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1. Introduction

The Classical Global Torelli theorem asserts that a K3 surfaces is completely
determined by its integral Hodge structure. More precisely, we have

Theorem (Piateckii-Shapiro, Shafarevich, Burns, Rapoport, Peters, Looijenga,
Siu). Two K3 surfaces X and X ′ are isomorphic if and only there is a Hodge iso-
metry ϕ : H2(X,Z) ∼−→ H2(X ′,Z). Furthermore, a Hodge isometry ϕ : H2(X,Z) ∼−→
H2(X ′,Z) is induced by an isomorphism f : X ∼−→ X ′ if and only if ϕ maps at least
one Kähler class in H2(X,Z) to a Kähler class in H2(X ′,Z).

There is an analogous statement for the derived categories of K3 surfaces where
we replace X, X ′ with Db(X), Db(X ′) and H2(X,Z) with the Mukai lattice
H̃(X,Z), which is the full cohomology H∗(X,Z) together with a certain lattice
and Hodge structure. This statement is called the Derived Global Torelli theorem.

Theorem (Mukai, Orlov, Huybrechts, Macr̀ı, Stellari). The derived categories
Db(X) and Db(X ′) of two K3 surfaces X and X ′ are equivalent if and only if there
is a Hodge isometry ϕ : H̃(X,Z) ∼−→ H̃(X ′,Z). Furthermore, a Hodge isometry
ϕ : H̃(X,Z) ∼−→ H̃(X ′,Z) is induced by a Fourier-Mukai equivalence ΦP : Db(X)→
Db(X ′) if and only if ϕ preserves the natural orientation of the positive four direc-
tions.

The last condition can be explained as follows: The lattice H̃(X,Z) has signature
(4, 20), hence for a holomorphic 2-form σX ∈ H2,0(X) and a Kähler class ωX ,
the span VσX ,ωX

:= 〈ReσX , ImσX , 1 − ω2
X

2 , ω〉R forms a maximal positive definite
subspace of H̃(X,R) with a natural orientation. We say that ϕ preserves the natural
orientation of the positive four directions if the composition

VσX ,ωX
↪→ H̃(X,R) ϕR−−→

∼
H̃(X ′,R)� VσX′ ,ωX′
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with the inclusion and the orthogonal projection is orientation preserving.
In the more general case of twisted K3 surfaces, only a weaker Torelli type

theorem is known so far (see Sect. 2 for an introduction to the theory of twisted
K3 surfaces (X,αB) and twisted Hodge structures H̃(X,B,Z)).

Theorem (Huybrechts, Stellari). If ϕ : H̃(X,B,Z) ∼−→ H̃(X ′, B′,Z) is a Hodge
isometry between two twisted projective K3 surfaces (X,αB) and (X ′, αB′) which
preserves the natural orientation of the four positive directions, there is a Fourier-
Mukai equivalence ΦP : Db(X,αB) ∼−→ Db(X ′, αB′) such that ϕ = ΦHP .

It is an unsolved problem, whether we can also find a strong version of the Twis-
ted Derived Global Torelli theorem. More concretely, the following two questions
need to be answered:

1. Does there, for every twisted K3 surface (X,αB), exist a Hodge isometry
ψX : H̃(X,B,Z) ∼−→ H̃(X,B,Z) which reverses the natural orientation of
the positive four directions? In the case of a positive answer, the compos-
ition with ψX′ in the previous theorem would turn an orientation rever-
ing into an orientation preserving Hodge isometry, thus yielding a state-
ment analogous to the first parts of the Classical and the Derived Global
Torelli theorem. In the untwisted case, the role of the ψX is taken on by
id(H0⊕H4)(X)⊕− idH2(X) which is not a Hodge isometry in the twisted case
any more.

2. Does every twisted Hodge isometry ΦHP : H̃(X,B,Z) ∼−→ H̃(X ′, B′,Z) in-
duced by a Fourier-Mukai equivalence ΦP : Db(X,αB) ∼−→ Db(X ′, αB′) pre-
serve the natural orientation of the positive four directions? A positive an-
swer would yield a statement analogous to the second parts of the Classical
and the Derived Global Torelli theorem.

In particular, an answer to the second question would give a better description of
the autoequivalences of the derived category Db(X,αB). The action of the Fourier-
Mukai equivalences on cohomology gives a natural representation

Aut(Db(X,αB))→ O(H̃(X,B,Z)).

Since the group of orientation preserving Hodge isometries O+(H̃(X,B,Z)) cer-
tainly lies in the image of this representation, an answer to the second question
would determine whether the image of Aut(Db(X,αB)) in O(H̃(X,B,Z)) has in-
dex 1 or 2.

In this Master’s thesis, we shall lay the groundwork to answering the two ques-
tions and prove some partial results.

In Section 2, we will assemble the basic notions of twisted sheaves, Hodge struc-
tures and Fourier-Mukai transforms necessary to understand the remainder of the
thesis.

