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KURZZUSAMMENFASSUNG In dieser Arbeit beleuchten wir die Kohomolo-
gie verallgemeinerter Kummerscher Vaétn. Diese sind kompakte irreduzible
holomorph symplektische Mannigfaltigkeiten. Auf einer solchen Mannigfaltig-
keit X der Dimensior2n hat nach einem Ergebnis von Huybrechts7] die
Hirzebruch-Riemann-Roch Forméirfein Geradenindel L die spezielle Form
X(X,L) = Y7, azegx (c1(L))* mituniversellen, d.h. nur voX ablangigen,
Konstanteruoy, und der Beauville- Bogomolovschen quadratischen Rpgrauf
H*(X,Z).

Im ersten Teil dieser Arbeit geben wir im Falle der verallgemeinerten Kum-
merschen Variéiten eine explizite Hirzebruch-Riemann-Roch Formel an und be-
rechnen damit diese Konstanten.

Im folgenden Kapitel beséltftigen wir uns dann mit der singaten Ko-
homologie. Durch die Betrachtung lokal konstanter Systemen auf dem Hilbert-
schemaAd (™ einer abelschen BtheA, welche durch eine Galoigberlagerung
A x K94 — Al induziert werden, und indem wir die Beschreibung der
Produktstruktur auH*(A[”],C) von Lehn und Sorger 200]) verwenden, gelan-
gen wir zu einer Beschreibung der Ringstruktur der Kohomologie verallgemei-
nerter Kummerscher Variéten.

In einem abschlieBenden Abschnitt besftigen wir uns schlie3lich mit
dem Orbifoldkohomologiering, der von Fantechi undttSche in ] berech-
net wurde. Wir korrigieren einen kleinen Fehler, der ihnen bei der Berechnung
der Produktstruktur im Falle der verallgemeinerten Kummerschen seietin-
terlaufen ist, und beweisen die Isomorphie des Orbifoldkohomologieringes mit
dem singuhren Kohomologiering.

ABSTRACT. In this thesis we are dealing with questions about the cohomology
of generalized Kummer varieties. These are irreducible holomorphic symplectic
manifolds. According to a theorem of Huybrecht§7]), on such a manifold

X of dimension2n, the Hirzebruch-Riemann-Roch formula for a line bungle
has the special formy(X, L) = > 7_, azegx (L)*, where theaz, are univer-

sal constants, only depending &h andgx denotes the Beauville-Bogomolov
quadratic form orffl?(X, Z).

In the first part of this thesis we give an explicit Hirzebruch-Riemann-Roch
formula in the case of generalized Kummer varieties and therewith compute
these constants.

In the following sections we consider the singular conomology of general-
ized Kummer varieties. By using locally constant systems on the Hilbert scheme
A" of an abelian surface which are induced by a Galois cdverk " ~YA —

A"l and the description of the ring structuretf (A, C) by Lehn and Sorger
([20Q]), we determine the ring structure of the cohomology of the generalized
Kummer varieties.

In a last chapter we deal with the orbifold cohomology which was com-
puted by Fantechi andd@®sche in ¥]. After the correction of a slight error that
occurred in their computation of the orbifold cup product in the case of the gen-
eralized Kummer varieties, we prove that the orbifold cohomology ring is in fact
isomorphic to the ordinary cohomology ring.
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Einleitung

Verallgemeinerte Kummersche Vadgtn wurden von Arnaud Beauville eingéaft.
Sie bilden in ], neben den Hilbertschemata von K3&Ehen, die zweite Reihe
von Beispielen ifir irreduzible holomorph symplektische Mannigfaltigkeiten. Es
handelt sich dabei um einfach zusamniamiende kompaktedhlermannigfaltig-
keiten X, deren Raum der globalen holomorphen Zweiforni&t X, Q3.) von
einer Uiberall nichtausgearteten Formerzeugt wird. Diese Mannigfaltigkeiten
kann man als éherdimensionale Analoga von K3&ehen ansehen. So wird in
oben genannter Arbeit auch eine quadratische Form

qx: B3(X,Z) — Z,

heute Beauville-Bogomolovsche quadratische Form genannt, @mgeivelche
die Schnittpaarung auf der zweiten Kohomologie einer K&:ké verallgemeinert.
Daniel Huybrechts konnte irnl[] (vgl. auch [L3]) unter anderem den folgenden
Satzuber die Eulercharakteristik eines Geradimiiels L auf einer kompakten
irreduziblen symplektischen Mannigfaltigkeit beweisen.

THEOREM (Huybrechts, 17]). — SeiX eine kompakte irreduzible holomorph
symplektische Mannigfaltigkeit der Dimensiéim X = 2n. Dann gibt es Kon-
stantenasi, £ = 0,...n, welche nur vonX abhangen, derart, dassif jedes
Geradenfindel L € Pic(X) die Eulercharakteristik durch das Polynom

X(X, L) = agrgx (i (L))
k=0

gegeben ist, wobejx die Beauville-Bogomolovsche quadratische Form bezeich-
net.

In [6] wird eine explizite Formeliir die EuIercharakteristikg(X["], L) eines Ge-
radenlindelsL auf dem Hilbertschem& [ von n Punkten auf einer K3-Bthe
angegeben und somitif die erste Beispielklasse die Koeffizienten in Huybrechts’
Theorem bestimmt.

Im ersten Teil der vorliegenden Arbeit, in Kapitel Bsen wir dieses Problem im
Falle der verallgemeinerten Kummerschen Véitieh. Das Ergebnis ist die fol-
gende Hirzebruch-Riemann-Roch Formel:

vii



Viii EINLEITUNG

THEOREM 6. — Es seil ein holomorphes Geradeiibdel auf der verallgemei-
nerten Kummerschen VarigtK ("~ 1A der Dimensior2(n — 1). Weiterhin sej

die Beauville-Bogomolovsche quadratische Form. Dann ist die Eulercharakteristik
x(K™1A, L) durch das folgende Polynom iric; (L)) gegeben:

iy (14001)

In den darauf folgenden Kapiteln wenden wir uns der @@wichen, d.h. singu-
laren, Kohomologie zu.

In [12] benutzen Lothar Gttsche und Wolfgang Soergel schnittkohomologische
Methoden, um die Vektorraumstruktur der Kohomologie der Hilbertschemata von
Punkten auf Fichen und der verallgemeinerten Kummerschen \&gatzu be-
stimmen. (Die Bettizahlen der Hilbertschemata waren schon \aitsche in 1]
berechnet worden.)

Aufbauend auf Ergebnisse von Hiraku Nakajima, der28] [auf geometrische
Weise eine darstellungstheoretische Deutung der Kohomologie der Hilbertsche-
mata von Fhchen gibt, und Manfred Lehn, der auf diesem Raum di@tzlishe
Operation der Virasoroalgebra gefunden und geometrisch gedeutel §jat ge-

lang es Manfred Lehn und Christoph Sorger2d][und [20] die Ringstruktur der
Kohomologie der Hilbertschemata im Falle v, einer K3-Fache oder eines
komplexen Torus’ zu bestimmen.

Auf diese Beschreibung aufbauend berechnen wir in Kapitel 3 die Ringstruktur
im Falle der verallgemeinerten Kummerschen Véten. Wir betrachten dazu
lokal konstante Systeme auf dem Hilbertschetfid, welches durchi x K14
Uberlagert wird. Dies liefert zithst eine abstrakte Beschreibung der Ringstruk-
tur von H*(A x K(~YA, C) in Termen der Kohomologie vor[™ mit Werten

in diesen lokal konstanten Systemen. Wir verallgemeinern im Folgenden Naka-
jimas Operatorbeschreibung auf die Kohomologie der Hilbertscher#tamit
Werten in einem lokal konstanten System. Wir geben weiterhin eine konkrete
geometrische Beschreibung davon, wie diese Operatoren die Kohomologie des
Hilbertschemas erzeugen, so dass wir eine explizite geometrische Beschreibung
der Kohomologie des Hilbertschema&’ mit Werten in lokal konstanten Syste-
men erhalten. Durch diese Beschreibung gelingt es uns in Theorem 32 die Struk-
tur des cup-Produktes auf den verallgemeinerten Kummerschenafanetuf die
bekannte Ringstruktur des Hilbertschem#® zuriickzuihren.

Im abschlie3enden Kapitel 4 vergleichen wir unser Ergebnis mit dem Orbifold-
kohomologiering der glatten Quotienten-Orbifgld x (Af)/&,], wobei Af die
Menge def(a;) € A", deren Summé_ a; = 0 ist, bezeichnet. Dieser Ring wurde
von Barbara Fantechi und Lotha@sche in ¥] berechnet. Sie formulieren dort

die Vermutung, dass dieser dadurch beschriebene Orbifold-Kohomologiering von
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[A}/S,] mit dem singulren Kohomologiering der verallgemeinerten Kummer-
schen Varigit K (1A, welche die Singulardtten vonAf /&, auflost, uberein-
stimme.

Zunachst ergnzen wir die Produktformel von Fantechi undt@che im Falle der
verallgemeinerten Kummerschen Vaéegn um einen von ihndibersehenen Fak-

tor. Nach dieser Berechnung des Orbifold-cup-Produktes beweisen wir, dass der
Orbifoldkohomologiering zum gewhnlichen Kohomologiering isomorph ist.
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CHAPTER 1

Introduction

Generalized Kummer varieties were introduced by Arnaud Beauvillel]jnHey

form — beside the Hilbert schemes of K3 surfaces — the second series of exam-
ples of so called compact irreducible holomorphic symplectic manifolds. These
are simply connected compactHKler manifoldsX, such that the space of global
holomorphic two-formd1®( X, Q%) is generated by an everywhere non-degenerate
form 0. These manifolds should be seen as higher dimensional analogs of K3 sur-
faces. Accordingly, in the paper cited above, a quadratic form

qx: B3(X,Z) — Z,

now known as the Beauville-Bogomolov quadratic form, is introduced. It general-
izes the intersection pairing on the second cohomology of a K3 surface.

Daniel Huybrechts showed il 7] (cf. also [13]) the following theorem about the
Euler characteristic of a holomorphic line bundl®n a compact irreducible sym-
plectic manifold.X:

THEOREM (Huybrechts, 17]). — LetX be a compact irreducible holomorphic
symplectic manifold of dimensialim X = 2n. Then, there are constanisy,

k =0,...,n, only depending oX, such that for every line bundle € Pic(X)
the Euler characteristic is given by the following polynomial:

x(X,L) = Z a2kQX(Cl(L))k7
k=0

whereqx denotes the Beauville-Bogomolov quadratic form.

In [6], an explicit formula for the Euler characteristi¢ X[, L) of a line bundle

L on the Hilbert schem& ) of n points on a K3 surface is given.

In Chapter 2 of this thesis, we solve the problem of computing these coefficients
for the generalized Kummer varieties. The result is the following Hirzebruch-
Riemann-Roch formula:

THEOREM6. — LetL be aline bundle on the generalized Kummer varigty— 1A
of dimensior2(n — 1). Then, the Euler characteristic d@f is given by

X(K(n—l)A L) —n %Q(Cl(L)) +n—1
b n _ 1 )
whereq is the Beauville-Bogomolov quadratic form 83(K ("~ YA, Z).

1



2 1. INTRODUCTION

In the following chapter of this thesis, we consider the ordinary, i.e. singular, co-
homology of generalized Kummer varieties.

In[12], Lothar Gottsche and Wolfgang Soergel use methods from intersection co-
homology to determine the structure of the cohomology of the Hilbert schemes
and generalized Kummer varieties as a vector space. (The Betti numbers had been
computed by @ttsche in [L1] already.)

Using the results of Hiraku Nakajima, who gave a representation theoretic inter-
pretation of the cohomology ir2B], and Manfred Lehn, who found an operation

of the Virasoro algebra on this space and gave an geometric interpretation of it in
[19], Manfred Lehn and Christoph Sorger succeede@iih §nd [20] in determin-

ing the ring structure of the cohomology of the Hilbert scheme in the cases of the
affine planeC?, K3 surfaces and complex tori.

Using this description, in Chapter 3 we compute the ring structure of the cohomol-
ogy of generalized Kummer varieties. We consider locally constant systems on the
Hilbert schemed™ which is covered byl x K"~ A. We generalize Nakajima’s
Operators to the cohomology @™ with values in locally constant systems and
give a concrete geometric interpretation of how the resulting operators generate the
cohomology of the Hilbert scheme. We thus get an explicit geometrical descrip-
tion of the cohomology of the Hilbert schem#" with values in locally constant
systems. The central result is Theorem 32, in which we express the ring structure
of H*(A x K(»=1DA, C) in terms of the known cup product dfi (A", C).

In the last chapter, we compare our result with the orbifold cohomology ring of
the quotient orbifoldA x Af/&,,] which was computed by Barbara Fantechi and
Lothar Gttsche in 7]. There, they state the conjecture that analogous to the case
of the Hilbert scheme, the orbifold cohomology ring in the case of the generalized
Kummer varieties should be isomorphic to the actual cohomology. After replen-
ishing their formula for the orbifold cup product with certain factors that were
overlooked in 7] in the case of the generalized Kummer varieties , we prove that
the two rings are in fact isomorphic.



CHAPTER 2

A Hirzebruch-Riemann-Roch formula

1. Basic Facts.

In this section, we will recall the basic definitions and fix the notations used through-
out this thesis.

GENERAL NOTATIONS. Let X be a smooth irreducible projective surface over
C. Then-th symmetric product S™X is the quotientX™/&,, of then-fold product
by the symmetric group. It is of dimensialim S"X = 2n and parameterizes
effective zero-cycles of degreeon X.
The Hilbert scheme X'™ is the moduli space of zero-dimensional closed sub-
schemes of length of X. Itis a projective scheme by a theorem of Grothendieck
([13]).
There is a natural morphism of schemes, the so cdlibert-Chow morphism
p: X[l — §7X which sends a closed subscheme to its (weighted) support:

p&) =D UOca)e,
zeX

wherel(O¢ ;) denotes the length of the structure shéaf, of the subscheme
corresponding to the poigte X .
Further, we have the following geometric fact due to Foga8]) oncerningX ["!:

THEOREM (Fogarty, B]). — The Hilbert schem& [ is smooth and projective of
dimensioren.

It follows that in this case is a birational morphism and a desingularization of
S"X.

Especially in Chapter 3 we will made use of the following notions for the strati-
fication of the symmetric product”X and the Hilbert schem& [ of a surface
X:

Let A = (l1 >l > ... > Is) = (1%1,2%2 ... n®) be a partition ofn. In
the second notation of, the numbeky; just counts the multiplicity with whichi
occurs in the partition. The length afwill be denoted by\| :== s = )" a;.

The zero-cycles of the forfy_, ;. ljz; € S"X, with z; € X andz; # x, for

J # k, form alocally closed subsétX in S".X: We haveS{X = UMS)\ SZX,
where the union runs over all partitiops= (m; > ... > my) such that there

3



4 2. A HIRZEBRUCH-RIEMANN-ROCH FORMULA

exists a surjectiop: {1,...,s} — {1,..., s} withm; =37, 1, {; for all j.
Thatis,S}X is the locus consisting of all tuplés, ;. /;z; without the condition

on thex;’s being mutually different.

Denote byA C S™X the big diagonal, i.e. the locus of zero-cyclesz; such that

at least two points coincide. We haxe= W where)g = (2,1,...,1).

The variety SYX is isomorphic to the open set i, (S* X-A), consisting of
tuples(C; == 3_%%, xi7); such thatC; andC; do not meet fori # j. It follows
thatdim(S7X) = 2|A|.

Denote further byS*X the variety[], % X. We have a morphisti*X — 57X
given on points by(3 %%, ;;); = >, ;izij. In fact the morphism is a home-
omorphism on the level of closed points as it is a bijective continuous map be-
tween compact spaces. In particular, on the level of (singular) cohomology, we
find H*(SAX, C) = H*(SX, C).

