
THE LLV DECOMPOSITION OF HYPERKÄHLER COHOMOLOGY

JIEAO SONG

1. Recall of results on the LLV algebra

For X a compact hyperkähler manifold, the rational second cohomology group H2(X,Q) is equipped with
the Beauville–Bogomolov–Fujiki form qX . Following [GKLR], we write

(V, q) :=
(
H2(X,Q)⊕Q2, qX ⊕ ( 0 1

1 0 )
)

for the Mukai completion (usually this is denoted as H̃(X,Q)).
Let h ∈ End(H∗(X,Q)) be the degree operator such that

h|Hk(X,Q) = (k − dimX) Id,

where the degrees are centered at the middle cohomology. The Looijenga–Lunts–Verbitsky algebra g is the
subalgebra of End(H∗(X,Q)) generated by all Lefschetz operators and dual Lefschetz operators (equivalently,
by sl2-triples (La, h,Λa) for a ∈ H2(X,Q)).

Theorem 1.1 (Looijenga–Lunts, Verbitsky).
(1) g is isomorphic to so(V, q);
(2) g = g−2 ⊕ g0 ⊕ g2;
(3) g0 = g′0 ⊕Qh, and the reduced part g′0 := [g0, g0] is isomorphic to so(H2(X,Q), qX).

The cohomology H∗(X,Q) is a g-module by construction. The main goal is to study the decomposition of
H∗(X,Q) into irreducible g-modules. First we have the following easy result.

Proposition 1.2. H∗(X,Q) decomposes into H∗even(X,Q)⊕H∗odd(X,Q) as g-modules.

Another general result is obtained by Verbitsky.

Theorem 1.3 (Verbitsky). The subalgebra SH2(X,Q) ⊂ H∗(X,Q) generated by H2(X,Q) is an irreducible
g-submodule. It is isomorphic to Sym∗(H2(X,Q))/

〈
an+1 | qX(a) = 0

〉
as algebra and g′0-module.

Corollary 1.4. The branching rules for g′0 ⊂ g show that SH2(X,Q) is isomorphic to V(n) as g-module (see
below for notations).

So there is always an irreducible component that is known (and also quite big), which is referred to as the
Verbitsky component. Here, the method of recovering the g-module structure by decomposing it further with
respect to some smaller subalgebra is very important and will be frequently used later.

2. Representation theory

We introduce the necessary notions for the representation theory of g. For this section, g := so(V, q)
denotes a Lie algebra of type Br or Dr defined over Q, where dimV = 2r + 1 or dimV = 2r. For references,
see the Appendices of [GKLR] and the book [FH].
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Type B. Let h ⊂ gC be a Cartan subalgebra. The standard representation V decomposes as

V = V (0)⊕ V (ε1)⊕ V (−ε1)⊕ · · · ⊕ V (εr)⊕ V (−εr),

where 0,±ε1, . . . ,±εr ∈ h∨ are the weights of V . An element h ∈ h acts as the scalar ε(h) on V (ε). We
choose a positive Weyl chamber generated by the fundamental weights

$i = ε1 + · · ·+ εi for 1 ≤ i ≤ r − 1, $r = 1
2 (ε1 + · · ·+ εr).

They correspond to the highest weight of
∧
iV for 1 ≤ i ≤ r − 1 and the spin module respectively. The set of

dominant weights is the following

Λ+ =

{
λ = λ1ε1 + · · ·+ λrεr

∣∣∣∣ λ1 ≥ · · · ≥ λr ≥ 0
λi ∈ 1

2Z, λi − λj ∈ Z

}
.

Example. V(1,...,1) =
∧
kV , V(k) = ker(Symk V

q→ Symk−2 V ).

Over C, irreducible gC-modules are classified by their highest weight.
Over Q, the Schur–Weyl construction for a g-module with integral highest weight is still available: let λ

be a dominant weight with
∑
λi = d, we have

Vλ := SλV ∩ V [d],

where Sλ is the Schur functor, and V [d] is the intersection of all the kernels ker(V d
q→ V d−2) given by

contracting any two components with q. On the other hand, modules with half-integer highest weight are not
necessarily defined over Q.

