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This is the detailed plan for the seminar. Roughly, we follow the notes of Mustata, but some
talks on background material are added. The program is subject to change. Depending on the
background of the participants we may add (or drop certain) topics.
Prerequisites Algebraic geometry as in Hartshorne’s book, Chapters II-III and some part of
IV. However, the participants are expected to learn quickly some more material not covered by
Hartshorne’s book or by the classes on algebraic geometry during the last academic year.

Should you be interested in the seminar, please send an email to Daniel Huybrechts or to René
Mboro before September 24th explaining your background and naming two of the talks you
would be interested to give. The talks will be distributed by the end of September.
Every speaker is to contact René Mboro at least two weeks before the talk with a detailed
plan what to cover and how. He will also be the person to contact should you encounter any
problems in yours or anyone else’s talk or for references. Each talk is 90 min and they should
be prepared accordingly. Questions during and after the talks are welcome.

1. Frobenius: Absolute, arithmetic, geometric.
Date: 25/10, Speaker: René Mboro
This talk collects all standard facts about the Frobenius morphism that come up throughout
the seminar. Start with [10, Sec. 2.1], see also [6, Ch. IV.2]. This should be done with great
care and presented in the clearest form possible, as it is crucial for large parts of the seminar.
Explain the Artin–Schreier and the Kummer sequence [10, Examples 4.21 & 4.22]. Recall that
the Frobenius morphism is not smooth [6, Example II. 10.5.1]. Show that the pull-back of a
line bundle L under the Frobenius satisfies F ∗L ∼= Lp. Apply this to Frobenius split varieties
and show that H i(X,L) = 0 for all i > 0 and any ample line bundle L, see [9, p. 1]. Maybe
something can be explained or recalled about the étale topology/cohomology which will be used
later. If time is too short for this, we will have to accept this as black box.
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2. Weil conjectures: Statements and easy examples.
Date: 08/11, Speaker: Yijie Diao
Define the Zeta function Z(X, t) for a variety X defined over Fq and state the Weil conjectures,
see [6, App. C.1] for a quick introduction. Section 3 in [10] contains more details on the formal
aspects. (Don’t waste time on the formal Proposition 2.6.) Compare the Zeta function with
the Riemann Zeta function, see [6, Exercise App. C.5.4]. The better analogy will come later
for arithmetic varieties. Explain the two examples in [10, Sect. 2.6]. In Remark 2.9 discuss the
equality Z(X, p−s) =

∑
an/p

sn with an the number of effective cycles of degree n. This comes
up again in Section 6.5.
In the definition of varieties with polynomial count it is enough to assume that P ∈ C[y] (and
not P ∈ Z[y]), see [7]. In there, one also finds the notion of zeta-equivalent varieties. (For those
who know about Hodge numbers: It is surprising that zeta-equivalent varieties not only have
the same Betti numbers but also the same Hodge numbers.)

3. Weil conjectures for curves: The first non-trivial examples.
Date: 15/11, Speaker: Parthiv Basu
Follow [10, Ch. 3]. Lemma 3.8 corresponds to [6, Exercise V.1.10] and Theorem 3.6 to [6,
Exercise App. C.5.7]. State the Hodge index theorem (needed in Proposition 3.9) and the
adjunction formula for general surfaces, see [6, Ch. V.1].
Elliptic curves: Add Hasse’s proof of the Riemann hypothesis for elliptic curves, see [6, Exercise
IV.4.16] or [13, Ch. V].
Show that the Weil conjectures for curves imply the Weil conjectures for all rational surfaces.

4. Weil cohomology theories: The formal set-up.
Date: 22/11, Speaker: Solomiya Mizyuk
This should cover the material of [10, Ch 4] which can be find in many other sources. The
first main result is Theorem 4.7 which deduces from the formal definition of a Weil cohomology
theory the Lefschetz trace formula. Then prove rationality and the functional equation assuming
the existence of a Weil cohomology theory for varieties over Fq (Theorem 4.11 and Theorem
4.14, cf. [6, App. C]). Étale cohomology yields a Weil cohomology theory for varieties over Fq.
This should just be remarked as a black box. Hint: Focus on the proofs of these three results.
Writing out the formal definition of a Weil cohomolog theory can take long, but it is a little
dry. The problem in this talk will be to find the right balance between the two parts.