We denote beL”] = p~1(S7X) the corresponding locally closed stratum of the
Hilbert scheme. The fibre gfover a point ofS1X is isomorphic to (> lz;) =

(o, (ljz;)); < T1; X1 By a theorem of Briangon (cf4]), this fibre is irre-
ducible of dimensiory (I; — 1) = n — |A|. It follows thatXL”] is irreducible and
dim(Xi”]) = n + |A|. Furthermore, observe that there is precisely one stratum of
codimension one, namel&f([g}1 1y Its closure

e In)
E=X5 = U X
A£(17)

is an irreducible divisor otk [, the exceptional divisor of.

GENERALIZED KUMMER VARIETIES. To define Generalized Kummer varieties,
we consider the special case of an abelian sutfaddere, choosing a poiite A,
we have a summation morphisdi® — A. Since this is clearly symmetric, it
factors throught: S™A — A, and by composing with one gets the ‘summation’
morphisms: XM — A. The(n — 1)-th Generalized Kummer variety K"~ DA
is defined as the fiber of the summation morphisaverO0.
As was shown by Beauville inl], K(~1A is an irreducible holomorphic sym-
plectic manifold of dimensiog(n — 1). Recall that this means thaf("~ VA is a
simply connected compactikler manifold such that®(K (1A, Q?) is gener-
ated by an everywhere non-degenerate holomorphic two-forim order to intro-
duce some more notations, we briefly show that the Generalized Kummer variety
is smooth and independent of the choice of the point O:
Since the groupd acts on itself by translation, there is an induced action on the
Hilbert schemed[™. Let us denote the translation by an elemert A by ¢, in
both cases. Let an elemant A acting onAl via t, while acting onA via t,,,.
With respect to this actiom is an equivariant morphism. Singkacts transitively
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on itself, all fibers ofs are isomorphic. In particular, the definition &f"~1)A is
independent of the choice 6fc A. SinceA and A" are both smooth, there are
smooth fibers, so the Kummer variety is smooth.

Actually, the fibrationA™ —°- A is isotrivial, i.e. one has the following Cartesian
diagram, wherex denotes the morphism ‘multiplication by A Ny TNy}

v

A xe K14 Alnl
pAi l (1)
A A.

n

In terms of closed points, the fibre product is givendas 4 A" = {(a,¢) €
A x AlY|s(¢) = na}. This is isomorphic tod x K™~ DA via

Axg AN 5 (a,8) = (a,t_q(€)) € A x K14,

Therefore, on closed points the morphisnin the above diagram is just the re-
striction of the translation operation o) to the Generalized Kummer Variety.
Observe that since is a Galois cover with Galois groug[n], the group ofn
torsion points, so iw. It therefore realizes the Hilbert scherd&! as a quotient
(A x K=DA)/Aln.

EXAMPLE. — The classical Kummer surface.

The easiest example — and the reason for the terminology ‘Generalized Kummer
varieties’ — is the Kummer model of a K3 surface. This surface is constructed as
follows (for details, cf. e.g.3)):

One starts with the Abelian surfaceé and considers the singular quotieff ~

by the involution(—1) 4. The singularities are the images of the 16 two-division
points. The desingularization, which we again denoteibyl, is the classical
Kummer K3 surface.

Alternatively one can first blow up the 16 points of order 2 of A anddétl be the
quotient of the induced involution on the blown up surfateln other words, one

has the following commutative diagram:

KA<— A

|

The surfacds A can be identified with the fiber over 0 of the summation morphism
s: AP — A as follows:

In the caser = 2 the Hilbert-Chow morphism: A2 — 524 is simply the blow-

up of the diagonalA C 524 (cf. [8]). Denote byA: A — 524 the morphism
induced by the two isomorphisnid, and(—1)4. On closed pointsA is given
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by a + (a,—a). By definition of S?4 and A/ ~, it descends to a morphism
A/~— S?A, which we again denote hix. From the universal property of the
fibre product, we get an isomorphisAy~— 71(0).
Thus, we have the following commutative diagram:

K'A Al2

€ \L ) \L P

A~ S2A 2)
| 5
0 A

This shows that = p| ;14 and that the two descriptions &f'A coincide.

In [1], the following theorem on the fundamental group of the Hilbert schaftte
of a surfaceX is shown:

THEOREM (Beauville, [L]). — LetX be a compact complex surface and> 2.
The fundamental group ot " is given byr; (X)) = 7, (X)2P.

From this fact, it follows that the generalized Kummer varieties are simply con-
nected: It results from Beauville’s Theorem thaf A™) is isomorphic tar; (A) ~
Z*. Considering the long exact sequence

e —me(A) — Wl(K("_l)A) — m (A[n]) — m(A) — 0,

and usingra(A) = 0, it follows that K (*~1)A is simply connected.

THE BEAUVILLE -BOGOMOLOV QUADRATIC FORM. We will end this section
with a few remarks on the Beauville-Bogomolov quadratic fargnon an irre-
ducible holomorphic symplectic manifold of dimensior2n.

As such anX is in particular a compact &ler manifold, Hodge decomposition
holds. Normalize the symplectic form € H*(X) by demanding[, o6 = 1.
Decomposes a classc H?(X, C) asa = Ao+ [+ pua, with 8 € HYL(X). Inthis
notation, thaunnormalized Beauville-Bogomolov quadratic form fx is defined by

fx(o) =ty /X 8 (05)" ",

It is shown in [I] that fx is non-degenerate and that it comes — up to a posi-
tive scalar factor — from a unique integral forgr: of signature(3,b2 — 3) on
H%(X,7Z).

In the sequel of this section, we will describe the structure of the second cohomol-
ogy H?(K (=1 A, C) of the generalized Kummer variefy(»~ 1A and the normal-

ized Beauville-Bogomolov quadratic forgon it.
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As a first step we recall the following general fact, a proof of which can be found
in [1]: Let X be a compact surface and tet> 2. Denote byr: X" — S"X the

canonical projection. Lek = X([;L]l o be the exceptional divisor it ). Then

there exists an embeddijg H?(X, C) — H?(X[™, C), where fora € H?(X,C)
the associated class:= j(a) € H?(X[", C) is given by
a = p*a/, with H*(S"X, C) 3 «’ such thatr*a/ = Zp;ka.
i=1
The second cohomology ¢¢ [l is given by

Sn
H(xM C) = j (H*(X,C)) @ (@H (X,C)® ) @ C[E].

Leto = j(a) and = j(b) be two classes ifl?(X [, C). One finds for the top
intersection product

/X[n] o = /SnXa (sz ) = an),! (a)", )

where on the surfac’, we writea® instead of|. a”
By decomposingy.(., (« + )*" in the components of the appropriate degree in
andb and using (3) , it follows that

/X y a?n262 = (222__15')' <n(a2)”_1b2 +4<’2’> (a®)"2(a - b)2> and  (4)

[ et = Sy e ©

Now, consider the special case ®f= A, an abelian surface. Let > 2. Denote
by F' = E|yx-1), the trace of the exceptional divisor. Ifj[it is shown that

H?(K(""YA,C) = i (H*(A,C)) @ C[F],

wherei: H2(A,C) — H2(K™ 1A, C) is given byi(a) = j(a)|gn-14-
The following proposition is well-known. We although include it here, since there
seems to exist no proof of it in the literature.

PrRoPOSITIONL1. — The quadratic fornf,.-1, can be normalized by a positive
scalar factor to a quadratic formg, such that one hag(i(a)) = 2. For the class
of the exceptional divisor one ha§[F']) = —8n.

Further, the decompositiali? (K ("~YA, C) = i (H?(A, C)) @C[F] is orthogonal
with respect ta;.

Proof. The proof will occupy the rest of this section.
1. Denote again by: A x K("~Y4 — Al" the A[n]-Galois cover ofAl"l and
byn: A — A the corresponding cover of the torus, given by multiplication with



8 2. A HIRZEBRUCH-RIEMANN-ROCH FORMULA

n. Denote bypa: A x K Y4 — Aandpg: A x K"DA — K14 the
projections. Lety = j(a) € H2(Al, C). Then one has the following

LEMMA 2. — With the notations introduced above, one has
Vi =n-pha+ pi(i(a)) € HX(A x KM YA C).
To see this, recall the following general situation:

LEMMA 3. — Let X be a simply connected compact manifold andYebe a
connected compact manifold. Let: X xY — X andpy: X xY — Y be
the projections. Lety andyy be a point inX andY’, respectively. Denote by
ix: X - X x{yo}andiy: Y — {zo} x Y the corresponding splittings of the
projections. Then every classe H?(X x Y, C) is given asy = pi-i‘a+piita.

Proof of Lemma 2. Our assertion follows from Lemma 3: Choose an origia A.
Choose further an elemef§ € K"~ 1VA that lies over the point - 0 € S"A.
With these points, define the corresponding splittihngsandix of p4 andpg,
respectively. Since o iy is the embedding ok (»~1)4 in Al as fibre ovef, one
getsv*a = p%y 8 + pi(i(a)). To determine3, recall thatw is of the formp* (o)
with o/ € H?(S™A, C) by definition. Complete diagram (1) as follows

A x K14 Al
p’l lﬂ

A x (S"A)g —~ S A (6)
A " A.

Here, (S™A), denotes the fiber over 0 of the addition morphism S"4A — A,
the morphisny’ = id4 X p|xw-1)4 the desingularization aft x (S™A)y, andv/
is defined analogously to.

Instead of computing’,»*« we compute

- Ui N
ip v o =na,

since the morphism’ o p’ 0 i4 sends a point € A to nx € S™A and thus is just
the diagonal morphism — S™A . O

REMARK 4. — An analogous statement will be proven in the case of line bundles
in Lemma 2 in Section 2.

2. It follows that fora = j(a) € H?(Al", C), one has the equality

2n _
?7,4/ a?n _ / Z/*OéQn — < n2a2 (a|K(n*1)A)2n 2
Al Ax K (=14 2 K(n—1)A
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Using equation (3), this implies far = i(a) € H2(K (1A, C):

on—2 _ 220 —2)!  5in-1
/K("l)Aa "Tf=n =T (a®)" . (7)

Further, using the same polarization method as in the derivation of the equations
(4) and (5), one finds for two classas=i(a) andg = i(b):

/ Q2432 — 2 (2n—4)!
K(n=1A

on—2pl
((n —1)(a®)" %% + 4 <” ; 1) (a®>)"3(a - b)2> (8)
and

3. For everyy € H2(K(™~YA, C) denote by (a) = [, a?"~2 the top intersection
product onX = K (»~YA. With this notation one has, as on every irreducible holo-
morphic symplectic variety, the following formula, relating values of the unnormal-
ized quadratic fornyx (o) and fx (3) of two classesr andg3 € H2(K (DA, C):

2
w(0)*£x(8) = fx(0) <<2n—3>v<a> [t n-a ([ o) )
X X
(10)
(cf. [2]).
Leta = i(a) and3 = i(b) with a® # 0 (and thereforey(a) # 0). Using equation
(10) above, and the equalities (8) and (9), we find

2 n—2)(a-b)? a-b)?
10) = st (G + H= B0 - g 00

Therefore, it follows directly that by correctinf.(.-1)4 by a positive scalar factor,
we get a new forng which is normalized such thati(a)) = a?. It is this form,
we will refer as theBeauville-Bogomolov quadratic form to in the sequel.

4. Furthermore|F] is orthogonal ta (H?(4, C)) with respect ta;. This follows
directly from

/K<n—1>A (i(a)™*1F] = /(SHA)O (a/}(S"A)o>2n73 p«[F] =0,

for degree reasons, where we denoted agairf$}), the fibre over0 of the
summation morphisn$™4 — A, and byca’ the class inH2(S"4, C) such that

jla) = p*a.
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5. We will now begin to compute([F]). Considering formula (10) and the or-
thogonality of[F] to i (H?(A, C)), one finds
q(@) n—

olF) =S5 en=3) [ o,
for every classy = i(a) such that? # 0. Thus, to compute([F]), it is enough
to compute the integraf .-, 2" ~*[F]2. Let us first consider the following
special situation:
Let X be an arbitrary smooth compact surface again. THét is the variety
obtained by blowing up the diagonal ¢ S2X. Let E be the exceptional divisor.
Let o = j(a) be a class ifl?(X[?, C) associated ta € H?(X,C). In this case
[ @*[E]? can be computed as follows:

/X RS /X L a(OE) = /E (OB ol

- [aos®)raly=pe) [ o
EN~——— ACS2X

=

S / (pla+psa)’ = 2 / (20)°
DCX?2 X

= —8a°.

Here, in the third line, the factdr2) results from integrating along the fibres of

the blowing up. Furthermore, we have used the fact that in this simple case, one
has isomorphisma ~ D ~ X, where we denoted b? > D = {(x,z)} the
diagonal ofX?2.

6. In the general case of ™/, we have

[ er = [ a©@®)) a2 =pe [ o
X EN——~— AcCSnX

=€
Here, we have to integrate the clasalong the fibers of the Hilbert-Chow mor-
phismp|p: E — A = 5§ A = Uszan SYA, with Mg = (2,1,...,1). As we
have seen above, the fibersxakestricted to the open stratuh‘&”] have real dimen-
sion2 (n — |A]). The clasg that we want to integrate has cohomological degree 2.
Thus, for dimension reasons, only the fibre OSQgA contributes, since\ is the
only partition of lengthn — 1. But over this open stratum we are in the situation of
the blowing up that we have considered in 4. above. Thus, one finds

_ 2 2n—2
/ 2" 2EP = -2 / o= 2. 2 (pra) .
Xl AcsSnx © JDcXxn

The factor% in the last equation results from the order of the inertia group of
the big diagonalD C X™ under the action 06,,: For D, we have the equality
D = U,; Dij, whereD;; = {(zx) € X"|z; = z;}. SinceD;; has((ij)) ~
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Z,/2 as inertia group, we find that the quotient morphism restricted to the diagonal
m|p: D — Ais of degree%’, and thereforéA] = 2, [D]. Thus, we find by the
projection formula

m—2 2 _ 2 2n—2
/ o = " 7r*(0/)2” 2 '/ (Zp;ka) .
ACS™X n: Jpcxnr n: Jpcxnr

We can now complete the calculation ff;,; o*"~2[E]* by computing

/D (Z;; p%) -2 _ <;L> /Xn_l (2pta+ - +pf_ya)™
~ (5) Gty

Putting everything together, we have

/X aE G (") (a®)"! (11)

oan—1lpl \ 2

7. We come back to the case of an abelian surfaemdn > 2. Observe that for
the inverse image of the exceptional dividérunder the Galois cover, one has
v 1(E) = A x F and thus/*([E]) = pi[F]. It follows that

n4/ a2n72[E]2 / U (aQ”’Q[E]Q)
Aln] AxK(m=1)A
2n — 2
2/ 2 2n—4 2
Fl°.
n (CL )< 2 >/[((n—1)A a|K(n—1)A[ ]

Therefore, we have for a clags= i(a)

fo et = (@ (%)) e [ geeier

B 2n2 (2n —2)! (n e
“ @ 2@n -3 O <2> ()™

_ —8n? - (2n — 4)! <n> (@)

2n—3p)
Collecting everything together, we can computg]) as
q(a) / 2n—47 2
Fl) = 2n — 3 F
alF) = Joy@n=3) | o)

2 nl(2n—3) —8-(2n—4)! (n
- (2n-2)! 2n=3p! 2

= —8n.

This completes the proof of the proposition. a
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REMARK 5. —

(1) Equality (11) can be used to show that.; ([E]) = —8(n — 1), for a K3
surfaceX. This was stated irnd].

(2) In[1], Beauville gives a description of the integral second cohomology of
the Hilbert scheme of a surface. From this description and Proposition 1,
it follows that in the case of the generalized Kummer varieties, one has
the following equality of lattices together with quadratic forms

(HA(K" DA, 2), a4 ) = (HA(A,2),0) @ (~20)Z.

Here, the two factors on the right hand side are mutually orthogonal and
the last factof—2n)Z is spanned by a clagssuch thakj = [F]. As we
have seen, one haéj) = —2n.