Type D. The standard representation V has weights ε1, . . . ,±εr ∈ h∨. The fundamental weights are given
by

$i = ε1 + · · ·+ εi for 1 ≤ i ≤ r − 2, $r−1 = 1
2 (ε1 + · · ·+ εr−1 − εr), $r = 1

2 (ε1 + · · ·+ εr),

corresponding to the highest weight of
∧
iV for 1 ≤ i ≤ r− 2 and the two half-spin modules respectively. The

set of dominant weights is the following

Λ+ =

{
λ = λ1ε1 + · · ·+ λrεr

∣∣∣∣ λ1 ≥ · · · ≥ λr−1 ≥ |λr| ≥ 0
λi ∈ 1

2Z, λi − λj ∈ Z

}
.

Again, all the representations with integral highest weight are defined over Q via the Schur–Weyl construction,
which is not necessarily the case for those with half-integer highest weight.

The dimension of each Vλ can be obtained using Weyl dimension formula, which we won’t state here. We
will however need the following corollary of the dimension formula.

Lemma 2.1. Let λ and µ 6= 0 be dominant integral weights of g, then dimVλ+µ > dimVλ.

Weyl character. We review the results on the Weyl character ring, which more generally hold for any
reductive rational Lie algebra g, although our main interest remains in the cases of type B and D.

Let Rep(g) be the category of finite dimensional rational g-modules. The complexification gives a functor

Rep(g) −→ Rep(gC)

to the category of gC-modules, which induces an injective morphism

K(g) ↪−→ K(gC)

at the level of representation rings, that is, the Grothendieck rings of the corresponding categories.
The Weyl character of a gC-module V =

⊕
µ V (µ) is given by chV :=

∑
dimV (µ)eµ with value in the

group ring Z[Λ], where eµ is the element corresponding to the weight µ. The character map factors through
the representation ring K(gC) and has image in Z[Λ]W, the W-invariant subring.

Theorem 2.2. The character map ch: K(gC)→ Z[Λ]W is a ring isomorphism.

We describe the Weyl character ring Z[Λ]W for g of type Br and Dr.

Proposition 2.3.



THE LLV DECOMPOSITION OF HYPERKÄHLER COHOMOLOGY 3

(1) When g is of type Br, write xi := eεi . Then

Z[Λ] = Z[x±11 , . . . , x±1r , (x1 · · ·xr)±
1
2 ].

The Weyl group W2r+1 is isomorphic to Sr n (Z/2)r, where Sr acts as permutations on x1, . . . , xr
and the i-th Z/2 acts as xi 7→ x−1i .

(2) When g is of type Dr, the group ring Z[Λ] is the same as above for Br, while the Weyl group W2r is
the index-2 subgroup of W2r+1 consisting of elements with an even number of non-trivial components
in (Z/2)r.

We have the following result that relates the two.

Proposition 2.4. Let (V, q) be a rational quadratic space of dimension dimV = 2r + 1, and W ⊂ V a non-
degenerate subspace of dimension dimW = 2r. Let g = so(V, q) and m = so(W, q|W ). Then the restriction
functor Res: Rep(g)→ Rep(m) induces an injective morphism for the character rings, and consequently, the
(rational) representation rings. We have the following diagram

K(g) K(m)

K(gC) K(mC)

Z[Λ]W2r+1 Z[Λ]W2r .

Res

Res

ch ' ch '

In particular, for an arbitrary g-module, if one can obtain its decomposition as an m-module via restriction,
then its Weyl character is uniquely determined and hence so is its g-module structure.

