# Hyperkähler Geometry

Daniel Huybrechts ITS Colloquium May 30, 2022









## Hyperkähler Geometry

#### Goals:

- Place of HK in the landscape of (complex) geometry
- Main features of HKs
- Classification & Examples
- What would we like to know?
- Recent results (joint work with Debarre, Macrì, and Voisin)

#### Warning:

Here HK are compact! Non-compact HK is a different world (with some links)

# Reminder on the classification of compact Riemann surfaces

# Topology:







$$S^2$$

$$g = 0$$

$$S^1 \times S^1$$
$$g = 1$$

**Equations:**  $F(x_0, x_1, x_2) = 0 \subset \mathbb{P}^2_{\mathbb{C}}$ 

$$deg(F) = 1,2$$

$$\deg(F)=3$$

$$\deg(F) \ge 4$$

Parametrization:

$$\mathbb{P}^1_{\mathbb{C}}$$

$$\mathbb{C}/\mathbb{Z} + \mathbb{Z}\tau$$

$$\mathbb{H}/\Gamma$$

**Curvature:**  $c_1 = [\omega] \in H^2(C, \mathbb{R})$ , locally  $\omega = \sqrt{-1} h \, dz \wedge d\overline{z}$ 

$$h = 0$$

# Classification of compact complex(!) surfaces

Topology: ??

**Equations:** 
$$F(x_0, x_1, x_2, x_3) = 0 \subset \mathbb{P}^3_{\mathbb{C}}$$

$$\deg(F) \le 3 \qquad \qquad \deg(F) = 4$$

$$\deg(F)=4$$

$$\deg(F) \geq 5$$

Parametrization / Examples:

$$\mathbb{P}^2_\mathbb{C}$$

$$\mathbb{C}^2/\Lambda$$

$$\mathbb{H}^2/\Gamma$$

**Curvature:**  $c_1 = [\omega] \in H^2(S, \mathbb{R})$ , locally  $\omega = \sqrt{-1} \sum_i h_{ii} dz_i \wedge d\bar{z}_i$ 

$$(h_{ij}) > 0$$

$$(h_{ij})=0$$

$$(h_{ij})<0$$

**Holomorphic symplectic:**  $\exists$  2-form  $\sigma$ : locally  $f dz_1 \land dz_2$ ,  $f \neq 0$ , holomorphic

• K3 surface 
$$\approx S \subset \mathbb{P}^3$$
:  $x_0^4 + x_1^4 + x_2^4 + x_3^4 = 0$ 

## Classification in higher dimensions

#### **Curvature:**

$$c_1 > 0$$
  $c_1 = 0$  ...  $c_1 < 0$ 

**Beauville–Bogomolov–Yau 1983:**  $X \subset \mathbb{P}^N_{\mathbb{C}}$  compact, complex, manifold with  $\mathbf{c_1} = \mathbf{0}$ 

$$\Rightarrow \widetilde{X} \cong \mathbb{C}^N/\Lambda \times \prod_i HK_i \times \prod_i CY_i$$

**Hyperkähler manifold (HK):** X =compact complex manifold

&  $\exists \ \sigma$  holomorphic symplectic form: pointwise  $\sigma = \sum dz_i \wedge dz_{n+i}$ 

Additional assumptions:  $X \subset \mathbb{P}^N_{\mathbb{C}}$  (or Kähler) &  $\pi_1(X) = \{1\}$  &  $\sigma$  unique

 $(\rightarrow$  exclude tori  $\mathbb{C}^n/\Lambda$  and products)

Examples: K3 surfaces, ??

**Bogomolov 1978:** HK do not exist in  $dim_{\mathbb{C}} > 2$ , i.e. K3 surfaces are the only HK

## ...and yet they exist

#### Beauville, Fujiki 1983:

• 
$$S = \text{K3 surface} \rightarrow S \times S \longrightarrow (S \times S)/\mathfrak{S}_2 \longleftarrow S^{[2]} = \text{HK, } \dim_{\mathbb{C}} = 4$$

$$\sigma \text{ unique, } \pi_1 = \{1\}$$
but singular

Similar: 
$$S^n \longrightarrow S^n/\mathfrak{S}_n \longleftarrow S^{[n]} = HK, \dim_{\mathbb{C}} = 2n$$

• 
$$A = \mathbb{C}^2/\Lambda \quad \rightsquigarrow \quad A^n \longrightarrow A^n/\mathfrak{S}_n \longleftarrow A^{[n]} \supset K_{n-1}(A) = HK, \dim_{\mathbb{C}} = 2(n-1)$$

## ightarrow Two series of examples of HK (topologically):

'Hilbert schemes'  $S^{[n]}$  and 'Kummer varieties'  $K_n(A)$ 

Recall: Topologically there exists only one torus in each dimension:  $\mathbb{C}^n/\Lambda \approx (S^1)^{2n}$ 

→ The HK world is richer!