In Section 3, we will first give an affirmative answer to both questions in the
case of big Picard numbers ρ(X) ≥ 12. We will then turn to the first question in
the general case and try to describe the Hodge isometries of an arbitrary twisted
K3 surface (X,αB). Since we will show that every lattice of small rank occurs as
the generalized Picard group of some twisted K3 surface, this becomes a purely
lattice-theoretical problem. We will see that the answer to the first question is
negative for almost all complex K3 surfaces. For projective K3 surfaces, we will
reduce the question to a completely elementary but cumbersome problem about
the integrality of certain rational numbers.

In Section 4, we will provide the inexperienced reader with background material
for the deformation theory of Fourier-Mukai kernels. Hochschild homology and
cohomology as well as first and higher-order obstructions to lifting a kernel will be
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discussed. Although completely formal, we will generalize parts of the literature,
which only exists for untwisted varieties, to the twisted case.

In Section 5, we will give partial answers to the second question. We will show
that an intuitive approach via algebraic deformations of K3 surfaces does not work.
We will then give a positive answer to the second question in the case that the
twisted Fourier-Mukai kernel P is a sheaf. Finally, we will give an outlook as to
how one could proceed in the general case, using the deformation theory apparatus
developed in Section 4.

Notation. We will write N = {0, 1, . . . } and N∗ = {1, 2, . . . }.
Acknowledgement. The author wishes to thank his adviser Prof. Daniel Huy-

brechts for the supervision of this thesis and the many helpful discussions and
explanations.

2. Preliminaries

This introduction to twisted sheaves, their derived categories and Chern char-
acters runs along the lines of [18] and [13]. The interested reader may find more
material and examples there.

2.1. Twisted sheaves. Let X be a smooth proper variety over C. It is a fact from
elementary algebraic geometry that a sheaf F on X can be described by a collec-
tion of sheaves Fi on some open cover {Ui}i∈I and glueing functions ϕij : Fi�Uij

∼−→
Fj�Uij

which satisfy ϕii = idFi
and the cocycle condition ϕijϕjkϕki = idFi�Uijk

.
This construction can be generalized to glueing functions fulfilling the cocycle con-
dition only up to a twist.

Definition 2.1. The (cohomological) Brauer group of X is given by

Br(X) := H2(X,O∗X)tor

where we take the cohomology with respect to the analytic topology.

Remark 2.2. The algebraically inclined reader may also replace analytic cohomology
by étale cohomology.

Remark 2.3. There is yet another way to define the Brauer group as the set of
Azumaya algebras over X modulo some equivalence relation. For K3 surfaces, both
notions coincide due to results by Grothendieck in the projective and Huybrechts
and Schröer in the analytic case, cf. [11] and [17].

Definition 2.4. A twisted variety is a tuple (X,α) consisting of a proper variety
X over C and a class α ∈ Br(X). A twisted variety over some base scheme A is a
twisted variety (X,α) together with a morphism X → A as part of the datum.

A morphism f : (X,α)→ (Y, β) is a morphism f : X → Y such that f∗β = α.

Definition 2.5. Let (X,α) be a twisted variety and {αijk} a Čech 2-cocycle repres-
enting α for some open (analytic) coverX =

⋃
i∈I Ui. An {αijk}-twisted sheaf F is a

collection of sheaves Fi on the Ui and glueing functions ϕij : Fi�Uij

∼−→ Fj�Uij
which

satisfy ϕii = idFi , ϕji = ϕ−1
ij and the cocycle condition ϕijϕjkϕki = αijk · idFi�Uijk

.
A morphism f : F → G of twisted sheaves F and G is a collection of morphisms

fi : Fi → Gi such that fj ◦ ϕFij = ϕGij ◦ fi for all i, j ∈ I.

Remark 2.6. It has been shown in [6, Prop. 1.2.10] that the basic constructions
from ordinary sheaf theory carry over to twisted sheaves:

• If F is an {αijk}-twisted and G an {α′ijk}-twisted sheaf, then F ⊗G is an
{αijk · α′ijk}-twisted sheaf and Hom(F,G) an {α−1

ijk · α′ijk}-twisted sheaf.
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• Let f : X → Y is a morphism of varieties and α ∈ Br(X). If F is an {αijk}-
twisted sheaf on X, then f∗F is an {f∗αijk}-twisted sheaf on Y . If F is an
{f∗αijk}-twisted sheaf on Y , then f∗F is an {αijk}-twisted sheaf on X.

It is very easy to see the following

Lemma 2.7. The {αijk}-twisted sheaves on a twisted variety (X,α) form an
abelian category Mod(X, {αijk}).

Lemma 2.8. Let (X,α) be a twisted variety.
(i) If {αijk} ∈ Č2(U,O∗X) is a Čech 2-cocycle representing α for some open

cover U and {α′ijk ∈ Č2(U′,O∗X) is the induced cocycle for some refinement
U′ of U, we have an equivalence of categories

Ξαijk

α′
ijk

: Mod(X, {αijk}) 'Mod(X, {α′ijk}).

(ii) If {αijk} and {α′ijk} ∈ Č2(U,O∗X) both represent the same cohomology class
α ∈ H2(X,O∗X), we have an equivalence of categories

Ξαijk

α′
ijk

: Mod(X, {αijk}) 'Mod(X, {α′ijk}).