2. Explicit Hirzebruch-Riemann-Roch for K (1A,

As stated in the last chapter, Generalized Kummer varieties are irreducible holo-
morphic symplectic manifolds, and we have seen that they carry a natural quadratic
form q: H2(K("~YA,Z) — Z. In [17], Huybrechts obtained the following re-
sult:

THEOREM (Huybrechts).— Let X be a compact irreducible holomorphic sym-
plectic manifold of dimensiodim X = 2n. Then, there are constanis, k =
0,...,n, only depending otX, such that for every line bundle € Pic(X) the
Euler characteristic is given by the following polynomial:

X(X,L) = Z azkqx (e1(L))",
k=0

whereqx denotes the Beauville-Bogomolov quadratic form.

In this section we will compute this polynomial for the Generalized Kummer vari-
eties by proving the following Hirzebruch-Riemann-Roch formula:

THEOREM6. — LetL be a line bundle o< (1A, The Euler characteristic of

L is given by )
sq(ci(L))+n—1
X(L)_n<2 1n—1 )7

whereq is the Beauville-Bogomolov quadratic form HR (K ("~ DA, 7).

We will prove the theorem as follows: First, observe that since the Hirzebruch-
Riemann-Roch formula has the forgiL) = 3" asrq(c1(L))* with universal co-
efficientsasy, it is actually enough to consider a special class of line bundiggh
q(c1(L)) # 0: Then, Huybrechts’ theorem says that eag¢iL™) is a polynomial

in n2q(c1 (L)) with the same coefficients in each case. Considering these formulas
for all natural numbers determines the polynomial uniquely.
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We will prove the theorem using line bundlé&™ L on K(~1A, which are
constructed from an invertible shekfe Pic(A) as follows:

Starting with a line bundlé. on the surfacel, the sheal.*" := @/, pr; L is an
&,,.-invariant line bundle on the-th productA™ of A. Therefore, we can define the
sheafS"L := (m,(L¥"))®" of &,-invariant sections of. (L¥") on the symmetric
productS™A, wherer denotes the quotient morphism A" — S™A. The pull-
backL,, := p*S™L by the Hilbert-Chow morphism is a line bundle on the Hilbert
schemeA "), Restricting to the generalized Kummer varigty~ VA c A", we
get the invertible sheak (»~1) L we wanted to construct.

Observe that by definition & »~1) L, we have for its first Chern class the equality

ct(K™ VL) = i(er (L)),

with the injective homomorphism: H?(A,C) — H?(K (™ 1A, C) described in
the last section. It follows that the value of quadratic farfe, (K™ L)) coincides
with the self intersection af; (L) € H2(A, Z) on the abelian surfacé. Explicitly,
we have the equality(c; (K "~V L)) = ¢;(L)?, and thus our theorem is equivalent
to the following

PROPOSITION7. — The Euler characteristic of € Pic(A4) and of K"~V [ ¢
Pic(K("~1DA) are related by

C1(L)2

A +n—1

K Vr) = 2 :

x( ) n( "1 )

The rest of this section is dedicated to the proof of Proposition 7. In the next lemma

we will compute the Euler characteristic of the line bun§lig..

LEMMA 8. — LetL be aline bundle o. Then one has

(S°T) = <X(L) +n— 1>

n
Proof. Let L, H € Pic(A). One has
Sy Sn
SYL ® H) =, ((L ® H)@") = (L&” ® H&”> ,

and since the action of the symmetric group does not flip the faé&fétsand H=",
and for an arbitrary line bundI&/ on A we haver*S™M = M¥", we get

SYL @ H) = . (L@” ® W*S"H) o (w*(L&”) ® S”H) o _ S @ ST

Let H be an ample invertible sheaf. It follows th&t" is also ample, and so is
S™H , becauser is a finite surjective morphism and S"H = H*" is ample. Let
N € N be large enough such that batte Y andS"(L® HV) = S"L® (S"H)N
have no higher cohomology, and thy&S™(L @ H™)) = h%(S™"(L @ HV)).
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For the global sections of the line bundi&M built from an invertible shea#/ on
A, one has the isomorphism

HO(S™A, S™M) ~ HO(A™, ME)Sn — (HO(A, M)®") " ~ §"HO(A, M).
ReplacingM by L @ H, we find

x(L®HN) +n —

sz e ) = (O

1
) forall N > 0.

SinceN — x(SYLRHN)) = x(S"L®(S™H)") is a polynomial inV, evaluation
in N = 0 proves the lemma. O

Consider the Hilbert-Chow morphispr A"} — S”4. Sincep is a birational
proper morphism of normal varieties one ha$) 4.y = Ogna. Furthermore,
S"A as a quotient of a smooth variety by a finite group has rational singularities
(cf. [18]). Therefore its resolutiop satisfies?’ p.O 4 = 0 for j > 0. Combining

the Leray spectral sequenbdé( R’ p,(p*S™L)) = Hi*J(p*S"L) and the projection
formula R’ p,.(p*S™L) = S"L @ R? p.O 4, ONE gets

H(S"L) = H'(p*S™L)

So we have proven the following

PROPOSITION9. — For a line bundlel. € Pic(A) one has

X(Ln)_<X<L)+n—1>_

n

REMARK 10. — This result is proven by a somewhat different methodjn [

Next we will attack the cohomology of the restricted bun#i& 1 L. The first
step in this direction is the following

LEMMA 11. — In the notation of diagrarfl), one has*L,, = L" X K"~V L.

Proof. The splitting of the sheaf* L,, follows from the seesaw principle (cR2]):

For fixeda € A we have seen that the restricted morphism}wal)A is the
isomorphism which map& ("~ A4 to the fiber of the summation morphisnover

the pointna. Sincek ("~ YA is simply connected, its Picard group is discrete and
it follows thaty* L (4« g n-104 = Pien-1 ) K"V Ll 0y x gcn-1a-

Thereforev*L,, is of the formL, X K"~V L with Ly € Pic(A), and we can
compute the componeiit, by considering the restrictions ofto A x {}.
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Recall diagram (6) from the last section

v

Ax K(n=14 Al
p’l lﬂ
A x (Sm4)y — 2 snA
PA \L lZ

A ° A.

Again, (S™A), denotes the fiber over 0 of the addition morphism S"A —
A, the morphismy’ = id4 x p|xm-1, its desingularization, and’ is defined
analogously to.
Now consider a poinfy € K™ Y4 overn -0 € S"A. Instead of computing
the sheaf* L[4 (.}, We equivalently computg’* " S"L] 4, (¢,3- But since
0’| Ax{g,} corresponds to the identity on A and| 4, (.0 corresponds to the mor-
phismA: A — S™A, induced by the diagonal, we finbhb, = A*S™. = L™,
O

The next lemma describes the structure of the direct imagiainder then*-fold
Galois coveringd —— A.

LEMMA 12. — The direct image:.O 4 of the structure sheaf ofl splits into a
direct sum of line bundle§,,o € A[n]", indexed by the characters of the n-
torsion points ofd. Further, for the trivial charactei € A[n]", we havel; = Oy
ande;(Ly) = 0 € H2(A, Z) for all 0.

Proof. The splitting ofn..O 4 is a well known fact, cf.22], §7. (See also Chapter 3

of this thesis where we give a proof of the analogous behaviour of the direct image
v, C of the constant shed&f.) The triviality of the first Chern classes of the line
bundlesL, follows from the relation:

LE" = Loyn = L1 = O.

It follows thatnci (L,) = 0, which proves the lemma, since the cohomology of a
torus has no torsion. O

Now we have collected all necessary ingredients for the proof of Proposition 7.

Proof of the proposition. We start again with a line bundle on A that we twist
with a sufficiently ample bundI& V. By abuse of notation we denote the resulting
bundle byL again. By construction, the symmetrized bunsifé. is still ample and
thus the invertible shedf,, on A" as a pull-back along the birational morphigm
is nef and big.

The same argument shows that the line buridl@é—V L is nef and big: Using
the notations of diagram (6) the bundl§"L)o := v"*S"L|(gna), is ample and
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KM= = p*(S"L), is big and nef. Thus, by the Kawamata-Viehweg vanishing
theorem (28]), we have

X(E®DL) = (KA, K= L)
On the one hand, due to thaikneth formula, we have
H(v*L,) = HY(K" VLR L") = HY (K™ VL) @ HO(L™).
On the other hand, since is finite andn is a flat morphism, we can compute
HY(v*L,,) alternatively
H(W*Ly,) = H(Ly, ® 1.0 4y getn-114) = H* (L, ® 5" 1n.0,4)
=H(L,® @ s"Lo).

a€An]vY

This shows that

WO(Ax K VA v L) = Y b4l L, @ L)
o€A[n)Y

where, by abuse of notation, we denote the line buneiés on A™ by L, again.
Since the sheaf.,, ® L, is still nef and big, the vanishing theorem of Kawamata
and Viehweg implies thdtO(A["], L, ® L,) equals the Euler characteristic of this
line bundle. Therefore, using the classical Hirzebruch-Riemann-Roch theorem on
the Hilbert schemet(! we have

hO(V*Ln) = Z X(A[n]an ® Ly)
ocA[n)V

= > [ ch(Ln® Ly)td(AlM)

o€An]Y
=t / ch(Ly)td(AM), sincec; (L) = s*¢1(Ly) =0

= n'x (A", Ly)
= n*dim(S"H(L)) due to Proposition 9.

Combining the computations — and noting thaf A, L") # 0 — we find

761(2”2 +n— 1>
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Once again — considering the formula as a polynomiaNirand evaluating in
N = 0 — the formula holds for a general line bundle a

EXAMPLE. — In the case of the Kummer surfa¢é'A, the above formula gives
back the classical Riemann-Roch formula for K3 surfaces:
Recall the diagram

KA<— A

|

Start with a symmetric line bundle on A, i.e. L = p*L’ with L’ € Pic(4/~).
ThenL induces a line bundld/ = ¢*L’ on K'A. Let K'L = p*m. (L X L)®2, as
usual. Then one ha&''L = M?:

Considering diagram (2), it suffices to show thetS?, = L%, But this is clear
from the definition ofA andL = p*L’.

Our Hirzebruch-Riemann-Roch formula gives

c1 (L)2

x(K'L) :2( 2 ) H) =c1(L)? +2

Using thate is birational,p is generically 2:1 and the equalify 'L = M?, one
finds

c1 (KqL)2

X(K'L) = ==

+ 2,

which is the classical Riemann-Roch formula for the K3 surfacd.

REMARK 13. — In [25], Marc Nieper-Wil3kirchen gives a formula for the Euler
characteristio (X, L) for a line bundleL on an arbitrary irreducible holomorphic
symplectic manifoldX in terms of the characteristic numbers ¥t He uses an
other normalization of x, which is given fora € H?(X, C) by
. iyl if defined,
0 otherwise.

He defines a twisted Todd genuk (X ) of X by setting fore € C
tdo(X) :=exp < 2 Z boxchay (2k)! - T (1 + 6))

whereT}, is thek-th Chebyshev polynomial, defined By(cos x) = cos(kx). One
hasT}(1) = 1, whereasdo(X) = td(X).
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With these notations, Nieper-Wif3kirchen proves
. 1
x(X,L) = / td-(X) with e = §>\(cl(L)). (12)
X

In [5], Nieper-WiRkirchen and the author show that foe H*(K (1A, C), one

has
2

Aa) = Zq(a).
Combining this with Theorem 6, one gets for a line bunflen the generalized
Kummer varietyK ("—1)A
Y(EMDA L) = n(Z)‘(CI(L)) +n-— 1>.
n—1
Comparing with formula (12), ing] Nieper-Wif3kirchen and the author compute
the Chern numbers of generalized Kummer varieties up to dimension ten. Mean-
while Nieper-WiRkirchen succeeded in computing the Chern numbers of general-
ized Kummer varieties in arbitrary dimension (&6]).



CHAPTER 3

The Cohomology Ring of Generalized Kummer Varieties

1. Locally constant systems.

We start this section considering a quite general situation. X_Léte a complex
variety,G a finite quotient of the fundamental group(X) of X and letr: ¥ —
X = Y/G be the corresponding Galois cover ®f on which we letG act from
the right. Let furtherp: G — GL(V,) be a complex linear representation@f
Then we have a naturaf-action onY x V,, given byg(y,v) = (yg~ 1, p(g)v).
The quotient, which is denoted By x V,, is a fibre bundle, over X, and is
called alocally constant system:

E,=Y xqV, — X,[(y,v)] — 7(y).

Observe that due to this definition of theaction, we havé(yg, v)] = [(y, p(g)v)].
Assume that there is an additional rightaction onV" which is compatible with
the action defined by. Here, compatible means that for allh € G and a vector
v € V we have

(p(g)v)h = p(g)(vh).
Under this assumption, the bundik still carries aG-action, defined by [(y, v)] =
[(y,v9)]-
The following lemma describes the behaviour of the pull-back of a locally constant
system.

LEMMA 14. — LetE, be a locally constant system of = Y/G as above. Let
7' Y — X be the intermediate Galois cover with Galois grobip:= G/ ker(p)
Then, we have a canonical trivialization of its puII-badREp to X'.

Proof. We will prove a more general assertion: L&t Y/ — X be an inter-

mediate covering, corresponding to an arbitrary normal subgiup G. Set

H := G/N. Thenr'"E, is the locally constant system &ff corresponding to the
representation r§p) of N. As a diagram, this reads as

YXVPHYXN Weﬁ(p):F,*EP Ep

L

Y Y'=Y/N a X=Y'/H.

19



20 3. THE COHOMOLOGY RING OF GENERALIZED KUMMER VARIETIES
Denote the covering” — Y’ by p, as in the diagram above. The pull-backf
is given by

7B, = { (¢, (. 0)])| ' €Y', [(z,0)] € B, andw'(y/) = m(x)}

With these notations, the isomorphidmx y Vreg(p) — 7'*E, is given by

[(y, )] = (p(y), [(y,v)]) - (13)

This is clearly well defined: Indeed, fare N, we have

[((yn™ " no)] = (p(yn™), [(yn ", n0)]) = (), [(y,v)]) -

To construct its inverse, choose a representatizeY” such thap(y) = ¢/. Since
7'(y') = n(x) there exists a unique € G such thaty = xg~!. With this g, we
define the morphism

D7 By — Y X Ve by settingv((p(y), [(z, v)])) = (4. gv)].

res

By definition is the inverse of (13). It remains to check that this map is indepen-
dent of the choice of and of the representatie:, v): Letn € N andh € G.
Then we have

(p(y), [(z,v)]) = (plyn™"), [(zh~", W)]).

With the elemeny defined above, we have the equaljty ' = zh~!(hg~'n=1).
That is, on the new representative our morphism is given by

I((plyn™h), [(eh™ 1, ho)])) = [(yn™t, (hg™ ™ 1)~ ()]
= [(yn~",ngv)]
= [(y, gv)]
= J((p(y), [(z,0)]))
This completes the proof of the assertion.
In particular,7’*E, is a trivial fibre bundle if and only ifV C ker(p): Indeed, in

this casep, by definition, factors ovefl and the restricted representation%(as)
is trivial. Thus, in the diagram above, we have

By =Y XN Vieg(p) =Y x V).

This shows that the locally constant systémcomes with a canonical trivializa-
tion of its pull-back to the Galois cover with Galois groép := G/ ker(p) and
any covering lying over this one. O

Observe that in particular ovéf itself, we have the canonical isomorphigmx
V, = 1 E,, (y,v) — (y, [(y,0)])-
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REMARK 15. — Let us end our considerations of trivializing locally constant sys-
tems after pull-back with the following special case of the trivialization described
in Lemma 14 above that will be important in the sequel:

Let A be our abelian surface antin| be the (abelian) group ef-torsion points on

it. Denote byA[n]" the dual group and let, 7 € A[n]" be two characters of order

s andt, respectively. Denote b¥ 4 , L4 - andLL 4_, the locally constant systems

on the abelian surface correspondingrta- and their product .

