and only if X is a G-Ω-spectrum and X −→ ∗ is JG(p)-injective. Now for a G-Ω-spectrum

X, having the right lifting property with respect to JG(p) means that

[Fn(G/H+ ∧ ΣmM(l)), X]G = 0,

for any m,n ≥ 0, H ≤ G and any l which is prime to p. The distinguished triangles

Fn(G/H+ ∧ Sm+1)
·l // Fn(G/H+ ∧ Sm+1) // Fn(G/H+ ∧ ΣmM(l)) // ΣFn(G/H+ ∧ Sm+1)

in Ho(SpOG) imply that the latter amounts to the fact that the maps

[Fn(G/H+ ∧ Sm+1), X]G
·l // [Fn(G/H+ ∧ Sm+1), X]G

are isomorphisms for any m,n ≥ 0, H ≤ G and any l which is prime to p. Since
[Fn(G/H+ ∧ Sm+1), X]G ∼= πHm+1−nX the desired result follows.

Lemma 3.6.4. Let f : X −→ Y be a morphism of orthogonal G-spectra which is JGloc-
injective and a p-local equivalence. Then f is a stable equivalence and a stable fibration.
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Proof. Since f is JGloc-injective, it is in particular JGst -injective and hence a stable fibra-
tion in SpOG. Let F denote the fiber of f . Since any stable fibration is a level fibration,
the level fiber sequence

F // X
f // Y

induces a long exact sequence of equivariant stable homotopy groups

· · · // πH∗ F
// πH∗ X

πH∗ f // πH∗ Y
// · · · ,

for any H ≤ G. The Z-module Z(p) is flat over Z. Hence if we tensor the latter long
exact sequence with Z(p), we get a long exact sequence of p-local homotopy groups. By

the assumptions, the morphism f induces an isomorphism on πH∗ (−)⊗ Z(p) and thus it
follows that

πH∗ F ⊗ Z(p) = 0

for any subgroup H ≤ G. On the other hand, the map F −→ ∗ is JGloc-injective as a
pullback of f : X −→ Y and hence, by Lemma 3.6.3, the G-spectrum F has p-local H-
equivariant homotopy groups for all H ≤ G. Combining the last two facts, we conclude
that πH∗ F = 0, for any subgroup H of G. Finally, using the above long exact sequence
of integral equivariant homotopy groups, one sees that the maps

πH∗ f : πH∗ X −→ πH∗ Y, H ≤ G

are isomorphisms, i.e., f is a stable equivalence.

The following lemma is the main technical statement needed for establishing the p-
local model structure:

Lemma 3.6.5. Every morphism of G-equivariant orthogonal spectra can be factored as
a composite q ◦ i, where q is JGloc-injective and i is a cofibration and a p-local equivalence.

Proof. Since compact topological spaces are sequentially small with respect to closed
T1-inclusions, it follows that the domains of morphisms from JGloc are sequentially small
relative to levelwise cofibrations. By definition, every map in JGloc is a cofibration in
SpOG. This implies that every map in JGloc-cell is a cofibration. On the other hand,
by Lemma 3.3.1, every cofibration in SpOG is a levelwise cofibration. Consequently, the
domains of morphisms from JGloc are sequentially small with respect to JGloc-cell. Hence we
can use the countable version of Quillen’s small object argument (see e.g. [Qui67, II.3]
or [Hov99, Theorem 2.1.14]) to factor a given map as a composite q ◦ i, where q is
JGloc-injective and i is a possibly countable composition of pushouts of coproducts of
morphisms from JGloc. In particular, the morphism i is in JGloc-cell and thus a cofibration.
It remains to show that i is a p-local equivalence. We first check that the morphisms
in JGloc are p-local equivalences. Recall that JGloc = JGst ∪ JG(p). The morphisms in JGst are
stable equivalences and thus p-local equivalences. Further, for any l which is prime to
p, the map

πL∗ (Fn(G/H+ ∧ Sm+1))⊗ Z(p)
·l // πL∗ (Fn(G/H+ ∧ Sm+1))⊗ Z(p), n,m ≥ 0, H, L ≤ G
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is an isomorphism. The distinguished triangle

Fn(G/H+ ∧ Sm+1)
·l // Fn(G/H+ ∧ Sm+1) // Fn(G/H+ ∧ ΣmM(l)) // ΣFn(G/H+ ∧ Sm+1)

then implies that

πL∗ (Fn(G/H+ ∧ ΣmM(l)))⊗ Z(p) = 0, n,m ≥ 0, H, L ≤ G.

This tells us that the maps from JG(p) are p-local equivalences. Now since equivariant ho-

motopy groups commute with coproducts, the coproducts of maps from JGloc are p-local
equivalences as well. Next, using that any cofibration induces a long exact sequence of
equivariant homotopy groups and that Z(p) is flat, we see that the pushouts of coproducts

of maps from JGloc are p-local equivalences. Hence every map in the countable composite
defining the map i is a p-local equivalence. Equivariant stable homotopy groups com-
mute with sequential colimits of cofibrations and the tensor product preserves colimits.
Since every morphism in the latter countable composite is a cofibration and a p-local
equivalence, we conclude that their composite i is also a p-local equivalence. This finishes
the proof.

The next lemma provides a lifting property characterization of p-local fibrations.

Lemma 3.6.6. A map of G-equivariant orthogonal spectra is a p-local fibration if and
only if it has the right lifting property with respect to JGloc (i.e., if and only if it is JGloc-
injective).

Proof. Every map in JGloc is a cofibration and a p-local equivalence according to proof
of the previous lemma. Hence, by definition, every p-local fibration has the right lifting
property with respect to JGloc. To show the converse statement it suffices to check that
every morphism j which is a cofibration and a p-local equivalence is contained in JGloc-cof.
For this we use the retract argument (see e.g. [Hov99, 1.1.9]). Factor j = q ◦ i as in
the proof of Lemma 3.6.5. The map i is in JGloc-cell and a p-local equivalence and q is
JGloc-injective. Since i and j are both p-local equivalences, so is q. Hence, by Lemma
3.6.4, the morphism q is stable equivalence and a stable fibration and thus has the right
lifting property with respect to any cofibration. In particular, it has the right lifting
property with respect to j. This implies that j is a retract of i which is in JGloc-cell.
Consequently, j is a JGloc-cofibration.

Finally, we are ready to prove Proposition 3.6.2.

Proof of Proposition 3.6.2. We check that all the properties from [DS95, Definition
3.3] are satisfied. In addition, we verify that the conditions from Definition 2.1.1 are
also fulfilled to see that the p-local model structure is cofibrantly generated.

The category ofG-equivariant orthogonal spectra has all small limits and colimits. The
p-local equivalences satisfy the two out of three property and the classes of cofibrations,
p-local equivalences and p-local fibrations are closed under retracts. Further, Lemma
3.6.4 and Lemma 3.6.6 imply that every map that is a p-local fibration and a p-local
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equivalence is a stable equivalence and a stable fibration and thus has the right lifting
property with respect to cofibrations. The second lifting axiom is just the definition of
p-local fibrations. Next, the stable model structure provides a factorization of every map
into a cofibration followed by a map which is a stable equivalence and a stable fibration,
i.e., stably acyclic fibration. Stably acyclic fibrations are p-local equivalences and p-local
fibrations (they have the right lifting property with respect to any cofibration and in
particular, with respect to JGloc). Hence we obtain one of the desired factorizations in
the factorization axiom. The second part of the factorization axiom immediately follows
from Lemma 3.6.5 and Lemma 3.6.6. This completes the construction of the p-local
model structure for orthogonal G-spectra.

Now we prove that the established p-local model structure is cofibrantly generated.
The set IGst will serve as a set of generating cofibrations and the set JGloc will be the set
of generating acyclic cofibrations. The smallness conditions from Definition 2.1.1 for the
set IGst follow from [MM02, III.4.2] and the smallness conditions for JGloc were discussed
in the proof of Lemma 3.6.5. Further, the class JGloc-inj coincides with the class of p-local
fibrations according to Lemma 3.6.6. Finally, the class of p-local fibrations which are
additionally p-local equivalences coincides with the class of stably acyclic fibrations and
hence with the class IGst -inj. �

From this point on we will denote the category of orthogonal G-spectra equipped with
the p-local model structure of Proposition 3.6.2 by SpOG,(p). The following proposition

shows that the model category SpOG,(p) is a monoidal model category:

Proposition 3.6.7. Suppose that i : K −→ L and j : A −→ B are cofibrations in
SpOG,(p). Then the pushout-product

i� j : K ∧B
∨
K∧A

L ∧A −→ L ∧B

is a cofibration in SpOG,(p). Moreover, if in addition i or j is a p-local equivalence (i.e.,

a weak equivalence in SpOG,(p)), then so is i� j.

Proof. The fact that i� j is a cofibration follows from the monoidality of SpOG [MM02,
III.7.5] (see also Proposition 2.6.5). Next, by [Hov99, Corollary 4.2.5] it suffices to prove
the statement for generating cofibrations and acyclic cofibrations. So suppose that i is
a generating cofibration and j is a generating acyclic cofibration. Recall that the set
JGloc = JG(p) ∪ J

G
st is a set of generating acyclic cofibrations for SpOG,(p). If j is in JGst , then

i� j is a stable equivalence and hence, in particular, a p-local equivalence. Now let j be
a map

Fn(G/H+ ∧ ΣmM(l)) −→ Fn(G/H+ ∧ ΣmCM(l))

from JG(p) and i a map

FV (G/K+ ∧ St−1
+ ) −→ FV (G/K+ ∧Dt

+)
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from IGst . Then the target of the pushout-product i� j

FV (G/K+∧Dt
+)∧Fn(G/H+∧ΣmCM(l)) ∼= C(FV⊕Rn(G/K+∧Dt

+∧G/H+∧ΣmM(l)))

is zero in Ho(SpOG) and thus has trivial equivariant stable homotopy groups. Conse-
quently, in order to show that i� j is a p-local equivalence, it suffices to check that the
equivariant stable homotopy groups of the source of the pushout-product i � j become
trivial after tensoring with Z(p). Since the pushout square defining the source of i� j is

a homotopy pushout square in SpOG and

FV (G/K+ ∧ St−1
+ ) ∧ Fn(G/H+ ∧ ΣmCM(l))

is stably contractible, it follows that the source of i � j is stably equivalent to the
orthogonal G-spectrum

FV (G/K+ ∧ St) ∧ Fn(G/H+ ∧ ΣmM(l)).

This spectrum is a mapping cone in Ho(SpOG) of the map

FV (G/K+ ∧ St) ∧ Fn(G/H+ ∧ Sm+1)
·l // FV (G/K+ ∧ St) ∧ Fn(G/H+ ∧ Sm+1)

which induces an isomorphism on π∗(−) ⊗ Z(p) (by definition of JG(p), the integer l is

prime to p). Using the long exact sequence of equivariant stable homotopy groups and
flatness of Z(p) we conclude that

πL∗ (FV (G/K+ ∧ St) ∧ Fn(G/H+ ∧ ΣmM(l)))⊗ Z(p) = 0

for any subgroup L of G. Hence the p-localized equivariant stable homotopy groups of
the source of i� j are trivial and this completes the proof.

Since every stable equivalence of G-equivariant orthogonal spectra is a p-local equiv-
alence, one obtains the following corollary:

Corollary 3.6.8. The model category SpOG,(p) is G-spectral, i.e., an SpOG-model category
(see Definition 3.5.1).

In view of Proposition 3.5.2, we also obtain

Corollary 3.6.9. The model category SpOG,(p) is a G-equivariant stable model category
(see Definition 3.1.1).

We end this subsection with some useful comments and remarks about the homotopy
category Ho(SpOG,(p) ). Since the model category SpOG,(p) is stable, the homotopy category

Ho(SpOG,(p) ) is naturally triangulated. Further, the set

{Σ∞+ G/H | H ≤ G}
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is a set of compact generators for Ho(SpOG,(p) ). Indeed, let X be an orthogonal G-

spectrum and let Xf denote a fibrant replacement of X in SpOG,(p). Then, by Lemma

3.6.3, the spectrum Xf is a G-Ω-spectrum and has p-local equivariant homotopy groups.
This gives us the following chain of natural isomorphisms:

[Σ∞+ G/H,X]
Ho(SpOG,(p))
∗ ∼= [Σ∞+ G/H,X

f ]
Ho(SpOG,(p))
∗ ∼= [Σ∞+ G/H,X

f ]
Ho(SpOG)
∗ ∼=

πH∗ (Xf ) ∼= πH∗ (Xf )⊗ Z(p)
∼= πH∗ X ⊗ Z(p)

Hence, the object Σ∞+ G/H in Ho(SpOG,(p) ) represents the p-localized H-equivariant ho-
motopy group functor and therefore, the set {Σ∞+ G/H|H ≤ G} is a set of of compact
generators for Ho(SpOG,(p) ).

Finally, we note that for any G-equivariant orthogonal spectra X and Y , the abelian

group of morphisms [X,Y ]Ho(SpOG,(p)) in Ho(SpOG,(p) ) is p-local. This follows from the fact
that for any integer l which is prime to p, the map l · id : X −→ X is an isomorphism in
Ho(SpOG,(p) ).

3.7 Reduction to Theorem 3.1.3

In this subsection we will explain precisely how the proof of Theorem 1.1.1 reduces to
the proof of Theorem 3.1.3. The main idea was already indicated in Subsection 3.1. The
arguments in this subsection work at any prime p. So there is no point in restricting
ourselves to prime 2 here.