Consequently, if {αijk} and {α′ijk} are two different Čech representatives of α ∈
Br(X), there is an induced equivalence of categories Ξαijk

α′
ijk

: Mod(X, {αijk}) '
Mod(X, {α′ijk}).

Proof. (i) Let us explain the idea of the proof. The details can be found in [6,
Lemma 1.2.3]. Since every {αijk}-twisted sheaf can be regarded as an {α′ijk}-
twisted sheaf by restricting the FUi

to the smaller open sets, we have a refinement
functor

Ξαijk

α′
ijk

: Mod(X, {αijk})→Mod(X, {α′ijk}).

We need to construct a quasi-inverse functor. For ({Gj}, {ψjk}) ∈Mod(X, {α′ijk})
and Ui ∈ U we define a sheaf Fi on Ui by glueing the Gj�U ′

j
∩Ui

via the ψjk. To-
gether with the naturally induced glueing morphisms, these Fi form an {αijk}-
twisted sheaf. This gives the wanted quasi-inverse functor Mod(X, {α′ijk}) →
Mod(X, {αijk}).

(ii) As {αijk} and {α′ijk} represent the same cohomology class, there is a Čech
1-cochain {γij} ∈ Č(U,O∗X) such that α′ijk = αijk + dγij . The functor

Ξαijk

α′
ijk

: Mod(X,αijk)→Mod(X,α′ijk), ({Fi}, {ϕij}) 7→ ({Fi}, {ϕij · γij})

with the obvious operation on morphisms gives an equivalence of categories, cf. [6,
Lemma 1.2.8]. �

Remark 2.9. As the choice of the cochain {γij} is non-canonical, so is the equi-
valence Mod(X, {αijk})→Mod(X, {α′ijk}). However, this will not matter in our
future considerations.

Definition 2.10. By abuse of notation, the equivalence class of the categories
Mod(X, {αijk}) is denoted by Mod(X,α).

We say that F ∈ Mod(X, {αijk}) and G ∈ Mod(X, {α′ijk}) are isomorphic if
Ξαijk

α′
ijk

(F) and G are.

As usual in the theory of Fourier-Mukai functors, we are only interested in a full
subcategory of Mod(X,α).
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Definition 2.11. An {αijk}-twisted sheaf F = {Fi, ϕij} on a twisted variety (X,α)
is called coherent if all Fi are coherent (as ordinary sheaves on Ui).

The full abelian subcategory of Mod(X, {αijk}) spanned by all coherent sheaves
is denoted by Coh(X, {αijk}).

In complete analogy to the above, we have

Lemma 2.12. Let (X,α) be a twisted variety. If {αijk} and {α′ijk} are two differ-
ent Čech representatives of some α ∈ Br(X), there is a (non-canonical) equivalence
of categories Ξαijk

α′
ijk

: Coh(X, {αijk}) ' Coh(X, {α′ijk}).

Proof. As for Lemma 2.8. �

Definition 2.13. By abuse of notation, the equivalence class of the categories
Coh(X, {αijk}) is denoted by Coh(X,α).

We say that F ∈ Coh(X, {αijk}) and G ∈ Coh(X, {α′ijk}) are isomorphic if
Ξαijk

α′
ijk

(F) and G are.

2.2. Brauer-Severi varieties. In this subsection, we shall explain the connection
between twisted sheaves on a twisted variety (X,α) and (ordinary) sheaves on a
Brauer-Severi variety over X.

We recall from [10, Sect. 8]

Definition 2.14. Let p : Y → X be a morphism of varieties over C. Then Y is
called a Brauer-Severi variety of relative dimension r over X if one of the following
two conditions is satisfied:

(i) There exists an analytic open cover X =
⋃
Ui together with isomorphisms

ϕi : p−1(Ui)
∼−→ Ui × PrC for all i.

(ii) The morphism f is finitely presented, proper and flat, and the fibres over
the closed points of X are isomorphic to PrC.

We will be interested in

Definition 2.15. A Brauer-Severi variety p : Y → X is called a projective bundle

if the transition functions (Ui ∩Uj)× PrC
ϕ−1

i−−→ p−1(Ui ∩Uj)
ϕj−→ (Ui ∩Uj)× PrC are

given by projective linear transformations φij ∈ H0(Uij , PGL(r+ 1)) in the second
coordinate.

Definition 2.16. A projective bundle Y of relative dimension r over X corresponds
to a cohomology class [Y ] ∈ H1(X,PGL(r + 1)). We define δ(Y ) ∈ Br(X) to
be the image of [Y ] under the connecting homomorphism H1(X,PGL(r + 1)) →
H2(X,O∗X) induced by the short exact sequence

1→ O∗X → GL(r + 1)→ PGL(r + 1)→ 1.

Remark 2.17. It follows from the commutativity of the diagram

1 µr+1 SL(r + 1) PGL(r + 1) 1

1 O∗X GL(r + 1) PGL(r + 1) 1

that δ(Y ) is indeed contained in the torsion part of H2(X,O∗X).

