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Abstract. We first describe the construction of the Kuga-Satake variety associated to a
(polarized) weight 2 Hodge structure of hyper-Kähler type. We describe the classical cases
where the Kuga-Satake correspondence between a hyper-Kähler manifold and its Kuga-Satake
variety has been proved to be algebraic. We then turn to recent work of O’Grady and Markman
which allow to prove that the Kuga-Satake correspondence is algebraic for projective hyper-
Kähler manifolds of generalized Kummer deformation type.

1. Introduction

The Kuga-Satake construction associates to anyK3 surface, and more generally to any weight
2 Hodge structure of hyper-Kähler type, a complex torus which is an abelian variety when the
Hodge structure is polarized. This construction allows to realize the Hodge structure on degree 2

cohomology of a projective hyper-Kähler manifold as a direct summand of the H2 of an abelian
variety. Although the construction is formal and not known to be motivic, it has been used by
Deligne in [2] to prove deep results of a motivic nature, for example the Weil conjectures for
K3 surfaces can be deduced from the Weil conjectures for abelian varieties.

Section 2 of the notes is devoted to the description of the original construction, and to the
presentation of a few classical examples where the Kuga-Satake correspondence is known to be
algebraic, i.e. realized by a correspondence between the hyper-Kähler manifold and its Kuga-
Satake variety. In Section 3, we will focus on the case of hyper-Kähler manifolds of a generalized
Kummer type, and present a few recent results. If X is a (very general) projective hyper-Kähler
manifold of generalized Kummer type, the Kuga-Satake variety KSpXq built on H2pX,Zqtr is
a sum of copies of an abelian fourfold KSpXqc of Weil type. There is another abelian fourfold
associated to X, namely the intermediate Jacobian J3pXq which is defined as the complex torus

J3pXq “ H1,2pXq{H3pX,Zq

where b3pXq “ 8. Here we use the fact that H3,0pXq “ 0 and the projectivity of X guarantees
that J3pXq is an abelian variety. O’Grady [10] proves the following result.

Theorem 1.1. The two abelian varieties J3pXq and KSpXqc are isogenous.

This review was prepared in the context of the seminar organized by the ERC Synergy Grant HyperK, Grant
agreement ID 854361. The talk was delivered on May 14, 2021.
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We will also prove in Section 3.2 a more general statement concerning hyper-Kähler manifolds
with b3pXq ­“ 0. Section 3.3 is devoted to the question of the algebraicity of the Kuga-Satake
correspondence. We will prove, using results of Markman and Theorem 1.1 that the Kuga-
Satake correspondence is algebraic for hyper-Kähler manifolds of generalized Kummer type:

Theorem 1.2. There exists a codimension 2n cycle Z P CH2npKSpXqc ˆXqQ such that

rZs˚ : H2pKSpXqc,Qq //H2pX,Qq(1.1)

is surjective.

2. The Kuga-Satake construction

2.1. Main Construction. In this section, we recall the construction and the properties of the
Kuga-Satake variety associated to a Hodge structure of Hyper-Kähler type. This construction
is due to due to Kuga and Satake in [5]. For a complete introduction see [4, Ch. 4] and [12]

Definition 2.1. A pair pV, qq is a Hodge structure of Hyper-Kähler type if the following
conditions hold: V is a rational Hodge structure of level two with dimV 2,0 “ 1, and q :

V b V //Qp´2q is a morphism of Hodge structures which defines a non-degenerate quadratic
form on V , whose extension to VR is negative definite on pV 2,0 ‘ V 0,2q X VR.

Remark 2.2. Notice that if X is an Hyper-Käler manifold and q is the Beauville-Bogomolow
quadratic form, the pair pH2pX,Qq,´qq is indeed a Hodge structure of Hyper-Kähler type.

Let pV, qq be a Hodge structure of Hyper-Käler type, and consider the tensor algebra of the
underlying rational vector space V :

T pV q :“
à

iě0

V bi

where V b0 :“ Q.
Considering q as a quadratic form of V , the Clifford algebra of pV, qq is the quotient algebra

ClpV q :“ ClpV, qq :“ T pV q{Ipqq,

where Ipqq is the two-sided ideal of T pV q generated by elements of the form v b v ´ qpvq for
v P V .
Since Ipqq is generated by elements of even degree, the natural Z{2Z-grading on T pXq induces
a Z{2Z-grading on ClpV q. Write

ClpV q “ Cl`pV q b Cl´pV q,

where Cl`pV q is the even part and Cl´pV q is the odd part. Notice that Cl`pV q is still a Q-
algebra, it is called even Clifford algebra.
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We now use the assumption that pV, qq is a Hodge structure of Hyper-Kähler type to define
a complex structure Cl`pV qR:
Consider the following decomposition of the real vector space VR :

VR “ V1 ‘ V2, with V1 :“ V 1,1 X VR, V2 :“ tV 2,0 ‘ V 0,2u X VR.