5. L-functions: Outline of the main steps.
Date: 06/12, Speaker: Thorsten Beckmann
The Hasse–Weil Zeta function Z(X, t) was defined for X defined over a finite field. The global
version

LX(s) =
∏
p

Z(Xp, p
−s)
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is for arithmetic varieties X, i.e. schemes defined over Spec(Z) with Xp the fibre over p ∈
Spec(Z). Not much is known in general. The aim here is to show that LX(s) defines is a
holomorphic function for Re(s) > dim(X), cf. [10, Cor. 6.28]. There are two main ingredients:
(i) General theory of Dirichlet series, see [10, Sec. 6.4] or the classic [12, Ch. VI.2] and (ii)
Lang–Weil estimates in [10, Sec. 6.2].
When Xp is a smooth projective variety, the Weil conjectures give us information about the
factors Z(Xp, p

−s). However, usually some of the fibres are not smooth in which case one needs
to bound the number rational points otherwise. This makes (ii) technically more involved. In
this talk one should try to give an outline of the results in Section 6.5. Results from 6.2-6.3 on
Lang–Weil estimates and from 6.4 on Dirichlet series should be stated clearly but not proved.

6 & 7. Fulton’s trace formula and applications: This needs a team of two people, In
particular, the second speaker should take over some portions of the first part.
Date: 13/12 & 20.12. Speakers: Jiadong Han & Willem de Muinck Keizer
Formulation, proof, and analogies.
The formula computes the number of Fq-rational points modulo p:

|X(Fq)| ≡
∑

(−1)itr(F |H i(X,OX)) mod p

It is a special case of a formula for coherent F -modules (Theorem 5.4) and eventually reduces
to the localization theorem (Theorem 5.8) expressing the inverse of KF

• (X(Fq)) → KF
• (X) as∑

tr(F (x)).
The talk should cover Section 5.1 and 5.1 in [10], see also [1] for further details. Compare
Theorem 5.8 to the holomorphic Lefschetz theorem [3, p. 421], which will later be generalized
by the Woods Hole formula.
The proof can also be cast in the language of crystals. Introduce this notion as explained in
[11, Sec. 1] and, in particular, the technique of taking quotients by Serre subcategories. (There
F -modules are called τ -sheaves.) In [11, Sec. 3] the Grothendieck group of F -sheaves is viewed
(conceptually more clearly) as the Grothendieck group of the abelian category Cohcrys(X) of
crystals. Fulton’s trace formula (or rather Theorem 5.4) is generalized by the Woods Hole trace
formula: ∑

x∈f−1(y)(Fq)

tr(F |M(x)) = tr(F |Rf∗M(y)),

where f : X → Y is a suitable morphism, y ∈ Y (Fq) andM ∈ Cohcrys(X). At least, state the
formula, explain all terms and how to view Theorem 5.4 as the special case Y = Spec(Fq). The
story is part of Grothendieck’s function-sheaf correspondence.

Supersingular varieties and Chevalley–Warning.
Fulton’s trace formula can be used to characterize supersingular Calabi–Yau hypersurfaces (i.e.
smooth hypersurfaces in Pn of degree n + 1). Note that the equivalence of (i) and (ii) in
[10, Prop. 5.15] works for general Calabi–Yau varieties, see [1] for the definition. The case of
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hypersurfaces is generalized to complete intersections in [10, Exercise 5.19]. For the special case
of supersingular elliptic curves see [13], see also [10, Exercise 5.18].
The theorem of Chevalley–Warning states that for hypersurfaces (or, more generally, complete
intersections) of degree < n+ 1 the number of points is always ≡ 1 mod p, see [1, Sec. 5.1] for
a proof and references. An improvement, giving formulas mod qn, is due to Ax–Katz. State
the result.

8. Grothendieck ring of varieties: Bittner’s description and zero divisors.
Date: 17/01 Speaker: Louis Jaburi
Follow [10, Sec. 7.1] and introduce the Grothendieck ring of varieties K0(Var(k)). When dis-
cussing the multiplicativity for Zariski locally trivial fibration, give an example that shows that
this not true for étale locally trivial fibrations. If time permits, it would be good to at least
indicate the main ideas of the proof of Theorem 7.10. At least explain the assertion in Theorem
7.11 in detail. Example 7.13 needs mixed Hodge theory which is beyond the scope of the semi-
nar, but the results should nevertheless be stated. In the discussion of Theorem 7.21 mention
that there are in fact examples of non-isomorphic elliptic curves E1, E2 for which there exists
another elliptic curve E with E1 × E ∼= E2 × E. This yields easier examples of zero divisors.
More recently other examples of zero divisors have been found, in particular L itself is a zero
divisor on K0(Var(k)). Add a description of [Gl(n, k)] ∈ K0(Var(k)) and at least mention the
one for [Gr(n,m)], see [8].