Let C be a cofibrantly generated (in the sense of Definition 3.3.2), proper, G-equivariant
stable model category. Suppose that

Ψ: Ho(SpOG,(p) )
∼ // Ho(C )

is an equivalence of triangulated categories such that

Ψ(Σ∞+ G/H) ∼= G/H+ ∧L Ψ(S),

for any H ≤ G. Suppose further that the latter isomorphisms are natural with respect
to the restrictions, conjugations and transfers. Then by Proposition 3.1.2, there is a
G -Top∗-Quillen equivalence

Σ∞ : C
//
SpO(C ) : Ev0 .oo

Next, as in Subsection 3.1, let X be a cofibrant replacement of (LΣ∞ ◦ Ψ)(S). Since
SpOG(C ) is G-spectral (Proposition 3.4.6), there is a G -Top∗-Quillen adjunction

− ∧X : SpOG
//
SpOG(C ) : Hom(X,−).oo

We will now show that this Quillen adjunction passes through the p-localization SpOG,(p).
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Proposition 3.7.1. The adjunction

− ∧X : SpOG,(p)
//
SpOG(C ) : Hom(X,−).oo

is a G -Top∗-Quillen adjunction.

Proof. The adjunction is a G -Top∗-adjunction and hence it suffices to verify that it is
an underlying Quillen adjunction. The functor − ∧X preserves cofibrations, since the
cofibrations in SpOG,(p) and SpOG coincide. Now suppose i : K −→ L is a cofibration and
a p-local equivalence. We want to show that the cofibration i∧ 1: K ∧X −→ L∧X is a
stable equivalence. By Lemma 3.4.4, it suffices to check that for any Ω-spectrum Z, the
orthogonal G-spectrum Hom(L/K∧X,Z) is level weakly G-contractible. By adjunction,
there is an isomorphism

Hom(L/K ∧X,Z) ∼= Hom(L/K,Hom(X,Z))

and we will now verify that the G-spectrum Hom(L/K,Hom(X,Z)) is level weakly G-
contractible.

The spectrum Hom(X,Z) is a G-Ω-spectrum according to Lemma 3.4.3. Furthermore,
for any subgroup H ≤ G, the H-equivariant homotopy of Hom(X,Z) is isomorphic to

[Σ∞+ G/H ∧X,Z]
Ho(SpOG(C ))
∗ .

The latter groups are p-local since Ho(SpOG(C )) is equivalent to Ho(SpOG,(p) ) by the

assumptions and Proposition 3.1.2 and the Hom-groups in Ho(SpOG,(p) ) are p-local by
the last remark in the previous subsection. Hence, Lemma 3.6.3 tells us that Hom(X,Z)
is fibrant in SpOG,(p). Next, Proposition 3.6.7 implies that the orthogonal G-spectrum

Hom(L/K,Hom(X,Z)) is fibrant in SpOG,(p). Therefore, Hom(L/K,Hom(X,Z)) is a
G-Ω-spectrum and the H-equivariant homotopy of it is isomorphic to

[Σ∞+ G/H ∧ L/K,Hom(X,Z)]
Ho(SpOG,(p))
∗ .

On the other hand, by the assumptions, the cofibration i : K −→ L is a p-local equiv-
alence and therefore, L/K is zero in Ho(SpOG,(p) ). Hence, the equivariant homotopy
groups of the G-Ω-spectrum Hom(L/K,Hom(X,Z)) vanish, i.e., it is stably contractible.
Any stably contractible G-Ω spectrum is level weakly G-contractible ([MM02, Lemma
III.9.1]), implying that Hom(L/K,Hom(X,Z)) is level weakly G-contractible. This fin-
ishes the proof.

Now we continue as in Subsection 3.1. In order to prove the p-local version of Conjec-
ture 1.1.2, it suffices to show that the Quillen adjunction of Proposition 3.7.1 is a Quillen
equivalence. Next, by the properties of Ψ and Remark 3.5.4, we have the following chain
of isomorphisms

Ψ(Σ∞+ G/H) ∼= G/H+ ∧L Ψ(S) ∼= G/H+ ∧L R Ev0X ∼= R Ev0(Σ∞+ G/H ∧L X)

46



which is natural with respect to transfers, conjugations, and restrictions. Using these
isomorphisms, we can choose an inverse of Ψ

Ψ−1 : Ho(C ) −→ Ho(SpOG,(p) )

such that Ψ−1(R Ev0(Σ∞+ G/H ∧L X)) = Σ∞+ G/H. Moreover, since the isomorphisms
above are natural with respect to the stable Burnside category (Subsection 2.7), we get
the identities

Ψ−1(R Ev0(g∧LX)) = g, Ψ−1(R Ev0(resHK ∧LX)) = resHK , Ψ−1(R Ev0(trHK ∧LX)) = trHK ,

where g ∈ G and K ≤ H ≤ G. Now let us consider the composite

F : Ho(SpOG,(p) )
−∧LX// Ho(SpOG(C ))

REv0 // Ho(C )
Ψ−1

// Ho(SpOG,(p) ).

Since the functors R Ev0 and Ψ−1 are equivalences, to prove that (− ∧X,Hom(X,−))
is a Quillen equivalence is equivalent to showing that the endofunctor

F : Ho(SpOG,(p) ) // Ho(SpOG,(p) )

is an equivalence of categories. By the assumptions and the properties of Ψ−1, we see
that F enjoys the following properties:

(i) F (Σ∞+ G/H) = Σ∞+ G/H, H ≤ G;

(ii) F (g) = g, F (resHK) = resHK , F (trHK) = trHK , g ∈ G, K ≤ H ≤ G;

(iii) F is an exact functor of triangulated categories and preserves infinite coproducts.

So finally, we see that in order to prove Theorem 1.1.1, it suffices to prove Theorem
3.1.3. Note that we do not expect that an odd primary version of Theorem 3.1.3 is true.
However, we still think that Conjecture 1.1.2 holds. Schwede’s paper [Sch07] suggests
that the proof in the odd primary case should use the explicit construction and the
whole content behind the endofunctor F , whereas in the 2-local case certain axiomatic
properties of F are enough to get the desired result as Theorem 3.1.3 shows. This is a
generic difference between the 2-local case and the p-local case for p an odd prime.
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4 Free G-spectra

Since the set {Σ∞+ G/H | H ≤ G} is a set of compact generators for the triangulated
category Ho(SpOG,(2) ), to prove Theorem 3.1.3 it suffices to show that for any subgroups
H and K of G, the map

F : [Σ∞+ G/H,Σ
∞
+ G/K]G∗

// [F (Σ∞+ G/H), F (Σ∞+ G/K)]G∗ = [Σ∞+ G/H,Σ
∞
+ G/K]G∗

induced by F is an isomorphism.
In this section we show that under the assumptions of 3.1.3 the map

F : [Σ∞+ G,Σ
∞
+ G]G∗ −→ [F (Σ∞+ G), F (Σ∞+ G)]G∗ = [Σ∞+ G,Σ

∞
+ G]G∗

is an isomorphism. Note that the graded endomorphism ring [Σ∞+ G,Σ
∞
+ G]G∗ is isomor-

phic to the graded group algebra π∗S[G] and the localizing subcategory generated by
Σ∞+ G in Ho(SpOG) is equivalent to Ho(Mod -Σ∞+ G), where Σ∞+ G is considered as the
group ring spectrum of G.

We say that an object X ∈ Ho(SpOG) is a free G-spectrum if it is contained in the
localizing subcategory generated by Σ∞+ G.

In what follows, everything will be 2-localized and hence we will mostly omit the
subscript 2. The arguments here are just equivariant generalizations of those in [Sch01].

4.1 Cellular structures

We start with the following

Definition 4.1.1. Let R be an orthogonal ring spectrum, X an R-module and n and
m integers such that n ≤ m. We say that X admits a finite (n,m)-cell structure if there
are sequences of distinguished triangles∨

Ik
Σk−1R // skk−1X // skkX //

∨
Ik

ΣkR

in Ho(Mod -R), k = n, ...,m, such that the sets Ik are finite and skn−1X = ∗ and
skmX = X.

In other words, an R-module X admits a finite (n,m)-cell structure if and only if it
admits a structure of a finite R-cell complex with all possible cells in dimensions between
n and m.

Recall that there is a Quillen adjunction

G+∧ : Mod -S //Mod -Σ∞+ G :Uoo

and that [Σ∞+ G,Σ
∞
+ G]G∗

∼= π∗S[G]. The following proposition can be considered as a
2-local naive equivariant version of [Sch01, Lemma 4.1] (cf. [Coh68, 4.2]).
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Proposition 4.1.2. Any α ∈ [Σ∞+ G,Σ
∞
+ G]

Ho(SpOG,(2))
n , n ≥ 8, factors over an Σ∞+ G-

module that admits a finite (1, n− 1)-cell structure.

Proof. We will omit the subscript 2. Under the derived adjunction

G+ ∧L − : Ho(Mod -S)
// Ho(Mod -Σ∞+ G) :RU,oo

the element α corresponds to some map α̃ : Sn −→ RU(Σ∞+ G) ∼=
∨
G S. By the proof of

[Sch01, Lemma 4.1], for any g ∈ G, we have a factorization

Sn α̃ //

''OOOOOOOOOOOOOOO RU(Σ∞+ G) ∼=
∨
G S

projg // S

Zg

77ppppppppppppppp

in the stable homotopy category, where Zg has S-cells in dimensions between 1 and n−1.
This uses essentially that n ≥ 8. Indeed, since n ≥ 8, for any g ∈ G, the morphism
projg ◦α̃ has F2-Adams filtration at least 2 by the Hopf invariant one Theorem [Ada60]
and hence, one of the implications of [Sch01, Lemma 4.1] applies to projg ◦α̃. Assembling
these factorizations together, we get a commutative diagram

Sn α̃ //

##GGGGGGGGG RU(Σ∞+ G)

∨
g∈G Zg.

88pppppppppp

Finally, by adjunction, one obtains the desired factorization

ΣnΣ∞+ G
α //

((PPPPPPPPPPPP
Σ∞+ G

G+ ∧L (
∨
g∈G Zg).

77oooooooooooo

Next, we use Proposition 4.1.2 to prove the following important

Lemma 4.1.3. Suppose that the map of graded rings

F : [Σ∞+ G,Σ
∞
+ G]G∗ −→ [F (Σ∞+ G), F (Σ∞+ G)]G∗ = [Σ∞+ G,Σ

∞
+ G]G∗

is an isomorphism below and including dimension n for some n ≥ 0.
(i) Let K and L be Σ∞+ G-modules that admit finite (βK , τK) and (βL, τL)-cell struc-

tures, respectively, and assume that τK − βL ≤ n. Then the map

F : [K,L]G −→ [F (K), F (L)]G
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is an isomorphism.
(ii) Let K be an Σ∞+ G-module admitting a finite (βK , τK)-cell structure with τK−βK ≤

n+ 1. Then there is an Σ∞+ G-module K ′ with a finite (βK′ , τK′)-cell structure such that
βK ≤ βK′, τK′ ≤ τK and F (K ′) ∼= K.

(iii) If n+ 1 ≥ 8, then the map

F : [Σ∞+ G,Σ
∞
+ G]Gn+1 −→ [Σ∞+ G,Σ

∞
+ G]Gn+1

is an isomorphism.

Proof. (i) When K and L are both finite wedges of type
∨

Σl0Σ∞+ G (l0 is fixed), then
the claim holds.

We start with the case when L is a finite wedge of copies of Σl0Σ∞+ G, for some integer
l0, and proceed by induction on τK − βK . As already noted, the claim holds when
τK − βK = 0. Now suppose we are given K with τK − βK = r, r ≥ 1, and assume that
the claim holds for all Σ∞+ G-modules M that have a finite (βM , τM )-cell structure with
τM − βM < r. Consider the distinguished triangle∨

IτK
ΣτK−1Σ∞+ G // skτK−1K // K //

∨
IτK

ΣτKΣ∞+ G.

The Σ∞+ G-module skτK−1K has a finite (βK , τK − 1)-cell structure. For convenience,
let P denote the wedge

∨
IτK

ΣτK−1Σ∞+ G. The latter distinguished triangle induces a

commutative diagram

[Σ skτK−1K,L]G //

F

��

[ΣP,L]G //

F

��

[K,L]G //

F

��

[skτK−1K,L]G //

F

��

[P,L]G

F

��
[F (Σ skτK−1K), F (L)]G // [F (ΣP ), F (L)]G // [F (K), F (L)]G // [F (skτK−1K), F (L)]G // [F (P ), F (L)]G

with exact rows (The functor F is exact.). By the induction basis, the second and
the last vertical morphisms in this diagram are isomorphisms. The fourth morphism
is an isomorphism by the induction assumption. Finally, since Σ skτK−1K has a finite
(βK +1, τK)-cell structure, the first vertical map is also an isomorphism by the induction
assumption. Hence, the claim follows by the Five lemma.

Next, we do a similar induction with respect to τL − βL. The case τL − βL = 0 is the
previous paragraph. For the inductive step we choose a distinguished triangle

skβL L // L // L′ // Σ skβL L.

The Σ∞+ G-module L′ admits a finite (βL + 1, τL)-cell structure. To see this one uses the
octahedral axiom. Define ski L

′ by the distinguished triangle

skβL L // ski L // ski L
′ // Σ skβL L.