The C-linear span of V2 is V 2,0bV 0,2, which is two-dimensional and by hypothesis, q is negative
definite on V2.
Pick a generator σ “ e1 ` ie2 of V 2,0 with e1, e2 P V2 and qpe1q “ ´1. Since qpσq “ 0, we
deduce that qpe1, e2q “ 0 and qpe2q “ ´1. Therefore, e1, e2 is an orthonormal basis of V2. From
this, it is straightforward to check that e1 ¨ e2 “ ´e2 ¨ e1 P ClpVRq. Therefore left multiplication
with J :“ e1 ¨ e2 induces a complex structure on the real vector space ClpV qR which preserves
the real subspaces Cl`pV qR and Cl´pV qR. Since giving a complex structure on a real vector
space is equivalent to giving an Hodge structure of level one on the rational vector space, we
have the following definition:

Definition 2.3. The Kuga-Satake Hodge structure on Cl`pV q is the Hodge structure of level
one given by

ρ : C˚ //GLpCl`pV qRq, x` yi // x` yJ,

where x` yJ acts on Cl`pV qR via left multiplication.

Therefore, starting from a rational Hodge structure of Hyper-Kähler type of level two pV, qq,
we constructed a rational Hodge structure of level one on Cl`pV q. This determines naturally an
isogeny class of complex tori: Let Γ Ď Cl`pV q be a lattice in the rational vector space Cl`pV q.
Then, the Kuga-Satake variety associated to pV, qq is the (isogeny class of) the complex torus

KSpXq :“ Cl`pV qR{Γ,

where Cl`pV qR is endowed with the complex structure induced by left multiplication by J .
Notice that KSpV q is determined only up isogeny class. On the other hand, if we started from
an integral Hodge structure of Hyper-Kähler type, there would be a natural way to determine
the lattice Γ, therefore KSpV q would not be determined only up to isogeny.
By construction, one has the following:

H1
KSpV q :“ H1pKSpV q,Qq » Cl`pV q˚ » Cl`pV q,

where the isomorphism between Cl`pV q and its dual is induced by the non-degenerate form q.

Remark 2.4. Consider the case where V can be written as a direct sum of Hodge structures
V “ V 1 ‘ V 2. Since dimV 2,0 “ 1, we must have that either V1, or V2 has to be pure of
type p1, 1q. We may then assume that V 2,0

2 “ 0. Then, one can check that the Kuga-Satake
Hodge structure Cl`pV q is isomorphic to the product of 2n2´1 copies of Cl`pV1q ‘Cl´pV1q. In
particular:

KSpV1 ‘ V2q „ KSpV1q
2n2
.
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Remark 2.5. Since the Kuga-Satake Hodge structure on Cl`pV q is induced by left multipli-
cation by J P Cl`pV q, right multiplication of Cl`pV q is compatible with the Hodge structure.
Therefore, we have an embedding

Cl`pV q�
� //EndHdgpCl`pV qq » EndpKSpV qq bQ.

Since the dimension of Cl`pV q is 2n´1, where n :“ dimV , we deduce that in general, the
endomorphism algebra of KSpV q is big. This is connected with the fact that the Kuga-Satake
variety of a Hodge structure of Hyper-Kähler type is in general not simple, but it is isogenus to
some power of a torus.

A remarkable property of the Kuga-Satake construction, is the fact that realizes the starting
Hodge structure of level two as a sub-Hodge structure of the tensor product of two Hodge
structures of level one:

Theorem 2.6. Let pV, qq be a Hodge structure of Hyper-Kähler type, then there is an embedding
of Hodge structures:

V �
� //Cl`pV q b Cl`pV q,

where Cl`pV q is endowed with the level one Hodge structure of Definition 2.3.

Proof. We recall here just the definition of the desired map, for all the details we refer to [4,
Prop. 3.2.6].
Fix an element v0 P V such that qpv0q ­“ 0 and consider the following map:

ϕ : V //EndpCl`pV qq.

v // fv : w // v ¨ w ¨ v0

The fact that fv is a morphism of Hodge structure follows from Remark 2.5. The injectivity of
ϕ follows from the equality: fvpv1 ¨ v0q “ qpv0qpv ¨ v

1q for any v1 P V . See the reference for the
proof of the fact that ϕ is a morphism of Hodge structures.
Finally, the desired embedding is given by the composition of φ and the isomorphisms

EndHdgpCl`pV qq » Cl`pV q˚ b Cl`pV q » Cl`pV q b Cl`pV q,

where the isomorphism Cl`pV q˚ » Cl`pV q is induced by q. �

Remark 2.7. Notice that the morphism of Theorem 2.6 is not canonical, in the sense that it
depends on the choice of v0 P V . Nevertheless, choosing another v10 P V changes the embedding
by the automorphism of Cl`pV q which sends w // 1{qpv0qw ¨ v0 ¨ v

1
0.