Remark 2.5. In the hyperkähler setting, the LLV algebra g is of type Br+1 or Dr+1, and its reduced part
g′0 is of type Br or Dr, so the proposition does not apply directly for g′0 ⊂ g. Instead, in the K3[n]-case, we
will take the subalgebra m to be g(S), the LLV algebra of a K3 surface S.

3. Hodge structures

From this section on, we let r := bb2(X)/2c so g is of type Br+1 or Dr+1, and g′0 is of type Br or Dr. The
weights of g will be denoted as λ = λ0ε0 + · · ·+ λrεr, starting from the index 0.

The LLV decomposition is a diffeomorphism invariant, but we can obtain more information using a complex
structure. Let f ∈ End(H∗(X,R)) be the Weil operator

f |Hp,q(X) = i(q − p) Id .

We will use this operator to define Hodge structures on each irreducible component Vλ, and obtain some
conditions on the dominant weight λ that can appear.

Proposition 3.1. We have f ∈ (g′0)R.

Proof. Denote by I, J,K three complex structures coming from a hyperkähler metric g where I is the
complex structure that we are using. We have three Kähler classes ωI = g(I−,−), ωJ = g(J−,−), and
ωK = g(K−,−), hence three sl2-triples (LI , h,ΛI), (LJ , h,ΛJ), (LK , h,ΛK). These are all operators on
H∗(X,R) and lie in gR by construction.

Verbitsky showed that the Weil operator f = fI for the complex structure I satisfies

fI = −[LJ ,ΛK ] = −[LK ,ΛJ ],

so fI ∈ (g0)R. One may consider Weil operators fJ and fK for the other two complex structures, and verify
that

[fJ , fK ] = −2fI .

So fI indeed lies in [(g0)R, (g0)R] = (g′0)R. �
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Remark 3.2. Recall that the real subalgebra gg generated by the three sl2-triples is isomorphic to so(4, 1):
an explicit basis over R is given by

ΛI ,ΛJ ,ΛK , fI , fJ , fK , h, LI , LJ , LK .

In particular, the degree-0 part is generated by h and the three Weil operators.

Under the action of f , the standard representation V decomposes as
V = V 2,0 ⊕ V 1,1 ⊕ V 0,2,

where f acts as −2i, 0, and 2i respectively. Similarly, we have another decomposition under the action of h
V = V−2 ⊕ V0 ⊕ V2,

where h acts as −2, 0, and 2 respectively. Take h ⊂ gC a Cartan subalgebra that contains both h and f , then
h and if are among ±ε∨i . Up to the choice of a Weyl chamber, we may suppose that h = ε∨0 and if = ε∨1 .
Under this choice, we can also identify ε1, . . . , εr as the weights of g′0.

For a g-module Vλ that appears in H∗(X,Q), we take its weight decomposition with respect to the chosen
Cartan subalgebra h: (Vλ)C =

⊕
µ Vλ(µ), where Vλ(µ) is the component of weight µ = µ0ε0 + · · · + µrεr.

Then h acts as 2µ0 and if acts as 2µ1 on Vλ(µ)

2µ0 = p+ q − 2n

2µ1 = i · i(q − p) = p− q ⇒
p = µ0 + µ1 + n

q = µ0 − µ1 + n
(1)

so Vλ(µ) ⊂ Hp,q(X). In other words, Vλ ⊂ H∗(X,Q) is a sub-Hodge structure. More generally, there is a
naturally define Hodge structure on any g-module Vλ, determined by the actions of h and f : we let

(Vλ)p,qC :=
⊕

µ satisfying (1)

Vλ(µ).

The Hodge numbers hp,q count the multiplicities of suitable weights. For a given g-module, these can be
easily obtained using GAP or Sage. On the other hand, the Hodge numbers do not necessarily determine the
g-module structure (such an example will show up in the case of OG6).