There is a close connection between locally free twisted sheaves on X and pro-
jective bundles over X. The following Lemma is probably well known although
only weaker versions seem to be present in the literature.
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Lemma 2.18. For a twisted variety (X,α), we have a one-to-one correspondence
{loc. free, α-twisted sheaves on X}�∼ ←→ {p : Y → X proj. bdl., δ(Y ) = α}�∼=

where F ∼ G if and only if there is an M ∈ PicX such that F and G ⊗M are
isomorphic.

If δ(Y ) = α, there is an (up to isomorphism and multiplication with p∗M unique)
canonical p∗{α−1

ijk}-twisted line bundle Op(1) on Y .
Proof. Let E = ({Ei}, {ϕij}) ∈ Coh(X,α) be a locally free sheaf of rank r + 1 on
X which is twisted with respect to the Čech cocycle {αijk} for an open cover X =⋃
i∈I Ui. Then we obtain projective bundles pi : P(E∨i )→ Ui. The glueing functions

ϕ̃ij : P(E∨i )�Ui∩Uj

∼−→ P(E∨j )�Ui∩Uj
induced by ϕij : Ei�Ui∩Uj

→ Ej�Ui∩Uj
are locally

projective linear transformations φij ∈ H0(Uij , PGL(r+ 1)) in the second coordin-
ate. They also satisfy ϕ̃ii = id and the (ordinary) cocycle condition because the ϕij
do so up to scalars. Hence, the pi glue to a global projective bundle p : P(E)→ X. It
corresponds to the Čech cohomology class {[φij ]} ∈ H1(X,PGL(r+ 1)) which has
the lift {[ϕij ]} ∈ H1(X,GL(r + 1)). Since (∂{[ϕij ]})ijk = ϕijϕjkϕki = αijk · id ∈
H2(X,O∗X), we have δ(P(E)) = α by construction of the connecting homomorphism
of the short exact sequence

1→ O∗X → GL(r + 1)→ PGL(r + 1)→ 1.
Since the tautological line bundles OP(Ei)(1) on the P(Ei) are compatible with the
glueing construction of P(E), they glue together to give a p∗(α−1)-twisted line
bundle Op(1).

Conversely, let p : Y → X be a projective bundle of relative dimension r over
X. Choose a trivializing open covering U = {Ui}i∈I and trivializing functions
ψi : p−1(Ui) → Ui × Pr. Let {φij} ∈ Č1(U, PGL(r + 1)) be the projective linear
transformations which form the second coordinate of the transition functions ψij =
ψj ◦ψ−1

i . Refining the cover U = {Ui} even further, we may assume that {φij} has
a lift {ϕij} ∈ Č1(U, GL(r + 1)). The choice of this lift is unique up to elements in
Č1(U,O∗X). Since ∂{φij} = 0, ∂{ϕij} has a (closed) lift {αijk} ∈ Č2(U,O∗X). Its
cohomology class {[αijk]} is by definition of the connecting homomorphism the class
δ(Y ). Thus, the sheaves p∗(OPr

Ui
(1))∨ glue via the ϕij to an α-twisted sheaf E which

is unique up to multiplication with a line bundle M∈ Pic(X) (and isomorphism).
It is straightforward to see that the two constructions are inverse to another (up

to the equivalence relations). �

As there is a locally free α-twisted sheaf for all α ∈ Br(X), the Lemma asserts
in particular that for every α, there is a projective bundle Y → X with δ(Y ) = α.
This allows us to describe the category Coh(X,α) as a full subcategory of the
category Coh(Y ) of (ordinary) coherent sheaves on some projective bundle Y over
X. This approach is due to [34, §1].
Definition 2.19. Let p : Y → X be a projective bundle of relative dimension r
over X with δ(Y ) = α. Then we denote by Coh(Y/X) the full subcategory of
Coh(Y ) spanned by all coherent sheaves F ∈ Coh(Y ) for which there exists an
α-twisted sheaf F̃ ∈ Coh(X,α) such that

F ∼= p∗F̃ ⊗Op(1)
Lemma 2.20. The two functors

K : Coh(X,α) → Coh(Y/X), E 7→ p∗E ⊗Op(1)
Λ: Coh(Y/X)→ Coh(X,α), F 7→ p∗(F ⊗Op(−1)

yield an equivalence of categories.
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Proof. Follows direct from the projection formula and the fact that p∗OY = OX
for all projective line bundles p : Y → X. �

For the purposes of deformation theory, another characterization of Coh(Y/X)
proves to be more effective.

Definition 2.21. For all projective bundles p : Y → X with δ(X) = α, let Gp ∈
Coh(Y/X) be the sheaf given by

Gp := p∗(p∗(Op(1))∨)⊗Op(1).

Lemma 2.22. The sheaf Gp is the unique non-trivial extension of the Euler se-
quence

0→ OY → Gp → TY/X → 0.

Proof. Cf. [34, Lemma 1.1]. �

Lemma 2.23. A coherent sheaf F ∈ Coh(Y ) lies in Coh(Y/X) if and only if the
adjunction counit ε : p∗p∗(G∨p ⊗ F ) → G∨p ⊗ F is an isomorphism. In particular,
F ∈ Coh(Y/X) is an open condition.