Then skβL L
′ = ∗ and skτL L

′ = L′. By the octahedral axiom, for any i ∈ {βL, · · · , τL},
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there is a commutative diagram

skβL L // ski L //

��

ski L
′ //

���
�
�

Σ skβL L

skβL L // ski+1 L

��

// ski+1 L
′ //

���
�
�

Σ skβL L

��∨
Ji

Σi+1Σ∞+ G

��

∨
Ji

Σi+1Σ∞+ G

��

// Σ ski L

Σ ski L // Σ ski L
′,

where the triangle

ski L
′ // ski+1 L

′ //
∨
Ji

Σi+1Σ∞+ G // Σ ski L
′

is distinguished. Now, as in the previous case, a five lemma argument finishes the proof.
(ii) We do induction on τK−βK . If τK−βK = 0, then K is stably equivalent to a finite

wedge
∨

Σl0Σ∞+ G, for a fixed integer l0, and the claim holds since F (Σ∞+ G) = Σ∞+ G.
For the induction step, choose a distinguished triangle∨

IτK
ΣτK−1Σ∞+ G

α // skτK−1K // K //
∨
IτK

ΣτKΣ∞+ G.

as above. By the induction assumption, there is an Σ∞+ G-module M with a finite
(βM , τM )-cell structure such that βK ≤ βM , τM ≤ τK − 1 and F (M) ∼= skτK−1K.
Consider the composite

F (
∨
IτK

ΣτK−1Σ∞+ G)
∼= //

∨
IτK

ΣτK−1Σ∞+ G
α // skτK−1K

∼= // F (M).

Since τK − 1− βM ≤ τK − 1− βK ≤ n, part (i) yields that there exists

α′ ∈ [
∨
IτK

ΣτK−1Σ∞+ G,M ]G

such that F (α′) equals the latter composition. Next, choose a distinguished triangle∨
IτK

ΣτK−1Σ∞+ G
α′ //M // K ′ //

∨
IτK

ΣτKΣ∞+ G.

The Σ∞+ G-module K ′ has a finite (βM , τK)-cell structure. On the other hand, since F
is exact, one of the axioms for triangulated categories implies that there is a morphism
K −→ F (K ′) which makes the diagram∨

IτK
ΣτK−1Σ∞+ G

α //

∼=
��

skτK−1K //

∼=
��

K //

��

∨
IτK

ΣτKΣ∞+ G

∼=
��

F (
∨
IτK

ΣτK−1Σ∞+ G)
F (α′) // F (M) // F (K ′) // F (

∨
IτK

ΣτKΣ∞+ G).
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commute. Now another five lemma argument shows that in fact the map K −→ F (K ′)
is an isomorphism in Ho(Mod -Σ∞+ G) and thus the proof of part (ii) is completed.

(iii) By Proposition 4.1.2, any morphism α ∈ [Σn+1Σ∞+ G,Σ
∞
+ G]G factors over some

Σ∞+ G-module K which has a finite (1, n)-cell structure. By part (ii), there exists an
Σ∞+ G-module K ′ admitting a finite (βK′ , τK′)-cell structure and such that 1 ≤ βK′ ,
τK′ ≤ n and F (K ′) ∼= K. Hence we get a commutative diagram

F (Σn+1Σ∞+ G) ∼= Σn+1Σ∞+ G

))SSSSSSSSSSSSSSS
α // Σ∞+ G = F (Σ∞+ G)

F (K ′).

77nnnnnnnnnnnn

Since n + 1 − βK′ ≤ n + 1 − 1 = n and τK′ − 0 = τK′ ≤ n, part (i) implies that both
maps in the latter factorization are in the image of F . Hence, the map α is also in the
image of the functor F yielding that

F : [Σ∞+ G,Σ
∞
+ G]Gn+1 −→ [Σ∞+ G,Σ

∞
+ G]Gn+1

is surjective. As the source and target of this morphism are finite of the same cardinality,
we conclude that it is an isomorphism.

Corollary 4.1.4. Let F be as in 3.1.3. If the morphism

F : [Σ∞+ G,Σ
∞
+ G]G∗ −→ [Σ∞+ G,Σ

∞
+ G]G∗

is an isomorphism for ∗ ≤ 7, then the functor F restricts to an equivalence on the full
subcategory of free G-spectra.

Proof. It suffices to show that the map

F : [Σ∞+ G,Σ
∞
+ G]G∗ −→ [Σ∞+ G,Σ

∞
+ G]G∗

is an isomorphism of graded rings. Suppose this is not the case. Then we choose the
minimal n for which

F : [Σ∞+ G,Σ
∞
+ G]Gn −→ [Σ∞+ G,Σ

∞
+ G]Gn

is not an isomorphism. Now since by the assumption n − 1 + 1 = n ≥ 8, we get a
contradiction by Lemma 4.1.3 (iii).

4.2 Taking care of the dimensions ≤ 7

In this subsection we show that the map

F : [Σ∞+ G,Σ
∞
+ G]G∗ −→ [F (Σ∞+ G), F (Σ∞+ G)]G∗ = [Σ∞+ G,Σ

∞
+ G]G∗

is an isomorphism for ∗ ≤ 7. By Corollary 4.1.4 this will imply that the functor F
restricts to an equivalence on the full subcategory of free G-spectra.
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Recall that we have a preferred isomorphism [Σ∞+ G,Σ
∞
+ G]G∗

∼= π∗S[G]. Next, since
the functor F is compatible with the stable Burnside (orbit) category, F (g) = g for any
g ∈ G. On the other hand, the map F : π∗S[G] −→ π∗S[G] is a ring homomorphism
and thus we conclude that it is an isomorphism for ∗ = 0. Note that π∗S[G] is finite
for ∗ > 0 and the Hopf maps η, ν and σ multiplicatively generate π∗≤7S. Hence, it
remains to show that the Hopf maps (considered as elements of π∗S[G] via the unit map
S −→ Σ∞+ G) are in the image of F .

We start by showing that F (η) = η. Recall that the mod 2 Moore spectrum M(2)
in the 2-localized (non-equivariant) stable homotopy category is defined by the distin-
guished triangle

S 2 // S ι //M(2)
∂ // S1

and the map 2: M(2) −→M(2) factors as a composite

M(2)
∂ // S1

η // S ι //M(2).

Applying the functor G+ ∧L − : Ho(Mod -S) −→ Ho(Mod -Σ∞+ G) to the distinguished
triangle gives a distinguished triangle

Σ∞+ G
2 // Σ∞+ G

1∧ι // G+ ∧M(2)
1∧∂ // ΣΣ∞+ G

in Ho(Mod -Σ∞+ G). Further, the map 2: G+ ∧M(2) −→ G+ ∧M(2) factors as

G+ ∧M(2)
1∧∂ // ΣΣ∞+ G

η // Σ∞+ G
1∧ι // G+ ∧M(2).

One of the axioms for triangulated categories implies that we can choose an isomorphism

F (G+ ∧M(2)) ∼= G+ ∧M(2)

so that the diagram

Σ∞+ G
2 // Σ∞+ G

1∧ι // G+ ∧M(2)
1∧∂ //

∼=
��

ΣΣ∞+ G

∼=
��

F (Σ∞+ G) 2 // F (Σ∞+ G)
F (1∧ι)// F (G+ ∧M(2))

F (1∧∂)// F (ΣΣ∞+ G).

commutes. We fix the latter isomorphism once and for all and identify F (G+ ∧M(2))
with G+∧M(2). Note that under this identification the morphisms F (1∧ι) and F (1∧∂)
correspond to 1∧ ι and 1∧ ∂, respectively. Next, since F (2) = 2 and 2 = (1∧ ι)η(1∧ ∂),
one gets the identity

(1 ∧ ι)F (η)(1 ∧ ∂) = 2.

It is well known that the map 2: M(2) −→ M(2) is non-zero (In fact, [M(2),M(2)] ∼=
Z/4)(see e.g. [Sch10, Proposition 4]). Hence, 2 : G+ ∧M(2) −→ G+ ∧M(2) is non-zero
as there is a preferred ring isomorphism

[G+ ∧M(2), G+ ∧M(2)]G∗
∼= [M(2),M(2)]∗ ⊗ Z[G].
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Now it follows that F (η) 6= 0. Suppose F (η) =
∑

g∈A ηg, where A is a non-empty subset
of G. We want to show that A = {1}. The identity (1 ∧ ι)F (η)(1 ∧ ∂) = 2 yields

2 = (1 ∧ ι)(
∑
g∈A

ηg)(1 ∧ ∂) =
∑
g∈A

(1 ∧ ι)η(1 ∧ ∂)g =
∑
g∈A

2g.

Once again using the isomorphism [G+ ∧M(2), G+ ∧M(2)]G∗
∼= [M(2),M(2)]∗ ⊗ Z[G]

and the fact that 2 6= 0, we conclude that A = {1} and hence, F (η) = η.
Next, we show that ν is in the image of F . Let

F (ν) = mν +
∑

g∈G\{1}

nggν.

Recall that 2-locally we have an identity (see e.g. [Tod62, 14.1 (i)])

η3 = 4ν.

Since F (η) = η, after applying F to this identity one obtains

4ν = η3 = F (η3) = F (4ν) = 4mν +
∑

g∈G\{1}

4nggν.

As the element ν is a generator of the group π3S(2)
∼= Z/8, we conclude that m = 2k+1,

for some k ∈ Z, and for any g ∈ G \ {1}, ng = 2lg, lg ∈ Z. Hence

F (ν) = (2k + 1)ν +
∑

g∈G\{1}

2lggν.

Using that F (g) = g, we also deduce that

F (g0ν) = (2k + 1)g0ν +
∑

g∈G\{1}

2lgg0gν,

for any fixed g0 ∈ G \ {1}. Thus the image of F in π3S(2)[G] ∼=
⊕

G Z/8 is additively
generated by the rows a G×G-matrix of the form

2k + 1
2k + 1 even
even

. . .

2k + 1
2k + 1

 ,

where each diagonal entry is equal to 2k + 1 and all the other entries are even. Since
the determinant of this matrix is odd and hence a unit in Z/8, the homomorphism
F : π3S(2)[G] −→ π3S(2)[G] is an isomorphism and hence the element ν is in the image
of F .

54



Finally, it remains to show that σ ∈ π7S ⊂ π7S[G] is in the image of F . In order to do
so, we will need certain Toda bracket relations in π∗S[G]. First, we recall the definition
of a Toda bracket.

Suppose that

X
a // Y

b // Z
c //W

is a sequence in a triangulated category such that ba = 0 and cb = 0. Choose a distin-
guished triangle

X
a // Y

ι // C(a)
∂ // ΣX.

Since ba = 0, there exists λ : C(a) −→ Z such that λι = b. Further, the identity
cλι = cb = 0 implies that there exists t : ΣX −→W such that the diagram

X
a // Y

b //

ι

��

Z
c //W

C(a)

λ

=={{{{{{{{

∂
��

ΣX

t

>>||||||||||||||||||||

commutes. The set of all morphisms t : ΣX −→ W obtained in this way is called the
Toda bracket of the sequence above and is denoted by 〈a, b, c〉. In fact, 〈a, b, c〉 coincides
with a well-defined coset from

Hom(ΣX,W )/(c∗Hom(ΣX,Z) + a∗Hom(ΣY,W )).

The abelian group
c∗Hom(ΣX,Z) + a∗Hom(ΣY,W )

is called the indeterminacy of the Toda bracket 〈a, b, c〉.

Next, let us recall the following technical

Lemma 4.2.1. Suppose we are given a diagram

X
a //

a′
// Y

b //

b′
// Z

c //

c′
//W

in a triangulated category.
(i) If ba = 0 and cb = c′b = 0, then

〈a, b, c+ c′〉 ⊂ 〈a, b, c〉+ 〈a, b, c′〉.
(as subsets of [ΣX,W ]).

(ii) If ba = b′a = 0 and cb = cb′ = 0, then

〈a, b+ b′, c〉 = 〈a, b, c〉+ 〈a, b′, c〉.

(iii) If ba = ba′ = 0 and cb = 0, then

〈a+ a′, b, c〉 ⊂ 〈a, b, c〉+ 〈a′, b, c〉
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Proof. (i) Take any t ∈ 〈a, b, c + c′〉. By definition of a Toda bracket, there is a com-
mutative diagram

X
a // Y

b //

ι

��

Z
c+c′ //W

C(a)

λ

=={{{{{{{{

∂
��

ΣX,

t

>>}}}}}}}}}}}}}}}}}}}}

where

X
a // Y

ι // C(a)
∂ // ΣX

is a distinguished triangle. Since cλι = cb = 0, we can choose τ : ΣX −→ W , such that
τ∂ = cλ. Then τ ∈ 〈a, b, c〉. One has

(t− τ)∂ = (c+ c′)λ− cλ = c′λ.

Hence, t− τ ∈ 〈a, b, c′〉 and we conclude that

t = τ + (t− τ) ∈ 〈a, b, c〉+ 〈a, b, c′〉.

(ii) Take any t ∈ 〈a, b, c〉 and t′ ∈ 〈a, b′, c〉. By definition of a Toda bracket, we can
choose maps λ, λ′ : C(a) −→ Z such that

λι = b, t∂ = cλ

λ′ι = b′, t′∂ = cλ′.

These identities imply that (λ + λ′)ι = b + b′ and (t + t′)∂ = c(λ + λ′). Hence, we see
that t+ t′ ∈ 〈a, b+ b′, c〉.

Conversely, suppose s ∈ 〈a, b + b′, c〉. Choose any t ∈ 〈a, b, c〉. Then there are maps
λ̃, λ : C(a) −→ Z such that

λ̃ι = b+ b′ s∂ = cλ̃

λι = b, t∂ = cλ.

It follows that (λ̃ − λ)ι = b + b′ − b = b′ and (s − t)∂ = cλ̃ − cλ = c(λ̃ − λ). Hence
s = t+ s− t ∈ 〈a, b, c〉+ 〈a, b′, c〉.

(iii) The proof of this claim is dual to that of (i).