Theorem 2.6 shows that any Hodge structure of Hyper-Kähler type can be realized as a sub-
Hodge structure of W bW for some level one Hodge structure W . On the other hand, in [2,
Sec. 7], Deligne proves that for a very general Hodge structure of level two, the same conclusion
does not hold. We recall here a version of this fact as presented in [12, Prop. 4.2]:
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Theorem 2.8. Let pV, qq be a polarized Hodge structure of level two such that MTpV q “ SOpqq.
Then, if dimV 2,0 ą 1, V cannot be realized as a sub-Hodge structure of W bW for any level
one Hodge structure W .

Remark 2.9. One can show that the technical condition MTpV q “ SOpqq of Theorem 2.8 is
satisfied for a very general Hodge structure, see [2, Sec. 7] and [14, Cor. 4.12]. The proof goes
as follows: Given a π : X //B a smooth projective morphism, one shows that for very general
t P B, the Mumford-Tate group MTpXtq contains a finite index subgroup of the monodromy
group of the base. Already in the case of hypersurfaces in an even dimensional projective space,
this shows that for a very general hypersurface, the Mumford Tate group is maximal.

To conclude this section, we recall the fact that if the Hodge structure of Hyper-Kähler type
is polarized, then also the resulting Kuga-Satake Hodge structure on the even Clifford algebra
is naturally polarized:

Theorem 2.10. Let pV, qq be a Hodge structure of Hyper-Kähler type such that q is a polar-
ization for V , then the Kuga-Satake Hodge structure on Cl`pV q has a natural polarization. In
particular, the Kuga-Satake torus KSpV q is an abelian variety.

2.2. Some examples. Let X be an Hyper-Kähler variety (resp. a two dimensional complex
torus). The pair pH2pX,Qq,´qBBq where qBB is the Beauville-Bogomolov form (resp. the
intersection pairing) is an Hodge structure of Hyper-Kähler type. Therefore, we can apply the
Kuga-Satake construction to it and we get the Kuga-Satake variety of X:

KSpXq :“ KSpH2pX,Qqq.

Since ´qBB is not a polarization on the whole H2pX,Qq, the variety KSpXq is not necessarily
an abelian variety, but it is just a complex torus.
On the other hand, if X is projective and l is an ample class on X, the primitive part

H2pX,Qqp :“ lK Ď H2pX,Qq

is a sub-Hodge structure which is polarized by the restriction of the form ´qBB. Therefore,
by Theorem 2.10, the Kuga-Satake variety of H2pX,Qqp is an abelian variety. Moreover, by
Remark 2.4, we have

KSpXq :“ KSpH2pX,Qqq „ KSpH2pX,Qqpq2.

In particular, in the projective case, KSpXq is an abelian variety.
A similar argument can be applied to the transcendental lattice T pXq Ď H2pX,Qq, to deduce
that KSpXq is isogenous to some power of KSpT pXqq.
On the other hand, if X is not projective, the torus KSpXq need not be polarized.
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Theorem 2.11. [9] Let A a complex torus of dimesion two. Then there exists an isogeny

KSpAq „ pAˆ Âq4,

where Â is the dual complex torus.
In particular, if A is an abelian surface

KSpAq „ A8 and KSpKumpAqq „ A219 ,

where KumpAq is the Kummer surface associated to A.

Definition 2.12. Let K be the field Qp
?
´dq for some positive rational number d and let

A be an abelian variety of dimension 2n. The abelian variety A is called of K-Weil type if
K Ď EndpAq bZ Q and if the action of

?
´d on the tangent space at the origin of A has

eigenvalues
?
´d and ´

?
´d both with multiplicity n.

Associated to an abelian of K-Weil type one can associate naturally an element δ P Q{NpKq,
where NpKq is the set of norms of K. The element δ is called the discriminant of A.
The next result is due to Lombardo [6], we recall here the version presented in [12, Thm. 9.2]

Theorem 2.13. Let A be an abelian fourfold of Qp
?
´dq-Weil type of discriminant δ “ 1 for

some positive rational number d. Then A4 is the Kuga-Satake of some polarized Hodge structure
of Hyper-Kähler type of dimension six. Conversely, given a Hodge structure of Hyper-Kähler
type of dimension six, its Kuga-Satake variety is isogenous to A4 for some abelian fourfold of
Weil-type.

