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Zusammenfassung

Alexander Grothendieck stellte 1969 in seiner Arbeit[Gr68] zwei sogenannte ”Standardvermu-
tungen” auf, die versuchen das Zusammenspiel einer Weil Kohomologie Theorie mit den durch
sie definierten algebraischen Klassen zu erfassen. Die ”Lefschetz-Standardvermutung” besitzt
mehrere Formulierungen und ist im Wesentlichen eine Existenzaussage für algebraische Klassen,
die dem Schweren Lefschetz-Satz nachempfunden ist. Die ”Hodge-Standardvermutung” ist
eine Positivitätsaussage, die für komplexe Varietäten mit Betti Kohomologie aus der Hodge-
Theorie folgt. Grothendieck bemerkte, dass diese zusammen die letzte damals noch offene
Weil-Vermutung implizieren, das Analogon zur Riemannvermutung. Obwohl diese von Pierre
Deligne inzwischen vollständig bewiesen wurde, sind Grothendiecks Standardvermutungen
noch bis heute offen. Es scheinen immernoch keine Werkzeuge vorhanden zu sein, um sie
zu beweisen.
June Huh und Botong Wang [HW17] betrachten für komplexe Varietäten eine Variante der
Lefschetz-Standardvermutung. Die algebraischen Klassen ersetzen sie hierbei durch sogenannte
Lefschetz Klassen. Nach einer Reihe von Gültigkeitskriterien zeigen sie, dass diese Variante
jedoch im Allgemeinen fehl schlägt. Ziel der vorliegenden Bachelorarbeit ist es, eine kurze
Einführung in die Standardvermutungen zu geben und für den Fall der Lefschetz Klassen
einige der Gegenbeispiele und Gültigkeitskriterien in [HW17] zu präsentieren, sowie neue zu
entwickeln. Im ersten Kapitel werden die Standardvermutungen gesammelt und die gültigen
Implikationen zwischen ihnen erwähnt, ohne dabei ins Detail der relavanten Beweise zu gehen.
Im zweiten Kapitel wird die Lefschetz-Algebra einer komplexen projektiven Varietät eingeführt.
Nachdem kurz erläutert wird, welche der Implikationen für Lefschetz Klassen gültig bleiben,
schränken wir uns auf eine Variante der Lefschetz-Standardvermutung ein und beweisen einige
Gültigkeitskriterien. Schließlich rechnen wir drei Gegenbeispiele zu dieser Variante explizit
nach - zwei davon stammen aus der Arbeit [HW17]. Ein Appendix stellt mehrere verwendete
technische Resultate bereit.
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Ihre Unterstützung über meine ganze schulische und universitäre Laufbahn hinweg.
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Introduction

In 1969, Alexander Grothendieck proposed the two so-called standard conjectures, with which
he tries to capture the behaviour of the algebraic classes defined on a Weil cohomology theory
[Gr68]. The ”Lefschetz standard conjecture” is essentially an existence claim for algebraic
classes and is modelled after the Hard Lefschetz theorem. The ”Hodge standard conjecture”
is a positivity assertion, which follows from Hodge theory in the case of complex varieties with
betti cohomology. They were intended to aid in proving the most difficult part of the Weil
conjectures - an analogue of the Riemann hypothesis, which was still open at the time. Even
though the last of the Weil conjectures has finally been proven in 1974 by Pierre Deligne,
Grothendieck’s standard conjectures are still open to this day. There seem to be no tools
available for proving them.
In [HW17], June Huh and Botong Wang consider a variant of the Lefschetz standard conjecture
in the case of complex varieties. They replace the algebraic classes in the formulation by so
called Lefschetz classes. After a series of validity criteria, they show however that this variant
fails in general.
The aim of this thesis is to give a short introduction to the standard conjectures, to discuss
some of the counterexamples and validity criteria in the case of Lefschetz classes which are
presented in their paper and to develop new ones. In the first chapter, the standard conjectures
are formulated and the implications between them discussed, without going into much detail
about the proofs. In the second chapter, we introduce the Lefschetz algebra of a complex
projective variety. After briefly explaining which of the implications remain valid for Lefschetz
classes we restrict ourselves to a variant of the Lefschetz standard conjecture and prove some
criteria for its validity. Finally, we present three counterexamples to this variant - two of which
are taken from [HW17]. The Appendix provides details on the cohomology of the blowup and
collects some facts on the Grassmannian.
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unfailing support and encouragement throughout the entirety of my school and university
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1. Algebraic cycles and Grothendiecks
standard conjectures

Throughout this chapter we assume k to be an algebraically closed field. By a variety we mean
an integral scheme which is of finite type over k. All subvarieties are assumed to be closed.

1.1. Algebraic cycles

In order to state the standard conjectures, we are going to introduce the machinery of algebraic
cycles. This section largely follows the first two sections of [EH16].

Definition 1.1. Let X be a scheme of finite type over k.
Let Z∗(X) be the free abelian group generated by the set of all subvarieties of X graded by
codimension. The elements of Z∗(X) are called algebraic cycles.

Cycles can be viewed as approximations to subschemes of X which are just coarse enough so
that intersection theory can be developed. Originally singular homology was used for this (see
for example [GH94] or [Br93, Section VI.11] for intersections of real submanifolds). But with
the help of algebraic cycles, this can be carried out over arbitrary algebraically closed fields
without assuming the existence of a homology or cohomology theory over k. In fact, one has
the following:

Definition 1.2. Let Z ⊆ X be a closed subscheme. The algebraic cycle in X associated to Z
is defined as:

[Z] :=
k∑
i=1

lengthOZ,Zi
(OZ,Zi)Zi

where Z1, ..., Zk are the irreducible components of Z. Note that OZ,Zi is zero-dimensional and
Noetherian hence of finite length over itself.

Definition 1.3. Let Rat∗(X) ⊆ Z∗(X) be the subgroup generated by expressions of the form:

k∑
i=1

ai

(
[i−10 Zi]− [i−1∞ Zi]

)
,

where Zi ⊂ X × P1 are subvarieties each not contained in any fiber over P1 and i0, i∞ are the
identifications of X with the fiber over [0 : 1] and [1 : 0].
The quotient Z∗rat(X) := Z∗(X)/Rat∗(X) is called the Chow group of X. Two cycles in Z∗(X)
are called rationally equivalent if their classes in Z∗rat(X) agree.
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Using Krull’s Principal ideal theorem, one shows that the schemes i−10 Zi and i−1∞ Zi are of
pure dimension dimZi − 1 hence the Chow group does indeed have an induced grading. From
now on, we restrict ourselves to smooth projective varieties. In this case one can define an
intersection product on the Chow group giving it a ring structure(see [Fu84] for details of this).
One might ask whether the Chow ring is functorial in X. Indeed:

Definition 1.4. Let f : X ! Y be a morphism of smooth projective varieties over k.
A subvariety Z ⊆ X is called generically transverse to f if f−1(Z) ⊆ Y is generically reduced
and codim(f−1(Z), Y ) = codim(Z,X). There is a unique ring homomorphism

f∗ : Z∗rat(Y ) ! Z∗rat(X)

such that f∗([Z]) = [f−1(Z)] if Z ⊆ X is generically transverse to f and Cohen–Macaulay. It
is called the pullback along f . The pushforward f∗ is given by

f∗ : Z∗rat(X) −! Z∗+crat (Y )

[Z] 7−!
{

[k(Z) : k(f(Z))][f(Z)], if dimf(Z) = dimZ

0, if dimf(Z) < dimZ

with c = dimX − dimY . Note that f(Z) ⊆ Y is a subvariety, since f is proper.

If f is flat, f∗ can be described simply as f∗[Z] = [f−1Z]. One also has the following useful
projection formula:

f∗(f
∗(α).β) = α.f∗(β) for any α ∈ Z∗rat(Y ), β ∈ Z∗rat(X)

There is yet another useful equivalence relation on Z∗(X):

Definition 1.5. The degree map on Z∗rat(X) is given by the composite

〈 〉 : Z∗rat(X)
p∗−! Z∗−dim X

rat (point) = Z,

where p is the canonical morphism to the point. The intersection pairing on X is now defined
as:

〈 . 〉 : Z∗rat(X)× Z∗rat(X) −! Z
(α, β) 7−! 〈α.β〉

Two cycles a, b ∈ Z∗(X) are called numerically equivalent if

〈[a].γ〉 = 〈[b].γ〉 for any cycle γ ∈ Z∗rat(X)

Remark 1.6. The pairing
Z∗num(X)× Z∗num(X) ! Z

induced by the intersection pairing is non-degenerate (essentially by definition)
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1.2. Weil Cohomology theories and the standard conjectures

We now discuss the standard conjectures which are a series of statements concerning algebraic
cycles and their relations with a fixed Weil Cohomology. We mostly follow the approach in
[Kl68] and occasionally [Kl91].