Proof. Cf. [34, Lemma 1.5]. A similar proof is given in Lemma 2.42. �

2.3. Twisted Hodge structures. Let at first (X,α) be a smooth projective twis-
ted variety with H3(X,Z)tor = 0. Following [18], we shall generalize Chern char-
acters and Hodge structures to the twisted case in such a way that Coh(X,α)
interacts nicely with cohomology. To this end, we first give

Definition 2.24. The group K(X,α) is the Grothendieck group of the exact cat-
egory Coh(X,α).

Remark 2.25. As there is in general no natural tensor structure on Coh(X,α),
K(X,α) is in fact only endowed with the natural structure of an additive group
and not of a ring.

In order to define a Chern character for the twisted variety (X,α), we first have
to choose a rational B-field lift of α.

Definition 2.26. A B-field on X is a cohomology class B ∈ H2(X,R). The image
of B under the morphism

H2(X,R) ⊂ H2(X,C) ∼=
⊕
p+q=2

Hq(X,ΩpX)� H2(X,OX) exp−−→ H2(X,O∗X)

is denoted by αB := exp(B0,2).

Remark 2.27. If β ∈ H2(X,O∗X) is a torsion class (which is the case for a twisted
variety), we can always choose a rational B-field lift B ∈ H2(X,Q) with αB = β.

These notions enable us to give

Definition 2.28. For a rational B-field B ∈ H2(X,Q), the B-twisted Chern char-
acter

chB : K(X,α)→ H∗(X,Q)
is defined as follows, cf. [18, Prop. 1.2]:

It suffices to give chB on α-twisted sheaves such that it is additive for short exact
sequences. As the sheaf C∞X of smooth functions on X is acylic, we can (after passing
to a sufficiently fine covering U = {Ui}) choose a Čech cocycle {aij} ∈ Č1(U, C∞X )
such that −∂{aij} = {Bijk} = B. Then for all α-twisted sheaves E = ({Ei}, {ϕij}),
we can define

EB := ({Ei}, {ϕij · exp(aij)}).
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It is easy to check that EB is an untwisted sheaf which does not depend on the
choice of the Čech cocycle {aij}. We can therefore set chB(E) := ch(EB).

With this construction, the important properties of the Chern character are
preserved in the twisted case.

Proposition 2.29. For all rational B-fields B,B1, B2 ∈ H2(X,OX), the twisted
Chern character satisfies

(i) chB is additive, i.e. chB(E1 ⊕ E2) = chB(E1) + chB(E2)
(ii) If B = c1(L) ∈ H2(X,Z), we have chB(E) = exp(c1(L)) · ch(E) where

exp(c1(L)) =
∑
i

1
i! (c1(L))i is the formal exponential of c1(L).

(iii) chB1(E1) · chB2(E2) = chB1+B2(E1 ⊗ E2) and
(iv) chB(E) ∈ exp(B) (

⊕
Hp,p(X)) for all E ∈ K(X,αB).

Proof. Cf. [18, Prop. 1.2]. �

Remark 2.30. In particular, (ii) and (iii) of the previous Proposition (and the Lef-
schetz theorem on (1, 1)-classes) imply that for two different B-field lifts B1, B2 of α,
the twisted Chern characters chB1 , chB2 differ only by the vector space isomorphism
exp(B1 −B2).

As in the untwisted case, one further defines a twisted Mukai vector.

Definition 2.31. The Mukai vector of a class E ∈ K(X,αB) is given by

vB(E) := chB(E) ·
√

td(X).

We now restrict our attention to the case of K3 surfaces. Recall that for all K3
surfaces X, the intersection pairing ( . ) endows H2(X,Z) with a lattice structure
and that there is a lattice isometry H2(X,Z) ∼= Λ to the K3 lattice Λ := E8(−1)⊕2⊕
U⊕3. Here E8 denotes the usual E8-lattice and U the hyperbolic plane. The full
cohomology group H∗(X,Z) = H0(X,Z)⊕H2(X,Z)⊕H4(X,Z) receives a lattice
structure from the Mukai pairing

〈 , 〉 : H∗(X,Z)×H∗(X,Z)→ Z, 〈ϕ,ψ〉 := (ϕ2.ψ2)− (ϕ0.ψ4)− (ϕ4.ψ0).

This lattice structure with the grading suppressed is commonly denoted by H̃(X,Z).
It carries a natural weight-two Hodge structure given by
H̃2,0(X) := H2,0(X), H̃1,1(X) := H0(X)⊕H1,1(X)⊕H4(X), H̃0,2(X) := H0,2(X).

As an abstract lattice, H̃(X,Z) is isomorphic to the extended K3 lattice Λ̃ :=
Λ⊕ U = E8(−1)⊕2 ⊕ U⊕4.

Prop. 2.29 (iv) suggests a definition of a twisted Hodge structure which is well
suited for the interaction with twisted Chern characters.

Lemma 2.32. The multiplication with the formal exponential expB of a B-field
B ∈ H2(X,R) is an isometry of H̃(X,R). If B ∈ H2(X,Q) resp. H2(X,Z), expB
is an isometry of H2(X,Q) resp. H2(X,Z).