Example. The Verbitsky component SH2(X,Q) contains a non-trivialH2n,0-part coming from SymnH2(X,Q).
We have p = 2n, q = 0 so µ0 = n, µ1 = 0 which must be the highest weight (n). (In fact this can be used
to prove that SH2(X,Q) ' V(n): we just saw that the highest weight of SH2(X,Q) dominates (n); on the
other hand, we have dimSH2(X,Q) = dimV(n) due to the description of Verbitsky, so by Lemma 2.1, the
highest weight must be exactly (n).)

In particular, since H2n,0(X) is one-dimensional, the component V(n) appears with multiplicity 1 in
H∗(X,Q). (It also exhausts all the outermost Hodge numbers h2k,0 = 1.)

Corollary 3.3.
(1) Each component Vλ of H∗even(X,Q) has integral highest weight λ;
(2) Each component Vλ of H∗odd(X,Q) has half-integer highest weight λ;
(3) Each component Vλ other than the Verbitsky component satisfies λ0 + λ1 ≤ n− 1 and λ0 ≤ n− 3

2 .

Proof. For statements (1) and (2), we look at the component Vλ(λ) and get
p+ q = 2λ0 + 2n,

which allows us to conclude that λ0 is an integer or a half-integer in the two cases.
For statement (3), since Vλ is not the Verbitsky component, it cannot have a H2n,0-part, so by looking at

the component Vλ(λ) we get
λ0 + λ1 + n = p ≤ 2n− 1,

which gives the first inequality. By definition, the Verbitsky component exhausts the second cohomology
H2(X,Q) and hence H4n−2(X,Q) by Hodge symmetry, so we also have

3 ≤ p+ q = 2λ0 + 2n ≤ 4n− 3,

which gives the second inequality. �

Remark 3.4.
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(1) The two inequalities in (3) are tight: for generalized Kummer varieties Kumn with n ≥ 2 (whose
LLV algebra is of type B4), we can have the component V(n− 3

2 ,
1
2 ,

1
2 ,

1
2 )
. In fact, the existence of this

component is equivalent to the non-vanishing of b3(X).
(2) When n = 2, the statement (3) shows that λ = (2) or λ0 ≤ 1

2 , so all the possible weights are
(2), ( 1

2 , · · · ,
1
2 ), (0). Numerically there are three free variables: the second Betti number b2(X) and the

multiplicities of the latter two components. The half-integer weight component generates H∗odd(X,Q).
Conjecturally, the sum of each weight is bounded by n = 2, so the odd cohomologies must vanish
entirely when b2(X) ≥ 8, which is indeed the case.

(3) When n = 3 and Vλ is a component of H∗even(X,Q) other than V(3), we get λ0 ≤ 1 so λ is a sequence
of ones, and Vλ must be a wedge product

∧
kV .1

The corollary gives some contraints on the irreducible components that can appear. For O’Grady’s
10-dimensional example, this is already enough to determine the full decomposition.

Proposition 3.5. Let X be a hyperkähler manifold of dimension 10 such that b2(X) = 24, e(X) = 176904,
and H∗odd(X) = 0. Then we have the following decomposition of g-modules

H∗(X,Q) = V(5) ⊕ V(2,2).

In particular, O’Grady’s example OG10 satisfies these numerical conditions, so we have obtained its LLV
decomposition.

Proof. The LLV algebra g is of type D13. Write H∗(X,Q) = H∗even(X,Q) = V(5) ⊕ V ′. We have dimV ′ =
e(X)− dimV(5) = 37674. By using the inequalities in Corollary 3.3 and by considering the dimension bound
and Lemma 2.1, the only possible dominant weights that can appear are

{(3), (2, 2), (2, 1), (2), (1, 1, 1, 1), (1, 1, 1), (1, 1), (1), (0)}.
Each Vλ carries a Hodge structure and therefore has its own Betti numbers. Using Salamon’s result on
the Betti numbers of a hyperkähler manifold, one may verify that the only possible solution is one copy of
V(2,2). �

4. Mumford–Tate algebra

Definition 4.1. Let W be a rational Hodge structure. Let f be the Weil operator
f |Wp,q = i(q − p) Id .