Definition 1.7. Let K be a field of characteristic zero. A Weil cohomology theory with
coefficients in K is a functor

H∗ : {smooth proj. varieties over k} −! {fin. dim. graded-commutative K-Algebras}

satisfying the following axioms:

1. Poincaré duality:
Let X be a smooth projective variety over k of dimension d. Then

a) H i(X) = 0 for i 6∈ [0, 2d]

b) We are given an orientation 〈 〉 : H2d(X)
∼=−! K

c) The pairing

H i(X)×H2d−i(X) −! H2d(X)
∼=−! K, (α, β) 7! 〈α.β〉

induced by multiplication is non-degenerate.

Using this, one can define the pushforward : Given a morphism f : X ! Y of smooth projective
varieties of dimension d and e, we define f∗ as the composite

f∗ : H∗(X)
∼=−!
(
H2d−∗(X)

)∨ (f∗)∨−−−!
(
H2d−∗(Y )

)∨ ∼=−! H2e−2d+∗(Y )

where the two isomorphisms come from Poincaré duality. It follows that:

f∗(f
∗(α).β) = α.f∗(β) for α ∈ H∗(Y ), β ∈ H∗(X)

2. Künneth:
Let X and Y be smooth projective varieties. The cross-product

× : H∗(X)⊗K H∗(Y ) −! H∗(X × Y )

α⊗ β 7−! π∗1(α) . π∗2(β)

is an Isomorphism of graded K-algebras

3. Cycle map:
For any smooth projective variety X one is given a group homomorphism

ηX : Z∗(X) −! H2∗(X)

which satisfies:

a) the morphism
Z = Z∗(point) −! H∗(point) = K

is the canonical inclusion.
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b) if f : X ! Y is a morphism of smooth projective varieties, then

f∗ηX = ηY f∗ and f∗ηY = ηXf
∗,

where f∗ is defined on cycles which are generically transverse to f and Cohen–
Macaulay.

c) for any two subvarieties Z ⊆ X and W ⊆ Y of smooth projective varieties X and
Y , one has:

ηX×Y (Z ×W ) = π∗1(ηX(Z)) . π∗2(ηY (W ))

4. Weak Lefschetz:
Let ι : Z ↪! X be a smooth hyperplane section and d = dimX. Then

ι∗ : H i(X) −! H i(Z)

is bijective for i ≤ d− 2 and injective for i ≤ d− 1

5. Hard Lefschetz:
Let Z ⊂ X be any hyperplane section and ω = ηX(W ) ∈ H2(X) its cohomology class.
Then

H i(X) −! H2n−i(X), α 7−! ωd−2iα

is bijective for all 0 ≤ i ≤ d

Remark 1.8. Using Axiom 3 c), one can show that ηX descends to a ring homomorphism
ηX : Z∗rat(X) ! H2∗(X) for all X.

Example 1.9. Betti cohomology, which is singular cohomology with coefficients in Q on
complex varieties, is the prototypical example of a Weil cohomology theory. The cycle map is
most easily defined as follows: Let ι : Z ↪! X be a subvariety and π : Ẑ ! Z a resolution of
singularities [Hi64], meaning a birational morphism whith Ẑ a smooth projective variety. Then
we define ηX(Z) := (ι◦π)∗(1). One can show that ηX(Z) ∈ H2i(X,Q)∩H i,i(X) =: H i,i(X,Q).
See [GH94, p.61] and [Vo02, Chapter IV] for the details as well as other constructions.

For the rest of this section, let H∗ be a fixed Weil cohomology theory.

Definition 1.10. Let X be a smooth projective variety. Two cycles a, b ∈ Z∗(X) are called
homologically equivalent, if ηX(a) = ηX(b).

Remark 1.11. One can prove the following implications:

rational equivalence =⇒ homological equivalence =⇒ numerical equivalence

Definition 1.12. Let X be smooth projective. The image of

ηX ⊗Q : Z∗(X)⊗Q −! H2∗(X)

is denoted Alg∗(X) and its elements are called algebraic cohomology classes.

Remark 1.13. Note that Alg∗(X) is only a Q-vector space. In particular, if K 6= Q, then
there is no guarantee that it is finite dimensional!
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We can now formulate one of the standard conjectures for H∗

Conjecture D. Let X be a smooth projective variety of dimension d and 0 ≤ i ≤ d
2 an integer,

the following equivalent conditions hold:

1. homological equivalence and algebraic equivalence agree for cycles in Zi(X).

2. the pairing Algi(X)×Algd−i(X) ! Q induced by the pairing on H∗(X) is non-degenerate
for all 0 ≤ i ≤ d

Remark 1.14. (a) Using Axiom 3 and Remark 1.8 we see that the intersection pairings on
Chow groups and Weil cohomology are compatible, i.e.

Zirat(X)× Zn−irat (X) Z

H2i(X)×H2n−2i(X) K

commutes hence the above pairing does indeed have image in Q.

(b) The equivalence follows from Remark 1.6 and the above diagram. In fact, the equivalence
holds for each degree individually.

From now on, we will write X ⊆ PN in order to indicate a choice of projective embedding.

Definition 1.15. Let X ⊆ PN be smooth projective of dimension d and ω ∈ H2(X) the
class of the hyperplane section. The Lefschetz operator L : H∗(X) ! H∗+2(X) is defined as
multiplication with ω. A class α ∈ H i(X) for 0 ≤ i ≤ n is called primitive if Ld−i+1α = 0. We
denote P i(X) :=

{
α ∈ H i(X) | Ld−i+1α = 0

}
Remark 1.16. (a) All hyperplanes in PN are rationally equivalent. One can see this by

letting the coefficients of the defining linear equation vary. It follows that the class ω is
indeed well-defined. However the classes corresponding to different projective embeddings
might not be the same. This is, why we have to fix a projective embedding.

(b) Analogous to the Lefschetz decomposition in complex geometry, one has a unique de-
composition for every class α ∈ H i(X):

α =
∑
j≥i0

Ljαj with αj ∈ P i−2j(X) primitive and i0 = max(i− d, 0)

the proof uses the Hard Lefschetz axiom and is purely formal.

Definition 1.17. For any class α ∈ H i(X) with primitive decomposition α =
∑

j≥i0 L
jαj we

set
Λα :=

∑
j≥i0

Lj−1αj

The operator Λ is called the dual Lefschetz operator.

It turns out that indeed any operator (i.e. any K-linear function) on cohomology groups has
a corresponding cohomology class
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Lemma 1.18. Let X and Y be smooth projective. The map

H∗(X × Y ) −! HomK(H∗(X), H∗(Y ))

α 7−! α∗

sending α to the composite

H∗(X)
π∗1−! H∗(X × Y )

α.−−! H∗(X × Y )
(π2)∗−−−! H∗(Y )

is an isomorphism and when α ∈ H∗(X × Y ), then α∗ has degree i− 2 dimX.

Proof. One can check that ( )∗ is just the composite

H i(X × Y )
∼=−!

i⊕
j=0

H i−j(X)⊗K Hj(Y )
∼=−!

i⊕
j=0

(
H2d−i+j(X)∨ ⊗K Hj(Y )

)

and the right hand side equals
i⊕

j=0

HomK(H2d−i+j(X), Hj(Y )).

Example 1.19. Let ∆ ∈ H2n(X×X) be the cycle of the diagonal. By Künneth, we can write

∆ =

2n∑
i=0

πi with πi ∈ H2n−i(X)⊗H i(X)

and one can see that πi corresponds to the projection

H∗(X)� H i(X) ↪! H∗(X)

to the i-th component.

Definition 1.20. An operator F : H∗(X) ! H∗(Y ) is called algebraic if its corresponding
cohomology class in H∗(X × Y ) is algebraic.

Remark 1.21. Let X, Y and Z be smooth projective and α ∈ H∗(X × Y ), β ∈ H∗(Y × Z)
cohomology classes. One can show that the operator β∗ ◦ α∗ is represented by

(π1,3)∗(π
∗
1,2α.π

∗
1,3β) ∈ H∗(X × Z)

In particular, the composition of two algebraic operators is also algebraic.