**Remark:**  $\exists$  unexplained further complex structures, not coming from S or A

## ... getting lucky

O'Grady 1999 & 2000:  $\exists$  two further examples  $\dim_{\mathbb{C}} = 6$  &  $\dim_{\mathbb{C}} = 10$ 

Start again with K3 or torus, but get topologically new HK

#### Beauville-Donagi 1985:

Start with 
$$Y\subset \mathbb{P}^5_{\mathbb{C}}\colon x_0^3+\cdots+x_5^3=0$$
 
$$\sim X=F(Y)=\{\ \ell\subset Y\subset \mathbb{P}^5_{\mathbb{C}}\ |\ \text{line}\ \}\ \text{is HK of } \dim_{\mathbb{C}}=4$$
 But topologically not new  $\approx S^{[2]}$ 

#### Lehn-Lehn-Sorger-van Straten 2017:

Start again with  $Y\subset \mathbb{P}^5_\mathbb{C} \ \leadsto \ F'(Y)$  HK of  $dim_\mathbb{C}=8$ , topologically  $\approx S^{[4]}$ 



**General problem:** There is a shortage of methods to construct interesting varieties HK are not constructed neither by equations nor by parametrizations

#### Main features: BBF form

#### Principles:

- Strong restriction on topology
- HK behave like (K3) surfaces, i.e. topological fourfolds
- H2 rules

**Beauville–Bogomolov–Fujiki form:** X = HK,  $\dim_{\mathbb{C}} = 2n$  ( $\Rightarrow \dim_{\mathbb{R}} = 4n$ )

$$\Rightarrow \exists \ q \colon H^2(X,\mathbb{Z}) \to \mathbb{Z} \text{ non-deg. quadratic form } \& \ c \in \mathbb{Q}$$
:

$$q(\alpha)^n = c \cdot \int_X \alpha^{2n} \quad \forall \alpha \in H^2(X, \mathbb{Z})$$

For n = 1: q = (.) intersection form

Question: How restrictive is this for compact topological manifolds?

Verbitsky, Bogomolov 1996: Cohomology ring

$$S^*H^2(X) \longrightarrow S^*H^2(X)/(H_{2n+2}) \hookrightarrow H^{2*}(X)$$

## Main features: Using the BBF form

Surjectivity of period map 1999:  $X \mapsto [\sigma] \in H^2(X, \mathbb{C})$ :  $q(\sigma) = 0 \& q(\sigma, \bar{\sigma}) > 0$ 

If 
$$[\sigma]' \in H^2(X,\mathbb{C})$$
 with ...  $\Rightarrow$  comes from  $X'$ 

**Finiteness 2003:** Fix  $q: H^2(X, \mathbb{Z}) \to \mathbb{Z} \implies \exists$  at most finitely many topological HK X.

#### Global Torelli theorems:

(i) K3 surfaces [Pjateckiĭ-Šapiro-Šafarevič '71, Burns-Rapoport '75]:

$$H^2(S,\mathbb{Z}) \cong H^2(S',\mathbb{Z}) \& q \& \sigma \Rightarrow S \cong S'$$

(ii) **HK** [Verbitsky '13, Bourbaki '12, Looijenga '19]:

$$H^2(X,\mathbb{Z}) \cong H^2(X',\mathbb{Z}) \& q \& \sigma \& monodromy \Rightarrow X \sim X'$$

Central role of BBF form: What do we know? Not much.

For sure: 
$$sing(q) = (3, b_2 - 3)$$
 &  $b_2 = 23$  or  $b_2 \le 8$  in  $dim_{\mathbb{C}} = 4$ 

**Challenge:** Exclude the case  $b_2(X) = 3$ , i.e.  $H^2(X, \mathbb{Z}) \cong \mathbb{Z}^{\oplus 3}$ 

#### **Further features**

#### Curves in K3 surfaces

S = K3 surface,  $C \subset S$  smooth curve

$$c_1(C) > 0 \Leftrightarrow q(C) < 0$$
  
 $c_1(C) = 0 \Leftrightarrow q(C) = 0$   
 $c_1(C) < 0 \Leftrightarrow q(C) > 0$ 

#### Hirzebruch-Riemann-Roch

$$S = K3$$
 surface,  $L \in Pic(S)$   

$$\Rightarrow \chi(S, L) = \frac{1}{2} \cdot q(c_1(L)) + 2$$

#### Hypersurfaces in HK

X = HK,  $D \subset X$  smooth,  $\dim_{\mathbb{C}} D = \dim_{\mathbb{C}} X - 1$ 

[Amerik–Campana, Abugaliev 2014-2021]

$$c_1(D) > 0 \Leftrightarrow q(D) < 0$$

$$c_1(D)=0 \Leftrightarrow q(D)=0$$

: do not occur!