Let further! € N be a natural number that dividesand is a multiple of both
andt. Our considerations made in the proof of Lemma 14 show that under the
intermediate Galois cover given by the multiplicationbyap

A4ty

allthreeL 4 ,, L4 - andL 4 ,, become trivial. More explicitly we have a canonical
1-section of*L 4 , given by

Ug: A—U'Las={(y,[z,2])|ly=na},y— <y, [%y, 1]) :

Here,%y denotes a poiny’ such that}y’ = y. This 1-section is well-defined since
another choicg” for such a point differs fromy’ just by a translation with a point
a € A[7]. Thus, one finds

[y”7 1] = [y/ +a, 1] = [ylv U(_a)l] = [y,’ 1]7

since the}-torsion points lie in the kernel of the character

Analogously the 1-sections; andu,, of [*L 4 - andl* L 4, are defined.
Interpretingu,, ur and u,, as elements in the spaces of global sections of the
corresponding locally constant sheave€eahodulesl 4 ,, L 4 - andL 4 - (again

we use the same symbols for both interpretations of locally constant systems) by
definition it follows that they are compatible with multiplication:

HO(A, La,) @ HY(A, La,) —H(A, Lay ® La,) = H(A, Lgr)
Us @ Ur —U; U Ur = Ugr

Accordingly, the corresponding trivializations of the locally const@ntnodule
sheaves are compatible with the isomorphibn), ® L4, = L4, Iin the sense
that the following diagram of sheaves is commutative:

LA,O' & LA,T - LA,O'T

(uour) | [or (14)
CxC — C.
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Our next aim is to describe the direct image she#ly as the sheaf of sections of

a certain locally constant system.

Denote byC% = {¢: G — C} the space of complex valued functions @rpro-
vided with the ring structure given by pointwise addition and multiplication. The
groupG operates o from the left via(gp)(h) = p(g~'h). Analogously, one
has a compatible right-action given byg)(h) = o(hg~!). Obviously, both ac-
tions are compatible with the ring structure. The representaiiornas a basis
given by the delta functions, defined bye,(h) = d4. In this basis the mul-
tiplication is given bye,e;, = d4ne4. The leftG-action readsie, = ¢, and
accordingly the right action is given layh = £4,.

Assume now thafr is a finite abelian group. In this case, every irreducible repre-
sentation ofG is one dimensional. Denote Hy" the dual group of characters of
G. This is also a finite abelian group. The characters GV form a basis ofC®.
Denote byC[G"] the group ring of7". Recall that this is th€ algebra with basis
es, indexed by the elements 6V, and multiplication given by,e, = e,-. In

this case, we have a ring isomorphism

C[GY] = €% e, — 0.

The inducedi-structure onC[GV] is given byge, = o(97!)e,, and thus is im-
mediately seen to be compatible with the ring structure.

Let us come back to the general case. Denoté&hy the Cx-module sheaf of
locally constant sections of the locally constant sysiém; C. By construction,
since the compatible right-action and the ring structure survive the transition
fromY x C¢ to the G-quotient, Rx is a sheaf ofC-algebras on whiclty acts
from the right. Observe that it is the same with the shed,: This is a sheaf
of C-algebras by construction and carries thenodule structure given foy <
I'(U,7.Cy) = I'(n~'(u),Cy) by sg = s o g, where the secong denotes the
automorphism ofr—!(U) induced by the rightz-structure ofY’. We have the
following

LEMMA 16. — The shedR x defined above is canonically isomorphic to the direct
image sheafr.Cy as a rightC[G]-algebra.

Proof. We shall construct a morphism of sheawe€y — R x, and check on the
level of stalks that it is an isomorphism. Lt C X be an open set. Without loss
of generality, we assume thét is connected. To a sectione I'(U, m.Cy) =
I'(=—Y(U),Cy) we associate a sectighc I'(U, Rx) as follows:

Choose a poiny € 7~ (U). The sectiors defines a complex numbey, for each
translated poinyg € 7= (u). Set

S(u) = [(yvzgeGSyggg)} -
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Observe thab(u) is in fact a constant section, singés constant.
It remains to show tha$(u) is well defined: Ify’ € =—!(u) is another choice,
there exists anh € G such that/ = yh. We have

[(y',zgs@/gégﬂ = [(yh, ngyhg&“g)}
- [(y’hzgsyhggg)}
- [(y’zgsy(hy)ghg)] = S(u).

On the level of stalks, this morphism is seen to be an isomorphism: After choosing
a pointy € 7~ *(u), the stalk(.C),, is isomorphic to{ (s,g)sec|s € T'(V, m.C)},
whereV is a small simply connected neighborhoodi@ind thusr =1 (V) = V xG.
The stalk ofR x atw is given ast—! (u) xg CY. The morphism described above
reads now

(8yg)g — [(y, ngygeg)} .
This is well defined, as we have seen above. Its inverse morphism is given by
[(Z/a Zga969>:| — (ag)g-
The fact that this is indeed a morphism of sheaves of rings is also seen immediately
on the level of stalks: In both cases the stalk is isomorphigtpCe, with the
same ring structure given by, = d41c4. Similarly, both stalks carry the same
right-G-action given by, h = ¢,45, and thus the lemma follows. O

Due to Lemma 16 above, we will not distinguish between the shgdf- andR x

in the sequel. More generally we will often identify a locally constant system with
the corresponding locally constafitmodule sheaf of its sections.

Applying the Leray spectral sequencertoone finds an isomorphism of rings

H*(Y,C) = H*(X, Rx).

We shall now investigate the meaning of Lemma 16 in the case of a finite abelian
groupG. In this case, as we have seen above, we have a ring isomorftism
C[GY], and thusR x is the sheaf of sections af x C[G"]. Since the represen-
tationC[G"] decomposes &8[G"] = @, Ces, SO doesR x:

RX: @ LO’)

oeGY
whereL, is the locally constant-module of rank 1 corresponding to the locally
constant systeri’ x o Ce,,. Due to the ring structure o® x, we have a commu-
tative and associative system of isomorphisigs? L, = L,.. Furthermore, we
have seen thaR x still carries aiz-action in this case, which is given fgre G by
multiplication witho(g—1) on L,. Accordingly, the isomorphism of rings given
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by the Leray spectral sequence reads now

= p °H (X, L,)

oceGY
We have seen in Lemma 14 above tligtcomes together with a canonical trivi-
alization ofr* L, overY. As L, carries theG-action given byo—! however, its
inverse imager*L,, is also a sheaf with &-action. This action is still given by
the charactes—!, thus the sheaf* L, is canonically identified with the constant
sheafC, on whichG acts vias—!.
On the level of cohomology, we find that the induced actio®é(Y, 7* L, ), com-
pared to the action oH*(Y, C) is also twisted by —!. This means that faoy € G,
a € H*(Y,C) anda, € H*(Y,7*L,) the corresponding class i*(Y,n*L,)
given by the trivialization oft* L., we have the following operation:

gas =o' (g)ga.
In particular, an invariant class ii* (Y, C,) corresponds to a class in theweight
space oH*(Y, C), i.e. the spac¢a € H*(Y,C)|ga = o(g) - aforall g € G}.
One hadl*(X, L,) = H*(Y, C,)“ by a theorem of Grothendieck (cfL4], §5). It
follows that in the isomorphism of conomology rings induced by the Leray spectral

sequence
C) = € B (X, L)
ceGY
the componentl* (X, L,) is just thes-weight space with respect to tiieaction
on the cohomology oY'.
Observe that the cup product on the right hand side of this isomorphism distributes

H*(X,L,) ® H* (X, L;) — H(X, L),
due to the isomorphisth, ® L, = L.

We will now apply these observations to our situation of the Hilbert scheme. We
find the following

LEMMA 17. — Let X be a compact algebraic surface and @tbe an abelian
quotient ofr; (X). Then we have &-Galois covery’ — X" and an isomor-

phism

ceGY

Proof. As stated in the first chapter, id][ it is shown thatr; (X)) = 7 (X)2
sucht thati' is also a quotient group af; (X ™), therefore the existence bf. The
rest follows directly from our considerations above. a



2. INTERSECTION COHOMOLOGY. 25

Recall diagram (1) from Section 1 in Chapter 2

A x K14 Aln]
PAi \Ls
A A.

n
As we have seen, realizes the Hilbert schemé™ as a quotient oft x K (14

by the groupA|n| of n-torsion points of the abelian surface, so we can apply the
lemma above: Taking the direct image of the constant sBgaf,.-1),, we get

viC = @ L 4 ,, parameterized by the characterss A[n]Y of A[n]. Observe
that, sincev,.C = s*n.C, these local systems are inverse images of corresponding
locally constant systems on the surfaéeyn) , = s*La,o.

Summarizing, we have found a first description of the cohomology ring of gener-
alized Kummer varieties in terms of the cohomology of the Hilbert scheme:

PROPOSITION18. — The cohomology ring of x K ("~1)4 is given by

H (Ax K" Y4,C)= @ H(AM, Lyw,)

a€An]vY

O

The aim of the next section is to give a decomposition of the cohomology groups
H* (Al L 4 ;) by using intersection cohomology.

2. Intersection cohomology.

LetA = (I1 >l > ... > I5) = (1*1,2%2,...) be a partition of». Denote by
S?A the spacq [, S“ A and sefged()\) = ged(l;), the greatest common divisor

of thel;’s. In [12], Gottsche and Soergel use intersection cohomology to prove the
following theorem of the structure &f*(A x K("~1A, C) as a vector space:

H'(Ax K™ VA C) = @ H(SM,0)2(]A - n)].
A zeAlged(V)]
In this section, we will give a somehow dual description of the cohomology of
K (=14 using locally constant systems. The first ingredient for this description is
again the decomposition theorem of Beilinson, Bernstein, Deligne and Gabber in a
rather weak form (cf.12], Theorem 3 and Proposition 1):
Consider the following diagram:

Aln]
lp
KX
SM — S"A

Here, p denotes — as usual — the Hilbert-Chow-morphism ands the com-
position S*4 — S¥A — S"A. The decomposition theorem gives the following
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guasi-isomorphism in the derived category of sheavés-ofodules:

p<Cgim = @D rrCara2(]A] = n)]. (15)
X

Recall diagram (6) in Section 1 of Chapter 2:

Ax K14 Al
p/l lﬂ
Ax (5"A)) —2 SnA
l lz

A & A

With the notations introduced there, we h&Rg, = v,.C = p*v,C =: p*Rgna.
Twisting equation (15) with the she®& ;. gives the following

LEMMA 19. — Denote byRg», := k3Rsna. Then, one has a natural isomor-

phism of vector spaces

H* (A" R ypn) = @D HY (S, Rera)[2(1A] — n)].
AeP(n)

Proof.
With the notations introduced above, we conclude

PR gin) = s (Cgin) ® p"Rigna) = psCom @ Rgna
= @)\ ExCo[2(|A] = )] ® Rgna
= @)\ Kax (Corg ® KA Rsna) [2(|A] — n)]
= @A KaxRgaa[2(IA] = n)],

where have used the projection formula, observingghat o and analogously for

K, Since they are morphisms between projective varieties, and the decomposition
formula (15).

The lemma now follows by pushing forward to a point. a

The following lemma gives a description of the cohomologyydf with values in
Rs)\A:
LEMMA 20. — One has:

H*(SAAv RS/\A) = H*(SAAa (C[A[g(:d()‘)]v])a

where C[A[ged(N)]Y] denotes the group ring of the group of characters on the
ged(\)-torsion points ofA, considered as a constant sheaf $t.
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Proof. We haveRgryy = @D,capv L, With the abbreviationLg,, , =
kxLgsna .. As afirst step, we prove the following:
H*(S*,C) ifthereisan isomorphism g, , >~ C,

H*(SA, Loy ,) ~ .
0 otherwise.

By a theorem of Grothendieck (cfL4], §5) , we have
H*(S*A, Ly) = H* (AW, p* L) 1T Ses

wherep: AN — S*4 denotes the projection. We will show now thstL,, is
trivial as aC-module if and only ifL, is trivial:

We have to consider the cagse A" — S™A only. Here, we have, : m(A") =

T (A" — m(S"A) = m(A) (cf. [1]). If we regardc as a representation of
the fundamental group a8"A, the representation belonging to the local system
p* L, comes from the reduction along the surjective group homomorphiscr.
Section 1). This representation is trivial if and onlyifs the trivial character.

LetT = C¢/T be a complex torus, and letbe a non-trivial character: T' — C*

of finite orders. Then due to thétale covering: T — T given by multiplication
with s, we find

H*(T,C) = H*(T,s.C) =H*(T,C)& P H(T.L,).
1#£7€(T/sT)V
Sinceos was assumed to be non-trivial of orderit factors oved’/sI". So we can
interpret it asl # o € (I'/sI")Y. It follows that the cohomology of a torus with
coefficients in a (non-trivial) local system is zero.
Thus, we have shown that* (AN, p*L,) # 0 if and only if L, is trivial.

Since a character € A[n]Y comes fromA[ged())]Y if and only if its order divides
ged(X), the only thing that remains to show is that the sheaf, , on 5*4 is
trivial if and only if the greatest common divisor ofis a multiple of the order
of the charactes. But this follows directly from our considerations in Section 1:
Consider the commutative diagram

Sr — SYA—— §m4

y E
!
A A.
Here, ! denotes multiplication with the greatest common divisor of the partition

A X: S"A — A is the summation morphism angl, is the ‘reduced weighted
summation’, which is defined by

SM =T[5 A > (>C5iiai)i — ZﬁE(Z?;laij) €A
Since the locally constant systems $M are inverse images of the corresponding
sheafs om , we haveLgry , = (S7eg)**La,o- SO, Lgry, is trivial if and only
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if I*L4 . is trivial, which is the case if and only if the covering df given by
multiplication with! factors overA cordlo), A, i.e. if and only iford (o) is a factor

of I = ged(\). 0

We can reformulate the above lemma to get the following

COROLLARY 21. — We have a natural isomorphism of vector spaces

AEP(n) oe Alged(A)]V
O

In the next section we will use a generalization of Nakajima’'s description of the
cohomology ofAl" to give a more geometric version of this decomposition.

3. Nakajima'’s description

In [23] Nakajima constructs in a geometric way a representation of the Heisen-
berg algebrdy modelled on the cohomology of a surfageon the spacéd :=

@, H*(X) and proves thaH is an irreducibléy-module.

In this section, we will recall his construction and generalize it in the case of an
abelian surface to cohomology with values in a locally constant system. Further,
we give an alternative description of how the cohomology of the Hilbert schemes
is generated by Nakajima’s operators applied to the vacuum.

Here and in the following we will use the words ‘symmetric’ and ‘commutative’
and also all occurring Lie brackets inZy/2-graded sense. E.g. a bilinear form
(—,—) on a vector spacgis symmetric if for allz, y € g we have

(z,y) = (_1)deg(r) deg(y) (y, ).

DEFINITION 22. — Letg be a complex Lie algebra equipped with an invariant
symmetric bilinear form—,—): g ® g — C. Its Loop algebra is defined to be
Lg = g ® CJt, ¢t~ '] with the following Lie bracket:

[xm ym] = [l‘, y]nera

where we define,, := x @ t" forz € g.
Its affinization g is the algebra := Lg ® Cc wherec is central and the Lie bracket
is given by

[Ty Yn] = [T, Ylntm + n0n,—m (T, y)c.

We are interested in the special cgse H*(A, C), the cohomology of an abelian
surface, with the trivial Lie bracket and the bilinear form given by

(@)=~ [ aus.
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The resulting algebr:= g = H*(A)[t,t~!]@Ccis called theHeisenberg algebra
of H*(A) and satisfies the commutator relations

[ana ﬁm] = nén,fm<047 ﬂ>C

In order to define Nakajima’s operators it is convenient to work within the frame-
work of Borel-Moore homology. This homology theory can be defined sheaf the-
oretically, which can be found e.qg. i][ In the case of constant coefficients how-
ever, there is an alternative account that can be found in Appendix 8] aihp

which we want to remark here:

Let X be a topological space that can be embedded as a closed subspace of a
Euclidean spacR". Then its Borel-Moore homology groups can be defined by

H;(X,C) := H"{(R", R"-X; C).

One shows that this definition is independent of the chosen embedding, and that
furthermore, for closed subspace of an oriented differentiable manifBidone
has a canonical isomorphism

H;(X,C) = H"*(M, M-X;C).