Remark 1.22. Since pushforward, pullback and multiplication with an algebraic cycle all
preserve algebraic cycles, it follows that any algebraic operator does too.

We can now state the rest of the standard conjectures.

Conjecture B. For any smooth projective variety X ⊆ PN with fixed projective embedding:
Λ is algebraic

Using the previous remark we see that Conjecture B implies:
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Conjecture A. For any smooth projective variety X ⊆ PN of dimension d, 0 ≤ i ≤ d
2 the

following equivalent statements hold:

1. Ld−2i : Algi(X) ! Algd−i(X) is an isomorphism

2. Λd−2i : H2d−2i(X) ! H2i(X) preserves algebraic cycles

Remark 1.23. (a) Kleiman [Kl91] shows that A(X × X) implies A(X). The projective
embedding of X×X used here comes from the embedding of X and the Segre embedding.

(b) Using our Weil Cohomology theory H∗ it is easy to see that Zinum(X) is free of rank ≤
dimH2i(X). If Conjecture D holds for X, this implies that Alg∗(X) is finite-dimensional
and dimAlgi(X) = dimAlgd−i(X) for all i, hence Conjecture A holds for X.

Conjecture B also can be shown to imply:

Conjecture C. For any smooth projective variety X ⊆ PN , the projections

H∗(X)� H i(X) ↪! H∗(X)

are algebraic

To summarize, we have the following implications

D =⇒ A ⇐⇒ B =⇒ C

In fact, the conjectures A,B and C are usually put under the umbrella term Conjecture 1 or
Lefschetz standard conjecture. The second of Grothendiecks conjectures is the Hodge Standard
Conjecture:

Hodge Standard Conjecture. Let X ⊂ PN be a smooth projective variety and ω ∈ H2(X)
the class of the hyperplane section. Let P ialg(X) := P 2i(X) ∩Algi(X). Then the pairing:

P ialg(X)× P ialg(X) −! Q
(α, β) 7−! (−1)i〈α.β.ωn−2i〉

is positive definite.

Lemma 1.24. If k = C and H∗ is betti cohomology, the Hodge standard Conjecture holds.

Proof. Indeed, let α ∈ Algi(X) ⊆ H i,i(X,Q) be a primitive algebraic class. The Hodge–
Riemann bilinear relation [Hu05, Proposition 3.3.15] proves that

(−1)i〈α2.ωn−2i〉 =
1

V ol(X)
(−1)

2i(2i−1)
2

∫
X
α ∧ ᾱ ∧ ωn−2i > 0

Theorem 1.25. [Kl68, Proposition 3.8] Assuming the Hodge standard conjecure: If Conjec-
ture A holds for X ⊆ PN in degree up to i, then Conjecture D holds for X in degree up to i as
well.

Thus, assuming the Hodge standard conjecture, we have

D ⇐⇒ A ⇐⇒ B =⇒ C
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1.3. The case k = C

From now on, we will only deal with varieties over C and assume our Weil cohomology to
be singular cohomology with coefficients in Q. The Hodge standard conjecture holds in this
case, so the conjectures A, B and D are equivalent and all imply C. We have noted before
that Algi(X) ⊆ H2i(,Q) ∩H i,i(X) =: H i,i(X,Q). The famous Hodge Conjecture asserts the
converse:

Hodge Conjecture. For any smooth complex projective variety of dimension d:

Algi(X) = H i,i(X,Q) for all 0 ≤ i ≤ d

Remark 1.26. (a) the case i = 0 is of course trivial. The case i = 1 can be proved using
the exponential sequence and is called the Lefschetz (1,1)-theorem (Proposition 3.3.2 in
[Hu05]). However all other cases are far from being proved.

(b) The conjecture is known to fail if one replaces Q with Z coefficients. Even if one considers
both groups modulo torsion. See [Ko92] for a counterexample.

Proposition 1.27. Let X be smooth projective. If the Hodge conjecture holds in degree i,
then Conjecture A also holds in degree i.

Proof. Let ω ∈ H1,1(X,Q) be an ample class. Indeed,

Ln−2i : H2i(X,Q) −! H2n−2i(X,Q) and Ln−2i : H2i(X,C) −! H2n−2i(X,C)

are isomorphisms because of Hard Lefschetz. Since ω has bidegree (1, 1), the second map is
even an isomorphism of Hodge structures. Thus

Ln−2i : Algi(X) = H i,i(X,Q) ∩H i,i(X) −! H2n−2i(X,Q) ∩Hn−i,n−i(X) = Algn−i(X)

is an isomorphism.

Since the Hodge conjecture always holds in degree up to 1, Theorem 1.25 and Remark 1.26
yield the following

Theorem 1.28. Let X be smooth projective of dimension n and α, β ∈ Z1(X) divisors on X.
Then α and β are numerically equivalent if and only if they are homologically equivalent.
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2. Lefschetz algebras

Throughout this chapter let X be a smooth complex projective variety of dimension d with a
hyperplane class ω ∈ H2(X,Q).

Lemma 2.1. The following subspaces of H2(X,Q) are equal

1. the space of divisor classes Alg1(X)

2. H1,1(X,Q) = H2(X,Q) ∩H1,1(X)

3. NS(X)⊗Z Q,

where NS(X) is the image of c1 : Pic(X) ! H2(X,Z).

Proof. The equality NS(X) ⊗Z Q = H1,1(X,Q) results from the Lefschetz (1, 1)-theorem
[Hu05, Prop 3.3.2]. For any divisor D ⊂ X, we have c1(O(D)) = [D] [Hu05, Prop 4.4.13],
where O(D) is constructed in [Hu05, Prop 2.3.10]. Finally, [Hu05, Corollary 5.3.7] proves
Alg1(X) = NS(X).

Definition 2.2. The Lefschetz algebra L∗(X) ⊂ H∗(X,Q) of X is the Q-subalgebra generated
by any one of these spaces. Its elements are called Lefschetz classes. We write lk(X) =
dimLk(X)

Remark 2.3. (a) The morphism c1 : Pic(X) ! H2(X,Z) is the first chern class. One way
to obtain it is to look at the exponential sequence

0 −! ZX
2πi−−! OX exp−−! O×X −! 0

where ZX is the locally constant sheaf associated to Z. This induces a long exact sequence
in sheaf cohomology. Then, c1 is just the boundary homomorphism:

c1 : Pic(X) ∼= H1(X,O×X) −! H2(X,ZX) ∼= H2(X,Z).

The group NS(X) is called the Neron–Severi group and its rank ρ(X) = rkNS(X) =
dimL1(X) is the Picard number of X.

(b) Let f : X ! Y be a morphism of smooth projective varieties, then f∗ sends Lefschetz
classes to Lefschetz classes. This also follows from the commutativity of:

Pic(Y ) Pic(X)

H2(Y,Z) H2(X,Z)

c1

f∗

c1

f∗
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However f∗ does not preserve Lefschetz classes in general. Indeed, if [Z] ∈ H∗(X,Q) is
the cohomology class of a subvariety ι : Z ↪! X and π : Ẑ ! Z is a Hironaka resolution,
then [Z] = (ι ◦ π)∗(1). Or slightly less trivially, if Z is smooth of codimension k in X,
π : Y ! X the blow-up of X at Z and e ∈ L1(Y ) the class of the exceptional divisor,
then π∗((−e)n) = [Z] as is shown in the proof of Theorem A.2.

In general, L∗(X) is a proper subalgebra of Alg∗(X). Since conjecture A always holds in
dimension 1, we have Algd−1(X) = ωd−2Alg1(X) = Ld−1(X). Hence any possible example of
an X with L∗(X) $ Alg∗(X) has to be of dimension at least four. Indeed, we have an example
in dimension four:

Example 2.4. The Grassmannnian G(2, 4) is a smooth projective variety of dimension four.
Its cohomology is given as

H0(G(2, 4),Q) = Q1

H2(G(2, 4),Q) = Qσ1,0
H4(G(2, 4),Q) = Qσ2,0 ⊕Qσ1,1
H6(G(2, 4),Q) = Qσ2,1
H8(G(2, 4),Q) = Qσ2,2,

where σa1,a2 is the Schubert cycle associated to (a1, a2) (see Appendix B). L∗(G(2, 4)) is gen-
erated by σ1,0, so Proposition B.4 implies that σ21,0 = σ2,0 + σ1,1. Thus neither σ2,0 nor σ1,1
are Lefschetz classes. Indeed for any 0 ≤ k ≤ n we have ρ(G(k, n)) = 1 and thus if 0 < k < n,
then L∗(G(k, n)) $ Alg∗(G(k, n)).