2.3. Kuga-Satake Hodge conjecture. In this section, we analyze the morphism of Hodge
structures

V �
� //Cl`pV q b Cl`pV q

of Theorem 2.6, in the case where V “ T pXq, the transcendental lattice of a projective Hyper-
Kähler variety X.
Since we are in the projective setting, there exists a natural projection from H2pX,Qq to T pXq.
On the other hand, recall that Cl`pT pXqq » H1

KSpT pXqq. Therefore, we can apply Künneth
decomposition to embed

H1
KSpT pXqq bH

1
KSpT pXqq

� � //H2pKSpT pXqq2,Qq

Composing these morphisms, we obtain a morphisms of Hodge structures

H2pX,Qq //H2pKSpT pXqq2,Qq,

which is called Kuga-Satake correspondence. This morphisms corresponds via Poincaré duality
to an Hodge class

κ P H2n,2npX ˆKSpT pXqq ˆKSpT pXqq,

where 2n “ dimX.
The Hodge conjecture applied to this special case gives us the following:
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Conjecture 2.14 (Kuga-Satake Hodge conjecture). Let X be a projective Hyper-Kähler variety
or a complex projective surface with h2,0 “ 1, then the class κ is algebraic.

Remark 2.15. In the case where X is an abelian surface or a Kummer surface, the Kuga-
Satake Hodge conjecture can be deduced from Theorem 2.11, using the fact that the Hodge
conjecture is known for self products of any given abelian surface [8].

In [11], Paranjape shows the Kuga-Satake Hodge conjecture for the following family of K3
surfaces: Let L1, . . . , L6 be six lines in P2 in general position, and let π : Y //P2 be the double
cover of P2 branched along the six lines. Then, the resolution of singularities of π is a K3
surface. This way, one constructs a family of K3 surfaces over the four dimensional moduli
space of configurations of six lines in the projective plane.
For six lines in general position, the Picard number of the resulting K3 surface is 16, where
a basis of the Neron-Severi group is given by the 15 exceptional divisors over the intersection
points of the lines, together with the pullback of the ample line of P2 via the map X //P2. In
particular, the transcendental lattice of X is six dimensional, and hence satisfies the hypotheses
of Theorem 2.13. Its Kuga-Satake variety is therefore isogenous to the fourth power of some
abelian fourfold. In [11], the author shows that this abelian fourfold is the Prym Variety of
some 4 : 1 cover C //E where C is a genus 5 curve and E is an elliptic curve, and finds a cycle
in the product of X and the Prym variety which realizes the Kuga-Satake correspondence.

3. The case of hyper-Kähler manifolds of generalized Kummer type

3.1. Cup-product: generalization of a result of O’Grady. Let X be a hyper-Kähler
manifold of dimension 2n with n ě 2. The Beauville-Bogomolov quadratic form qX is a non-
degenerate quadratic form on H2pX,Qq, whose inverse gives an element of Sym2H2pX,Qq. By
Verbitsky [13], the later space imbeds by cup-product in H4pX,Qq, hence we get a class

cX P H
4pX,Qq.(3.1)

The O’Grady map φ :
Ź2H3pX,Qq //H4n´2pX,Qq is defined by

φpα^ βq “ cn´2X Y αY β.(3.2)

The following result was first proved by O’Grady [10] in the case of a hyper-Kähler manifold
of generalized Kummer deformation type.

Theorem 3.1. ([10], [15]) Let X be a hyper-Kähler manifold of dimension 2n. Assume
H3pX,Qq ­“ 0. Then the O’Grady map φ :

Ź2H3pX,Qq //H4n´2pX,Qq is surjective.

Proof. We can choose the complex structure on X to be general, so that ρpXq “ 0, and
this implies that the Hodge structure on H2pX,Qq (or equivalently H4n´2pX,Qq as they are
isomorphic by combining Poincaré duality and the Beauville-Bogomolov form) is simple. As
the morphism φ is a morphism of Hodge structures, its image is a Hodge substructure of
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H4n´2pX,Qq, hence either φ is surjective, or it is 0. Theorem 3.1 thus follows from the next
proposition. �

Proposition 3.2. The map φ is not identically 0.