Proof. It follows from
∑n
j=0(−1)j

(
n
j

)
= 0 that expB is a vector space (resp. Z-

module) isomorphism. A straightforward calculation shows that expB preserves
the Mukai pairing. �

Definition 2.33. For B ∈ H2(X,R), the B-twisted Hodge structure H̃(X,B,Z) is
the Hodge structure of K3 type given by

H̃p,q(X,B) := exp(B) ·
(
H̃p,q(X)

)
.

Remark 2.34. The Hodge structure H̃(X,B,Z) of K3 type is uniquely determined
by its (2, 0)-part, i.e. by the generalized Calabi-Yau form expB · σ = σ +B ∧ σ.
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If B1, B2 ∈ H2(X,R) are B-field lifts of the same Brauer class α ∈ Br(X),
we have B1 − B2 ∈ H2(X,Z) and therefore obtain an integral Hodge isometry
expB : H̃(X,B1,Z) ∼= H̃(X,B2,Z) by Lemma 2.32. Thus, it makes sense to give

Definition 2.35. The (abstract) Hodge structure H̃(X,α,Z) is the Hodge isometry
type of H̃(X,B,Z) for some B-field lift B ∈ H2(X,R) of α.

Remark 2.36. Note however that this is only an abstract Hodge structure which
can only be realized after the choice of a B-field.

2.4. Twisted Fourier-Mukai transforms. The notion of a Fourier-Mukai trans-
form can be generalized to twisted derived categories. In what follows, (X,α), (Y, β)
and (Z, γ) will be twisted varieties over some base A. All constructions shall be
taken over A, e.g. X × Y = X ×A Y or ωX = ωX/A. For the sake of clarity, we will
denote derived functors by their non-derived symbols, e.g. p∗ instead of Rp∗ unless
it is not apparent from the context which functor is meant.

Definition 2.37. The derived category of the twisted variety (X,α) is the bounded
derived category

Db(X,α) := Db(Coh(X,α))
of the abelian category Coh(X,α) of α-twisted coherent sheaves on X.

Căldăraru shows in [6] that all basic constructions, such as derived pullback,
pushforward, tensor product and Hom complexes, and results carry over from the
untwisted case.

It has been alluded to in [34, Sect. 4] and proven rigorously in [2, Sect. 4.1] that
the derived category of a twisted variety (X,α) is again equivalent to the (ordinary)
derived category of a projective bundle Y over X. As in Def. 2.19, we have

Definition 2.38. Let p : Y → X be a projective bundle of relative dimension r
over X with δ(Y ) = α. Then we denote by Db(Y/X) the full subcategory of Db(Y )
spanned by all F ∈ Db(Y ) for which there exist an F̃ ∈ Db(X,α) such that

F ' p∗F̃ ⊗ Op(1).

Remark 2.39. Since p is flat, we can take the ordinary pullback p∗.

Remark 2.40. It is a priori not clear whether Db(Y/X) = Db(Coh(Y/X)) although
it will turn out that the two categories are equivalent. One should rather think of
Db(Y/X) as the derived equivalent of Coh(Y/X).

One finds again

Lemma 2.41. The two functors
K : Db(X,α) → Db(Y/X), E 7→ p∗E ⊗ Op(1)
Λ: Db(Y/X)→ Db(X,α), F 7→ p∗(F ⊗Op(−1)

yield an equivalence of categories.

Proof. Similar to the proof of Lemma 2.20. See [2, Thm. 4.4] for details (note
however that there is a sign issue because Bernardara constructs the projective
bundle Y by glueing bundles P(Ei)→ Ui and not P(E∨i )→ Ui). �

In addition, we can prove by methods similar to those in [34, Lemma 1.5]

Lemma 2.42. A complex F ∈ Db(Y ) lies in Db(Y/X) if and only if the adjunction
counit ε : p∗Rp∗(G∨p ⊗ F)→ G∨p ⊗ F is a quasi-isomorphism (i.e. an isomorphism
in Db(Y )). In particular, F ∈ Coh(Y/X) is an open condition.
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Proof. Since p : Y → X is a projective bundle, we haveRp∗OY = OX . In particular,
it follows that

p∗Rp∗p
∗(p∗(Op(1))∨) ' p∗(p∗(Op(1))∨)

because p∗(p∗(Op(1))∨) is locally free. As Gp = p∗(p∗(Op(1))∨)⊗Op(1), this yields
p∗Rp∗(G∨p ⊗F) ' p∗(p∗(Op(1))∨)⊗ p∗Rp∗(F ⊗Op(−1)).