We can now ask, what happens if the standard conjectures are reformulated and Alg∗(X) is
replaced by L∗(X). More specifically, we consider the following:

ALef(X): Ld−2k : Lk(X) ! Ld−k(X) is an isomorphism for all 0 ≤ k ≤ d
2

BLef(X): The associated class of Λ is a Lefschetz class

CLef(X): πk ∈ L∗(X) for all 0 ≤ k ≤ 2d

DLef(X): The pairing Lk(X)× Ld−k(X) ! Q is nondegenerate for all 0 ≤ k ≤ d
2

Here, we dropped the first equivalent version of Conjecture D since the equivalence fails.
Of the implications

A(X ×X) =⇒ B(X), B(X) =⇒ A(X), B(X) =⇒ C(X) and D(X) ⇐⇒ A(X)

only the last carries over to Lefschetz classes. In fact, B(X) =⇒ A(X) uses the fact that the
pushforward preserves algebraic classes. The same does not hold for Lefschetz classes. The
two left ones depend on the fact that the composition of algebraic operators is still algebraic.
Looking at the Remark 1.21, this fails for Lefschetz classes for the same reason. Hence, we will
only continue with conjectures ALef and BLef. It is worth mentioning however that all of the
above conjectures hold if X is abelian [Mi99]. In fact, Milne also shows that the pushforward
along any morphism of abelian varieties preserves Lefschetz classes.
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2.1. Theorems for Lefschetz algebras

For completeness sake, we give a proof of the equivalence

ALef(X) ⇐⇒ DLef(X)

Theorem 2.5. Let X ⊆ PN be a smooth complex projective variety, ω ∈ L1(X) the cohomol-
ogy class of a hyperplane section and n ≤ d

2 a nonzero integer. Then the following conditions
on L∗(X) are equivalent:

ALef(X,≤ n) : L∗(X) also satisfies the hard Lefschetz axiom, i.e. the map

Lk(X)
ωd−2k

−−−−! Ld−k(X)

is an isomorphism for every integer 0 ≤ k ≤ n.

DLef(X,≤ n) : The multiplication map

Lk(X)× Ld−k(X) ! Ld(X) ∼= Q

is a nondegenerate form for 0 ≤ k ≤ n
LD(X,≤ n) : For any 0 ≤ k ≤ n, we have a Lefschetz decomposition for L∗(X):

Lk(X) =
k⊕
i=0

ωk−iPLi(X)

where PLi(X) := PH i(X) ∩ Li(X) = Ker
(
ωd−2i+1 : Li(X) ! Ld−i+1(X)

)
SD(X,≤ n) : The Lefschetz algebra has symmetric dimensions, i.e.:

dim Lk(X) = dim Ld−k(X)

for all 0 ≤ k ≤ n.

Proof. By the Hard Lefschetz theorem, we know that the map in ALef(X,≤ n) is injective
between finite dimensional Q-vector spaces, so ALef(X,≤ n) is equivalent to SD(X,≤ n). Also,
DLef(X,≤ n) implies SD(X,≤ n), so it suffices to check that SD(X,≤ n) implies LD(X,≤ n)
and LD(X,≤ n) implies DLef(X,≤ n):
Let us consider the implication SD(X,≤ n) =⇒ LD(X,≤ n). The inclusion ”⊇” holds
because of the ordinary Lefschetz decomposition [Hu05, Proposition 3.3.13], so it suffices to
check that the dimensions of both spaces agree:

dim

k⊕
i=0

ωk−iPLi(X) =

k∑
i=0

dim ωk−iPLi(X) =

k∑
i=0

dim PLi(X)

>
k∑
i=0

[
dim Li(X)− dim Ld−i+1(X)

]
=

k∑
i=0

dim Li(X)−
k∑
i=0

dim Ld−i+1(X)

SD
=

k∑
i=0

dim Li(X)−
k∑
i=0

dim Li−1(X) = dim Lk(X),

14



hence equality holds as well.
Next, we consider the implication LD(X,≤ n) =⇒ DLef(X,≤ n). Let x ∈ Lk(X) be nonzero
and consider the Lefschetz decomposition x =

∑k
i=0 ω

k−ixi with xi ∈ Li(X). Some summand
ωk−jxj ∈ Hk,k(X) has to be nonzero as well. Hence, the Hodge–Riemann bilinear relations
tell us:

(−1)j
∫
X
ωd−j−kxjx = (−1)j

∫
X
ωd−2jxj

2 > 0

The first equality follows because for any i 6= j: ωd−j−ixjxi = 0 since xi and xj are primitive.
Thus, only one summand remains. Hence, ωd−j−kxjx 6= 0 and we have DLef(X,≤ n).

Remark 2.6. The dimension argument that we used in the implication SD(X,≤ n) =⇒
LD(X,≤ n) is the reason, why this proof cannot show equivalence in each separate degree.
There seems to be no way to remedy this. In fact, the author of this thesis knows of no variety
X satisfying SD(X,n) but not SD(X,≤ n) for some integer n < d

2 ! For more on this, see
Remark 2.25. From now on, we will only consider SD.

Proposition 2.7. For any nonzero integer k ≤ d
2 , the map

Lk(X) −! Ld−k(X), x 7−! ωd−2kx

is injective and for k = 0, 1 even bijective.

Proof. The first part follows from the Hard Lefschetz theorem for cohomology [Hu05, Propo-
sition 3.3.13]. For the second part, we use L1(X) = H1,1(X,Q) from which the bijectivity
follows as in the proof of Proposition 1.27.

Corollary 2.8. Let X be smooth projective. SD(X) holds if one of the following is satisfied

1. X is abelian

2. X has dimension d ≤ 4

3. L∗(X) = H∗(X)

4. X has Picard number ρ(X) = 1

In particular, all Grassmannians satisfy SD.

Proof. 1. was proved by Milne [Mi99, Proposition 5.2]. If X has dimension at most four, then
this follows from the previous Proposition. The second point follows from the Hard Lefschetz
Theorem and the third is trivial. For Grassmannians, this is Example 2.4.
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2.2. Validity criteria for SD(X)

We now examine various ways of obtaining new varieties out of old ones and see what we can
say about the Lefschetz algebra in this case. One of the surprisingly useful facts about the
Lefschetz algebra in contrast to Alg∗(X) is the fact that it is generated in degree one. This fact
will be exploited throughout this section. This section for the most part follows [HW17].

Proposition 2.9. Let ι : D ↪! X be a smooth ample hypersurface.

1. If d ≥ 4, then ι∗ : L∗(X) ! L∗(D) is surjective and ι∗ : H∗(D,Q) ! H∗(X,Q) sends
Lefschetz classes to Lefschetz classes.

2. For any nonnegative integer n < d
2 :

SD(X,n) =⇒ SD(D,n)

Proof. Let us first consider 1. The exponential sequence is natural in the sense that the diagram

0 ZX OX O×X 0

0 ι∗ZX ι∗OX ι∗O×X 0

ι∗

2πi

ι∗

exp

ι∗

2πi exp

commutes. This induces a morphism of long exact cohomology sequences. Part of which is

... P ic(X) = H1(X,O×X) H2(X,Z) H2(X,OX) ...

... P ic(D) = H1(D,O×D) H2(D,Z) H2(D,OD) ...

c1

ι∗ ι∗∼= ι∗

c1

The middle ι∗ is an isomorphism because of d ≥ 4 and the weak Lefschetz theorem [Hu05,
Prop. 5.2.6]. Since L1(D) is generated by the image of the lower c1, it suffices that ι∗ maps
NS(X) surjectively onto NS(D). By exactness, this reduces to ι∗ : H2(X,OX) ! H2(D,OD)
being injective. Indeed, we have the structure sheaf sequence [Hu05, Lemma 2.3.22]

0 −! OX(−D) −! OX ι∗−−! ι∗OD −! 0

which induces a long exact sequence

... −! H2(X,OX(−D)) −! H2(X,OX)
ι∗−−! H2(X, ι∗OD) = H2(D,OD) −! ...