Next we prove the following simple lemma about Toda brackets in π∗S[G]:

Lemma 4.2.2. Let a ∈ πmS, b ∈ πnS and c ∈ πlS and suppose ba = 0 and cb = 0.
Further, assume that πm+n+1S = 0 and πn+l+1S = 0 (i.e., the Toda bracket 〈a, b, c〉 has
no indeterminacy). Then

〈ag, bh, cu〉 = 〈a, b, c〉uhg

in π∗S[G], for any g, h, u ∈ G.
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Proof. Let t = 〈a, b, c〉. Then there is a commutative diagram

Sm+n+l a // Sn+l b //

ι

��

Sl
c // S

C(a)

λ

::uuuuuuuuuu

∂
��

Sm+n+l+1

t

==zzzzzzzzzzzzzzzzzzzzz

in the stable homotopy category, where the triangle

Sm+n+l a // Sn+l ι // C(a)
∂ // Sm+n+l+1

is distinguished. (Here we slightly abuse notation by writing a and b, instead of their
shifts Σn+la and Σlb, respectively.) By applying the functor G+∧L− to the commutative
diagram, we see that t = 〈a, b, c〉 in π∗S[G]. Next, for any g ∈ G, the isomorphism of
triangles

Σm+n+lΣ∞+ G
ag //

g∼=
��

Σn+lΣ∞+ G
1∧ι // G+ ∧ C(a)

g−1(1∧∂) // Σm+n+l+1Σ∞+ G

g∼=
��

Σm+n+lΣ∞+ G
a // Σn+lΣ∞+ G

1∧ι // G+ ∧ C(a)
1∧∂ // Σm+n+l+1Σ∞+ G

in Ho(Mod -Σ∞+ G) implies that the triangle

Σm+n+lΣ∞+ G
ag // Σn+lΣ∞+ G

1∧ι // G+ ∧ C(a)
g−1(1∧∂) // Σm+n+l+1Σ∞+ G

is distinguished in Ho(Mod -Σ∞+ G). Finally, the commutative diagram

Σm+n+lΣ∞+ G
ag // Σn+lΣ∞+ G

bh //

1∧ι
��

ΣlΣ∞+ G
cu // Σ∞+ G

G+ ∧ C(a)

h(1∧λ)

77ooooooooooo

g−1(1∧∂)
��

Σm+n+l+1Σ∞+ G

tuhg

88qqqqqqqqqqqqqqqqqqqqqqqqqqq

in Ho(Mod -Σ∞+ G) completes the proof.

Now we are ready to show that the last Hopf element σ ∈ π7S ⊂ π7S[G] is in the
image of F . Recall that σ is a generator of π7S(2)

∼= Z/16. We use the Toda bracket
relation

8σ = 〈ν, 8, ν〉
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(see e.g. [Tod62, 5.13-14])) in π∗S(2) that holds without indeterminacy as π4S = 0. This
implies that

8σ = 〈ν, 8, ν〉

in π∗S[G]. Now since F is a triangulated functor, one obtains

8F (σ) = 〈F (ν), 8, F (ν)〉.

Recall that
F (ν) = (2k + 1)ν +

∑
g∈G\{1}

2lggν.

Let F (σ) = mσ +
∑

g∈G\{1} nggσ. By Lemma 4.2.1 and Lemma 4.2.2 and the relation
16σ = 0, we get

8(mσ+
∑

g∈G\{1}

nggσ) = 〈(2k+1)ν+
∑

g∈G\{1}

2lggν, 8, (2k+1)ν+
∑

g∈G\{1}

2lggν〉 = 8(2k+1)2σ.

Hence we see that m is odd and the numbers ng are even. Now a similar argument as
in the case of ν implies that F : π7S[G] −→ π7S[G] is surjective and hence σ is in the
image of F .

By combining the results of this subsection with Corollary 4.1.4 we conclude that
under the assumptions of 3.1.3, the functor F : Ho(SpOG,(2)) −→ Ho(SpOG,(2)) becomes an
equivalence when restricted to the full subcategory of free G-spectra, or equivalently,
when restricted to Ho((Mod -Σ∞+ G)(2)). In fact, we have proved the following more
general

Proposition 4.2.3. Let G be any finite group and

F : Ho((Mod -Σ∞+ G)(2)) −→ Ho((Mod -Σ∞+ G)(2))

an exact endofunctor which preserves arbitrary coproducts and such that

F (Σ∞+ G) = Σ∞+ G,

and F (g) = g for any g ∈ G. Then F is an equivalence of categories.
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5 Reduction to endomorphisms

In this section we will show that in order to prove Theorem 3.1.3 (and hence Theorem
1.1.1), it suffices to check that for any subgroup L ≤ G, the map of graded endomorphism
rings

F : [Σ∞+ G/L,Σ
∞
+ G/L]G∗ −→ [F (Σ∞+ G/L), F (Σ∞+ G/L)]G∗ = [Σ∞+ G/L,Σ

∞
+ G/L]G∗

is an isomorphism.

5.1 Formulation

Let G be a finite group and H and K subgroups of G. For the rest of this section we fix
once and for all a set {g} of double coset representatives for K \ G/H. Recall that for
any g ∈ G, the conjugated subgroup gHg−1 is denoted by gH. Further,

κg : [Σ∞+ G/H,Σ
∞
+ G/K]G∗ −→ [Σ∞+ G/(

gH ∩K),Σ∞+ G/(
gH ∩K)]G∗

will stand for the map which is defined by the following commutative diagram:

[Σ∞+ G/H,Σ
∞
+ G/K]G∗

g∗

��

κg // [Σ∞+ G/(
gH ∩K),Σ∞+ G/(

gH ∩K)]G∗

[Σ∞+ G/
gH,Σ∞+ G/K]G∗

(trKgH∩K)∗ // [Σ∞+ G/
gH,Σ∞+ G/(

gH ∩K)]G∗

(res
gH
gH∩K)∗

OO

(see Subsection 2.7). The aim of this section is to prove

Proposition 5.1.1. The map

[Σ∞+ G/H,Σ
∞
+ G/K]G∗

(κg)[g]∈K\G/H //
⊕

[g]∈K\G/H [Σ∞+ G/(
gH ∩K),Σ∞+ G/(

gH ∩K)]G∗

is a split monomorphism.

The author thinks that this statement should be known to experts. However, since
we were unable to find a reference, we decided to provide a detailed proof here. The
proof is mainly based on the equivariant Spanier-Whitehead duality ([LMSM86, III.2,
V.9], [May96, XVI.7]) and on a combinatorial analysis of certain pointed G-sets.

Before starting to prove Proposition 5.1.1, we explain how it reduces the proof of
Theorem 3.1.3 to endomorphisms. Indeed, there is a commutative diagram
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[Σ∞+ G/H,Σ
∞
+ G/K]G∗

g∗

��

F // [Σ∞+ G/H,Σ
∞
+ G/K]G∗

g∗

��
[Σ∞+ G/

gH,Σ∞+ G/K]G∗

(trKgH∩K)∗
��

F // [Σ∞+ G/
gH,Σ∞+ G/K]G∗

(trKgH∩K)∗
��

[Σ∞+ G/
gH,Σ∞+ G/(

gH ∩K)]G∗

(res
gH
gH∩K)∗

��

F // [Σ∞+ G/
gH,Σ∞+ G/(

gH ∩K)]G∗

(res
gH
gH∩K)∗

��
[Σ∞+ G/(

gH ∩K),Σ∞+ G/(
gH ∩K)]G∗

F // [Σ∞+ G/(
gH ∩K),Σ∞+ G/(

gH ∩K)]G∗ .

for any g ∈ G, which implies that the diagram

[Σ∞+ G/H,Σ
∞
+ G/K]G∗

(κg)[g]∈K\G/H //

F

��

⊕
[g]∈K\G/H [Σ∞+ G/(

gH ∩K),Σ∞+ G/(
gH ∩K)]G∗⊕

[g]∈K\G/H F

��
[Σ∞+ G/H,Σ

∞
+ G/K]G∗

(κg)[g]∈K\G/H //
⊕

[g]∈K\G/H [Σ∞+ G/(
gH ∩K),Σ∞+ G/(

gH ∩K)]G∗

commutes. If we now assume that for any subgroup L ≤ G, the map

F : [Σ∞+ G/L,Σ
∞
+ G/L]G∗ −→ [Σ∞+ G/L,Σ

∞
+ G/L]G∗

is an isomorphism, then the right vertical map in the latter commutative square is
an isomorphism. Proposition 5.1.1 implies that the upper horizontal map is injective.
Hence, by a simple diagram chase, it follows that the left vertical morphism is injective
as well. But now we know that for ∗ = 0 the morphism

F : [Σ∞+ G/H,Σ
∞
+ G/K]G∗ −→ [Σ∞+ G/H,Σ

∞
+ G/K]G∗

is the identity and for ∗ > 0 it has the same finite source and target (Subsection 2.7).
Combining this with the latter injectivity result allows us to conclude that the map

F : [Σ∞+ G/H,Σ
∞
+ G/K]G∗ −→ [Σ∞+ G/H,Σ

∞
+ G/K]G∗

is indeed an isomorphism for any integer ∗.
The rest of this section is devoted to the proof of Proposition 5.1.1.

5.2 Induction and coinduction

Let H be a subgroup of G and i : H ↪→ G denote the inclusion. The class of all finite di-
mensional orthogonal H-representations of the form i∗V , where V is a finite dimensional
orthogonal G-representation, contains the trivial representation and is closed under di-
rect sums. Hence, according to [MM02, II.2.2, III.4.2], there is a stable model category
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SpOH≤G of H-equivariant orthogonal spectra indexed on the class of such representa-
tions (cf. Subsection 2.6). Since finite dimensional orthogonal H-representations which
come from G-representations are cofinal in the class of all finite dimensional orthogonal
H-representations, [MM02, V.1.10] implies that the Quillen adjunction

id: SpOH≤G
//
SpOH : idoo

is a Quillen equivalence. Next, recall that there is a Quillen adjunction

GnH − : SpOH≤G
//
SpOG : ResGH ,oo

where (GnH X)(V ) = G+ ∧H X(i∗V ), for any X ∈ SpOH≤G and any finite dimensional

orthogonal G-representation V . The functor ResGH is just the restriction along the map
i : H ↪→ G. In fact, the functor ResGH preserves weak equivalences and moreover, it is
also a left Quillen functor as we see from the Quillen adjunction

ResGH : SpOG
// SpOH≤G : MapH(G+,−).oo

The right adjoint MapH(G+,−) is defined by MapH(G+, X)(V ) = MapH(G+, X(i∗V )).
Now since the functor id : SpOH≤G −→ SpOH is a left Quillen functor, we also get a Quillen
adjunction

ResGH : SpOG
//
SpOH : MapH(G+,−).oo

These Quillen adjunctions induce corresponding adjunctions on the derived level:

GnH − : Ho(SpOH) ∼ Ho(SpOH≤G) //
Ho(SpOG) : ResGH ,oo

and

ResGH : Ho(SpOG)
//
Ho(SpOH) : MapH(G+,−).oo

Here we slightly abuse notation by denoting point-set level functors and their associated
derived functors with same symbols. Next, note that the equivalence

Ho(SpOH) ∼ Ho(SpOH≤G)

is a preferred one and is induced from the Quillen equivalence at the very beginning of
this subsection.

The adjunctions recalled here are in fact special instances of the “change of groups”
and “change of universe” functors of [MM02, V]. The functor GnH − is usually called
the induction and the functor MapH(G+,−) is called the coinduction.

Let now GnHX denote the balanced product G+∧HX for any pointed G-set (space)
X. Consider the the following natural point-set level map:

wH : GnH X −→ MapH(G+, X)

given by

wH([g, x])(γ) =

{
γgx if γg ∈ H
∗ if γg /∈ H.

We remind the reader of the following result due to Wirthmüller:
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Proposition 5.2.1 (Wirthmüller Isomorphism, see e.g. [May03]). The map wH induces
a natural isomorphism between the derived functors

GnH − : Ho(SpOH) −→ Ho(SpOG)

and
MapH(G+,−) : Ho(SpOH) −→ Ho(SpOG).

That is, the left and right adjoint functors of

ResGH : Ho(SpOG) −→ Ho(SpOH)

are naturally isomorphic.

As a consequence of the Wirthmüller isomorphism, one gets that for any subgroup
L ≤ G, the equivariant spectrum Σ∞+ G/L is self-dual. Indeed, the map

Σ∞+ G/L
∼= GnL S wL //MapL(G+,S) ∼= Map(Σ∞+ G/L,S) ∼= D(Σ∞+ G/L)

is an isomorphism in Ho(SpOG), where D is the equivariant Spanier-Whitehead duality
functor ([LMSM86, II.6, III.2, V.9], [May96, XVI.7]).

We conclude the subsection with the following well-known lemma and its corollaries.

Lemma 5.2.2. Suppose G is a finite group and H and K arbitrary subgroups of G. Let
cg : gH −→ H denote the map cg(x) = g−1xg, g ∈ G. Then for any pointed H-set X,
the K-equivariant maps

K ngH∩K Res
gH
gH∩K(c∗gX) −→ ResGK(GnH X), [k, x] 7→ [kg, x],

induce a natural splitting∨
[g]∈K\G/H

K ngH∩K Res
gH
gH∩K(c∗gX) ∼= ResGK(GnH X).

Corollary 5.2.3. Suppose G is a finite group and H and K subgroups of G. Then for
any Y ∈ Ho(SpOH), there is a natural splitting∨

[g]∈K\G/H

K ngH∩K Res
gH
gH∩K(c∗gY ) ' ResGK(GnH Y ).