The special Mumford–Tate algebra m = m(W ) is the smallest rational subalgebra of End(W ) such that
f ∈ mR.

The (full) Mumford–Tate algebra is m⊕Qh where h is the degree operator h|Wp,q = (p+ q) Id. It coincides
with the associated Lie algebra of the Mumford–Tate group of W . (This degree operator differs from the one
that we defined earlier, so we need to take a Tate twist H∗(X,Q)(dimX). But we will not need this notion.)

When W is the cohomology H∗(X,Q) of a hyperkähler manifold X, by Proposition 3.1 we see that m is a
subalgebra of g′0. Conversely, we have the following result.

Proposition 4.2. For X a very general hyperkähler manifold, the Mumford–Tate algebra m is equal to g′0.

Proof. Consider the restriction map
ρ : End(H∗(X,Q)) −→ End(H2(X,Q)).

The Weil operator f2 on H2(X,Q) is the restriction of f . Since m satisfies f ∈ mR, its restriction ρ(m) will
satisfy f2 = ρ(f) ∈ ρ(m)R. Thus by definition, ρ(m) contains the special Mumford–Tate algebra m(H2(X,Q))
for the second cohomology. By local Torelli theorem, the latter is equal to so(H2(X,Q), qX) ' g′0 for X very
general. So ρ(m) ' g′0, which shows that m must coincide with g′0. �

Consequently, for a very general X, the decomposition of H∗(X,Q) into g′0-modules is the same as
decomposition into sub-Hodge structures.

1In the article of Sawon on the bound of b2(X), he wrongly assumed that only
∧

2V can appear. Note that even if the general
conjecture holds, that is, the sum of λ is bounded by 3, we can still have

∧
3V .
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Example. For X of K3[2]-type, by a dimension count we have H∗(X,Q) = V(2) as g-module. Write H for
the second cohomology group as a g′0-module. Using the description by Verbitsky, we get an isomorphism of
g′0-modules

H∗(X,Q) = Q ⊕ H ⊕ Sym2H ⊕ H ⊕ Q
= Q ⊕ H ⊕ (H(2) ⊕Q) ⊕ H ⊕ Q

,

where H(2) is an irreducible g′0-module obtained as ker(Sym2H
qX→ Q). The 1-dimensional component

Q ⊂ H4(X,Q) is generated by the dual of qX , which is also proportional to c2(X).

For a Hodge special X, the Mumford–Tate algebra m becomes smaller, so H∗(X,Q) may decompose
further into smaller components. This is the key idea for determining the LLV decomposition for the other
three types of hyperkähler manifolds.

5. K3[n]-type

In the K3[n]-type case, there is a natural choice of a Hodge special locus: when X = S[n] is actually the
Hilbert scheme of a K3 surface S (not necessarily algebraic). We have a decomposition

(H2(X,Q), qX) = (H2(S,Q), qS)⊕ 〈−2(n− 1)〉.

So g(S) naturally realizes as a subalgebra of g = g(X), and m(S) = m(H2(S,Q)) a subalgebra of m =
m(H2(X,Q)). We write W := H∗(S,Q), which coincides with the Mukai completion of H2(S,Q) and is
therefore the standard representation for g(S). When S is non-algebraic and very general, m(S) coincides
with g′0(S) = so(H2(S,Q), qS) and is of type D11.

g g′0

g(S) g′0(S) = m(S)

The Hodge structure on H∗(S[2],Q) is described by Göttsche–Soergel [GS] (stated for algebraic ones only;
the general case is due to de Cataldo–Migliorini).

Theorem 5.1. Let S be a K3 surface, not necessarily algebraic. We have an isomorphism of Hodge structures

H∗(S[n],Q)(n) '
⊕
α`n

H∗(S(a1) × · · · × S(an),Q)(a1 + · · ·+ an).