Hence if we can show H2(X,OX(−D)) = 0, the surjectivity part follows. And in fact, by Serre
duality [Hu05, Cor. 4.1.16] we have H2(X,OX(−D)) ∼= Hd−2(X,Ωd

X ⊗ OX(D))∨ and since
OX(D) is ample, the right hand side is zero by Kodaira vanishing [Hu05, Prop. 5.2.2] and the
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fact that d > 2. ι∗ sends Lefschetz classes to Lefschetz classes since any class in L∗(D) is ι∗α
for some class α ∈ L∗(X) and

ι∗ι
∗α = ι∗(ι

∗(α).1) = α.ι∗(1) = α.ω, (2.1)

where ω ∈ L1(X) is the hyperplane class associated to D. Let us now turn towards 2. If d < 4,
then SD(D) holds because of Proposition 2.8, so we may assume d ≥ 4. Since the claim is
obvious if n = d−1

2 , we may even assume n ≤ d
2 −1. It follows from weak Lefschetz and 1. that

ι∗ : Ln(X) ! Ln(D) is an isomorphism. Also, the pushforward

ι∗ : H2(d−1−n)(D)
∼=−−!
(
H2n(D,Q)

)∨ ∼=−! (
H2n(X,Q)

)∨ ∼=−−! H2d−2n(X)

is an isomorphism. Equation (2.1) now yields

Ld−1−n(D) ∼= ω.Ld−1−n(X) = Ld−n(X) ∼= Ln(X) ∼= Ln(D)

The equality ω.Ld−1−n(X) = Ld−n(X) comes from the fact that ωd−2n : Ln(X) ! Ld−n(X)
and hence ω : Ld−1−n(X) ! Ld−n(X) is surjective.

Remark 2.10. The assumption d ≥ 4 is indeed necessary for 1. Indeed if we take X = P3

and D = V (x0x1 − x2x3) ⊂ P3 the quadric surface, then D is smooth and ample since it is a

hyperplane section of the Veronese embedding. P3 ↪! P(52)−1 = P9. As D ∼= P1 × P1, L1(D) is
a two-dimensional vector space while L1(P3) is one-dimensional.

Proposition 2.11. Let X1 and X2 be smooth projective varieties of dimension d1 and d2 with
H1(X,Q) = 0. Then

L∗(X1 ×X2) ∼= L∗(X1)⊗Q L
∗(X2).

For any n ≥ 0, we have:

1. If n ≤ min(d1, d2), then SD(X1,≤ n) and SD(X2,≤ n) imply SD(X1 ×X2,≤ n)

2. If n ≤ di, then SD(Xi,≤ n) and SD(X2−i) imply SD(X1 ×X2,≤ n)

3. SD(X1) and SD(X2) imply SD(X1 ×X2)

Proof. The cross product

H∗(X1,Q)⊗Q H
∗(X2,Q)

×−!∼= H∗(X1 ×X2,Q), (x1, x2) 7! π∗1(x1) ∪ π∗2(x2)

is an isomorphism by the Künneth theorem (see for example [Hat01, Theorem 3.15, Corollary
A.8 and A.9]), so it remains to show that L1(X1) ⊕ L1(X2) = L1(X1 × X2). Because of the
assumption, we have H2(X1,Q)⊕H2(X2,Q) = H2(X1×X2,Q) and since this isomorphism is
compatible with the Hodge structures, the Lefschetz (1, 1) theorem yields L1(X1)⊕L1(X2) =
L1(X1 ×X2). For all of the other assertions, the proof goes as follows: Let d1 and d2 be the
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dimensions of X1 and X2 and let k ≥ 0 be such that li(X1) = ld1−i(X1) and li(X2) = ld2−i(X2)
for all i ≤ k. Then

ld1+d2−k(X1 ×X2) =

d1+d2−k∑
i=0

li(X1)l
d1+d2−k−i(X2)

=

d1∑
i=d1−k

li(X1)l
d1+d2−k−i(X2) =

k∑
i=0

ld1−k+i(X1)l
d2−i(X2)

=

k∑
i=0

lk−i(X1)l
i(X2) = lk(X1 ×X2)

The assumption H1(X,Q) = 0 is indeed necessary. At least for the first part of the Proposition,
as the following example shows.

Example 2.12. Let C be an elliptic curve over C i.e. C ∼= C/Λ for some full lattice Λ ⊂ C.
Then H1(X,Q) is of dimension 2 since C is diffeomorphic to S1 × S1.

Claim. The cohomology class of the diagonal ∆ ⊂ C × C is not contained in L1(C)⊕ L1(C).

Indeed, let

µ : C × C −! C

(a, b) 7−! a− b
It follows that [∆] = µ∗([0]), hence [∆]2 = µ∗([0]2) = 0. On the other hand, if we had
[∆] = π∗1α+ π2 ∗ β for some α, β ∈ L1(C), then it would follow that

α = i∗1π
∗
1(α) = i∗1[∆] = i∗1µ

∗[0] = [0],

where

i1 : C −! C × C
x 7−! (x, 0)

is the inclusion into the first factor.. Similarly, one shows β = [0], hence [∆]2 = 2[0]× [0] which
is nonzero by Künneth. We arrive at a contradiction.

Remark 2.13.

It can be shown somewhat similarly that L1(A)⊕ L1(A) $ L1(A×A) for any abelian variety
A and thus L∗(A×A) 6∼= L∗(A)⊗Q L

∗(X). But since A×A is an abelian variety, we still have
SD(A×A).

Proposition 2.14. [GH94, p. 606] Let E
π−! X be a complex vector bundle of rank n and

p : P(E) −! X

its associated projective bundle. The CohomologyH∗(P(E),Q) is generated by ζ = c1(OP(E)(1))
as an H∗(X,Q)-algebra with the only relation

ζn = −
n−1∑
i=0

p∗cn−i(E)ζi
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Corollary 2.15. We have L1(P(E)) = L1(X)⊕Qζ and if the total chern class

c(E) =

n∑
i=0

ci(E) ∈ H2∗(X,Q)

is a Lefschetz class, then we have

L∗(P(E)) =
n−1⊕
i=0

L∗−i(X)⊗Qζi

In this case, SD(X,≤ k) implies SD(P(E),≤ n) for any nonnegative k ≤ d
2 and SD(X) implies

SD(P(E))

Proof. The inclusion L1(P(E)) ⊇ L1(X)⊕Qζ is trivial. On the other hand, let α ∈ L1(P(E)).
By Proposition 2.14 we can write α = p∗β + aζ for some β ∈ L2(P(E)) and a ∈ Q. Since p∗
preserves algebraic classes, we get

p∗(ζ
n−1p∗α+ aζn) = p∗(ζ

n−1)α− ap∗
( n−1∑
i=0

p∗cn−i(E)ζi
)

= α− ac1(NZ/X) ∈ Alg1(X) = L1(X)

For the last equality we used Lemma A.3. For the second claim note that the right subspace
is closed under multiplication and is generated by L1(X) ⊕ Qζ = L1(P(E)). The third claim
follows as in Proposition 2.11. In fact, L∗(P(E)) ∼= L∗(X ×Pn−1) as graded vector spaces.

Proposition 2.16. For any pair of integers 1 ≤ k ≤ n, the flag variety of the form:

Xk,n =

{
0 ⊂ V1 ⊂ ... ⊂ Vk ⊂ Cn | Vi ⊂ Cn linear subspace with dimVi = i

}

satisfies SD.

Proof. We show that L∗(Xk,n) = H∗(Xk,n,Q). For this, we fix n and do induction on 0 ≤
k ≤ n. The case k = 0 is trivial. Assume k < n and L∗(Xk,n) = H∗(Xk,n,Q). Let E :=
Xk,n × Cn/T , where T is the subbundle T :=

{
(V1, ..., Vk, v) ∈ Xk,n × Cn | v ∈ Vk

}
. We now

have a map

P(E)
∼=−−! Xk+1,n

(V1, ..., Vk,C[v]) 7−! (V1, ..., Vk, Vk + Cv)

which is easily seen to be well-defined and an isomorphism of algebraic varieties. It follows
from Proposition 2.14 that L∗(Xk+1,n) = H∗(Xk+1,n,Q).

Next, we consider the Lefschetz algebra of the blowup BlZX of a smooth subvariety ι : Z ↪! X
of codimension k.