Note that if X is a pointed G-set, then there is a natural isomorphism

GnH ResGH X
∼= G/H+ ∧X

given by [g, x] 7→ ([g] ∧ gx).
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Corollary 5.2.4. The maps

G/(gH ∩K)+ −→ G/H+ ∧G/K+, [x] 7→ [xg] ∧ [x]

of pointed G-sets induce a natural splitting∨
[g]∈K\G/H G/(

gH ∩K)+
∼= // G/H+ ∧G/K+.

Proof. By the last observation and Lemma 5.2.2, we have a chain of isomorphisms of
pointed G-sets: ∨

[g]∈K\G/H

G/(gH ∩K)+
∼=

∨
[g]∈K\G/H

GnK (K/(gH ∩K))+
∼=

GnK (
∨

[g]∈K\G/H

K/(gH ∩K)+) ∼= GnK (
∨

[g]∈K\G/H

K ngH∩K S0) ∼=

GnK ResGK(GnH S0) ∼= GnK ResGK(G/H+) ∼= G/K+ ∧G/H+
∼= G/H+ ∧G/K+.

Here the last isomorphism is the twist. Going through these explicit isomorphisms we
see that any [x] ∈ G/(gH ∩K)+ is sent to [xg] ∧ [x] ∈ G/H+ ∧G/K+.

5.3 Proof of Proposition 5.1.1

As we already mentioned after Proposition 5.2.1, we have the isomorphisms

D(Σ∞+ G/L) ∼= Σ∞+ G/L, L ≤ G,

in Ho(SpOG), where D is the equivariant Spanier-Whitehead duality. It follows from
[LMSM86, II.6, III.2, V.9] (see also [Lew98]) that under these isomorphisms the transfer
maps correspond to restrictions. In particular, for any g ∈ G, the diagram

D(Σ∞+ G/(
gH ∩K))

D(trKgH∩K)
// D(Σ∞+ G/K)

Σ∞+ G/(
gH ∩K)

resKgH∩K //

∼=

OO

Σ∞+ G/K.

∼=

OO

commutes. Combining this with the Spanier-Whitehead duality, for any g ∈ G, one gets
the following commutative diagram with all vertical maps isomorphisms:

[Σ∞+ G/
gH,Σ∞+ G/K]G∗

∼=
��

(trKgH∩K)∗ // [Σ∞+ G/
gH,Σ∞+ G/(

gH ∩K)]G∗

∼=
��

[Σ∞+ G/
gH ∧D(Σ∞+ G/K), S]G∗

(1∧D(trKgH∩K))∗
//

∼=
��

[Σ∞+ G/
gH ∧D(Σ∞+ G/(

gH ∩K)), S]G∗

∼=
��

[Σ∞+ G/
gH ∧ Σ∞+ G/K, S]G∗

∼=
��

(1∧resKgH∩K)∗
// [Σ∞+ G/

gH ∧ Σ∞+ G/(
gH ∩K),S]G∗

∼=
��

[Σ∞(G/gH+ ∧G/K+),S]G∗
(1∧resKgH∩K)∗

// [Σ∞(G/gH+ ∧G/(gH ∩K)+),S]G∗
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Using again the Spanier-Whitehead duality and that Σ∞+ G/L, L ≤ G, is self-dual, we
also have commutative diagrams for every g ∈ G:

[Σ∞+ G/H,Σ
∞
+ G/K]G∗

g∗ //

∼=
��

[Σ∞+ G/
gH,Σ∞+ G/K]G∗

∼=
��

[Σ∞+ G/H ∧D(Σ∞+ G/K),S]G∗

∼=
��

(g∧1)∗ // [Σ∞+ G/
gH ∧D(Σ∞+ G/K), S]G∗

∼=
��

[Σ∞+ G/H ∧ Σ∞+ G/K,S]G∗
(g∧1)∗ //

∼=
��

[Σ∞+ G/
gH ∧ Σ∞+ G/K, S]G∗

∼=
��

[Σ∞(G/H+ ∧G/K+),S]G∗
(g∧1)∗ // [Σ∞(G/gH+ ∧G/K+), S]G∗

and

[Σ∞+ G/
gH,Σ∞+ G/(

gH ∩K)]G∗
(res

gH
gH∩K)∗

//

∼=
��

[Σ∞+ G/(
gH ∩K),Σ∞+ G/(

gH ∩K)]G∗

∼=
��

[Σ∞+ G/
gH ∧D(Σ∞+ G/(

gH ∩K)),S]G∗
(res

gH
gH∩K ∧1)∗

//

∼=
��

[Σ∞+ G/(
gH ∩K) ∧D(Σ∞+ G/(

gH ∩K)), S]G∗

∼=
��

[Σ∞+ G/
gH ∧ Σ∞+ G/(

gH ∩K),S]G∗
(res

gH
gH∩K ∧1)∗

//

∼=
��

[Σ∞+ G/(
gH ∩K) ∧ Σ∞+ G/(

gH ∩K), S]G∗

∼=
��

[Σ∞(G/gH+ ∧G/(gH ∩K)+), S]G∗
(res

gH
gH∩K ∧1)∗

// [Σ∞(G/(gH ∩K)+ ∧G/(gH ∩K)+),S]G∗ .

Hence by definition, for any g ∈ G, the morphism

κg : [Σ∞+ G/H,Σ
∞
+ G/K]G∗ −→ [Σ∞+ G/(

gH ∩K),Σ∞+ G/(
gH ∩K)]G∗

is isomorphic to the morphism induced by the composite

G/(gH ∩K)+ ∧G/(gH ∩K)+

res
gH
gH∩K ∧1

��

// G/H+ ∧G/K+

G/gH+ ∧G/(gH ∩K)+

1∧resKgH∩K // G/gH+ ∧G/K+

g∧1

OO

after applying the functor [Σ∞(−),S]G∗ . To simplify notations let us denote this compos-
ite of maps of pointed G-sets by ωg : G/(gH ∩K)+ ∧G/(gH ∩K)+ −→ G/H+ ∧G/K+.
Thus, in order to prove Proposition 5.1.1, it suffices to check that the map of pointed
G-sets ∨

[g]∈K\G/H(G/(gH ∩K)+ ∧G/(gH ∩K)+)
(ωg)[g]∈K\G/H// G/H+ ∧G/K+
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has a G-equivariant section. This follows from the commutative diagram of pointed
G-sets

∨
[g]∈K\G/H(G/(gH ∩K)+ ∧G/(gH ∩K)+)

(ωg)[g]∈K\G/H // G/H+ ∧G/K+

∨
[g]∈K\G/H G/(

gH ∩K)+,

∨
[g]∈K\G/H ∆g

llYYYYYYYYYYYYYYYYYYYYYYYYYY
∼=

OO

where the vertical map is the isomorphism from Corollary 5.2.4 and

∆g : G/(gH ∩K)+ −→ G/(gH ∩K)+ ∧G/(gH ∩K)+

is the diagonal defined by [x] 7→ [x] ∧ [x] for any g.
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6 Geometric fixed points and inflation

This section is devoted to a review of the geometric fixed point functor ΦN : SpOG −→ SpOJ
for any extension of finite groups

E : 1 // N
ι // G

ε // J // 1.

The main reference here is [MM02, V.4]. The eventual goal of this section is to establish
(recall) several useful statements needed for the proof of Theorem 3.1.3. The first half
of this section shows that the composite

ΦN ◦ ε∗ : Ho(SpOJ )
ε∗ // Ho(SpOG)

ΦN // Ho(SpOJ ),

where ε∗ : Ho(SpOJ ) −→ Ho(SpOG) is the inflation (pull-back of scalars) functor, is natu-
rally isomorphic to the identity functor. This result goes back to the classical reference
[LMSM86, II.9.10]. Here we provide the details of the proof based on the more recent
language of [MM02].

The second half of this section constructs a split short exact sequence that will play a
fundamental role in the inductive proof of Theorem 3.1.3.

6.1 Geometric fixed points: Definition and basic properties

We start by briefly reviewing the definitions of some indexing categories needed in the
construction of the geometric fixed point functor.

Recall from Subsection 2.4 the G -Top∗-category OG. The objects of OG are finite
dimensional orthogonal G-representations. For any finite dimensional orthogonal G-
representations V and W , the pointed morphism G-space from V to W is the Thom
space OG(V,W ). We also remind the reader that the category SpOG is equivalent to the
category of OG-spaces (which is the category of G -Top∗-enriched functors from OG to
G -Top∗). Further, let

E : 1 // N
ι // G

ε // J // 1

be an extension of finite groups. The next category we need is OE which is a J -Top∗-
category. The objects of OE are again finite dimensional orthogonal G-representations.
The pointed J-space OE(V,W ) is defined to be OG(V,W )N , for any V,W ∈ OG. Note
that OG(V,W )N has a natural J-action induced from the extension E. See more details
in [MM02, V.4].

Next, we define two functors

φ : OE −→ OJ , ν : OJ −→ OE .

The functor φ sends an orthogonal G-representation V to an orthogonal J-representation
V N and a morphism (f, x) ∈ OE(V,W ) = OG(V,W )N to (fN , x) ∈ OJ(V N ,WN ). The
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functor ν maps a J-representation V to the G-representation ε∗V . On morphisms, ν is
given by the identity

id : OJ(V,W ) −→ OJ(V,W ) = OG(ε∗V, ε∗W )N = OE(ε∗V, ε∗W ).

To simplify the exposition, we introduce the following notation. For any finite group Γ
and any Γ -Top∗-categories A and B, let FunΓ(A ,B) denote the category of Γ -Top∗-
enriched functors. As already noted, we have a preferred equivalence of categories

SpOG ∼ FunG(OG, G -Top∗)

for any finite group G [MM02, II.4.3] (Subsection 2.4).
Now we are finally ready to recall the definition of the geometric fixed point functor.

The functors φ and ν induce adjunctions

Pφ : FunJ(OE , J -Top∗) : // FunJ(OJ , J -Top∗) :Uφ.oo

and
Pν : FunJ(OJ , J -Top∗) : // FunJ(OE , J -Top∗) :Uν ,oo

where the right adjoints Uφ and Uν are precompositions with φ and ν, respectively, and
Pφ and Pν are J -Top∗-enriched left Kan extensions [Kel05, Sections 4.1-2]. Further, we
have a fixed point functor

FixN : FunG(OG, G -Top∗) −→ FunJ(OE , J -Top∗).

It is defined by FixN X(V ) = X(V )N on objects. On morphisms FixN is given by the
adjoint of

X(V )N ∧OG(V,W )N −→ X(W )N

which is the N -fixed point of the structure map

X(V ) ∧OG(V,W ) −→ X(W )

of the spectrum X.

Definition 6.1.1 (see [MM02, V.4.3]). The composite

Pφ ◦ FixN : FunG(OG, G -Top∗)
FixN // FunJ(OE , J -Top∗)

Pφ // FunJ(OJ , J -Top∗)

is called the geometric fixed point functor and is denoted by

ΦN : FunG(OG, G -Top∗) −→ FunJ(OJ , J -Top∗).

Having the preferred equivalences

SpOG ∼ FunG(OG, G -Top∗) and SpOJ ∼ FunJ(OJ , J -Top∗)

in mind we see that one also gets a functor ΦN : SpOG −→ SpOJ .
The geometric fixed point functor enjoys the following important properties:
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Proposition 6.1.2 ([MM02, V.4.5]). Let V be a finite dimensional orthogonal G-
representation and A a pointed G-space. Then there is a natural isomorphism of J-
spectra

ΦN (FVA) ∼= FV NA
N .

Furthermore, the functor ΦN : SpOG −→ SpOJ preserves cofibrations and acyclic cofibra-
tions.

Corollary 6.1.3. For any based G-space A, there is a natural isomorphism of J-spectra

ΦN (Σ∞A) ∼= Σ∞(AN ).

6.2 The inflation functor

As in the previous subsection we start with an extension of groups

E : 1 // N
ι // G

ε // J // 1.

The homomorphism ε : G −→ J induces a Quillen adjunction

ε∗ : SpOJ
// SpOG,N-fixed : (−)N ,oo

where SpOG,N-fixed is the stable model category of equivariant orthogonal G-spectra in-
dexed on the N -fixed universe. The left adjoint ε∗ is defined by

(ε∗X)(V ) = ε∗(X(V ))

for anyG-representation V which isN -fixed and hence can be regarded as a J-representation
by means of ε. The right adjoint (−)N is just the point-set level (categorical) fixed point
functor. The fact that ε∗ is a left Quillen functor follows from the following isomorphisms

ε∗(FVA) ∼= Fε∗V ε
∗A, ε∗(J/K) ∼= G/ε−1(K).

Next, we have the change of universe Quillen adjunction

id: SpOG,N-fixed
//
SpOG : id.oo

Combining this Quillen adjunction with the previous one gives a Quillen adjunction

ε∗ : SpOJ
//
SpOG : (−)N .oo

The left Quillen functor ε∗ : SpOJ −→ SpOG is referred to as the inflation functor.
The rest of this subsection is devoted to study the relation between the inflation

functor and the geometric fixed point functor. By Proposition 6.1.2 and Ken Brown’s
Lemma one can derive the functor ΦN and get the functor

ΦN : Ho(SpOG) −→ Ho(SpOJ ).
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We can also derive the left Quillen functor ε∗ and obtain the derived inflation

ε∗ : Ho(SpOJ ) −→ Ho(SpOG).

Our aim in this subsection is to show that the composite

ΦN ◦ ε∗ : Ho(SpOJ )
ε∗ // Ho(SpOG)

ΦN // Ho(SpOJ )

is isomorphic to the identity functor. We start by defining a point-set level natural
transformation

id −→ ΦNε∗.