The sum is taken over all partitions α of n, where α = (a1, · · · , an) satisfies a1 · 1 + · · ·+ an · n = n. Here
S(a) denotes the a-th symmetric power Sa/Sa of S, and we have an isomorphism of Hodge structures

H∗(S(a),Q) ' SymaH∗(S,Q).

Remark 5.2. We can omit all the Tate twists by considering the grading h on the cohomologies centered at
the middle cohomology.

In other words, we have obtained the decomposition of H∗(X,Q) as an m(S)-module. To deduce the
g-module structure, we first lift this as a g(S)-module decomposition, and then apply Proposition 2.4.

Theorem 5.3. We have an isomorphism

H∗(S[n],Q) '
⊕
α`n

n⊗
i=1

Symai H∗(S,Q)

of g(S)-modules. Consequently, the Weyl character of H∗(S[n],Q) as a g(S)-module is equal to

chH∗(S[n],Q) =
∑
α`n

n∏
i=1

ch Symai W.

In view of Proposition 2.4, this gives the Weyl character of H∗(X,Q) as a g-module.
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Proof. The g(S)-module structure is a diffeomorphism invariant, so we may assume that S is very general
and non-algebraic. Recall that in this case, the special Mumford–Tate algebra m(S) coincides with g′0(S) =
so(H2(S,Q), qS). So the isomorphism of Hodge structures gives an isomorphism of g′0(S)-modules.

Since g0(S) = g′0(S)⊕Qh and the decomposition respects the grading h, we can lift it to an isomorphism
of g0(S)-modules. The weight lattice of g0(S) is the same as that of g(S), so this is an isomorphism of
g(S)-modules. �

Example. We consider again the K3[2]-type case. The isomorphism is given as
H∗(S[2],Q) ' H∗(S(2) × S(0),Q)⊕H∗(S(0) × S(1),Q) = Sym2H∗(S,Q)⊕H∗(S,Q).

The right hand side decomposes into 3 irreducible g(S)-modules, and further into 10 irreducible g′0(S)-modules.

as g-module (B12)

1

1 21 1

1 21 232 21 1

1 21 1

1

yRes

Res−→

as g′0-module (B11)
(= m(X) for X very general)1

1 21 1

1 21 231 21 1

1 21 1

1

⊕ 1

yRes

as g(S)-module (D12)

1

1 20 1

1 20 211 20 1

1 20 1

1

⊕
1

1 20 1

1

⊕ 1

Hodge special (X = S[2])

Res−→

as g′0(S)-module (D11)
(= m(S) for S very general)

1

1 20 1

1 20 210 20 1

1 20 1

1

⊕
⊕
⊕

1 ⊕
1

1 20 1

1

⊕ 1

We may write the formula for the characters of H∗(K3[n],Q) in a more succinct fashion by considering
all Hilbert powers at the same time. Note that the LLV algebras are a priori not the same in different
dimensions. But since we are considering Weyl characters, we only need the complexification gC which is
always isomorphic to so(25).
Proposition 5.4. Let g be the Lie algebra so(25). The generating series of the characters of the g-modules
H∗(K3[n]) for n ≥ 2 is given by

∞∑
n=0

chH∗(K3[n])qn =

∞∏
n=1

11∏
i=0

1

(1− xiqn)(1− x−1i qn)
. (2)

The identity lives inside the formal power series ring A[[q]] where

A := Z[Λ]W = Z[x±10 , . . . , x±111 , (x0 · · ·x11)±
1
2 ]W25

is the Weyl character ring of type B12. Note that when n = 1, the cohomology H∗(K3) does not admit a
structure of g-module, so we write formally

chH∗(K3[1]) :=

11∑
i=0

(xi + x−1i ).
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Proof. By Theorem 5.3 and Proposition 2.4, it suffices to take X = S[n] and show the identity in the character
ring of g(S). We write sa for ch SymaW , where W = H∗(S,Q) is the standard representation of g(S). Then