That this is the right way of thinking of Borel-Moore homology in the case of
values in a locally constant system follows from the subsequent list of

FACTs 23. — LetL be a locally constant system oti and denote by;(X, L)
the Borel-Moore homology of with values in.. Then one has

1)) H; is a covariant functor with respect to proper maps, i.ef ifY — X is
proper, it induces a morphisrf.: H;(Y, f*L) — H;(X, L) and for the composi-
tion of two proper mapg andg, one hagf o g). = f« o g«. ([3], V.4.5)

2) Letj: A — X be a closed embedding &f in a compact complex (weak
homology) manifold¥ of dimensionlim(X) = n. Then there is an isomorphism

H;(A,L) = H*"'(X, X-A; L). (16)
In particular for X itself, we havel;(X, L) = H*~*(X, L). Furthermore, with
respect to this isomorphism, the push-forwgrd H;(A, L) — H;(X, L) is given
by I*: H2"~i(X, X—-A, L) — H2~i(X, L). ([3], V.9.3)
3.) LetX beasin (2.), lefl and M locally constant systems oti and letA, B be
closed subspaces &f. By the isomorphism (16) and the cup product on relative
cohomology

H>" (X, X-A; L) @ H*" (X, X-B;M) —
H2 =420 (X X—(ANB); L ® M)
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we get anintersection product
< Hi(A, L) ® Hj(B, M) — HZ‘_:,_]‘_Q”(A NB,L® M)

in homology. Observe that this product dependsfoalthough this is not explicitly
denoted in the formula above.

4.) There is a cap-product between cohomology and homo[8)/(L0) that sat-
isfies the usual rules:

N: (X, L) @ Hi(X, M) — H;_;(X,L ® M).

5.) LetZ C X be a closed subvariety of the complex manif&ldAssume further
that Z has only one irreducible component of top dimengianThen there exists
a fundamental clasgZ] € Ha,,, (X, C). ([9], B.3)

Observe that the isomorphism (16) shows that thieendefinition of Borel-Moore
homology via relative cohomology in the case of constant coefficients is the right
way of thinking of this homology theory in our case also.

We are now ready to recall the notion of a correspondence (For a detailed descrip-
tion cf. [10].): Let X; and X5 be smooth projective complex varieties. A class

the Chow group4,, (X; x X3) of the product ofX; and X5, is called acorrespon-
dencebetweenX; and X,. (We work with rational or even complex coefficients
because we are not interested in rationality questions.) The case we are most in-
terested in is that of irreducible correspondences that is a correspondence given by
a classu = [Z] induced by an (irreducible) closed subvarietyC X; x X5 of
dimensiom. We will denote the image af in Ha,, (X3 x X2) by the same symbol.

Let p;, i = 1,2 be the projections fronkX; x X, to the factorX;. Observe that

the pull-backpiy of a classy € H*(X;,C) can be interpreted as a homology
class which we denote by the same symijol € H,.(X x Y, C), sinceX x Y isa
manifold. A correspondence induces a linear mapn the level of (co)homology,
which is given by

uy: Hi(X1,C) — Hpon_2dim(x,) (X2, C); y = pau(piy - u)

or

we: B (X, C) — HI72rH24me) (X, C):y o PD ™ prc(u N phy),
where PD H*(X;) — H.(X;) is the Poinca duality map. We will call these
map also correspondences.
Assume thatXs is another smooth projective variety and that A,,(X2 x X3)
is a correspondence betwe&p and X3. Denote further by;; the projection from
the triple productX; x X, x X3 to the factorsX; x X;. The correspondence

W 1= P13« (PlaU - Pagv) € An+mfdim(X2)(X1 x X3)
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is called theproductof » andv and denoted bw = u o v. With this definition of

a product it is also clear how to define the commutator of two correspondences if
it makes sense.

On the level of (co)homology we have

(w0 V) = Uy 0 vy.

Suppose now thdt1, € X7 x X5 andZs3 C X5 x X3 are closed subvarieties and
thatu = [Z12] andv = [Zy3]. Let further

W :=pi3 (szl(Zu) ﬂpggl(zzz)) : (17)

Then the product-correspondencedefined above is already defined.n (W).

One often uses this fact in order to show the vanishing of a correspondence: If
the dimension of the intersectidiy is smaller then the degree of the product-
correspondence has to be zero.

We will now generalize the map induced by a correspondence on the level of ho-
mology under certain assumption to the case of homology with twisted coefficients.
Let X andY be smooth projective complex varieties andilleand M be locally
constant systems ol andY respectively. Denote hy;, i = 1, 2 the projections
from X x Y to X and toY, respectively. Let/ C X x Y be a closed subvariety
and denote byZ] the correspondence betwe&randY induced byZ. We assume
further that overZ we have a canonical isomorphispiL|; = p5M|; of the
restrictions of the locally constant sheaves.

Again, the pull-baclpiy of a clasgy € H*(X, L) can be interpreted as a homology
class which we denote by the same symijol € H. (X x Y,pjL), sinceX x Y

is a manifold. Via the isomorphism of the restricted locally constant systems over
Z the class(piy - [Z]) € H.(Z,piL|z) corresponds to a class W (Z, p5M|z)

wich we denote by the same symbol. Pushing this class forwaid(fv, M) along

the second projection, we get a mgfi}! on the level of homology with twisted
coefficients that is totally analogous to the mzjp, defined above:

(Z)3": Hi(X, L) — Hy o dim(2)—2dim(x) (Y M); y — pau(ply - [2]).
More generally, for any class € Hy(Z, C), one has a correspondence
Hi(X, L) = Hitk—2dimx) (Y, M); y = p2.(piy - @). (18)

Since we assumell andY” to be manifolds, these correspondences can be seen as
homomorphisms between the cohomology groupXadndY using the isomor-
phism given in Facts 23.2.

We will now define Nakajima’'s operators as certain correspondences. Since we
want to generalize them to locally constant coefficientsyletr; (A) — C* be a
character of finite ordes of the fundamental group of our abelian surfate It
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defines for alln € Ny a locally constant systeth, = L 4. , on A"l given by

L, = {[a,n, z] € <A X A A[”S}) X Afns] (C} .

Here, A x 4 Al™! is the A[ns]-Galois cover ofAl"*!, induced by the morphism
‘multiplication with (ns)’ A — A. With other words

A x4 Al = {(a,n)|s(n) = ns - a},

wheres: A"l — A is the summation morphism. In this notation, the group of
ns-torsion points acts onl x 4 Alnsl via the action on the first factor. Thus two
representativeta, 7, z) and (da’, 7/, 2’) for points in L, are equivalent, ity = '
and if there exists ap € A[ns] such that’ = a + y andz’ = o1 (y)z.

Define furthefl” := @, .y, H* (A", L,)). Due to the results of the last section,
we have

H' (A", Ly)2ns) = @) HI(S,C)[2/A]]

XEP(ns)
slged(\)

= @ H(SM,O)2\]

Ad=s)\’
for A’eP(n)

= P H(SYA, )2V
NeP(n)
= H'(A", C)[2n],

where for a partition\ = (I} > --- > l\’x|)’ we have denoted by’ the partition
(slp > .- > 8l|/)\’|)' Furthermore, we have used thtd = SNA for A = sV,
since it depends only on th&s occurring in the partition which are not changed
by the transition from\’ to \. For the same reason, we haw¢= |\'|.
Thus, as a vector spadé? is just a stretched version &f. We will show that this
is true also on the level of representations.
We want now to define for a classe H*(A, C) and an integef € Z an operator
of : H* (AP L,) — H*(Al+Ds] 1), In the special case of = 1, this gives
us back Nakajima’s original construction. In order to do that, we introduce the
incidence schemes™"'] ¢ A"l x A"l where we assume that > n > 0. Itis
given as

APl = (g, &)le &),
where¢ C £ means thaf is a subscheme @f. For such a pai¢ C ¢/, we have an
inclusionly C I, of the ideal sheaves and the quotiént/, is anO 4-module of
finite length corresponding to the points whétand¢ are different. Accordingly,
there is an analog to the Hilbert-Chow morphismA[™™] — §7'~"4 given on
closed points by (&,&") = >, ca ((Ie/Ier) o).
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DefineAg"”/] to bep~ (D), whereA ~ D ¢ S ~"A denotes the small diag-
onal. Finally letZ = 2, be the component oA, that contains the locus
of points wheresupp(l¢/1I¢) is disjoint from¢ and give it the reduced scheme
structure. Its dimension id&im(Z) = n + n’ + 1: This follows from a theorem of

Briancon (cf. i]), where the dimension k", the subset OK([Z]l) consisting of

subschemes centered in a pairg X is computed to bdim (X;W) =n—1. We

will consider 2 as a subvariety afil”l x Al"]. By construction, it comes together
with a morphismp: Z — D ~ A, mapping a paif¢, ¢’) to the point, they differ
in.

Now, leta € H*(A,C) be a cohomology class on the surface,rlet Ny be a
natural number] € N be a positive integer, let be a character of finite order
sand letz c Al x Al+Ds] pe the subvariety defined above. Denotephy
andp, the projections fromAl™sl x Al(+Ds] tg Alns] and Al +Ds] | respectively.
Pulling backa to Z and capping with the fundamental clds§ we get a class in
the homology ofZ. As discussed above, this defines a correspondence

o, H (AP L) — H*(Al+Ds) )y,

given byy — pa.(piy - (p*a N [Z])), under the assumption thaiL, andp; L,
are isomorphic oveg. This is the case by the following

LEMMA 24. — With the notations introduced above, one has
pTLO'|Z = P;LU‘Z

Proof. We have

pTLU‘Z = {(675/; [a,n,z])

supp(¢’)=supp(§)+is-z,
s(n)=ns-a andn=¢

and

p;LJ’Z = {(é‘? 5/; [a/7 77/7 Z/])

supp(¢')=supp(§)+ls-z,
s(n")=(n+l)s-a’ andn’=¢’ ’

We define a morphismi: pi L, |z — p3Ls|z by
(&, &5 [a,m, 2])) = (€,&;[d', €, 7)),
1

with @’ := 25 (na + lz), wherelb € A denotes a point’ such thatmb’ = b
andz € Ais the pointp(¢, &) where¢ is prolonged. With this definition, we have
(n+1)s-d = nsa+lsx = s(¢), as it should be. We have to check thiais
well-defined.

1.) Leta” = o’ + y, withy € A[n + [] be another choice of’. Then we have
[a", &, 2] =[d +y,&, 2] = [d,&,0(y)z]. But by assumptions is a character of

orders, i.e. it factorizes over[(n + [)s] RGAON Als] and thugy € ker(o).
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2.) We have to check further thétis independent of the choice of a representative
of [a,n, z]: Lety € A[ns] be anns-torsion point. We have

I((& € [a+y,m,07 (y)2]) = (6,5 10", €, 07 ()2,
with «” = o + 3/, wherey’ € A a point with(n + 1)y’ = ny. It follows that

o(y') =o((n+1)y) = o(ny) = o(y).
Thus the morphisnd is indeed well-defined. Its inverse is given by

9, 2) = (€,€5[a, €, 2),

with a := 1((n+1)a’ — lz), where again is the point wherg’ and¢ differ. That
Y~ is well-defined is shown analogously. O

We have therewith defined thecation-operators a7;.. Observe that by definition
for a cohomology clasg € H' (Al L,), the conomological degree af () is
given by

deg(a?,(y)) =i+ 2(ls) — 2 + deg(«) :
The clasg*(«)N[Z] is of homological degre2dim(Z2) —deg(a) = 2(2ns+1s+
1)—deg(c). The homological degree of the imagg,, (y) of y € H (A"l L) =
Hyns_i(A") L,)is4ns — i 4 2(2ns + s + 1) — deg(a) — 2(2ns), according to
formula (18). Thus, we have indeed

Oéils(y) c Hi+2(ls)—2+deg(a)(A[(n—f—l)s}’ Lg).
Further, still for positive, we define thennihilation-operator af, by changing the

réle of p; andp,:

af,: T (A0 Loy — 19 (AP L)y e (1) prply - (p*a N [2])).

Let 0! the inverse character to. We define the following pairing between
H* (A" L,) andH*(Al*) L 1), compatible with the sign convention chosen
in the definition of the Heisenberg algebra above: froe H*(A[”S],LU) and

z e H* (A" L, 1) set

)= (0 [

With this convention, we have the following easy

LEMMA 25. — According to the above pairing, the operater$,, and of, are
adjoint operators.
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Proof. The assumption follows directly from the projection formula: We have

(@ 1(0.2) = ()" [ iy (pTan[2])

= (—1)(n s / Py (Ffan [2]) - pie
Alnsl x Al(n+1)s]

= [ )i (e 2)

= (y, afs(2))-

g

According to our considerations above, we have for everg H*(A,C) and
everyl € N defined the creation operatat”,, and the annihilation operator
af, € End(H?). Finally, leta§ be the zero operator iRnd(H”). The follow-
ing Theorem is due to Nakajima2@]) in the case of the trivial character:

THEOREM26. — Leta, § € H*(A, C) andn, m € Z. The operatorsy), and 37,
defined above satisfy the following commutator relation:

[0, Bs) = 1860, —m{av, B)idge.

It follows thatH is a representation of the Heisenberg algebra

Proof. The theorem follows directly from the proof of Nakajima’s original the-
orem, where it is shown that the section of the considered incidence vadgties

is of to small dimension to carry a non-zero product-correspondence (cf. equation
(17) where the ‘support’ of a product-correspondence is given) in all cases except
whenn + m = 0 and that in that last case the correspondence is a multiple of the
diagonal of multiplicity stated above. (Cf24] for a very detailed version of the
proof.)

Since all these arguments are purely geometric (in the sense that they live on the
level of the Chow-groups) and independent of the charactde only thing we

had to check was the existence of an isomorphism of the restricted locally constant
sheaves. O

This theorem shows that therepresentatiofil” is also a stretched version Hf.
Thus we conclude that, &5, the spacél” even is an irreducible representation of
h. Itis generated from the so calledcuum 1 = 1, = 1 € C = H*(4%, L,)
H° by the creation operatorg” ., n > 0 (cf. [23)]).

ns?

The following interpretation of Nakajima’s approach to the generation of the coho-
mology of Al"s] from the vacuunl seems to be well known. But since | could not
find a proof of it in the literature, it is included in this thesis:
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Let o be again a character af (A) of finite orders. Let furtherA = (I; > Iy >
-2 1y = (191,292, (ns)* =) be a partition ofas such thats| ged(A). It

follows thatH* (A" L );é 0.

Recall thatS*4 denotes the variety[;2, S“A. Forj € {i[l <i < nsanda; #

0} andk € {1,...,q;}, let 3;, € H*(A,C) be |\ cohomology classes on the

surfaceA. We define a class

gy € H'(SM, L,) = H*(5%4, C) ® (@H* A,C )

7=1 =

5

by setting
=t - (19)

9€6q;

Observe thatleg(3)) = 3_; ; deg(03;). Starting from this cohomology class, we
produce a new clas$, , € H2s~ 2+ deg(Bir) (Alrsl [,) by defining

Bro = drp"Ba. (20)

This has to be read as follows: We denotepby H*(S*4, L,) — H*(A&”S], Ly)
the map induced from

Al

ip

SM — STA

As we have seen in section 1 of chapterS24 — S7*A. is a homeomorphism,
thusp™ is the pull-back along the map

A[ns SM; 6 Zfﬂm

wherez;; runs through the points of Iengthn the support of.

Further, letj : A&"S] < Al pe the inclusion of the closed stratum belonging to
A into the Hilbert scheme. This induces a morphism

i ] Al s s
H (A[A I L, ) —— Hopst\)— (A[ L )—>H2(ns+|A|) (Al L)

and this last homology group is isomorphicH8(™s—IA\D+i(Alrsl 1), sinceAls]
is a manifold. The resulting homomorphism in cohomoldgyA[A"S],Lg) —
H2(ns—IAD+i( Als] L) will be also denoted byy,.

Using the result of Nakajima, we have a second option to define a cohomology
class of degre@ns — 2|A| + > deg(f; ) on the Hilbert scheme, starting from the
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classes’; ., namely

5Z)\]1 = (H( ;k)]) 1= ((ﬁil)—l ©---0 ( gs,ans)—ns) 1. (21)
ak g
|A] factors

Observe that this operator is indeed defined since iallthe partition witha; #
0 are divisible bys by our assumption ogcd(\). We can now formulate the
following

THEOREM27. — With the notations introduced above, one has the equality=
[ TI S|~ 67,1.