We follow [MM02, V.4]. By definition of the functor

FixN : FunG(OG, G -Top∗) −→ FunJ(OE , J -Top∗),

one gets

(−)N = Uν FixN : FunG(OG, G -Top∗) −→ FunJ(OJ , J -Top∗).

Next, since φν = id, we see that UνUφ = id holds. Now the unit η : id −→ UφPφ of the
adjunction (Pφ, Uφ) induces a natural transformation

XN = Uν FixN X
Uνη FixN // UνUφPφ FixN X = Pφ FixN X = ΦNX.

As there is an evident point-set level natural isomorphism (ε∗X)N ∼= X (which does not
necessarily hold on the derived level!), we get a natural transformation

ω : id ∼= Uν FixN ε∗
Uνη FixN ε∗ // ΦNε∗.

If we precompose this natural transformation with the functor

F0 = Σ∞ : J -Top∗ −→ SpOJ

we get a chain of isomorphisms of natural transformations:

F0
ωF0 //

∼=
��

ΦNε∗F0

∼=
��

Uν FixN ε∗F0

Uνη FixN ε∗F0 //

∼=
��

UνUφPφ FixN ε∗F0

∼=
��

Uν FixN F0ε
∗ Uνη FixN F0ε∗ //

∼=
��

UνUφPφ FixN F0ε
∗

∼=
��

UνF0(−)Nε∗
UνηF0(−)Nε∗ //

∼=
��

UνUφPφF0(−)Nε∗

∼=
��

UνF0
UνηF0 // UνUφPφF0,
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where the functor F0 : J -Top∗ −→ FunJ(OE , J -Top∗) is defined by

F0A(V ) = OE(0, V ) ∧A = SV
N ∧A.

(Here we decided to abuse notations by denoting two different functors by F0 in order
not to make the notations even more complicated.) We want to deduce that the upper
horizontal map in this diagram is an isomorphism of functors. For this we will now show
that the map

F0
ηF0 // UφPφF0

is an isomorphism. The following lemma from enriched category theory will help us:

Lemma 6.2.1. Suppose V is a closed symmetric monoidal category, A and B skeletally
small V -categories, C a bicomplete V -category and K : A −→ B a V -functor. Let
FAC : A −→ C denote the V -functor

A (A,−)⊗ C : A −→ C

for A ∈ A and C ∈ C . The evaluation at FAC of the unit

id −→ K∗ LanK

of the adjunction

LanK : FunV (A ,C ) // FunV (B,C ) :K∗oo

is isomorphic to the natural transformation

A (A,−)⊗ C K⊗C // B(K(A),K(−))⊗ C.

Proof. By the enriched Yoneda lemma [Kel05, (3.71)], for any V -functor G : A −→ C ,
there is a natural isomorphism

GA′′ ∼=
∫ A′∈A

A (A′, A′′)⊗GA′.

It follows from [Kel05, (3.71), (4.25)] and the proof of [Kel05, Proposition 4.23] that the
unit

G −→ LanK G ◦K

is given by

G ∼=
∫ A′∈A

A (A′,−)⊗GA′
∫A′∈A K⊗GA′

// ∫ A′∈A
B(KA′,K(−))⊗GA′ ∼= LanK G ◦K.

The latter morphism specializes to

∫ A′∈A
A (A′,−)⊗A (A,A′)⊗ C

∫A′∈A K⊗A (A,A′)⊗C
// ∫ A′∈A

B(K(A′),K(−))⊗A (A,A′)⊗ C
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if G = FAC. But now again the enriched Yoneda lemma [Kel05, (3.71)] implies that this
map is isomorphic to

A (A,−)⊗ C K⊗C // B(K(A),K(−))⊗ C.

Corollary 6.2.2. The natural transformation

F0
ηF0 // UφPφF0

is an isomorphism of functors.

Proof. Since F0A = OE(0,−) ∧ A, it follows from Lemma 6.2.1 that the evaluation of
ηF0 at A ∈ J -Top∗ is isomorphic to

φ ∧A : OE(0,−) ∧A −→ OJ(φ(0), φ(−)) ∧A

which is an isomorphism by definition of φ.

Corollary 6.2.3. The natural transformation

ωF0 : F0 −→ ΦNε∗F0

is an isomorphism of functors.

The natural transformation ω : id −→ ΦNε∗ descends to a natural transformation
on the homotopy level. Further, note that the functor ΦN : Ho(SpOG) −→ Ho(SpOJ ) is
triangulated. This follows either by an explicit verification or by [MM02, V.4.17]. Next,
the general description of the unit G −→ K∗(LanK G) in the proof of 6.2.1 implies that
the diagram

S1 ∧ (−)

η(S1∧(−)) ))TTTTTTTTTTTTTTT

S1∧η // S1 ∧ UφPφ
∼=
��

UφPφ(S1 ∧ (−))

commutes. Hence the diagram

S1 ∧ (−)

ω(S1∧(−)) ))TTTTTTTTTTTTTTT
S1∧ω // S1 ∧ ΦNε∗

∼=
��

ΦNε∗(S1 ∧ (−))

commutes, yielding that the derived natural transformation id −→ ΦNε∗ of endofunctors
on Ho(SpOJ ) is triangulated.

Theorem 6.2.4 (cf. [LMSM86, II.9.10]). The derived natural transformation

ω : id −→ ΦNε∗

of endofunctors on Ho(SpOJ ) is an isomorphism.
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Proof. By Corollary 6.2.3, the derived natural transformation ω : id −→ ΦNε∗ is an
isomorphism when evaluated on Σ∞+ J/K for any subgroup K ≤ J . Next, note that ΦN

commutes with infinite coproducts. Since the set of compact objects {Σ∞+ J/K | K ≤ J}
generates the triangulated category Ho(SpOJ ) and ω : id −→ ΦNε∗ is triangulated, the
desired result follows.

Now we start the preparation for the construction of the short exact sequence that we
advertised at the beginning of this section.

6.3 Weyl groups

Let G be a finite group and H a subgroup of G. Then H is a normal subgroup of its
normalizer N(H) = {g ∈ G | gH = Hg} and the quotient group W (H) = N(H)/H
is called the Weyl group of H. According to the previous subsection, the short exact
sequence

1 // H
ι // N(H)

ε //W (H) // 1

gives us the geometric fixed point functor

ΦH : Ho(SpON(H)) −→ Ho(SpOW (H))

and the inflation functor

ε∗ : Ho(SpOW (H)) −→ Ho(SpON(H)).

By slightly abusing notations, we will denote the composite functor

ΦH ◦ ResGN(H) : Ho(SpOG) −→ Ho(SpOW (H))

also by ΦH . It then follows from Corollary 6.1.3 that there is an isomorphism

ΦH(Σ∞+ G/H) ∼= Σ∞+ (G/H)H

in Ho(SpOW (H)). (This holds already on the point-set level.) Since (G/H)H = W (H) as

W (H)-sets, one in fact gets an isomorphism

ΦH(Σ∞+ G/H) ∼= Σ∞+ W (H)

in Ho(SpOW (H)). Further, by definition, one has ε∗(Σ∞+ W (H)) = Σ∞+ N(H)/H in Ho(SpON(H))
and hence we get

GnN(H) ε
∗(Σ∞+ W (H)) = Σ∞+ G/H.

Having in mind these identifications, we are now ready to prove the main technical result
of this subsection:

Proposition 6.3.1. The composite

[Σ∞+ W (H),Σ∞+ W (H)]
W (H)
∗

GnN(H)ε
∗
// [Σ∞+ G/H,Σ

∞
+ G/H]G∗

ΦH // [Σ∞+ W (H),Σ∞+ W (H)]
W (H)
∗

is an isomorphism.
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Proof. By Theorem 6.2.4 we have the natural isomorphism

ω : id
∼= // ΦHε∗

which is a triangulated transformation. Since (GnN(H)−,ResGN(H)) is a Quillen adjunc-

tion (Subsection 5.2), the derived unit map

id
η // ResGN(H)(GnN(H) −)

is a triangulated transformation as well. Hence, the composite

ΦHηε∗ ◦ ω : id
ω // ΦHε∗

ΦHηε∗// ΦH(ResGN(H)(GnN(H) ε
∗))

is a triangulated transformation. Moreover, it follows from Theorem 6.2.4 and the iden-
tifications we did before Proposition 6.3.1 that this natural transformation is an iso-
morphism in Ho(SpOW (H)) when applied to Σ∞+ W (H). Consequently, the restriction of

the functor ΦH(ResGN(H)(GnN(H) ε
∗)) to the localizing subcategory of Ho(SpOW (H)) gen-

erated by Σ∞+ W (H) is isomorphic to the identity functor and thus an equivalence of
categories. This implies the desired result.

6.4 The short exact sequence

Suppose G is a finite group and F a set of subgroups of G. The set F is said to be a
family of subgroups of G if it is closed under conjugation and taking subgroups.

Recall that for any finite group G and any family F , there is a classifying space (G-
CW complex) EF characterized up to G-homotopy equivalence by the property that
EFH is contractible if H ∈ F and EFH = ∅ if H /∈ F (see e.g. [Elm83]).

Let P denote the family of proper subgroups of G. Consider the equivariant map

EP+
proj // S0 which sends the elements of EP to the non-base point of S0. The

mapping cone sequence of this map (called the isotropy separation sequence) combined
with the tom Dieck splitting [tD87, II.7.7] gives the following well-known:

Proposition 6.4.1. Suppose G is a finite group. Then there is a split short exact
sequence

0 // [S,Σ∞+ EP]G∗
proj∗ // [S,S]G∗

ΦG // [S,S]∗ // 0.

Now suppose H is a subgroup of G. Then for any X ∈ Ho(SpOG), there is a natural
isomorphism

GnH ResGH X
∼= G/H+ ∧L X

given on the point-set level by [g, x] 7→ ([g] ∧ gx). In particular,

GnH S ∼= Σ∞+ G/H.
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Having in mind this preferred isomorphism, we will once and for all identify GnH S with
Σ∞+ G/H. Next, let P[H] denote the family of proper subgroups of H. Note that this is
a family with respect to H and not necessarily with respect to the whole group G. Here
is the main result of this section which is an important tool in the proof of Theorem
3.1.3:

Proposition 6.4.2. Let G be a finite group and H its subgroup. Then there is a split
short exact sequence

[Σ∞+ G/H,GnH Σ∞+ EP[H]]G∗
// proj∗ // [Σ∞+ G/H,Σ

∞
+ G/H]G∗

ΦH // // [Σ∞+ W (H),Σ∞+ W (H)]
W (H)
∗ ,

where the morphism proj : GnH Σ∞+ EP[H] −→ Σ∞+ G/H is defined as the composite

GnH Σ∞+ EP[H]
GnHproj // GnH S ∼= Σ∞+ G/H.

Before proving this proposition we have to recall some important technical facts.

6.5 Technical preparation

It immediately follows from the definition that for any K ∈ P[H], the set of H-fixed
points of G/K is empty. Together with Corollary 6.1.3 this implies that ΦH(Σ∞+ G/K) =
∗ in Ho(SpOW (H)). Since the classifying space EP[H] is built out of H-cells of orbit type

H/K with K ≤ H and K 6= H one obtains:

Proposition 6.5.1. Let G be a finite group. For any subgroup H ≤ G, the G-CW
complex G×HEP[H] is built out of G-cells of orbit type G/K with K ≤ H and K 6= H.
Furthermore, ΦH(GnH Σ∞+ EP[H]) = ∗ in Ho(SpOW (H)).

Next, we recall that the functor MapH(G+,−) : Ho(SpOH) −→ Ho(SpOG) is right adjoint
to ResGH . Recall also the map wH : GnH(−) −→ MapH(G+,−) inducing the Wirthmüller
isomorphism (Proposition 5.2.1). The following proposition is an immediate consequence
of the Wirthmüller isomorphism.

Proposition 6.5.2. For any Y in Ho(SpOH), the natural map

[S, GnH Y ]G∗
wH∗ // [S,MapH(G+, Y )]G∗

∼= [ResGH(S), Y ]H∗ = [S, Y ]H∗

is an isomorphism.

Corollary 6.5.3. Let G be a finite group and H and K subgroups of G. Then for any
spectrum Y ∈ Ho(SpOH), there is a natural isomorphism

[Σ∞+ G/K,GnH Y ]G∗
∼=

⊕
[g]∈K\G/H

[S,Res
gH
K∩gH(c∗g(Y ))]K∩

gH
∗ .
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Proof. By adjunction, Corollary 5.2.3 and Proposition 6.5.2, one has the following chain
of isomorphisms:

[Σ∞+ G/K,GnH Y ]G∗
∼= [GnK S, GnH Y ]G∗

∼= [S,ResGK(GnH Y )]K∗
∼=

[S,
∨

[g]∈K\G/H

K nK∩gH Res
gH
K∩gH(c∗g(Y ))]K∗

∼=
⊕

[g]∈K\G/H

[S,K nK∩gH Res
gH
K∩gH(c∗g(Y ))]K∗

∼=

⊕
[g]∈K\G/H

[S,Res
gH
K∩gH(c∗g(Y ))]K∩

gH
∗ .

6.6 Proof of Proposition 6.4.2

It follows from Proposition 6.3.1 that

ΦH : [Σ∞+ G/H,Σ
∞
+ G/H]G∗ −→ [Σ∞+ W (H),Σ∞+ W (H)]

W (H)
∗

is a retraction and thus in particular surjective. Further, Proposition 6.5.1 implies that

ΦH ◦ proj∗ = 0.