Hence, ε is a quasi-isomorphism if and only if the adjunction counit
ε̃ : p∗Rp∗(F ⊗Op(−1))→ F ⊗Op(−1)

is.
If ε̃ is a quasi-isomorphism, then F ' p∗(Rp∗(F⊗Op(−1)))⊗Op(1) immediately

gives F ∈ Db(Y/X). For the converse, let D be the full subcategory of Db(Y, p∗α)
spanned by all elements G ∈ Db(Y, p∗α) for which there exists a G̃ ∈ Db(X,α) such
that G ' p∗G̃. As p : Y → X is proper, this is well-defined. We have to show that
the natural functor transformation

ε : p∗Rp∗ ⇒ idD
of functors D → D given by the counit of the adjunction is a natural isomorphism.
By [21, Lemma A1.1.1], this is the case if there is any natural functor isomorphism
p∗Rp∗ ⇒ idD. But the projection formula implies that for every G ' p∗G̃ ∈ D,
there is a natural quasi-isomorphism

p∗Rp∗(G) ' p∗Rp∗p∗G̃ ' p∗(G̃ ⊗Rp∗OY ) ' p∗(G̃ ⊗ OX) ' G. �

Having generalized derived categories to the twisted case, we can now proceed
to Fourier-Mukai functors.

Definition 2.43. Let P ∈ Db(X × Y, α−1 � β). Then the functor
ΦP : Db(X,α)→ Db(Y, β), E• 7→ π2∗(P ⊗ π∗1E•)

(where πi denotes the projection from X×Y to the i-th factor) is called the twisted
Fourier-Mukai transform with Fourier-Mukai kernel P.

Examples for twisted Fourier-Mukai transforms can be found in [19, §1].
As in the untwisted case, it is easy to see that composition of two twisted Fourier-

Mukai transforms is again a Fourier-Mukai transform.

Definition 2.44. Let E ∈ Db(X ×Y, α−1�β) and F ∈ Db(Y ×Z, β−1� γ). Then
the convolution of E and F is

E ∗ F := π13∗(π∗12E ⊗ π∗23F) ∈ Db(X × Z,α−1 � γ)
(where again the πij denote the obvious projections from X × Y × Z).

Lemma 2.45. Let P ∈ Db(X × Y, α−1 � β) and Q ∈ Db(Y × Z, β−1 � γ). Then
the functors ΦQ ◦ ΦP and ΦP∗Q are naturally isomorphic. In particular, the com-
position of two twisted Fourier-Mukai transforms is again a twisted Fourier-Mukai
transform.

Proof. Exactly as in the untwisted case [28, Prop. 1.3], taking into account that the
projection formula also holds in twisted derived categories (cf. [6, Prop. 2.3.5]). �

We will also need

Definition 2.46. Let τ : X × Y → Y × X denote the transposition of the two
factors. Then we define for all E ∈ Db(X × Y, α−1 � β)

EL := τ∗(E∨ ⊗ π∗2ωY [dimY ]) ∈ Db(Y ×X,β−1 � α) and
ER := τ∗(E∨ ⊗ π∗1ωX [dimX]) ∈ Db(Y ×X,β−1 � α).
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Lemma 2.47. Let P ∈ Db(X×Y, α−1�β). Then ΦPL
: Db(Y, β)→ Db(X,α) resp.

ΦPR
: Db(Y, β)→ Db(X,α) is right resp. left adjoint to ΦP : Db(X,α)→ Db(Y, β).

Proof. The proof can again be given as in the untwisted case [12, Prop. 5.9] because
Grothendieck-Verdier duality and basic properties of duals and direct and inverse
images still hold, cf. [6, Thm. 2.4.1, Prop. 2.3.14 and Cor. 2.3.9]. �

Due to the existence of an analogue of Orlov’s result, twisted Fourier-Mukai
functors retain their importance for the study of the derived categories of twisted
varieties.

Proposition 2.48 (Canonaco, Stellari). Let (X,α) and (Y, β) be twisted smooth
projective varieties and F : Db(X,α)→ Db(Y, β) an exact full functor. Then there
is a (up to isomorphism unique) P ∈ Db(X × Y, α−1 � β) such that F ∼= ΦP .

Proof. [8, Thm. 1.1] �

Concerning the compatibility of Fourier-Mukai transforms with the projective
bundle construction, let us finally add the following

Remark 2.49. Fourier-Mukai transforms can also be naturally defined for the cat-
egory Db(Y/X) of a projective bundle. Let p : Y → X, p′ : Y ′ → X ′ be two
projective bundles with δ(Y ) = α, δ(Y ′) = α′. Then we have again an equivalence
of categories

Db(X ×X ′, α−1 � α′) ' Db(Y × Y ′/(X,X ′))
where Db(Y × Y ′/(X,X ′)) is the full subcategory of Db(Y × Y ′) spanned by all F
for which the natural morphism (p′×p)∗(p′×p)∗(Gp′ ⊗F ⊗G∨p )→ (Gp′ ⊗F ⊗G∨p )
is an isomorphism. The Fourier-Mukai transform associated to some P ∈ Db(Y ×
Y ′/(X,X ′)) is given by

ΦP : Db(Y/X)→ Db(Y ′/X ′), E 7→
(
πY
′×Y

2
)
∗

((
πY
′×Y

1
)∗E ⊗ P).

3. Hodge theory of twisted K3 surfaces

In this chapter, we shall investigate cohomological properties and invariants of
twisted K3 surfaces.

Let us first recall the necessary notation. We denote by M the Fermat quartic
V (x4

0+x4
1+x4

2+x4
3) ⊂ P3, by Λ := E8(−1)⊕2⊕U⊕3 the K3 lattice and by Λ̃ := Λ⊕U

the extended K3 lattice. If X is a K3 surface and B ∈ H2(X,Q) a rational B-field
on it, we can put αB := exp(B0,2) to obtain a twisted K3 surface (X,αB).