Proposition 2.17. Let NZ/X denote the normal bundle of Z in X and e ∈ L1(BlZX) the
cohomology class of the exceptional divisor. We have L1(BlZX) = π∗L1(X)⊕Qe. Further, if
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1. ci(NZ/X) ∈ ι∗Li(X) for all integers i with 1 ≤ i ≤ k − 1

2. and [Z] ∈ Lk(X),

then we have a decomposition of graded vector spaces:

L∗(BlZX) ∼= L∗(X)⊕
k−1⊕
i=1

ι∗L∗−i(X)⊗Qei

In particular, if ι∗ : L∗(X) ! L∗(Z) is surjective, then SD(X,n) and SD(Z,≤ i) for all
n− k + 1 ≤ i ≤ n− 1 together imply SD(BlZX,n).

Proof. We use the decomposition in Proposition A.2 as well as its proof. The inclusion
L1(BlZX) ⊇ π∗L1(X) ⊕ Qe is clear. For the other inclusion, let α ∈ L1(BlZX) and α =
π∗β + ae for β ∈ L1(X) and a ∈ Q. Then

π∗α = π∗(π
∗β + ae) = β

is in Alg1(X) = L1(X). The second assertion follows from the decomposition in Proposition
A.2 and the relations given there. The third is trivial.

Perhaps more concisely, we have the following consequence:

Corollary 2.18. Let d ≥ 4 and Z ⊂ X be obtained by k ≤ d− 3 repeated smooth hyperplane
sections. We have

L∗(BlZX) ∼= L∗(X)⊕
k−1⊕
i=1

L∗−i(Z)⊗Qei

and SD(X,≤ n) implies SD(BlZX,≤ n) for all nonnegative k ≤ d
2

Proof. Let Z = Zk
ik
↪−! Zk−1

ik−1
↪−−! ...

i2
↪−! Z1

i1
↪−! Z0 = X be a sequence of subvarieties each one

a smooth hyperplane section of the next. In order to show the first condition in Proposition
2.17, we consider the normal bundle sequences:

0 −! TZ −! TX |Z −! NZ/X −! 0

and
0 −! TZs −! TZs−1 |Zs −! NZs/Zs−1

−! 0

for 1 ≤ s ≤ k. Whitney’s formula [EH16, Theorem 5.3(c)] proves

c(NZ/X) = ι∗c(TX)c(TZ)−1 and c(NZs/Zs−1
) = isc(TZs−1)c(TZs)

−1 for 1 ≤ s ≤ k.

And thus

c(NZ/X) = ι∗c(TZ0)c(TZk
)−1 = (i2 ◦ ... ◦ ik)∗c(NZ1/Z0

)...i∗k−1c(NZk−1/Zk−2
)c(NZk/Zk−1

) ∈ L∗(Z)

since the normal bundle of is is a line bundle, c(NZs/Zs−1
) = 1 + c1(NZs/Zs−1

) ∈ L∗(Zs). Note
that a total chern class is always an invertible element since the sum of the unit and a nilpotent
element is invertible in any commutative ring. The first part of Proposition 2.9 is applicable
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to each hyperplane section, so we obtain the surjectivity of ι∗ : L∗(X) ! L∗(Z). Since each
(is)∗ sends Lefschetz classes to Lefschetz classes, we finally obtain

[Z] = ι∗(1) = i1∗i2∗...ik∗(1) ∈ Lk(X)

Example 2.19. Let X ⊂ P3 be a cubic surface. One can show that X is the blowup of P2 at
six points [GH94, p.480-489]. Using the very first assertion in Proposition 2.17, we see that

l0(X) = 1 , l1(X) = 7 , l2(X) = 1

and thus, X has Picard number ρ(X) = 7.

Example 2.20. Recall the Veronese embedding for 1 ≤ d ≤ n, N =
(
n+d
d

)
− 1:

ι : Z = Pn −! PN = X

[xi] 7−! [xn1
1 ...x

nd
d ]n1+...+nd=d

Since ι∗OPN (1) ∼= OPn(d), ι∗ is surjective. Further, we have L∗(Z) = H∗(Z) and L∗(X) =
H∗(X). Thus Proposition 2.17 gives us L∗(BlZX) = H∗(BlZX). In particular, SD(BlZX)
holds true.

2.3. Counterexamples

SD holds trivially up to dimension 4, but not for higher dimensions. In fact, here is a 5-
dimensional example:

Let C ⊂ P2 be a smooth plane cubic curve. Then we can embedd C × P1 ⊂ P5 via

Z = C × P1 P2 × P1 P5 = Y,

where the second map is the Segre embedding. Let X be the blow-up of Y along Z.

Proposition 2.21. We have l2(X) = 3 and l3(X) = 4.

Proof. By the Künneth formula, we have H2(Z;Q) ' H2(C;Q) ⊕ H2(P1;Q) = Qa ⊕ Q b,
where a = [C × point] and b = [point× P1] come from the canonical generators in top degree
of the two factors. Let c = [H] be the cohomology class of a hyperplane H ⊂ P5. Then
H∗(P5;Q) = Q[c] ' Q[T ]/(T 6). So by Proposition A.2, we have:

H0(X;Q) = Q1,

H2(X;Q) = Q c⊕
(
Q1
)
e,

H4(X;Q) = Q c2 ⊕
(
Qa⊕Q b

)
e⊕

(
Q1
)
e2,

H6(X;Q) = Q c3 ⊕
(
Qab

)
e⊕

(
Qa⊕Q b

)
e2,

H8(X;Q) = Q c4 ⊕
(
Qab

)
e2,

H10(X;Q) = Q c5,
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where e is the cohomology class of the exceptional divisor in X.

The algebra L∗(X) is generated by c and e since H2(X;Q) is. The restriction of c = [H] =
[V (x0)] = [H0] to P2 × P1 is [H0 × P1 ∪ P2 ×H0] = [H0 × P1] + [P2 × point] and this in turn
restricts to [H0 ∩ C × P1] + [C × point] = 3b+ a. Hence

L2(X) = Q c2 ⊕Q ce⊕Qe2 = Q c2 ⊕Q(a+ 3b)e⊕Qe2.

This proves the first claim.

We next show L3(X) = H6(X;Q). It is enough to check that e3 is not in the subspace

V = Q c3 ⊕Q c2e⊕Q ce2 = Q c3 ⊕Q (ab)e⊕Q (a+ 3b)e2 ⊆ H6(X;Q).

According to our description of the cohomology ring of the blow-up, the following relation
holds in the cohomology of X:

e3 = −6c3 − c2(NZ/Y )e+ c1(NZ/Y )e2 = −6c3 − c2(NZ/Y )e+ c1(TY )e2 − c1(TZ)e2.

Since c1(TY )e2 is a multiple of ce2 and c2(NZ/Y )e is a multiple of abe, we have

e3 = −c1(TZ)e2 mod V

where we are using the normal bundle sequence [Hu05, Definition 2.2.16]

0 −! TZ −! TY |Z −! NZ/Y −! 0

and Whitney’s formula[EH16, Theorem 5.3(c)] to see that c1(NZ/Y ) = c1(TY |Z) − c1(TZ).
Since C is a 1-dimensional complex torus, its tangent bundle is trivial, so c1(TZ)e2 must be a
multiple of ae2. It follows that e3 is not contained in V . This proves the second claim.

In fact, a counterexample of dimension six can easily be constructed from the above X. Using
Proposition 2.11 we get

l2(X × P1) = l2(X) + l1(X), l4(X × P1) = l4(X) + l3(X)

and since l1(X) = l4(X), it follows that l2(X × P1) < l4(X × P1). Using this inductively, we
arrive at the following Theorem:

Theorem 2.22. For any integer d ≥ 5 there is a smooth complex projective variety of dimen-
sion d with

l2(X) < ld−2(X)

In fact, in higher dimensions, there somewhat simpler constructions of counterexamples. For
the next one, it turns out that l2(X) = ld−2(X) but l3(X) 6= ld−3(X)

Proposition 2.23. Let X be the blow-up at the Segre embedding

Z = P2 × P2 ↪−! P8 = Y

Then l3(X) = 4 and l5(X) = 5.
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Proof. Let c ∈ L1(P2) and c3 ∈ L1(P8) be the hyperplane classes and ci = π∗i c ∈ L1(P2 × P2)
for i = 1, 2. Z has codimension 4 in Y . Again, using our description of the cohomology of the
blow-up, we obtain:

H6(X) = Q c33 ⊕Qe3 ⊕Q c1e2 ⊕Q c2e2 ⊕Q c21e⊕Q c1c2e⊕Q c22e
H10(X) = Q c53 ⊕Q c21e3 ⊕Q c1c2e3 ⊕Q c22e3 ⊕Q c21c2e2 ⊕Q c1c22e2 ⊕Q c21c22e

We have L1(X) = Qc3 ⊕Qe. Thus L3(X) is generated by

c33, c
2
3e, c3e

2 and e3,

which are linearly independent. Hence the first part follows. On the other hand, L5(X) is
generated by

c53, c
4
3e, c

3
3e

2, c23e
3, c3e

4, e5.