Hence, it remains to show that the map

proj∗ : [Σ∞+ G/H,GnH Σ∞+ EP[H]]G∗ −→ [Σ∞+ G/H,Σ
∞
+ G/H]G∗

is injective and Ker ΦH ⊂ Im(proj∗). For this we choose a set {g} of double coset
representatives for H \G/H. By Corollary 6.5.3, there is a commutative diagram with
all vertical arrows isomorphisms

[Σ∞+ G/H,GnH Σ∞+ EP[H]]G∗

=

��

proj∗ // [Σ∞+ G/H,Σ
∞
+ G/H]G∗

∼=
��

[Σ∞+ G/H,GnH Σ∞+ EP[H]]G∗

∼=
��

(GnHproj)∗ // [Σ∞+ G/H,GnH S]G∗

∼=
��⊕

[g]∈H\G/H [S,Σ∞+ Res
gH
H∩gH(c∗g(EP[H]))]H∩

gH
∗

⊕
[g]∈H\G/H

(proj)∗

//
⊕

[g]∈H\G/H [S,S]H∩
gH

∗ .

We will now identify the summands of the lower horizontal map. For this one has to
consider two cases:

Case 1. H∩gH = H: In this case Res
gH
H∩gH(c∗g(EP[H])) = c∗g(EP[H]) is a model for

classifying space of P[H] (and hence G-homotopy equivalent to EP[H])). By Proposi-
tion 6.4.1, we get a short exact sequence

0 // [S,Σ∞+ Res
gH
H∩gH(c∗g(EP[H]))]H∩

gH
∗

proj∗ // [S, S]H∩
gH

∗
ΦH∩

gH
// [S, S]∗ // 0.
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Case 2. H ∩ gH is a proper subgroup of H: In this case Res
gH
H∩gH(c∗g(EP[H]))

is an (H ∩ gH)-contractible cofibrant (H ∩ gH)-space and hence the map

[S,Σ∞+ Res
gH
H∩gH(c∗g(EP[H]))]H∩

gH
∗

proj∗ // [S,S]H∩
gH

∗

is an isomorphism.
Altogether, after combining the latter diagram with Case 1. and Case 2., we see that

the map

proj∗ : [Σ∞+ G/H,GnH Σ∞+ EP[H]]G∗ −→ [Σ∞+ G/H,Σ
∞
+ G/H]G∗

is injective. It still remains to check that Ker ΦH ⊂ Im(proj∗). For this, first note that
H ∩ gH = H if and only if g ∈ N(H). Further, if g ∈ N(H), then the double coset class
HgH is equal to gH. Hence, the set of those double cosets [g] ∈ H \G/H for which the
equality H ∩ gH = H holds is in bijection with the Weyl group W (H). Consequently,
using the latter diagram and Case 1. and Case 2., one gets an isomorphism

[Σ∞+ G/H,Σ
∞
+ G/H]G∗ / Im(proj∗)

∼=
⊕
W (H)

[S,S]∗ ∼= [Σ∞+ W (H),Σ∞+ W (H)]
W (H)
∗ .

On the other hand, we have already checked that

ΦH : [Σ∞+ G/H,Σ
∞
+ G/H]G∗ −→ [Σ∞+ W (H),Σ∞+ W (H)]

W (H)
∗

is surjective and this yields an isomorphism

[Σ∞+ G/H,Σ
∞
+ G/H]G∗ /Ker ΦH ∼= [Σ∞+ W (H),Σ∞+ W (H)]

W (H)
∗ .

Combining this with the previous isomorphism implies that the graded abelian group
[Σ∞+ G/H,Σ

∞
+ G/H]G∗ / Im(proj∗) is isomorphic to [Σ∞+ G/H,Σ

∞
+ G/H]G∗ /Ker ΦH . Now if

the grading ∗ > 0, then [Σ∞+ G/H,Σ
∞
+ G/H]G∗ is finite and it follows that Im(proj∗) and

Ker ΦH are finite groups of the same cardinality (Subsection 2.7). Since we already
know that Im(proj∗) ⊂ Ker ΦH (We have already observed that this is a consequence of
Proposition 6.5.1.), one finally gets the equality Im(proj∗) = Ker ΦH . For ∗ = 0 a Five
lemma argument completes the proof. We do not give here the details of the case ∗ = 0
as it is irrelevant for our proof of Theorem 3.1.3. �
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7 Proof of the main theorem

In this section we complete the proof of Theorem 3.1.3 and hence of Theorem 1.1.1.

We start by recalling from [MM02, IV.6] the F -model structure on the category of
G-equivariant orthogonal spectra, where F is a family of subgroups of a finite group G.

7.1 The F -model structure and localizing subcategory determined by F

Let G be a finite group and F a family of subgroups of G.

Definition 7.1.1. A morphism f : X −→ Y of G-equivariant orthogonal spectra is
called an F -equivalence if it induces isomorphisms

f∗ : πH∗ X
∼= // πH∗ Y

on H-equivariant homotopy groups for any H ∈ F . Similarly, a morphism g : X −→ Y
in Ho(SpOG) is called an F -equivalence if it induces an isomorphism on πH∗ for anyH ∈ F .

The category of G-equivariant orthogonal spectra has a stable model structure with
weak equivalences the F -equivalences and with cofibrations the F -cofibrations [MM02,
IV.6.5]. By restricting our attention to those orbits G/H which satisfy H ∈ F , we can
obtain the generating F -cofibrations and acyclic F -cofibrations in a similar way as for
the absolute case of SpOG [MM02, III.4] (see Subsection 2.5 and Subsection 2.6). We will
denote this model category by SpOG,F .

Any F -equivalence can be detected in terms of geometric fixed points. To see this we
need the following proposition which relates the classifying space EF with the concept
of an F -equivalence:

Proposition 7.1.2 ([MM02, IV.6.7]). A morphism f : X −→ Y of G-equivariant or-
thogonal spectra is an F -equivalence if and only if 1 ∧ f : EF+ ∧X −→ EF+ ∧ Y is a
G-equivalence, i.e., a stable equivalence of orthogonal G-spectra.

Corollary 7.1.3. A morphism f : X −→ Y of G-equivariant orthogonal spectra is an
F -equivalence if and only if for any H ∈ F , the induced map

ΦH(ResGH(f)) : ΦH(ResGH(X)) −→ ΦH(ResGH(Y ))

on H-geometric fixed points is a stable equivalence of (non-equivariant) spectra.

Proof. By Proposition 7.1.2, f : X −→ Y is an F -equivalence if and only if

1 ∧ f : EF+ ∧X −→ EF+ ∧ Y

is a stable equivalence of orthogonal G-spectra. But the latter is the case if and only if

ΦH(ResGH(1 ∧ f)) : ΦH(ResGH(EF+ ∧X)) −→ ΦH(ResGH(EF+ ∧ Y ))

is a stable equivalence of spectra for any subgroup H ≤ G ([May96, XVI.6.4]). Now
using that the restriction and geometric fixed points commute with smash products as
well as the defining properties of EF , we obtain the desired result.
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By definition of F -equivalences and F -cofibrations we get a Quillen adjunction

id: SpOG,F
//
SpOG : id.oo

After deriving this Quillen adjunction one obtains an adjunction

L : Ho(SpOG,F ) //
Ho(SpOG) :Roo

on the homotopy level. We now examine the essential image of the left adjoint functor
L. Since a weak equivalence in SpOG is also a weak equivalence in SpOG,F , the unit

id −→ RL

of the adjunction (L,R) is an isomorphism of functors. Hence the functor

L : Ho(SpOG,F ) −→ Ho(SpOG)

is fully faithful.

Proposition 7.1.4. For any X ∈ SpOG,F , there are natural isomorphisms

L(X) ∼= EF+ ∧L X ∼= EF+ ∧X.

Proof. Let λX : Xc −→ X be a (functorial) cofibrant replacement of X in SpOG,F . By
[MM02, Theorem IV.6.10], the projection map EF+ ∧Xc −→ Xc is a weak equivalence
in SpOG. On the other hand, Proposition 7.1.2 implies that the morphism of G-spectra
1 ∧ λX : EF+ ∧ Xc −→ EF+ ∧ X is a weak equivalence in SpOG. This completes the
proof.

Next, note that the triangulated category Ho(SpOG,F ) is compactly generated with

{Σ∞+ G/H | H ∈ F}

as a set of compact generators. Indeed, this follows from the following chain of isomor-
phisms:

[Σ∞+ G/H,X]
Ho(SpOG,F )
∗ ∼= [EF+ ∧ Σ∞+ G/H,EF+ ∧X]G∗

∼=
[Σ∞+ G/H,EF+ ∧X]G∗

∼= πH∗ (EF+ ∧X) ∼= πH∗ X.

The first isomorphism in this chain follows from Proposition 7.1.4 and from the fact
that L is fully faithful. The second isomorphism holds since H ∈ F . Finally, the last
isomorphism is an immediate consequence of Corollary 7.1.3.

Proposition 7.1.5. The essential image of the functor L : Ho(SpOG,F ) −→ Ho(SpOG) is
exactly the localizing subcategory generated by {Σ∞+ G/H | H ∈ F}.
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Proof. The functor L is exact and as we already noted, Ho(SpOG,F ) is generated by the
set {Σ∞+ G/H | H ∈ F}. Next, by Proposition 7.1.4, for any H ∈ F ,

L(Σ∞+ G/H) ∼= EF+ ∧ Σ∞+ G/H.

The projection map EF+ ∧ Σ∞+ G/H −→ Σ∞+ G/H is a weak equivalence in SpOG. The
rest follows from the fact that L is full.

Next, we need the following simple lemma from category theory.

Lemma 7.1.6. Let

L : D
//
E :R.oo

be an adjunction and assume that the unit

id −→ RL

is an isomorphism (or, equivalently, L is fully faithful). Further, suppose we are given
morphisms

X
α // Z Y

βoo

in E such that X and Y are in the essential image of L and R(α) and R(β) are isomor-

phisms in D . Then there is an isomorphism γ : X
∼= // Y in E such that the diagram

X
γ //

α
  @@@@@@@ Y

β��~~~~~~~

Z

commutes.

Proof. One has the commutative diagram

LR(X)

counit∼=
��

LR(α)

∼=
// LR(Z)

counit

��

LR(Y )
LR(β)

∼=
oo

counit∼=
��

X
α // Z Y,

βoo

where the left and right vertical arrows are isomorphisms since X and Y are in the

essential image of L and the functor L is fully faithful. We can choose γ : X
∼= // Y to

be the composite

X
counit−1

// LR(X)
LR(α) // LR(Z)

(LR(β))−1

// LR(Y )
counit // Y.
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Corollary 7.1.7. Let F be a family of subgroups of G and suppose X and Y are in
the essential image of L : Ho(SpOG,F ) −→ Ho(SpOG) (which is the localizing subcategory
generated by {Σ∞+ G/H | H ∈ F} according to 7.1.5). Further assume that we have
maps

X
α // Z Y

βoo

such that πH∗ α and πH∗ β are isomorphisms for any H ∈ F (Or, in other words, α and

β are F -equivalences.). Then there is an isomorphism γ : X
∼= // Y such that the

diagram

X
γ //

α
  @@@@@@@ Y

β��~~~~~~~

Z

commutes.

Proof. We apply the previous lemma to the adjunction

L : Ho(SpOG,F ) //
Ho(SpOG) :Roo

and use the isomorphism πH∗ R(T ) ∼= πH∗ T , H ∈ F .

7.2 Inductive strategy and preservation of induced classifying spaces

Recall that we are given an exact functor of triangulated categories

F : Ho(SpOG,(2) ) // Ho(SpOG,(2) )

that preserves arbitrary coproducts and such that

F (Σ∞+ G/H) = Σ∞+ G/H, H ≤ G,

and
F (g) = g, F (resHK) = resHK , F (trHK) = trHK , g ∈ G, K ≤ H ≤ G.

We want to show that F is an equivalence of categories. Proposition 5.1.1 implies that
in order to prove that F is an equivalence, it suffices to check that for any subgroup
H ≤ G, the map between graded endomorphism rings

F : [Σ∞+ G/H,Σ
∞
+ G/H]G∗ −→ [F (Σ∞+ G/H), F (Σ∞+ G/H)]G∗ = [Σ∞+ G/H,Σ

∞
+ G/H]G∗

is an isomorphism. The strategy is to do this inductively. We proceed by induction on
the cardinality of H. The induction starts with the case H = e. Proposition 4.2.3 tells
us that the map

F : [Σ∞+ G,Σ
∞
+ G]G∗ −→ [Σ∞+ G,Σ

∞
+ G]G∗

is an isomorphism and hence the basis step is proved. The induction step follows from
the next proposition which is one of the main technical results of this thesis:
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Proposition 7.2.1. Let G be a finite group and H a subgroup of G. Assume that for
any subgroup K of G which is proper subconjugate to H, the map

F : [Σ∞+ G/K,Σ
∞
+ G/K]G∗ −→ [F (Σ∞+ G/K), F (Σ∞+ G/K)]G∗ = [Σ∞+ G/K,Σ

∞
+ G/K]G∗

is an isomorphism. Then the map

F : [Σ∞+ G/H,Σ
∞
+ G/H]G∗ −→ [F (Σ∞+ G/H), F (Σ∞+ G/H)]G∗ = [Σ∞+ G/H,Σ

∞
+ G/H]G∗

is an isomorphism.