Proof. First, observe that?, 1 has in fact the right degree: Starting from the
vacuum, which lives in degredeg(1) = 0, each operatof37, ), increases the
degree byj — 2 + deg(;,) and thus altogether, we find

deg(B7,1) = >-2j — 2 + deg(B;x) = 2ns — 2|A| + > deg(B;x) = deg(B).

To simplify notations let us enumerate the clag$gsin such a way thas; belongs
to [; in the partition\. With this notation, we have

875 = ((Ba) 7y 0+ 0 (B ) 1

Next, observe that the operatdf , is a composition of correspondences. As such
itis itself a correspondence. By definition, the varigty c Al x Alhlx. .. x Al]
defined as

Zy = pﬁlZ()h n... ﬂpail_l)IMZ(ns_l‘/\l)ms
plays an importantile. Here we have used the sympgl to denote the projection
from A0 x Al % ... x A8l to the product of the-th and thej-th factor. Z, is
given as

Z) = {(fo,&,..-?fw

There is a sequende= o CE&1 C...CE) |
s.t. for all1<i<|\|: supp(&;) =supp(&i—1)+l;z; foraz, €A ’

We thus have again a morphism 2, — Al* sending(&, . .. ;€|x)) to the tuple
(w0, ..., xy) such thakupp(§;) — supp(§;—1) = l;x;. Denote further by, and
po the projections fromd[% x A5l to A1 and A[s], respectively.

By the rule of how to compose correspondences, we have

BN = pou(pi 1 pipj(p"(BL K-+ K& Byy)) N [Z24])).
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Observe that due to the commutator relations every permutation of the classes
produces the same clas$, 1. Thus, in particular, it follows that

ﬁaxﬂpz*( > o By "'@ﬁg(s))m[z/\])>

n g€]l Ga
= p2(P1a (P BA N [21]))

where/3, is the cohomology class defined in (19).
But now we are through: The morphispa factors asp;y(2)) — A[fs] 2,

Al*s]and the morphismp corresponds to that of the same nameA[A”S} —

S*A. Since the degree of the first magpy(2x) — A[A"s}, iS | ][ Sa,l, We have
PP (P By N [22]) = [ T] Ga, lir«p* By which is what we wanted to show(]

COROLLARY 28. — LetL, be a locally constant system at¥’). Then one has
H* (A" Ly) = €D japH (4, Ly).
AEP(n)
This decomposition coincides with that induced by Nakajima’s operators up to a
factor that is independent of the coefficient sheaf.

Fora € H*(S*4, L,,), we will note the elemengy.p*a by ay , € H* (A, L)

and we will often refer to this decomposition as ‘Nakajima’s description’ in the
following.

The next lemma and the following corollary show that Nakajima’'s description of
the cohomology determinds®(A x K("~DA, C) as a vector space with the inter-
section pairing.

LEMMA 29. — Letn € Nand letA = (Iy,...,l;) andu = (my,...,m,) be two
partitions ofn. Then we have

((ag)—g, - (1), 1, (Br) =y - - (B1) =y 1) = 0if r # t and

<(at>—lt e (al)—ll ]17 (BT’)—W : (/81 —mq ld = Z H Oé] 6#@ —m,r(J)]

TEG: j=1

otherwise.

Proof. We will first check that the pairing vanishes if the partitions have different
length. Without loss of generality we assume: r. In the cas¢ = 1, we have
A= (n)andm; #nforalli =1,...,r. Thus we have

(L, (Br)—m, =+ (B1)=mi 1) = (L, (Br) =, - (B1) = &n/_) =0.

=0
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In the general case, using induction#mve find
((ar)-g, -+ (1)1, 1, (Br) =m,. - -+ (B1) —my Did =
((=1) 1y -+ (@1) =i, 1, (Br) —=m,. - - (B1) =my (o)1, 1)id+

t

> @)t (B)—mad{(@—1) 1y - (@1) = 1 (Br) =y -~ (Bs)—ams -+ (B1) sy 1)

=1
=0.
As usual, we have put a hat over the operator that has to be excepted in the product.

The first addend vanishes since an annihilator is applied to the vacuum, the others
by the induction hypothesis.

Assume now that: and \ are of the same length In the caseé = 1, the equality
follows easily:

(a_p1, f_p,1)id = (1, f_pan, 1)id + [, B—n](1, 1) = [an, B—n].

We conclude again by induction @nin the general case, we find again

<(at)—lt T (al)—ll 1, (ﬁt)—mt U (ﬂl)_ml ]1>id

t

= (@), (B)—m.]-

=1

—

((—1) =ty = ()=, 1, (Br) =y - (Bi)—my =+ - (B1) =y 1)

t
Z ), (Bi) mz Z H Ct] /BW(J —mm)]

1
KEGE )lj;éz

¢
Z H )15 (Br()) =ms )5
€S, j=1

where we have denoted lﬁ:‘yﬁ?l C &, the subgroup of permutations that fimnd
thus altogether we sum over all permutation&in) whereas the last equality. This
proves the lemma. O

One can use Nakajima’s commutator relations to make the above lemma more
explicit. This is done in the following

COROLLARY 30. —LetA = (I > --- > ;) = (1*,...,n%)andpu = (m; >
- >m,) = (1%, ...,nb) be two partitions of.. Leto be a character ofd[n]
and let

axe = |6y (H(%‘,k)j) 1,

Jk
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and
ﬁu,ail - ‘GH’_l H(ﬂj’,k’)—j ]10'71
jl7k/
as in (21) above for classes;, € H*(A,C) for j € {i|l < i < nanda; # 0}
andk € {1,...,qa;} and analogously fop;, ;,. Further, we have denoted Hy,

the vacuum € H°(AY, L,) = C and analogously fos—.
Then one has

(@ros Buo-1) = a6 72 Z Hj<aj,k7ﬁj,7r(k)>a
TeBy 71,k

where we have denoted I8y, = ]_[j 6&,, C &; the group permuting only the
indicesk and analogously fo&,,.

Proof. First observe that we can restrict our attention to classes in the coho-
mology with coefficients in the constant she@f Indeed if we denote by,

the clasg§&, |t [1; x(ajk)—;1 obtained by the same operators from the vacuum
1€ H°(Al C) and analogously fof,,, we have due to Theorem 27

(ax, Bu) = (=1)" /A[n] Jrp" pusp” B,
But due to point (2.) in the list of facts given in Fact 23, we have
Iaep funp™ B = Ip*al,p* B = I3, (p"ap™B),
where we have used that pull-backs are compatible with the product and denoted
by I, the inclusion of the pait A", ) — (Al AlM—aAly analogouslyr,, and

Ly (AP 9) — (A[”],A[”]—Akﬂ), with A[A"ll the closed stratum given by the in-
tersectionATA"] N ATI”L]
Denote byu, and u,-: the sections irH’(S*4, L,) and H’(S#A, L,-1) cor-
responding to the canonical trivializationsbf and L -1, respectively. We have
axBy = jaxp jusp* B

= I3, (p" (@ Uug)p"(BUug-1))

= Jjap" (@ Ut ) jusp™ (B U tg-1)

= axoPuo-1-
Thus the equality

{ax, Bu) = (@xnos Buo—1)

follows.

The assertion that two classes belonging to different partitions have trivial inter-
section follows from Lemma 29: Ik # p we have in every permutation a pair
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lj # mq(; and thus the corresponding commutaltar; ), (Bx(;))
therefore the whole pairing vanishes.
For A = i, Lemma 29 and the commutator relations give:

(0ngs Buo—1) = 16172 D T]I(en)s (Bjmcry) ]

TeBy j,k

83 S T et Byt

TeBy j,k

] and

M (5)

The permutations lying outsid®, do not contribute, since again they produce a
vanishing commutator. a

We will use the conclusion of Theorem 27 to reduce the ring structub ofl x
K™=1A C) to that of H*(Al"),C) in Section 5. The cohomology ring of the
Hilbert schemed[™ has been computed by Lehn and Sorger an we will recall their
results in the following section.

4. The cohomology ring of A"

In [20], Manfred Lehn and Christoph Sorger determine the ring structure of the
cohomology group#l* (X", C) for surfacesX with trivial canonical class. Since
we will refer to their description in the case of an abelian surface, we will use this
section to present the ideas of this paper as far as we need them.

We start with the definition of a graded Frobenius algebra.

DEFINITION 31. — A graded Frobenius algebra of degree d is a finite dimensional
graded vector spacH = EBf:_d H' with a graded commutative and associative
multiplication H ® H — H of degreed and unit element 1 (necessarily of degree
—d) together with a linear forrT": H — C of degree—d such that the induced
symmetric bilinear form(a, b) := T'(ab) is non-degenerate (and of degree 0).
Consider the composite linear mébi H ® H — H, where the second arrow
is multiplication andA, is the adjoint comultiplication. The image of 1 under this
map is called th&uler class e = e(H) of H.

In the applications will be the shifted cohnomology ringl* (X; Q)[d] of a com-
pact complex manifoldX of even dimensioni. In this case, ifX is connected,
we havee(H*(X;Q)[d]) = e(X)[pt.], where[pt.] is the class dual td ande(X)
denotes the topological Euler characteristickof

Observe that withif the n-fold tensor product?®" is again a Frobenius algebra
of degreend with the product

<a1®...®an>(b1®...®bn):€.<a1b1)®...®(anbn),
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wheree is the sign resulting from the reordering of this andb’s. The symmetric
group&,, acts onH®" via

g(al & ®an) = Sagfl(l) (SR Ag—1(p)-

Here,e = (—1)Zi<ia(>o() d°8(e:) dee(a)) js again the sign resulting from inter-
changing ther's.

The strategy of20] is to define an endofunctaf — H[™ on the category of
graded Frobenius algebras such that appliedte= H*(X,C)[2], H!" is the
(shifted) cohomology ring ok [/

For a set/, Lehn and Sorger recall the natural definitionf6P! and construct for
a surjective mag: I — J of sets the induced ring homomorphisst: H®! —
H®7 and the adjoint module homomorphism: H®/ — H®!,

ForG C &,, asubgroup and C {1,...,n} aG-stable subset denote I63\o the
set of orbits. Fo{1,...,n} we will also writeO(G) := G\{1,...,n} for short.

If G = (g) is cyclic orG = (g, h) is generated by two elements, we omit the
brackets in the notation and wrif¢(g) andO(g, h), respectively.

With these conventions, define thebient space H{S,,} to be

H{&,} = @ H*Y.
geGn

Forg € &, and an element € H®° denote the corresponding element in
H{6,} by a,. Define a grading o/ {S,, } by settingdeg(c,) := deg(a). There
is a natural action of the symmetric group 8{&,,}: Forh € &, the operation
is given by

hay = (h*a)pgn-1, (22)
whereh* is the homomorphism induced by the bijectiOfg) ~ O(hgh~!),0
ho. DefineH!" := (H{&,})®" to be the subspace of invariants. By definition,
the operation of5,, on H{&, } preserves the grading. Thiig" is still a graded
vector space.
The next aim is the definition of a multiplication on the ambient spd¢e>,, }.
For two permutationg, h € &,, Lehn and Sorger define thwaph defect (g, h)
as the following function o (g, h):

Y(g,h): O(g,h) — Q, 01— %(IOI +2—[{g)\o| = [{)\o| — [(gh)\ol)

They prove thaty(g, h) is a non-negative integer.
Observe that for two subgrougs C K of &,,, one gets a surjectiofi: O(G) —
O(K) which leads to the to morphisms

fEK, geoG) _, geOK) and fx o+ HEOK) —, geO(©)

)
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that we have denoted b and f. above. Fol, h € &,, definem, ,: H®°W ®
H@O(h) N H®O(gh) by

Mg n(a®b) = fgn gn (f9’<97h> (a)fh&g,h)(b)ev(g,h)) '
Heree is the Euler class and one uses the convention

e1(g:h) . — e1(g:h)(0) ¢ gF&O(g;h)

®o€0(g,h)

The following two theorems are the main results 20]|

THEOREM ([20], Prop. 2.13 and 2.15)—
(1) The productH {&,,} ® H{&,} — H{&,} given by
ag - by, :==mgp(a®Db)gp

is associatives,,-equivariant and of degreed.
(2) H!" is a subring of the center di {S,,}.

As we have seen, on the geometric side, one has a natural isomorphism
H(x",c) = @ H(SX,C)2(1A - n)],

AEP(n)
where the sum runs over all partitionsrofAs in Theorem 27 in the last section, we
will interpret this isomorphism in an explicit geometric way: Every cohomology
class inH* (X", C) has a unique decomposition B3, a, wherea, is defined
to be

ay = jap a,
for a classo € H*(S*X, C). Observe that the degree shiftidgg oy, = dega +
2(n—|\|) vanishes if we center all occurring cohomology groups around the middle
degree.

Consider now the graded vector spdeE (X, C)[2]) {&,}. By the definition of
the ambient space, it is given as

(H*(X,0)[2]) {&,} = €D H*(X,C)[2]%°W).
geS,
By definition, the symmetric group acts on it as follows: hgtbe the element in
D,ees, H (X, C)#0) corresponding ter € H*(X, C)®°(¥). Then the action of
h € &,, was defined in equation (22) above as

hag = (h*a)hghfl .

By the Kiinneth decomposition theorem, the spHEEX, C)®°0) is isomorphic to
H*(X©W C). On the other hand, a set of representatives of the conjugacy classes
of elements of5,, is given by the permutations af. It follows that the space of
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invariants is given by

Sn
(H*(X; O)[2)™ = (@ H*(X,(C)[2]®O(9)>

geG,
~ P H(SX,C)2/A]
AEP(n)
= H*(X", C)[2n].
This shows that one has a natural bijective liner map
(H* (X 02" — B (X1 C)[2n].
With these definitions, Lehn and Sorger prove the following
THEOREM ([20], Theorem 3.2).— LetX be a smooth projective surface with nu-

merically trivial canonical divisor. Then the bijective linear map described above
is a canonical isomorphism of graded rings

(H*(X;C)[2)" —=— H*(x™; C)[2n].

This gives a rather explicit description of how to multiply two cohomology classes
on the Hilbert scheme. Observe that in our case of an abelian surface the Euler
class is trivial, so the product of two classeg, 3, € (H*(X, C)[Q])[”] is zero
unless the graph defect vanishes for all orbits O(g, h).

5. The ring structure of H*(A x K(~1A4).

We now have collected all necessary ingredients to compute the ring structure of
H*(A x K®=1A) and thereby implicitly determine the cohomology ring of the
generalized Kummer varietil ("~ YA itself. We start by collecting the facts, we
have seen so far:

1.) We have a ring isomorphism

H* (A x KVA,C) =1 (AW, R) = @ B (A", L,).
aeAn)v
2.) For the building block$l* (A", L,) we have a decomposition
H* (A" Ly) = @) jap™H* (5™, Lo).
AEP(n)

For a classy € H*(S*, L,), we write a, , = jx.p*(a) € H*(AM L,). For
o = 1 and correspondingly., = C we write ), for short.
3.) For a locally constant systef, over S*, we have

H*(S*,C) if L, is trivial over S*4,

0 otherwise.

H*(S*A, L,) = {
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Thereby, the isomorphism is given by a canonical trivializatibr— L, corre-
sponding to a section, € H(S*A, L,) (cf. the proof of Lemma 20 in Section 2).
4.) In the case that the locally constant systégover S*A is non-trivial, we
defineu, := 0 € HY(S*4, L,). Thus in any case, far € H*(S*4,C) and the
corresponding classy € H*(A", C) we define

O\ o = jA*P*(Oé U UO')-

By definitiona, , vanishes ifL, is not constant oves A.
5.) The other way round, we have 0t « , the classy) := jy.p*(aUu,-1) €
H*(AlM, C).