9. Kapranov’s Zeta function: Rationality of the Zeta function on a motivic level.
Date: 24/01 Speaker: Denis Nesterov
This talk should cover Sections 7.2-7.4 in [10]. Discuss the definition of

Zmot(X, t) :=
∑
n≥0

[Symn(X)]tn

and explain, in particular, how it is related to the usual Zeta function for varieties over finite
fields. We take the existence of the symmetric product Symn(X) = Xn/Sn of a quasi-projective
variety X for granted. State and prove the rationality of the Zeta function for curves and at
least state the fact that for surfaces the rationality holds exactly for surfaces of negative Kodaira
dimension. (Skip the proof of the weaker version Proposition 7.38.) Note that in Section 7.2
quite some time is spent of the subte difference between varieties and quas-projective varieties
(see [6, App. B] for an example), but this should not be the main concern of the talk. Better to
spend more time on the proof of Theorem 7.33. Compare this part with the proof of the Weil
conjectures for curves in Section 3.1.

11. General Woods Hole trace formula. Woods Hole trace formula.
Date: 31/01 Speaker: Lisa Li
This is a generalization of Fulton’s trace formula which replaces the Frobenius by an endomor-
phism f : X → X with simple fixed points. For any coherent sheaf F and a homomorphism
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f∗F → F ∑
(−1)itr(ϕ|H i(X,F) =

∑ tr(ϕ(x))

det(1− df |Ω(x))
.

Follow [11, App. A]. This talk uses some more advanced machinery (Grothendieck–Verdier
duality for morphisms) and should be best given by a participant with a background in derived
categories.

References

[1] T. Bülles Fulton’s trace formula for coherent cohomology. Bachelor thesis (2016). http://www.math.
uni-bonn.de/people/huybrech/Buelles.pdf

[2] E. Gorsky Adams operations and power structures. Moscow Math. J. 9 (2009) 305–323.
[3] P. Griffiths, J. Harris Principles of algebraic geometry. Wiley & Sons, New York, (1978).
[4] S. Gusein-Zade, I. Luengo, A. Melle-Hernandez A power structure over the Grothendieck ring of varieties.

MRL 11 (2004), 49–57.
[5] S. Gusein-Zade, I. Luengo, A. Melle-Hernandez Power structure over the Grothendieck ring of varieties and

generating series of Hilbert schemes of points. Michigan Math. J. 54 (2006), 353–359.
[6] R. Hartshorne Algebraic Geometry GTM 52. Springer (1977).
[7] N. Katz E-polynomials, zeta-equivalence, and polynomial-count varieties. Appendix to Hausel, Rodriguez-

Villegas: Mixed Hodge polynomials of character varieties. Invent. math. 174 (2008), 555–624.
[8] A. Kiefner Zero divisors in the Grothendieck ring of varieties. Bachelor thesis (2016). http://www.math.

uni-bonn.de/people/huybrech/Kiefner.pdf
[9] V. Mehta, A. Ramanathan Frobenius splitting and cohomology vanishing for Schubert varieties. Ann. Math.

122 (1985), 27–40.
[10] M. Mustata Zeta functions in algebraic geometry http://www-personal.umich.edu/~mmustata/zeta_

book.pdf
[11] L. Taelman Sheaves and Functions Modulo p. London Mathematical Society Lecture Note Series. Cambridge

University Press, (2015). https://staff.fnwi.uva.nl/l.d.j.taelman/beijing.pdf
[12] J.-P. Serre A course in arithmetics. GTM 7. Springer (1973).
[13] J. Silverman The arithmetic of elliptic curves. GTM 106. Springer (1986).

http://www.math.uni-bonn.de/people/huybrech/Buelles.pdf
http://www.math.uni-bonn.de/people/huybrech/Buelles.pdf
http://www.math.uni-bonn.de/people/huybrech/Kiefner.pdf
http://www.math.uni-bonn.de/people/huybrech/Kiefner.pdf
http://www-personal.umich.edu/~mmustata/zeta_book.pdf
http://www-personal.umich.edu/~mmustata/zeta_book.pdf
https://staff.fnwi.uva.nl/l.d.j.taelman/beijing.pdf

	References