$$c_1(D) < 0 \Leftrightarrow q(D) > 0$$

### Riemann–Roch polynomials

$$X = HK, L \in Pic(X)$$

$$\Rightarrow \chi(X,L) = P(q(c_1(L)))$$

$$= \frac{c}{(2n)!} \cdot q(c_1(L))^n + \cdots + (n+1)$$

## Lagrangian fibrations (integrable systems)

• 
$$S \subset \mathbb{P}^3_{\mathbb{C}}$$
:  $x_0^4 + \dots + x_3^4 = 0$  Fermat surface:  $[x_0 : \dots : x_3] \longmapsto [x_0^2 + \xi x_1^2 : x_2^2 - \xi x_3^2]$ 
 $\longrightarrow S = \longrightarrow \mathbb{P}^1_{\mathbb{C}}$  with elliptic curves as generic fibres  $S_t \cong \mathbb{C}/\Lambda$ 

Special! But after small deformation every K3 surface  $S \rightsquigarrow S' \longrightarrow \mathbb{P}^1_{\mathbb{C}}$ 

$$\bullet \text{ Higher dimensions: Start with } S \longrightarrow \mathbb{P}^1_\mathbb{C} \ \, \rightsquigarrow \ \, S \times S \longrightarrow \mathbb{P}^1_\mathbb{C} \times \mathbb{P}^1_\mathbb{C}$$

$$\rightarrow S^{[2]} \longrightarrow (S \times S)/\mathfrak{S}_2 \longrightarrow (\mathbb{P}^1_{\mathbb{C}} \times \mathbb{P}^1_{\mathbb{C}})/\mathfrak{S}_2 \cong \mathbb{P}^2 \text{ with fibres } S^{[2]}_{t,s} = S_t \times S_s \cong \mathbb{C}^2/\Lambda$$

**SYZ Conjecture:** X = HK,  $\sigma$  holomorphic two-form

$$\Rightarrow$$
 after deformation  $\exists X' \longrightarrow \mathbb{P}^n_{\mathbb{C}}$  with generic fibres  $X'_t \cong \mathbb{C}^n/\Lambda$ 

Concrete SYZ Conjecture: If 
$$\exists \alpha \in H^2(X,\mathbb{Z}): q(\alpha) = 0 \& q(\alpha,\sigma) = 0$$
  
 $\Rightarrow \exists X \cdots \gg \mathbb{P}_{\mathbb{C}}^n$  (Lagrangian fibration)

Going through the examples: True for all series of examples (non-trivial!)

### Towards a classification in $dim_{\mathbb{C}} = 4$

## Theorem (with Debarre, Macri, Voisin 2022):

- ullet If X is HK,  $\dim_{\mathbb{C}}=4$  with  $H^*(X,\mathbb{Z})\cong H^*(S^{[2]},\mathbb{Z})$ , then X is member of the  $S^{[2]}$ -clan
- Enough:  $\exists \alpha, \beta \in H^2(X, \mathbb{Z})$  with  $\int \alpha^4 = \int \beta^4 = 0$  and  $\int \alpha^2 \cdot \beta^2 = 2$  (minimal)
- SYZ conjecture holds in this case

## **Meaning:** $X \to \mathbb{P}^2$ is Lagrangian fibration:

- (i)  $\alpha = \text{pullback of hyperplane class} \in H^2(\mathbb{P}^2, \mathbb{Z}) \implies \int \alpha^4 = 0$
- $\text{(ii) } \mathbb{Z} \cdot \beta = \ \operatorname{Im} \big( H^2 \big( X, \mathbb{Z} \big) \longrightarrow H^2 \big( A, \mathbb{Z} \big) \big) \ \text{ for smooth fibre } A = X_t \cong \mathbb{C}^2 / \Lambda$
- (iii)  $\int \alpha^2 \cdot \beta^2 = 2$  is the case of principally polarized abelian surfaces, e.g.  $A \cong E_1 \times E_2$

→ Maybe that's it?

Expectation (today 5:10pm): One more example in dimension four

## Open questions & current trends

- ullet Cohomological description of higher-dimensional  $S^{[n]}$
- Cohomological description of second series  $K_2(A)$
- $A = \text{polarized abelian variety of } \dim_{\mathbb{C}} = n$ . When  $\exists A \subset X = \mathsf{HK} \text{ of } \dim_{\mathbb{C}} = 2n$ ?

No restriction in small dimensions

- Test standard conjectures: Hodge, Tate, Grothendieck, ...
- Group actions on HK
- Geometric Langlands, P = W conjecture
- Generalize existing theory to mildly singular HK. More examples!
- Dimension reduction (via derived categories)