Thus, to describe the ring structureldf(A x K (»~1DA, C) itis enough to describe
how to multiply two classe8 # a), and0 # 3, .. We will use the analogous
considerations as in the proof of Corollary 30 to show the following

THEOREM32. — The cup product of two non-trivial classes,, € H*(AM L)
andg, ., € H*(Al" L.) as defined above, is given by

Oro U ﬁ,u,T = Z Yv,o7>

where the sum on the right hand side is running over all clasggs corre-
sponding via (4.) above to the classgs occurring in the cup product inside
H* (AP C): axBy =3 -

Proof. We havea) , = jy.p*a and analogously, - = j,..p*3. As we have
seen in the list of Facts on Borel-Moore cohomology (Facts 23.2 in Section 3), the

push-forwardjy, : H.(A" L,) — H.(Al", L,) = Hi—*(Al" L) is given by
the pull-back/; along the inclusion of pairs

Iy: (Al g) — (Al gl)_gl)
and analogously foj,... Since pull-backs are compatible with the cup product, we
find
a)\,aﬁun' = j)\u* (P*a : P*ﬁ)a
where- denotes the intersection product

Hy(AV), Lo) @ Hy(Al, Ly) — Hap (AL, Lor)

induces by the cup-product in relative cohomology
Hr (A, APl L) @ B (Al AP-Al Ly - me Al Aol L,
We have again denoted b@’ﬂ the closed stratum given by the intersecti‘é)ik”l] N

@ and byj, the corresponding inclusion.
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By assumption we started with two non-trivial classes. It follows thatnd L.
are trivial overA&”] andAHL], respectively. Denote the corresponding isomorphisms

of sheaves oveAE\”] andAEl] byp,: C = L, andy,: C = L.. Overthe stratum
A[A"ll both sheaves and accordindly ® L, = L., are trivial. Furthermore, as we

have seen in Remark 15 in Section 1 above the following diagramAi@a(whose
analogue over was numbered as (14) above) is commutative

L, ® L, e Lo
(‘PG®‘PT)|WT Tcpm_ (23)

A

The following considerations show that these trivializations are also compatible
with the intersection product:

The isomorphian*(A&”], C) = H*(A[;‘], L) is given by capping with the section
Pruy € HO(A[A"], L,). We will now analyze how this isomorphism is transformed
by passing to the relative cohomology, (A", C) = Hin-r(Aln), AlM_aAl ),

First, observe thaﬂ&"] has an open neighborhoad of which it is an neighbor-
hood retract. This follows from the fact that algebraic spaces can be triangu-
lated (cf. [L6]). OverU, the sheafl, is still constant by construction. Chose a
small closed seV such that/ D V D A[A"]. We have again a ring isomorphism
¢l Cly — L,y that expands,,.

Doing the same fol., we find a small closed neighborho®d of A,[T] such that

¢ can be expanded to an isomorphigtn: C|y» — L |y

It follows from the excision theorem for sheaf cohomology (cf. e3j. I, 12.9)

that we have a natural isomorphism given as the composition
(Al AP-ARY 0) s (v, v-alhopy) 22
H*(V, V=AU Lo|y) ~ B (Al Al—al'l gy,

where we have denoted B/ the isomorphism induced by! on the level of
cohomology. We have an according isomorphismifer These isomorphisms are
compatible with the cup product, which can be seen as follows:
We can write the cup product in relative cohomology as the composition of the
cross product followed by the pull-back along the diagonal:

H*(X, A) ® H*(X, B) = H*(X x X, X x BUA x X) 2> H*(X, AU B).
In our case the cross product is given by

1 (V, V=AY @ (V! V'=AlY) — B2V V!,V x (VAL U (v=AlT) < 7).
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SettingV” .=V nNV’' > AT;g and using again the excision theorem, we find on the
one hand - -
1 (AP AR-AR) ~ (v, vr-all)

and on the other hand

H* (A7 x Al Al s (AP_alrly U ( A[nl_AT;J> x Al

~HH(V x V!V x (V=AY U (v=al) v,
These isomorphism are induced by the inclusion of pairs

(V" v-all) — (Al Alall),
and analogously for the second one. Thus, the induced diagonal map
Ax (V! V=AY — (v x v (V- U (v-Al) < v

gives us the following commutative diagram on the level of cohomology:

H (AP, Al x (Al Al_alTy) AT e (Al Alml_AlT)

~| |=

H*(V % V,, V x (V/_AT;IZ]) U (V—AT)?]) X V’) L H*(V//7 V//_AT;E)

where we have used the shortet'", AW—@ (Al A[”]—ATI‘]) to denote the
pair (A" x A Al s (Alrl—AlTy U (Alm-AlT) < Al

Accordingly, we have a cup product

U= (A% 0 x): HY(V, V=Al) @ 1 (v, v/=All) — 1 (v, v7—al)
that makes the following diagram commutative:

H* (A, AP-AlT; ©) @ He (Al Al-All ) —2 (Al Al-al ©)
H*(V, V—AT;L], (C) ® H*(V,, V/_ATJL}; (C) —_ H*(V//, V//_ATE; (c)

oL QD! o
H(V,V-Al L) o Be(V/ VAl L) 2 BV VAL L)

~ ~

H* (Al A=Al L) @ e (Al Al-Al L) 2 me (AR, All-al L),
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The upper and the lowest square commute due to our considerations above, which
show that the isomorphisms given by the excision theorem are compatible with the
cup product. The middle square commutes due to the commutativity of diagram
(23).

Summarizing, we find on the level of homology the following commutative dia-
gram

(A L) @ ML (AL, L) —— H(AL, Lor)

(09" (ur)(0 (r)) | [ o)

H.(A,C) @ H.(4)),C) —— H,(A),0):

Since the isomorphism on the level of relative cohomology was that given by the
trivialization ¢,: C — L,, the corresponding isomorphism on the level of ho-
mology is seen immediately be given by the cap-product with the global section
pH(ug) € HO(AE\n],LU):

H* (A, Al_al 1)

Np*(uc)
—_—

He (Al APl ©)

and analogously foﬂﬁ?} andAT;g.
According to this, we have

prap B = p*ap* B NP (uor),
where we have denoted by = o U u,-1 the class iffl*(S*4, C) corresponding

to o under the isomorphisti* (5?4, C) =22, H*(S*4, L,) and analogously for

g

Everything that remains to show is the following: Given a cohomology dass
H*(A[”],A[”]—A[A”J, L,-) and the corresponding cohomology class with constant

coefficientsy’ = 6N p* (u(yr)-1) € H* (A, A[”}—A[A"/l, C), then we have ,(5) =
(13,,(6")or-

But this equality can be checked by means of the intersection pairing;/&.(eﬂ!) =

>, 7 be the decomposition in classes coming from the strata belonging to parti-
tionsv. We have seen in Section 3 that such,goairs non-trivially at most with
classes coming from the same stratum. But for such a elass j,.p*(¢), we

have on the one hand

I*(8')ey = I'(61 " (100" () N p* (1)

and thus(7*(¢'),e,) = <I*(5),sl,,(m)71).
On the other hand, we have

<’yy, Ey> = <'71/,O'7'7 61/,((77')_1>'



5. THE RING STRUCTURE ORI*(A x K("=1A), 49

It follows that indeed*(6) = ), V0. Using this foré = p*(a)p*(5), our
theorem follows. O

We have therewith described the ring structuréldvfA x K("~YA, C) in terms of

the known cup product dif* (A", C).

In the next chapter we will show that this ring structure is the same as the one
given by the orbifold cup product and therewith prove a conjecture of Fantechi and
Gottsche.






CHAPTER 4

Orbifold Cohomology

In their paper 7], Barbara Fantechi and Lothard@&sche introduce a nice descrip-
tion of the orbifold cohomology ring for global quotients. They compute the orbi-
fold cohomology ring structure fdiX™/&,,], the orbifold given by the symmetric
product of a surface with trivial canonical bundle. By comparing with the de-
scription of the cohomology ring of "/ computed by Lehn and Sorger, they show
that they coincide up to a sign. They state also a conjecture on the ring structure of
the cohomology of generalized Kummer varieties.

In this chapter, after briefly recalling the general definitions followirig\ve will

show that in fact the orbifold cohomology is isomorphic to the cohomology of the
generalized Kummer varieties. Before doing that, we have to correct a small error
that occurred inT] in the computation of the orbifold cohomology ring in this case.

1. The General Concept

LetY be a complex manifold with an action of a finite grotip Denote byY'9 the
fixed locus of an element e G. Then — analogously to Lehn and Sorger —, Fan-
techi and Gttsche define an ambient spd&(Y, ) := P, H* (Y, C). De-
note forg € G and a class: € H*(YY, C) the corresponding elementii* (Y, G)

by a,. With this notation H*(Y, G) carries a natural/-action, defined by

hay = (heot)pgn-1.

Here, we considek as an automorphism &f and denote by, the cohomology
push-forward.
To introduce a (rational) grading dfi*(Y, G) one uses the following

DEFINITION 33. — LetY be a manifold of dimensiod with the action of a finite
groupG. Forg € G andy € Y9, let \1,..., \g be the eigenvalues of the action
of g onTy,,. Note that they are roots of unity. Writg; = ¢>™"7 wherer; is a
rational number in the intervél, 1). Theage of ¢ in y is the rational number

d
a(g,y) =D 1.
j=1

51
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REMARK 34. — The age obviously depends only on the connected component of
Z of Y9 whichy lies in. Here, one has the equality

a(g,Z) +a(g™t, Z) = codim(Z C Y).

To see this, observe that if the eigenvalues afe given by?™""s, the correspond-
ing eigenvalues of~! aree?™%, with ¢; = (1 — r;), except the cases in which
r; = 0. In the first case we obtairy 4 ¢; = 1. The second case occurs exactly on
the subspacé’; , C Ty, whereg acts as the identity.

According to the above considerations, Fantechi adttsghe define a (rational)
grading orH*(Y, G) as follows: Lety € G and letZ be a connected component of
Y9, andj: Z — Y9 the inclusion. Letv € H(Z) and assign tg.«, the degree

deg(jsag) =1+ 2a(g, Z). (24)

One can define a splitting &f*(Y, G) into even and odd part by settiff"(Y, G) =
D, H¥(Y?) and analogously foH*¥. Observe thal®'(Y, G) coincides with
the even-graded part d¢f*(Y, G) if and only if for everyg € G and for every
y € Y9 the age ofy in y is an integer. Note also that the action(@on H*(Y, G)
preserves both the splitting into even and odd parts and the grading.

Finally, one defines the orbifold cohomologl,, ([Y/G]) := H*(Y,G)“ to be
the graded vector space Gfinvariant classes dfi*(Y, G).

To introduce a product structure i , ([Y/G]), Fantechi and Gitsche define a
bilinear map
p:H(Y,G) x H(Y,G) — H*(Y,G)

by

(ag, Br) == Ygn, Wherey =i, (aly.m - Blywn - (g, h)) (25)
andi : Y9" — Y9" is the natural inclusion.
The classc(g, h) is a correction factor, which makesa graded product on the
ambient space. It is defined as the top Chern class of the vector btifgl) :=
(Ty |yto.y @c V)9M onY {9 HereV is a natural representation of the group
(g, h) which is constructed in a quantum cohomological way.
In the case of a complex torus, where the tangent bundle is trivial, this class will
be 0 except the rank of the bundle (s and thus we omit its exact definition. We
just cite the following lemma stated ][ which allows one to express the rank of
F(g, h) in terms of the ages of the group elementndh:

LEMMA ([7], Lemma 1.12).— LetU be a connected component¥fs-"). Then
one has

rk(F(g,h)|v) = alg,U) + a(h,U) — a(gh,U) — codim(U c Y").  (26)
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From this rank formula, it follows easily that preserves the grading: Using the
notations from the lemma above, we have

deg(p(ag, Bn)) = deg(vgn) = deg(y) + 2a(gh, U) + deg(c(g, h))
= deg(ix(alywm - Blywm) + 2a(gh, U) + 2rk(F (g, h)|v)
= deg(a) + deg( ) + 2codim(U € Y9") 4 2a(gh, U)
(a(g U)+a(h,U) —a(gh,U) — codim(U C th))
a) +2a(g,U) + deg(8) + 2a(h,U)
ag) + deg(p).

= deg

(
= deg(

The heart of the article of Fantechi an@i®&che is the proof of the following

THEOREM([7], Thm. 1.18 and Thm. 1.29)— The bilinear map is graded, asso-
ciative, andG-invariant. It induces a graded commutative multiplication, denoted
by Uorb, ON the orbifold cohomologht” , ([Y/G]).

2. The case of the Hilbert scheme

In Section 3 of ¥], Fantechi and Gttsche compute the orbifold cohomology of
symmetric products. For brevity, we will restrict our presentation to the case of the
symmetric product of an abelian surface.
The lengthi(g) of a permutatiory € &,, is the minimal number of transpositions
whose product ig. Denote the set of orbits gf action on the sefl,...,n} by
O(g). Then, one has the equalit®(g)| = n — I(g).
Let us consider the symmetric group acting onsh®ld productA™ of an abelian
surfaceA. The age of an element € &,, acting on the tangent spa¢d™)? is
given by

a(g) = l(g) =n—10(g)l, (27)
the length of the permutatiafn Indeed, the fixed locus af is connected and can
be identified withA°(¥) by sending

(A9 5 (a1, ..., an) = (a0)oco(y) € A9,

wherea, is defined to be, := a; for an arbitraryi € o. Thus, the codimension of
(A™)9 insideA™ is2(n—]0O(g)|). Now, the assertion follows by using the equality
proven in Remark 34 and observing that, in the case of the symmetric grang,
¢~ ! have the same age since they are conjugate.

From our considerations above, it follows that in this case thelihgl”, &,,) is
integrally graded and the division in even and odd part is the intuitive one.

Let o, and B, be two classes iH*(A",6,) = P e, H((A")7). As said
above, the bundlé’(g, h) is trivial in our case, so it has trivial top Chern class
except when its rank equalsand therefore:(g, ) = 1 in formula (25). The
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description of the age agg) = n — |O(g)| together with the rank formula (26)
for the bundleF'(g, h) stated above implies the following

PrROPOSITION35. — Let A be an abelian surface. Then the ring structure on
H*(A™, &,,) is given by

ie (gl (amy o Bul amyon ) TF10(0)] + 00| +10(gh)| =
g Uorb Br = 2’0(97}7’)‘ +n,

0 otherwise.

Observe that in the language of Lehn and Sorger, the condition on the orbit lengths
means the vanishing of the graph defects which in their description of the singu-
lar cohomology of the Hilbert scheme we have already understood as a necessary
condition in Section 4.

The climax of Section 3 of{] is the proof of the fact that the orbifold cohomology

ring of [ X/&,,] and the cohomology ring of the Hilbert schedi&” in the case of

a surfaceX with trivial canonical bundle are isomorphic after a slight sign change.
We only present the application of this theorem to an abelian sudace

Letg,h € &, and set(g, h) := (I(g) + I(h) — I(gh)). We change the orbifold
product by defining

ag Uorb dt B = (—1)8(g’h)0¢g Uorb Bn

and denote the resulting ring structure By, 4, ([A"/&,]). (The abbreviation
‘dt’ stands for ‘discrete torsion’ which is the physicists term for this sign change.)
Then one has the following

THEOREM ([7], Thm 3.8). — The two ringsH,, 4, ([A"/&,]) and H*(Al", C)
are naturally isomorphic. O

In the following section we will prove an according theorem in the case of the
generalized Kummer varieties.

3. Generalized Kummer Varieties

In the last section off], Fantechi and Gttsche compute the orbifold cup product

in the case of the generalized Kummer varieties and formulate the conjecture that,
like in the case of the Hilbert scheme, their formula will give the right product after
an analogous sign change.
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In the actual computation, they use isomorphisms which identify for a given sub-
group H of &,, the cohomology ofd x (A7) and(A™)". Here and in the fol-
lowing, Ay denotes the fibre ovérof the summation morphism™ — A. That

is, we havedy = {(a1,...,an)| > a; = 0}.