The first four elements are linearly independent. Let V denote their linear span. In order
to determine the other two elements we have to calculate the chern classes c1(NZ/Y ) and
c2(NZ/Y ). Because of the normal bundle sequence, we have c(NZ/Y ) = ι∗c(TY )c(TZ)−1. Since
c(TPn) = (1 + c)n+1 [EH16, 5.7.1] and TZ ∼= π∗1TP2 ⊕ π∗2TP2 , we get

c(NZ/Y ) = ι∗(1 + c3)
9(1 + c1)

−3(1 + c2)
−3 = (1 + c1 + c2)

9(1− 3c1 + 6c21)(1− 3c1 + 6c22)

= 1 + 6(c1 + c2) + (15c21 + 27c1c2 + 15c22) + ...

In particular, the chern classes are all symmetric in c1 and c2. Now, we consider c3e
4:

c3e
4 = c3(π

∗(ι∗(1)) + c3(NZ/Y )e− c2(NZ/Y ) + c1(NZ/Y )e3)

In fact, the e3-term is c3c1(NZ/Y )e3 = 6c23e
3 and all other coefficients of ei are symmetric in

c1 and c2. Without having to compute them, it now follows that c3e
4 is in V . On the other

hand, the coefficient of e3 in e5 is

c1(NZ/Y )2 − c2(NZ/Y ) = 21ι∗c23 − 3c1c2

And thus, e5 is not in V , finally establishing the claim.

In fact, this can be generalized:

Proposition 2.24. Let 1 ≤ r ≤ s be natural numbers with (r, s) 6= (1, 1), (1, 2).
The blow-up Y of Prs+r+s at the Segre subvariety

ι : Z = Pr × Ps ↪−! P(r+1)(s+1)−1 = X

([xi], [yj ]) 7−! [xiyj ]

does not satisfy SD.

Proof. First, let c1 ∈ L1(Pr), c2 ∈ L1(Ps) and c3 ∈ L1(Prs+r+s) be the hyperplane classes. We
have

L1(Y ) = π∗L1(X)⊕Qe = Q c3 ⊕Qe
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As before, we get ι∗(c3) = c1 + c2 in L1(Pr × Ps) = L1(Pr)⊕ L1(Ps). In order to study L∗(Y )
we will need the first chern class of the normal bundle NZ/X . Because of the normal bundle
sequence

0 −! TZ −! TX |Z −! NZ/X −! 0

we know that c1(NZ/X) = ι∗c1(TX)− c1(TZ). Since c(TPn) = (1 + c)n+1 it follows in particular
that c1(TPn) = (n+ 1)c, where c ∈ L1(Pn) is the hyperplane class. Since TZ = π∗1TPr ⊕ π∗2TPs ,
we get

c1(NZ/X) = ι∗c1(TX)−c1(TZ) = (r+1)(s+1)(c1+c2)−(r+1)c1−(s+1)c2 = s(r+1)c1+r(s+1)c2.

Now, we can subdivide the proposition into three cases

Case 1. If r 6= s, then dimL2(Y ) = 3 and dimLd−2(Y ) = 4.

Indeed, since Z has codimensin rs > 2 in X, our description of the cohomology of Y reads

H4(Y ) = Q c23 ⊕Q c1e⊕Q c2e⊕Qe2

H2(d−2)(Y ) = H2rs+2r+2s−4(Y ) = Q c2(d−2)3 ⊕Qers−1cr−11 cs2 ⊕Qers−1cr1cs−12 ⊕Qers−1cr1cs2.

The first claim follows from the fact that L2(Y ) is generated by

c23, c3e = c1e+ c2e, e
2

and these elements are linearly independent. We are left to show that Ld−2(Y ) = H2(d−2)(Y ).
The three elements of Ld−2(Y )

cd−23 , cr+s−13 ers−1, cr+s3 ers−2

are also linearly independent. It suffices to check that cr+s−23 ers is not in the linear span.
More specifically, we will show that the coefficient of ers−1 in cr+s−23 ers is not a multiple of
(c1 + c2)

r+s−1. Indeed, using the formula

(−1)rsers = π∗ι∗(1)−
rs−1∑
i=1

cr−i(NZ/X)(−e)i

one sees that this coefficient is

(−1)rs(c1 + c2)
r+s−2c1(NZ/X) = (−1)rs(c1 + c2)

r+s−2(s(r + 1)c1 + r(s+ 1)c2)

= (−1)rss(r + 1)(c1 + c2)
r+s−1 + (−1)rs(r − s)(c1 + c2)

r+s−2c2

Since r 6= s it suffices to show that (c1 + c2)
r+s−1 = (c1 + c2)

r+s−2(c1 + c2) and (c1 + c2)
r+s−2c2

are linearly independent in L∗(Z). This can either be seen through explicit computation or
using the Hard Lefschetz theorem and the fact that c1 +c2 = ι∗(c3) is the class of a hyperplane
section.

Case 2. If r = s ≥ 3, then dimL2r+1(Y ) = 2r + 2 and dimLr
2−1(Y ) = r2

Indeed, Z has codimension r2 in X, so for any k < r2, the elements

ck3, c
k−1
3 e, ..., c3e

k−1, ek

form a basis of Lk(Y ), thus dimLk(Y ) = k + 1. To conclude, we need 2r + 1 < r2 − 1 which
is equivalent to (r − 1)2 > 3. The only remaining case is (r, s) = (2, 2), which was examined
before.
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Remark 2.25. 1. As stated in remark 2.6 the author knows of no counterexample to the
conjecture that SD in dimension n implies SD in all dimensions lower than n, but using
the above examples, we can at least show that the function

{0, 1, ...,
⌊
d− 1

2

⌋
} −! N

k 7−! dimLd−k(Y )− dimLk(Y )

is not always monotonic. Indeed, the argument for case 3 above shows that this is false
whenever (r − 1)(s− 1) > 5

However, one can also construct counterexamples through other means. The following example
shows that the assumption in Proposition 2.16 was indeed necessary. For the relevant facts
about Grassmannians, see Appendix B or [EH16, Chapter 3].

Proposition 2.26. Let X be the partial flag variety of the form

X =

{
0 ⊂ V2 ⊂ V3 ⊂ C5 | dimV2 = 2, dimV3 = 3

}

which has dimension 8. Then we have dimL2(X) = 3 and dimL6(X) = 4

Proof. Let Y be the Grassmann variety G(2, 5) of two-dimensional subspaces of C5. Then the
cohomology of Y is given by:

H∗(Y,Q) = Qσ3,3 ⊕Qσ3,2 ⊕Qσ3,0 ⊕Qσ2,1 ⊕Qσ2,0 ⊕Qσ1,1 ⊕Qσ1,0 ⊕Q1

And one has X ∼= P(Q), where Q is the universal quotient bundle [EH16, 3.2.3] Proposition
now gives us:

H4(X,Q) = Qσ2,0 ⊕Qσ1, 1⊕Qσ1,0ζ ⊕Qζ2H12(X,Q) = Qσ3,3 ⊕Qσ3,2ζ ⊕Qσ3,1ζ2 ⊕Qσ2,2ζ2

We know that L2(X) is spanned by σ2,0 + σ1,1 = σ21,0, σ1,0ζ, ζ
2, which are all linearly inde-

pendent, which shows the first claim. Note that we have used Pieri’s formula here, which
asserts for example if n > a > b, then σ1,0σa, b = σa+1,b + σa,b+1 and in the other cases
one omitts the terms that do not make sense. We show that H12(X,Q) = L6(X). Since
σ51,0ζ = 5σ3,2ζ, σ

6
1,0 = 5σ3,3 and σ41,0ζ

2 = (3σ3,1 + 2σ3,2)ζ
2 are linearly independent, it suffices

to show that σ31,0ζ
3 is not contained in the subspace V generated by these three elements. First

recall the identity from Proposition 2.14:

ζ3 = −c1(Q)ζ2 − c2(Q)ζ − c3(Q)

The total Chern class of Q is [EH16, 5.6.2]

c(Q) = 1 + σ1,0 + σ2,0 + σ3,0

which gives us

σ31,0ζ
3 = −σ41,0ζ2 − σ31,0σ2,0ζ − σ31,0σ3,0 = σ41,0ζ

2 − 3σ3,2ζ − σ3,3 = 3σ3,2ζmodV

and thus the Proposition.
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A. The Blow-up and its Cohomology

In this section, let X be a smooth projective variety of over C of dimension d and ι : Z ↪! X
a smooth subvariety of codimension r.