Before starting to prove this proposition, one has to show that under its assumptions
the functor F preserves a certain induced classifying space. More precisely, let P[H]
denote the family of proper subgroups of H. This is a family with respect to H and not
necessarily with respect to the whole group G. Next, let

proj : GnH Σ∞+ EP[H] −→ Σ∞+ G/H

be the projection (as in Subsection 6.4). The following is valid:

Lemma 7.2.2. Suppose G is a finite group and H a subgroup of G. Assume that for
any subgroup K of G which is proper subconjugate to H, the map

F : [Σ∞+ G/K,Σ
∞
+ G/K]G∗ −→ [Σ∞+ G/K,Σ

∞
+ G/K]G∗

is an isomorphism. Then there is an isomorphism

γ : F (GnH Σ∞+ EP[H])
∼= // GnH Σ∞+ EP[H]

such that the diagram

F (GnH Σ∞+ EP[H])

F (proj)
��

γ

∼= // GnH Σ∞+ EP[H]

proj

��
F (Σ∞+ G/H) Σ∞+ G/H,

commutes.

Proof. Let P[H|G] denote the family of subgroups of G which are proper subconjugate
to H. By Proposition 7.1.5, the essential image of the fully faithful embedding

L : Ho(SpOG,P[H|G]) −→ Ho(SpOG).

is the localizing subcategory generated by the set {Σ∞+ G/K | K ∈P[H|G]}. Obviously,
the spectrum GnH Σ∞+ EP[H] is an object of this localizing subcategory as the H-CW
complex EP[H] is built out of H-cells of orbit type H/K with K ≤ H and K 6= H.
Next, since the endofunctor F : Ho(SpOG) −→ Ho(SpOG) is triangulated and F (Σ∞+ G/L) =
Σ∞+ G/L for any L ≤ G, the spectrum F (GnH Σ∞+ EP[H]) is contained in the essential
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image of L : Ho(SpOG,P[H|G]) −→ Ho(SpOG) as well. Hence by Corollary 7.1.7, it suffices
to show the maps in the zigzag

F (GnH Σ∞+ EP[H])
F (proj)// F (Σ∞+ G/H) = Σ∞+ G/H GnH Σ∞+ EP[H]

projoo

are P[H|G]-equivalences (which means that they induce isomorphisms on πK∗ (−) for
any subgroup K ∈P[H|G].). It is easy to see that the map

proj : GnH Σ∞+ EP[H] −→ Σ∞+ G/H

is P[H|G]-equivalence. Indeed, by Corollary 6.5.3, for any K ∈ P[H|G], one has a
commutative diagram

πK∗ (GnH Σ∞+ EP[H])
proj∗ //

∼=
��

πK∗ (Σ∞+ G/H)

∼=
��

[Σ∞+ G/K,GnH Σ∞+ EP[H]]G∗
proj∗ //

∼=
��

[Σ∞+ G/K,GnH S]G∗

∼=
��⊕

[g]∈K\G/H [S,Σ∞+ Res
gH
K∩gH(c∗g(EP[H]))]K∩

gH
∗

⊕
[g]∈K\G/H

(proj)∗

//
⊕

[g]∈K\G/H [S,S]K∩
gH

∗ .

If L is a subgroup of K ∩ gH, then g−1Lg is a subgroup of H. In fact, g−1Lg is a
proper subgroup of H since K ∈ P[H|G]. This implies that for any subgroup L ≤
K ∩ gH the space (Res

gH
K∩gH(c∗g(EP[H])))L = (EP[H])g

−1Lg is contractible. Hence,

Res
gH
K∩gH(c∗g(EP[H])) is a (K ∩ gH)-contractible cofibrant (K ∩ gH)-space and we see

that the map
proj : Σ∞+ Res

gH
K∩gH(c∗g(EP[H])) −→ S

is a (K ∩ gH)-equivalence. This allows us to conclude that the lower horizontal map in
the latter commutative diagram is an isomorphism. Hence, the upper horizontal map is
an isomorphism for any subgroup K ∈P[H|G] and one concludes that the map

proj : GnH Σ∞+ EP[H] −→ Σ∞+ G/H

is P[H|G]-equivalence.
It remains to show that the morphism F (proj) : F (GnH Σ∞+ EP[H]) −→ F (Σ∞+ G/H)

is a P[H|G]-equivalence as well. We first note that the assumptions imply that for any
K ∈P[H|G] and any (not necessarily proper) subgroup L ≤ H, the map

F : [Σ∞+ G/K,Σ
∞
+ G/L]G∗ −→ [F (Σ∞+ G/K), F (Σ∞+ G/L)]G∗ = [Σ∞+ G/K,Σ

∞
+ G/L]G∗

is an isomorphism. Indeed, this follows from Proposition 5.1.1 as well as from the
commutative diagram

[Σ∞+ G/K,Σ
∞
+ G/L]G∗

(κλ)[λ]∈K\G/L//

F

��

⊕
[λ]∈K\G/L[Σ∞+ G/(

λL ∩K),Σ∞+ G/(
λL ∩K)]G∗⊕

[λ]∈K\G/L F

��
[Σ∞+ G/K,Σ

∞
+ G/L]G∗

(κλ)[λ]∈K\G/L//
⊕

[λ]∈K\G/L[Σ∞+ G/(
λL ∩K),Σ∞+ G/(

λL ∩K)]G∗
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where the right vertical map is an isomorphism since λL ∩K is proper subconjugate to
H for any λ. In particular, the map

F : [Σ∞+ G/K,Σ
∞
+ G/H]G∗ −→ [Σ∞+ G/K,Σ

∞
+ G/H]G∗

is an isomorphism. Next, using a standard argument on triangulated categories, we
see that for any K ∈ P[H|G] and any X from the localizing subcategory of Ho(SpOG)
generated by {Σ∞+ G/L | L ≤ H}, the map

F : [Σ∞+ G/K,X]G∗ −→ [F (Σ∞+ G/K), F (X)]G∗

is an isomorphism (recall F (Σ∞+ G/L) = Σ∞+ G/L for any L ≤ G). As a consequence, we
see that the morphism

F : [Σ∞+ G/K,GnH Σ∞+ EP[H]]G∗ −→ [F (Σ∞+ G/K), F (GnH Σ∞+ EP[H])]G∗

is an isomorphism. Finally, for any K ∈P[H|G], consider the commutative diagram

[Σ∞+ G/K,GnH Σ∞+ EP[H]]G∗
proj∗ //

F∼=
��

[Σ∞+ G/K,Σ
∞
+ G/H]G∗

F∼=
��

[F (Σ∞+ G/K), F (GnH Σ∞+ EP[H])]G∗
F (proj)∗ // [F (Σ∞+ G/K), F (Σ∞+ G/H)]G∗

[Σ∞+ G/K,F (GnH Σ∞+ EP[H])]G∗
F (proj)∗ // [Σ∞+ G/K,F (Σ∞+ G/H)]G∗ .

As we already explained, the upper horizontal map is an isomorphism. Thus the lower
horizontal map in this diagram is an isomorphism as well and therefore, the map

F (proj) : F (GnH Σ∞+ EP[H]) −→ F (Σ∞+ G/H)

is a P[H|G]-equivalence.

7.3 Completing the proof of Theorem 3.1.3

In this subsection we continue the induction started in the previous subsection and prove
Proposition 7.2.1. Finally, at the end, we complete the proof of Theorem 3.1.3 and hence
prove the main Theorem 1.1.1.

Proof of Proposition 7.2.1. Recall (Section 6) that the extension

1 // H
ι // N(H)

ε //W (H) // 1.

determines the inflation functor

ε∗ : Ho(SpOW (H)) −→ Ho(SpON(H))
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and the geometric fixed point functor

ΦH : Ho(SpON(H)) −→ Ho(SpOW (H)).

Let F̂ : Ho(SpOW (H)) −→ Ho(SpOW (H)) denote the composite

Ho(SpOW (H))
ε∗ // Ho(SpON(H))

GnN(H)−// Ho(SpOG)
F // Ho(SpOG)

ResGN(H)// Ho(SpON(H))
ΦH // Ho(SpOW (H)).

It follows from the identifications we did in Subsection 6.3 and from the properties of F
that the functor F̂ is triangulated, preserves infinite coproducts and sends Σ∞+ W (H) to
itself. Moreover, it also follows that the restriction

F̂ |Ho(Mod -Σ∞+ W (H)) : Ho(Mod -Σ∞+ W (H)) −→ Ho(Mod -Σ∞+ W (H))

of F̂ on the localizing subcategory of Ho(SpOW (H)) generated by Σ∞+ W (H) satisfies the
assumptions of Proposition 4.2.3. Hence, the map

F̂ : [Σ∞+ W (H),Σ∞+ W (H)]
W (H)
∗ −→ [Σ∞+ W (H),Σ∞+ W (H)]

W (H)
∗

is an isomorphism. Next, by the assumptions and Proposition 5.1.1 (like in the proof of
Lemma 7.2.2), we see that for any proper subgroup L of H, the map

F : [Σ∞+ G/H,Σ
∞
+ G/L]G∗ −→ [Σ∞+ G/H,Σ

∞
+ G/L]G∗

is an isomorphism. This, using a standard argument on triangulated categories, implies
that for any X which is contained in the localizing subcategory of Ho(SpOG) generated
by {Σ∞+ G/L | L ∈P[H]}, the map

F : [Σ∞+ G/H,X]G∗ −→ [F (Σ∞+ G/H), F (X)]G∗

is an isomorphism and hence, in particular, so is the morphism

F : [Σ∞+ G/H,GnH Σ∞+ EP[H]]G∗ −→ [F (Σ∞+ G/H), F (GnH Σ∞+ EP[H])]G∗ .

Finally, we have the following important commutative diagram

[Σ∞+ G/H,GnH Σ∞+ EP[H]]G∗
proj∗ //

F∼=

��

[Σ∞+ G/H,Σ∞+ G/H]G∗

F

��

[Σ∞+ W (H),Σ∞+ W (H)]
W (H)
∗

GnN(H)ε
∗

oo

F̂∼=
��

[F (Σ∞+ G/H), F (GnH Σ∞+ EP[H])]G∗
F (proj)∗//

∼=

��

[F (Σ∞+ G/H), F (Σ∞+ G/H)]G∗
ΦH // [F̂ (Σ∞+ W (H)), F̂ (Σ∞+ W (H))]

W (H)
∗

[Σ∞+ G/H,GnH Σ∞+ EP[H]]G∗ //
proj∗ // [Σ∞+ G/H,Σ∞+ G/H]G∗

ΦH // // [Σ∞+ W (H),Σ∞+ W (H)]
W (H)
∗ .

Lemma 7.2.2 implies that the lower left square commutes and the lower left vertical
map is an isomorphism. Other squares commute by definitions. Further, according to
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Proposition 6.4.2, the lower row in this diagram is a short exact sequence and hence so
is the middle one.

Now a simple diagram chase shows that the map

F : [Σ∞+ G/H,Σ
∞
+ G/H]G∗ −→ [F (Σ∞+ G/H), F (Σ∞+ G/H)]G∗ = [Σ∞+ G/H,Σ

∞
+ G/H]G∗

is an isomorphism. Indeed, assume that ∗ > 0 (the case ∗ = 0 is obvious by the assump-
tions on F ). Then the latter map has the same finite source and target and hence it suf-
fices to show that it is surjective. Fix ∗ > 0 and take any α ∈ [F (Σ∞+ G/H), F (Σ∞+ G/H)]G∗ .
Since the map

F̂ : [Σ∞+ W (H),Σ∞+ W (H)]
W (H)
∗ −→ [F̂ (Σ∞+ W (H)), F̂ (Σ∞+ W (H))]

W (H)
∗

is an isomorphism, there exists β ∈ [Σ∞+ W (H),Σ∞+ W (H)]
W (H)
∗ such that

F̂ (β) = ΦH(α).

By definition of the functor F̂ , the element

F (GnN(H) ε
∗(β))− α ∈ [F (Σ∞+ G/H), F (Σ∞+ G/H)]G∗

is in the kernel of

ΦH : [F (Σ∞+ G/H), F (Σ∞+ G/H)]G∗ −→ [F̂ (Σ∞+ W (H)), F̂ (Σ∞+ W (H))]
W (H)
∗ .

But the kernel of this map is contained in the image of

F : [Σ∞+ G/H,Σ
∞
+ G/H]G∗ −→ [F (Σ∞+ G/H), F (Σ∞+ G/H)]G∗

since the middle row in the commutative diagram above is exact and the upper left
vertical map is an isomorphism. Consequently, F (GnN(H) ε

∗(β))−α is in the image of
F and this completes the proof. �

Proof of Theorem 3.1.3. Now we continue with the induction. Recall, that our aim
is to show that for any subgroup H ∈ G, the map

F : [Σ∞+ G/H,Σ
∞
+ G/H]G∗ −→ [Σ∞+ G/H,Σ

∞
+ G/H]G∗

is an isomorphism. The strategy that was indicated at the beginning of Subsection 7.2
is to proceed by induction on the cardinality of H. The induction basis follows from
Proposition 4.2.3 as we already explained. Now suppose n > 1, and assume that the
claim holds for all subgroups of G with cardinality less than or equal to n− 1. Let H be
any subgroup of G that has cardinality equal to n. Then, by the induction assumption,
for any subgroup K which is proper subconjugate to H, the map

F : [Σ∞+ G/K,Σ
∞
+ G/K]G∗ −→ [Σ∞+ G/K,Σ

∞
+ G/K]G∗

is an isomorphism. Proposition 7.2.1 now implies that

F : [Σ∞+ G/H,Σ
∞
+ G/H]G∗ −→ [Σ∞+ G/H,Σ

∞
+ G/H]G∗

is an isomorphism and this completes the proof of the claim.
The rest follows from Proposition 5.1.1 as already explained in Section 5. �
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