These isomorphisms, as we will see, are essentially induced by quotients maps with
respect to an operation of thg%—torsion points. As such they are naturally in

the context of conomology but, and this fact is overlooked7in fommute with
Poincaé duality only up to a factor, given by the group order. Since there occurs
a push-forward in the computation of the orbifold cup product, the formula of
Fantechi and @ttsche has to be replenished with this factors. Let us recall the

situation:

Our aim is to compute the orbifold cohomology ring of the orbifoddx Af/S,,],
whereS,, operates ol x A} by permuting the factors odf} while acting trivially
on A. We will first describe the structure of the space of invaridrts< Ap)? =
A x (A0 for a given subgroup! C &,,.
For such arf{, denote again b@ ( H) the set of the orbits off actingon{1,...,n}.
Analogously to the case of partitions, we define the greatest common divisor of the
subgroup to be

ged(H) := ged ({ o]0 € O(H)}),
that is, the greatest common divisor of the orbit length& ofn the case of a cyclic
subgroup(g) C &,,, we will use both notationgcd((g)) and the shortegcd(g).
Observe that with this definition, we have for an elemeat&,,, whose conjugacy
type corresponds to a partitione P(n), the equalityged(g) = ged(N).
Furthermore, we will use the abbreviatigiH | for the gcd(H )-torsion points of
the surfaceA.
For H C &,, let us denote by the morphism

q: Ax (AN — (AME (a, (b)) — (a + b;);.

Then-division pointsA[n] act onA x (A2) by setting forc € A[n]: c(a, (b;);) =
(a — ¢, (b; + ¢);). The mapy is just the quotient map for this action. Let us prove
the following lemma (cf. 12], p.243).

LEMMA 36. — In the case thagcd(H) = 1, the fixed locusd x (A7) is
isomorphic to(A™). Furthermore, then-division pointsA[n] act trivially on
H*(A x (Ap)H). It follows that in this case* is an isomorphism

g HY((AM)T)—H"(A x (45)™).
Proof. Denote bys™ : ACH) — A (by),cour) — Y. |o|b, the morphism to which
the summationd™ — A corresponds under the identification™)? = ACU)

described in Section 2. It follows that we can identifff with AOO(H), the kernel
of s.
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This yields an exact sequence

(H)

OHAOO —>AO(H)LA—>0.

Since we have assumed that= gcd(H) = ged(|o|), foro € O(H), we get a
linear combinationl = " j,|o| with j, € Z. This defines a splitting of?, by
sendingA > b — (job), € AP, It follows that ACH) ~ A x A9Y) |n
particularAg(H )is connected in this case.

To see that the-division pointsA[n] act trivially on the level of1*(A x (AR)),

it is enough to embed the action dfr] in that of a connected group. As we have
seend x (A™)H is a connected group. It acts on itself by

(', (0)))(a, (b5)) = (a — d’, (bi + 7).
It follows that theA[n]-action can be embedded in thatéfx (A2)H by sending
Aln] 3 a — (a,(a);).
Sinceq*, as induced by a quotient map, is an isomorphisniiof(A™)) with
H* (A x (A)7)Al] the lemma follows. 0

It becomes a bit more complicated in the case of a non-trivial greatest common
divisor. In this case, we have the following

LEMMA 37. — LetH C &, be a subgroup o8,,. ThenA x (A2)H has|A[H]|
isomorphic connected components< (A™)X, withx € A[H].
For each component, we have a natural isomorphism

O HA((A™)) == HY (A x (A")),
that is induced by & [n/ gcd(H)]-quotient morphism.

Proof. Let us first determine the connected componentd of (A7): Identify
again (A™)H with A°H) and write s : A9H) — A, (b,) — > |o|b, for the
summation. lfgcd(H) # 1, this map does not split. But we can decomps®e
via X
sH . AO(H) EAMA,

where the last arrow is multiplication witfed ( H ) and the first arrow is the reduced
summation morphism, defined by

o]
ged(H) ™
Using this decomposition and observing tkat(gcd(H)) = A[H|, one sees

O(H — n
AT = ker(s™) = (sfl) Al = T (A,
T€A[H]

sHo. AU 5 A: (by) Z

where we denoted byA"™)’the fibre ofsZ; over theged(H )-division pointz.
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To see that all components are isomorphic, we group the elemefts of ,n}

in sets ofgcd(H) elements, each of which is contained in an orbittbf This
defines a surjectior{nli Ln} —{1,..., gcd } and gives us a subgroup of

& (n/ ged(m)) With ged(H) = 1 such that we have a one-to-one correspondence of
the orbits of # and H.

Furthermore any Wlth z = x induces an isomorphism

(H)
jr Ax (AT =A% <A3/ 8N (. (bo) o) = (a— 2 (bo— 2)oco(mm):

which shows that all components are isomorphic.
But dealing withH C S (n/ ged(r)) WE are in the situation of Lemma 36 again. In
particular we have the isomorphism

q/*: H*((An/gcd(H))ﬁ) ~ H*(A > (An/gcd(H))F)’
which is induced by thel[n/ gcd(H)] quotient morphism
q's A x (A EAENH _ (An/ecdHNH (g (b,)) = (a+ b).

Moreover, it follows, that the isomorphisjyii on the level of cohomology is inde-
pendent of the choice of Indeed, two choices of a pointover x differ by an
element ofA[n/ gcd(H)], and we have already seen in Lemma 36 above that this
group acts trivially ort*(A x (A2 &40y
Putting everything together, we get an isomorphisi defined as the composition
O H (AT T Hr (A B AUD) ) T (A s (A s
L q

o HA (A x (AM)]),
J*

where the first arrow is induced by the identification
L <An/gcd(H)>H — AO(F) — AO(H) _ (An)H )

This is what we wanted to prove. O

Observe tha¥?! = ¢* if gcd(H) = 1. Thus Lemma 37 is a generalization of
Lemma 36. Observe further that Lemma 37 implies in particular for the cyclic
groupH = (g):

H*((A x 43)?) = €D H*((A™)%), (28)

z€A[g]

Then-division pointsA[n] operate ofl*((Ax Ag)¢) via the surjectiop,: Aln| —
Alg], given by multiplication withn/ ged(g): As we have seen in the proof, a point
z € Aln] identifiesA x (A™)% with the fibreA x (A")ngpg(z). On the cohomology
the kernel ofp, acts trivially. Thus on the level of cohomology the point A[n]
acts by flipping the componeiit* ((A™)?) C H*((A x Af)Y) belonging tar iden-
tically to that belonging ta: + pgy(2).
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The following corollary describes the interactiomtf with Poincaé duality. De-
note by PD H* — H, the Poincae duality map. The isomorphist’’ = (1¢'5)*
induces an isomorphisnh; := (14'j). on the level of homology. We can deduce
the following

COROLLARY 38. — LetH C &,, be a subgroup of,, and lety anddy be the

isomorphisms defined above. Then the following diagram commutes only up to the

factor ||A[[”]}||

H

H((A")T) —> H*(A x (A")1)

7o |70

HL((AM)T) <—— H (A x (AM1).

H
More specifically, the homomorphism PEY ; PDY : H*((A™)H) — H*((A™)H)

|A[n]|
is multiplication with {2 TATH]["

Proof. In general, if;: X — Y := X/G is a quotient map between two compact
manifolds, one has

0." = (PD'q.PDg": H*(Y) — H'(Y)) = |G}

which can be seen immediately by pairing a clasg o with an arbitrary clasg:
(@.d0. By = (woaBx = [ a'@h) = 16| [ of=(Glla.)r.

In our case, we want to compute PH.¢’5).PD(:q'j)* =: t.q.jsj*q™1*. But
sincej and. are isomorphisms, we haygj* = id and in the same manngr* =
id. The remaining morphisny is anA[n/ ged(H)]-quotient map, whereas

/ /* H*(A % (An/gcd( ))H) H*(A « (An/gcd(H))Oﬁ)
is multiplication with|A[n/ ged(H)]|.

Thus, we have PD'9,PDOY = ||A }}”

as asserted. O

This corollary becomes essential when we are dealing with the cohomology push-
forward used in the definition of the orbifold cup product:

Letg,h € &,, andH := (g, h) the subgroup generated yandh. The follow-

ing diagram occurs in the last step of the computation of the orbifold cup product,
where one has to push-forward a cohomology clags)fh) € €D, ay(gn)) H* (A%
(A™)H) along the embedding: A x (A")H — A x (A")Y™. Using the iso-
morphismsd’ and (") one computes the cohomology push-forward along the
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embedding’: (A™)H — (A™)9") instead. This yields the following diagram:

H*((A")H) — 2 H#(A x (AM)H)
PD PD
H, ((A™)H) HL(A x (A")H)

Vi
HL ((A") ) <—— H, (A x (A")E")

(gh)
PD! PD!

(gh)
H*((An)<gh>) ﬂ. H*(A > (An)igm)

One actually wants to compute the right vertical arrow of the rectangle and com-
putes the left one instead. But the upper and lowest square commute only up to the
factor|A[n/ ged(H)]| and|A[n/ ged({gh))]|, respectively, due to Corollary 38.

We therewith have corrected the orbifold cup product computed by Fantechi and
Gottsche in the case of the generalized Kummer varieties (Proposition 47]) in [

by the factor stated the following

PROPOSITION39. — The ambient ringl*(A x A, S,,) of the orbifold[(A x
Af)/6&,] is isomorphic to

D D m(a)

9EG, zEAlg)
with the ring structure given by

_ JAlgh]
o o = 1]

Z ng,h(xa Y, Z)’th,zy

z€A[gh]
wherey € H*((A™)9") is given by the corresponding product in the Hilbert scheme
case (cf. (35)) and
ng,h('rvyvz) = ‘{w S A[H] | pg(w) = l’,ph(QU) = y>pgh(w) = Z}‘
with the notationp,: A[H] — A[g], the surjection given by multiplication with

ggi(ii((g)), and analogously fop, andpgp. -

After this correction, it is easy to see that both ring structures coincide, thereby
proving the conjecture that the orbifold cohomology ring[4f x Af/&,] and

the singular cohomology rin§l*(A x K(~1DA) coincide after the sign change
described above: Denote againddy, h) = (I(g) + (k) — l(gh)) and change the
orbifold cup product by the sign

h
Qg.2 Uorb,dt Qpy ‘= (_1>5(g, )QQJ ’ ﬁh,y-
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Denote the resulting ring bii?, ,, 4, ([4 x Aj/Sy]). Then, we get the following

THEOREM40. — The orbifold cohomology ringy ,, 4 ([A x Aj/&y]) is isomor-
phic toH*(A x K(™~1A, C).

Proof. We will write down an A[n]-equivariant isomorphism of the underlying
vector spaces and check its compatibility with the ring structures:

On the one hand, due to Corollary 21 in Section 2 of the last chapter, we have for
the cohomology of the produet x K (™Y A the equality

H*(Ax K"4,C)= P P =M O)2(N - n)]
AEP(n) o€ Alged(N\)]V
with the groupA[n] acting on the factoH*(S*4, C) belonging tos via the char-
actero.
On the other hand, Proposition 39, the definition (24) of the grading, and equality
(27) gives us a degree preserving isomorphism

H* (A x A7, &,) = @ €5 H*((4")?,C)[2(10(g)| — n)).
gEG, z€Alg)
Onthisringy € A[n| operates on the part belonging to a permutagidoy sending

aclassug ; t0 g 4y, () Wherep, : A[n] — Alg] denotes the surjection given by
multiplying with n/ ged(g).

A choice of a permutatiop of conjugacy type\ = (1%1,...,n%") defines a quo-
tient morphism

(A™)9 ~ A0l AO(Q)/C(Q),
whereC'(g) denotes the centralizer of the elemgimside&,,. Sinceg is of conju-
gacy type), we can identifyA°(9) with AI*l and therewith identify the centralizer
of g with [] &,,. Thus, we have for eaghof conjugacy type\ a|[ S,,-quotient
morphism(A™)9 — S*A. It induces on the level of cohomology an isomorphism

H*(S*, C) ~ H*((A™)?, C)11 G (29)

Now, let ) , be a cohomology class lying in the-weight space of*(A x
K(™=1A, C) and belonging to the partitioh. Recall that in terms of the coho-
mology of A"l with values in locally constant systems, this means that

are € H (M, Lgny ) € H (AN L,).

For everyg € A and everyr € A[\] the isomorphism (29) applied te, , defines
a class in* ((A")9, C)I1®e:  H*((A™)9, C), which we denote by, ..
With these notations, l&b be the following homomorphism of vector spaces

O: H* (A x KA C) — H*(A x A, 6,); a0 — Z Z o (z)ay..,
gEX zEA[N]
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where we used the fact thatcomes from the injection[\]Y — A[n]Y, because
otherwiseH*(SkA,LsxAJ) would be trivial according to Lemma 20 of the last
chapter, and wrotey' € X’ for * g is of conjugacy type\'.

Observe that the clag¥«) ) lies again in ther-weight space ofl* (A x Af, &,,).

In fact an element € A[n] acts on®(«, ) by

Olane) =2 > o @age = Y. o N@)aguip, )

gEX ZzEA[N] gEX ZEA[N]
=2 2 o @ p(aga =0T (=2) 3 D, o (@)aga
gEX zEA[N] gEN zEA[)N]

— o(2) - O(ary).

Thus,© is equivariant with respect to the action of thalivision points.

Further, by running through ajl € A, we forced that the homomorphisthas its
image inH*(A4 x A3, &,)% = H? , ([4 x A3/S,)), the invariant part under the
action of the symmetric group. For dimension reasons, it is an isomorphism of the
vector spaceH* (A x K™~YA) andH’, ([4 x AF/G,)).

It remains to check tha® is compatible with the ring structures. But this can be
done by a straightforward calculation. Using the notations of Proposition 39, we

have

@(a)\,a) orb,dt /BM T Z Z ag,x U01rb,dt /Bh,y

geEXN zEA[g]
hep ye Alh]

_ “1g -1,y [Algh]]
_Z Z Z g l(x)T l(y)’A[g’h”ng,h(ajvyvz)%]h,z

g,h z€A[g] z€ Algh]

y€A[h]
Z Z o7) ’A[Qhﬂ Yohpon )
gn,pgh(w
(B)
OS5 3 (00 =g
g,h z€A|gh]

Z Z UT ’th z

veP(n) ze€A[]
3g,h:gh€v

= Z © (71/,07')

veP(n)
3g,h:ghcv

= @(04)\,0 . ﬁuﬂ')-

We will explain the calculation step by step: The first two equalities are just the
definition of the orbifold cup product.

Equality (A) follows from the definition of the multiplicity., 5 (z, y, 2): It counts

the number of pointsw € Alg, h| lying simultaneously ovet, y andz. Instead
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of summing over alle € Afg] andy € A[h| we sum over allv € A[g, h] each
of which gives its contribution for = py(w), y = pr(w) andz = pgx(w),
respectively. Since, via the surjectignsandpy,, we can treatr andr as characters
of the bigger groupd|g, h] we have replaced ! (z) by ! (w) and analogously
for 7, which completes the proof of (A).

Equality (B) can be seen as follows: Denote byK — A[g, h] the kernel of
pgh: Alg, h] — Algh]. This gives a homomorphisaY : Afg, h]Y — K of the
character groups.

Assume thator)~! € A[g, ]V is not the image under,;, of a character of the
smaller groupA[gh]. In this case, via", we can considefor)~! as a nontrivial
element inKV. Running through the sqi;f}(z) for a fixed pointz € A[gh],
produces a contribution

Z (UT)il(w)Vgh,pgh(w) = Ygh,z Z(UT)fl(k)v

WGpg_hl(Z) keK

=0
where the last sum vanishes sirfee’) ! was assumed to be nontrivial. From this

it follows that we can change the index set of the inner sum fidm k] to A[gh]

by just introducing the facto% which cancels out with the factor occurring in

the orbifold cup product.

The next two equalities are given just by the separation of the occurring permuta-
tions in conjugacy classes and the definitiorPofFor the last equality, one has to
observe that due to the description of the orbifold cup product in Proposition 39,
the sum runs over all partitionsthat occur in the cup product H*(AW,C) ~

H5 .40 ([A™/65]). This coincides with our description of the singular cup product
given in Theorem 32 of the previous chapter, whereas the last equality follows.
This completes the proof of Theorem 40. O
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