∞∑
n=0

chH∗(S[n])qn =

∞∑
n=0

(∑
α`n

n∏
i=1

ch Symai W

)
qn

=

∞∑
n=0

(∑
α`n

sa1sa2 · · · san

)
qn

=

∞∑
n=0

∑
α`n

sa1q
a1 · sa2q2a2 · · · · · sanqnan

=
∑
α

sa1q
a1 · sa2q2a2 · · · · · sanqnan

where the last sum is over all partitions of integers. Equivalently, we can freely pick the values for each ai
and recover all the partitions in this way. So∑

α

sa1q
a1 · sa2q2a2 · · · · · sanqnan =

( ∞∑
a1=0

sa1q
a1

)
·

( ∞∑
a2=0

sa2q
2a2

)
· · · · =

∞∏
n=1

∞∑
a=0

saq
na =

∞∏
n=1

A(qn)

where A(q) =
∑∞
a=0 saq

a. Finally, we have

A(q) =

∞∑
a=0

saq
a

= 1 + chW · q + ch Sym2W · q2 + · · ·
= 1 + (x0 + · · ·+ x11 + x−10 + · · ·+ x−111 )q + (x20 + x0 · x1 + · · ·+ x−211 )q2 + · · ·

=

11∏
i=0

(1 + xiq + x2i q
2 + · · · )(1 + x−1i q + x−2i q2 + · · · )

=

11∏
i=0

1

(1− xiq)(1− x−1i q)
,

which concludes the proof. �

Corollary 5.5. Let X be a hyperkähler manifold of K3[n]-type. Any irreducible component Vλ of the LLV
decomposition of H∗(X,Q) with highest weight λ = λ0ε0 + · · ·+ λ11ε11 satisfies

λ0 + · · ·+ λ11 ≤ n.
Proof. The weight λ corresponds to the monomial xλ0

0 · · ·x
λ11
11 in the character ring. When we expand the

right hand side of (2) we get
∞∏
n=1

11∏
i=0

∑
j≥0

(xiq
n)j

∑
k≥0

(x−1i qn)k

 .

For each term of this product, its degree in xi is bounded by its degree in q. So each monomial that appears
in the coefficient of qn has degree ≤ n, which gives the inequality. �

Remark 5.6. More generally, for a hyperkähler manifold X of dimension 2n with r = bb2(X)/2c, it is
conjectured that we have the inequality

λ0 + · · ·+ λr−1 + |λr| ≤ n
for each component Vλ of the LLV decomposition of H∗(X,Q). This holds for all known examples.
Remark 5.7. Once the character of the g-module structure is known, one can use computer algebra to
recover the actual decomposition. One implementation in Sage can be found here.

6. Generalized Kummer varieties and OG6

We briefly remark on the remaining two cases. See [GKLR] for details and the references therein.