Proposition A.1. There is a smooth projective variety Y together with a morphism π : Y !
X satisfying the following properties

1. If U = X − Z, then π : π−1(U) ! U is an isomorphism

2. the subvariety E := π−1Z ⊂ Y is of codimension 1 and there is an isomorphism E
φ−!

P(NZ/X) such that the diagram

E P(NZ/X)

Z

∼=
φ

commutes

Y is called the blow-up of X at Z and E is the exceptional divisor. See [Ha77, Chapter II.7]
and [Hu05, Section 2.5] for details.

Theorem A.2. Let e ∈ H2(X,Q) be the cohomology class of the exceptional divisor. As a
Q-vector space, the cohomology of the blow-up can be described as follows:

H∗(Y,Q) ∼= H∗(X,Q)⊕
(
r−1∑
i=1

H∗−2i(Z,Q)⊗Qei
)

for the cup product, we have the following two relations:

α.(β ⊗ ei) = (ι∗(α).β)⊗ ei for any α ∈ H∗(X,Q) and β ∈ H∗(Z,Q)

and

(−1)kek = π∗[Z]−
n−1∑
i=1

cn−i(NZ/X)⊗ (−e)i,

where NZ/X is the normal bundle of Z ⊂ X and ci is its i-th chern class.

Proof. First, we consider the following claim:

Claim. the pushfoward π∗ is a left inverse of π∗. In particular, π∗ is injective.

Indeed, since π : BlZX ! X is birational, it induces an isomorphism on function fields. Thus,
π∗(1) = π∗[BlZX] = [X] = 1. Now, if α ∈ H∗(X,Q), then the projection formula gives us
π∗π

∗α = α.π∗(1) = α. Next, let us name the relevant maps
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E BlZX

Z X

p

i

π

ι

Let Z ⊂ U be a tubular neighborhood of Z in X, i.e. an open neighborhood that deformation
retracts onto Z. We get two Mayer-Vietoris sequences associated to the covering X = U ∪
(X − Z) and BlZX = π−1U ∪ (BlZX − E). Since H∗(U,Q) ∼= H∗(Z,Q) and H∗(E,Q) ∼=
H∗(π−1U,Q), we have the following diagram

... H∗−1(π−1U − E,Q) H∗(BlZX,Q) H∗(E,Q)⊕H∗(BlZX − E,Q) H∗(π−1U − E,Q) ...

... H∗−1(U − Z,Q) H∗(X,Q) H∗(Z,Q)⊕H∗(X − Z,Q) H∗(U − Z,Q) ...

∼= π∗ p ∼= ∼=

Using a diagram chase, one can see that the sequence

0 −! H∗(X)
π∗−−! H∗(BlZX)

i∗−−! H∗(E)/p∗H∗(Z) −! 0

is exact. Since π∗ is a splitting homomorphism, we have an isomorphism

H∗(BlZX)
π∗⊕i∗−−−−!∼= H∗(X)⊕H∗(E)/p∗H∗(Z) −! 0

From Proposition 2.14 it follows that

H∗(E)/p∗H∗(Z) ∼=
r−1⊕
i=1

H∗−2i(Z)⊗Qζi

where ζ = c1(OP(NZ/X)(1)). In order to obtain the decomposition, it remains to see that i∗e =

−ζ. Indeed Proposition 2.4.7 in [Hu05] proves that i∗e = c1(NE/BlZX) and in fact it is easy to
see that NE/BlZX is precisely the tautological bundle OP(NZ/X)(−1) on E. Of the two relations,

the first is trivial. We show the second. In fact, i ∗ (−e)r = ζr = −∑r−1
i=0 cr−i(NZ/X)ζi, which

accounts for the second summand. For the first, we need to show π∗((−e)r) = [Z] = ι∗(1). We
get

π∗((−e)r) = π∗((−i∗(1))r) = π∗i∗(i
∗(−i∗(1))r−1) = ι∗p∗(ζ

r−1)

The rest follows from the following lemma.

Lemma A.3. Let π : E −! X be a holomorphic vector bundle on X of rank k, p : P(E) −! X
its associated projective bundle and ζ = c1(OP(E)(1)). Then we have

p∗(ζ
k−1) = 1

Proof. First note that the map p has codimension 2(k − 1) and ζk−1 ∈ H2(k−1)(P(E),Q), so
p∗(ζ

k−1) is indeed in degree 0. Consider the following diagram:
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Pk−1 P(E)

∗ X

q

i

p

j

where ∗ is any point in X and Pk−1 is the fiber of P(E) over it. Since ∗ is generically trans-
verse to p and obviously Cohen–Macaulay, Definition 1.4 yields p∗j∗(1) = i∗(1). Also, since
i∗OP(E)(1) = OPk−1(1), we have i∗ζ = c with c ∈ H2(Pk−1,Q) being the hyperplane class.

Since j∗(1) is the generator of H2d(X,Q), it suffices to show that p∗ζ
k−1j∗(1) = j∗(1). Indeed:

p∗(ζ
k−1)j∗(1) = p∗(ζ

k−1p∗j∗(1)) = p∗(ζ
k−1i∗(1)) = p∗i∗i

∗(ζk−1)

= j∗q∗i
∗(ζk−1) = j∗p∗(c

k−1) = j∗(1),

where we have used the projection formula in the first and third equality.
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B. The Cohomology of the Grassmannian

This section collects all the needed facts about Grassmannians. All details and proofs can be
found in Chapter 1 Section 5 in the book [GH94] by Griffiths and Harris and in [EH16]. First
recall the definition of the Grassmann manifold

Definition B.1. Let k and n be integers with 0 ≤ k ≤ n. The Grassmannian G(k, n) is
defined to be

G(k, n) :=

{
V ⊂ Cn | V ⊂ Cn linear subspace, dimV = k

}

It can be shown that G(k, n) is a smooth projective variety of dimension k(n− k).

Definition B.2. Let e1, ..., en ∈ Cn be the standard basis and Vi = Ce1 + ... + Cei. To any
sequence a = (a1, ..., ak) of integers with 0 ≤ ak ≤ ak−1 ≤ ... ≤ a1 ≤ n − k we associate its
Schubert variety

Σa :=

{
V ⊂ Cn | dim(V ∩ Vn−k+i−ai) ≥ i

}
.

Its cohomology class σa = [Σa] ∈ H∗(G(k, n),Q) is called the associated Schubert cycle

It can be shown that Σaa ⊂ G(k, n) is an algebraic subvariety of codimension |a| = a1 + ...+ak
and that the Schubert varieties are exactly the closed cells of a CW decomposition of G(k, n).
It results that

Theorem B.3. The cohomology of the Grassmannian is freely generated by the set of all
Schubert cycles σa ∈ H2|a|(G(k, n),Q) with a = (a1, ..., ak) and 0 ≤ a1 ≤ ... ≤ ak ≤ n− k

Indeed, when looking at the cellular chain complex of G(k, n), one sees that there are only cells
in even degree, hence the boundary maps are zero. It is easy to check that the classes σa ∈
H2|a|(G(k, n),Q) and [Σa] ∈ H

2|a|
cell (G(k, n),Q) correspond under the isomorphism of singular

with cellular cohomology. For the cup product on the cohomology ring, we have the following:

Proposition B.4 (Pieri’s Formula). If a = (a1, 0, ..., 0), then for any b

σaσb =
∑

bi≤cibi−1

|c|=a1+|b|

σc

In fact, it can be shown that the Schubert cycles σa with a = (a1, 0, ..., 0) generateH∗(G(k, n),Q)
as an algebra, thus the cup product is at least in theory already determined by this formula.
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