Sketch of proof. Let ω P H2pX,Rq be a Kähler class. Then we know that the ω-Lefschetz
intersection pairing x , yω on H3pX,Rq, defined by

xα, βyω :“

ż

X
ω2n´3 Y αY β

is nondegenerate. This implies that the cup-product map

ψ :
2

ľ

H3pX,Qq //H6pX,Qq

has the property that Imψ pairs nontrivially with the image of Sym2n´3H2pX,Qq inH4n´6pX,Qq.
Note that the Hodge structure on H3pX,Qq has Hodge level 1, so that the Hodge structure on
the image of Imψ in Sym2n´3H2pX,Qq˚ is a Hodge structure of level at most 2. One checks
by a Mumford-Tate group argument that for a very general complex structure on X, the only
level 2 Hodge substructure of Sym2n´3H2pX,Qq is cn´2X H2pX,Qq, where we see here cX as
an element of Sym2H2pX,Qq. It follows that the image of Imψ in Sym2n´3H2pX,Qq˚ pairs
nontrivially with cn´2X H2pX,Qq, which concludes the proof. �

3.2. Intermediate Jacobian and the Kuga-Satake variety.

3.2.1. Universal property of the Kuga-Satake construction. The following result is proved in [1].
Using the Mumford-Tate group, this is a statement in representation theory.

Theorem 3.3. Let pH2, p , qq be a polarized Hodge structure of hyper-Kähler type. Let H be a
simple effective weight 1 Hodge structure, such that there exists a surjective morphism of Hodge
structures of bidegree p´1,´1q

H2� � //EndpHq.

Then H is a direct summand of the Kuga-Satake Hodge structure H1
KSpH

2q.

The statement is easier to prove when the Mumford-tate group of the considered Hodge
structure of hyper-Kähler type is the orthogonal group (see [3]). In that case, one knows that
the Kuga-Satake weight 1 Hodge structure is a power of a simple weight 1 Hodge structure of
dimension 2Ep

b2´2
2
q, where b2 “ dimH2, hence one gets as a consequence an inequality (see [1])

dimH ě 2Ep
b2´2

2
q.

Proof of Theorem 1.1. Let X be a very general projective hyper-Kähler manifold of generalized
Kummer type of dimension ě 4. We apply Theorem 3.3 to the O’Grady map (3.2) that we know
to a surjective morphism of Hodge structures by Theorem 3.1, or rather to its dual. We then con-
clude that H3pX,Qq contains a direct summand of H1

KSpH
2pX,Qqtrq. As H1

KSpH
2pX,Qqtrq is a
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power of a simple weight 1 Hodge structure H1
K´SpH

2pX,Qqtrqc of dimension 8, and b3pXq “ 8,
we conclude that H3pX,Qq » H1

KSpH
2pX,Qqtrqc as Hodge structures. Hence the two corre-

sponding abelian varieties are isogenous. �

3.3. Algebraicity of the Kuga-Satake correspondence for HK’s of generalized Kum-
mer type .

3.3.1. A result of Markman. For a projective manifold X with h3,0pXq ­“ 0, it is expected
from the Hodge conjecture that there exists a cycle Z P CH2pJ3pXq ˆ XqQ such that rZs˚ :

H1pJ
3pXq,Qq //H3pX,Qq is the natural isomorphism. Indeed, the map rZs˚ is an isomor-

phism of Hodge structures, hence provides a degree 4 Hodge class on J3pXqˆX. Equivalently,
after replacing Z by a multiple that makes it integral, the Abel-Jacobi map

ΦZ : J3pXq // J3pXq, ΦZ :“ ΦX ˝ Z˚,

where ΦX : CH2pXqalg // J3pXq is the Abel-Jacobi map for codimension 2 cycles algebraically
equivalent to zero on X, is a nonzero multiple of the identity and in particular ΦX is surjective.

Theorem 3.4. (Markman [7]) Let X be a projective hyper-Kähler manifold of generalized Kum-
mer type. Then there exists a codimension 2 cycle Z P CH2pJ3pXqˆXqQ satisfying the property
above.

The proof of this theorem uses a deformation argument starting from a generalized Kummer
manifold, using the fact that J3pXq can be realized as a moduli space of sheaves on X in that
case.

We now use the result of Markman to prove Theorem 1.2.

Proof of Theorem 1.2. Let Z be the Markman codimension 2 cycle of Theorem 3.4. We choose
a cycle CX P CH2pXqQ of class rCXs “ cX (it exists by results of Markman [7]). We now
consider the cycle

Γ “ Z2 ¨ pr˚XC
n´2
X P CH2npJ3pXq ˆXqQ.

One checks using the Künneth decomposition that rΓs˚ : H2pJ
3pXq,Qq //H2pX,Qq is the

O’Grady map. By Theorem 1.1, this is also the surjective morphism of Hodge structures
(1.1). �
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