https://sagecell.sagemath.org/?z=eJy9V1tv4kYUfo-U_3BKVGkmcUwgflo1-0D7UHU3D8sDrWIBMvYAQ-wx2ENg__1-M2OwuSQbNVVRQuJzm-9cvsNwRXGeLddakJ4L-jNPZoLUOpuIoqR8ShHNbrM8WaeCBjTNC0pkxv7h9EDJ5UUipjQ3HmN4sMSjAf90eUF4KWNAbeq6xwyPA38j5Gyux9k61XKZylhqKUrGnckjTLJIF3LLwvDOHiVJKioiNRMsoRvq8KEVL07EVQij3BhlVqGwccNNeDeE3SbsmD_KIyu43QvwhqPDzdA5FUKvC0WPlxeXF1dkspp0PUr5J5O6UKXMEaIUca4S6gmtZVUuj-ZIT5SaXJ6uPF-_DhohzhZnhkfW6rVITmFHv1KXHh6oQyItBbX-aHGALHXBoGvDyaZ8APWgBX-L7-nv86iIYi2KvlQzNuMs5dylsyyk0rbTrtamWomMMpMMypc50JWEPe4QJ4D46Ks4T9EvlK7jxPlaY3KgC8NW67hlXbqmV9rWUNWdO-l2o4ln297Q12BCCd1iGBqTBZDKoYEeSg9CZ29LwHQ0SQVzPq44JvEv94qpXeC-_9vqM7y_fQtbq1bl3Yeg76_WOev7MhFRylYjpm46nHO6Il2sVRxVXLLjAMKIWSEgEUVWuhgrG2OGWWIco-iEvQ7afqZ7LShaHvWrlk8qMzNhVg91pVpuTSdgwEJMD4ZJPjws3BSd8AlOQ35cViOs-FqHuv1gqHiOUJ26zVvrCqw3OOWoxc2oHmhypssId23IAUpg3tlWXq9Gko8WJwDg325LG4I3kKBcLJ5XkkiVEJlA2o9zMZ1iJwmlXVv8VE414z6YkGcySscNC7aqtCPFMct6b-RcLRhtwMRz3zae7UBcYd2qF1Foah5IOqenp3cMws-noNoJJiksDblkmUFo0t64LrGNR5ABXCpLzVCDev7_CurxrwKpUQD_ZZEnrHPbaS_xaKIsTYCnJ5j7IFQmxol8kWVeuEwtl4BA1SvvZj8F_zOvgleqGTRZFRyVMzjkVPAOSgVnaBAcESp4B5_ejNP7T8nU-9dcmkfpdLzLyc7RgjdQx1GhRSkjNTaDs441PtMxPF0Pv8Mh5ingpgrm2AXffeLdDY8Tc6d8IC-XUtVjg_ZDXH9-m-u9PdWt7LnGaea4uQ4NCkO1dmIiTsLERUlqTh2wyfgN4DYJ_HIZxWJ3ZUrrmRpy3DHsfyjy4Vul2iNwS-_OPWzmEjc7gPoFokYVM3sbw1VMn9tlpncD13ZtaoAf7stynKAuKkLJ9leyXdNS27X0qE-gu7k9ZChCKg9VOMFqPx_i2r1ePAvRQjB2Nd9fiY8K9AL2wvmplSkItpMxPlWiNLdOZzvVOTplUojo-d2b_fVV9LM9VC1jpHC02JHXG3t9v9idx3ZHFF18bxS1Co7J21ajXp0qtrFY6vOW1YVSbKNsmQps4N2l0dx4A69774UYPbO8cW2mwFyBkRvE1fWYoL68cJcxc-3qWls4Y7GbbyR5ia8HubKpfbkfNa1RgTet19m4-wOkb3JG&lang=sage&interacts=eJyLjgUAARUAuQ==
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Generalized Kummer varieties. The LLV algebra g is of type B4.
Similar to the case of K3[n]-type, we consider Hodge special members of the family: we specialize X to an

actual generalized Kummer variety associated to a very general complex torus A of dimension 2. The results
of Göttsche–Soergel give a complete description of the Hodge structure of H∗(X) in terms of the Hodge
structures on H∗(A), which can be seen as a decomposition of m(A)-modules (of type D3). We can similarly
lift it to a g(A)-module decomposition (of type D4) and apply Proposition 2.4 to obtain the character of
H∗(X) as a g-module.

OG6. This last case is more complicated. The LLV algebra g is of type D5.
Using the Hodge numbers of OG6 and the Hodge numbers of the g-modules, we may obtain two possible

decompositions for H∗(X,Q). To determine which case we are in, we specialize X to a Hodge special member
with an explicit geometric construction given by Rapagnetta. In this situation, the Mumford–Tate algebra m
is of type B2 (that of a very general abelian surface A), and the geometric construction gives a description
of the Hodge structure of H∗(X) in terms of m = m(A)-modules (Mongardi–Rapagnetta–Saccà). Then
by comparing the restrictions to m of the two possible g-module decompositions, only one agrees with the
m-module decomposition obtained from geometry, so we may conclude.
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