An important concept in the study of H̃(X,B,Z) is the generalized Picard group.

3.1. The generalized Picard group.

Definition 3.1. Let X be a K3 surface with holomorphic two-form σ ∈ H2,0(X)
and B ∈ H2(X,Q) a rational B-field. Then the generalized Picard group of the
twisted K3 surface (X,αB) is the sublattice

Pic(X,B) := {δ ∈ H̃(X,B,Z) | 〈exp(B) · σ, δ〉 = 0}

and the generalized transcendental lattice of (X,αB) is

T (X,B) := Pic(X,B)⊥ ⊂ H̃(X,B,Z)

with the natural Hodge structure induced from H̃(X,B,Z).

Remark 3.2. In the untwisted case B = 0, we have Pic(X, 0) = H0(X,Z)⊕NS(X)⊕
H4(X,Z).
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Remark 3.3. If (X,α) is a twisted K3 surface, then we have Pic(X,B) ∼= Pic(X,B′)
resp. T (X,B) ∼= T (X,B′) for different choices of B-field lifts B,B′ ∈ H2(X,Q) of
α. We can therefore define Pic(X,α) resp. T (X,α) to be the isomorphism class of
the lattices Pic(X,B) resp. T (X,B).

Remark 3.4. More generally, we always have a finite index immersion
Z · (a, a ·B, 0)⊕NS(X)⊕H4(X,Z) ↪→ Pic(X,B).

Hence, Pic(X,B) has signature (2, n) if and only if NS(X) has signature (1, n) if
and only if X is algebraic.

The first question that arises is which lattices can occur as the generalized Picard
group of a twisted K3 surface.

Proposition 3.5. Let Γ be an even lattice of rank 3 ≤ rk Γ ≤ 12 and signature
(2, rk Γ − 2) which contains a primitive x ∈ Γ with (x.x) = 0. Then there exists a
twisted algebraic K3 surface (X,αB) with Pic(X,B) ∼= Γ.

Although the proof for the untwisted case was given in [27, Cor. 1.9] and carries
over with minor changes, we shall give the complete argument because the twisted
case does not seem to be treated in the literature.

Proof of Prop. 3.5. Recall that Λ̃ = Λ⊕ U is the extended Mukai lattice equipped
with the Mukai pairing 〈 , 〉. We denote the standard basis vectors of U = (H0 ⊕
H4)(M,Z) by e and f where e resp. f is the generator of the cohomology in degree
0 resp. 4.

We have rk Γ ≤ 12 = 1
2 · rk Λ̃, so there exists a primitive embedding Γ ↪→ Λ̃ by

[29, Thm. 1.12.4] and [26, Thm. II.5.3]. Since x is primitive with 〈x, x〉 = 0, we
may, after composing with an automorphism of Λ̃ if necessary, assume that x = f
by [33, Thm. 3].

Let us now define a Hodge structure of K3 type on Λ̃. As the Mukai pairing
restricted to T := Γ⊥ is non-degenerate, it defines a smooth quadric X ⊂ P(TC),
which is not contained in any hyperplane. In particular, for all α ∈ T , the intersec-
tion X ∩ α⊥ ⊂ X with the hyperplane α⊥ ⊂ P(TC) is a proper closed subset. By
the Baire category theorem, the set G :=

⋂
α∈T X r α⊥ of all isotropic vectors in

T who are not orthogonal to any α ∈ T is dense in X (with the complex topology).
Thus, the intersection of G with the open (again in the complex topology) subset
{x ∈ X | 〈x, x̄〉 > 0} ⊂ X is non-empty. In other words, there exists a p ∈ TC such
that

〈p, p〉 = 0, 〈p, p̄〉 > 0 and p⊥ ∩ T = 0.
We can now define a Hodge structure on Λ̃ by setting

Λ̃2,0 := C · p, Λ̃0,2 := C · p̄ and Λ̃1,1 := (Λ̃2,0 ⊕ Λ̃0,2)⊥.

As T ⊕ Γ ⊂ Λ̃ is of finite index, this Hodge structure satisfies Λ̃1,1 ∩ Λ̃ = Γ.
It is left to show that this is the Hodge structure of a twisted K3 surface. Since

x = f ∈ Γ and Γ is non-degenerate, there exists a δ0e+ δ2 + δ4f ∈ Γ with δ2 ∈ Λ,
δ0, δ4 ∈ Z and δ0 = 〈δ0e + δ2 + δ4f, f〉 6= 0. Let B := [(1/δ0) · δ2] ∈ H2(M,Q).
Then we have exp(B) ∈ ΓQ and therefore

exp(−B) · p ∈ exp(−B) · TC ⊆ exp(−B) · Γ⊥C ⊂ H2(M,C).
By the surjectivity of the period map, there exists a K3 surface X whose Calabi-Yau
form σ ∈ A2

C(M) satisfies [σ] = exp(−B)p. The the twisted K3 surface (X,αB) is
equipped with the generalized Calabi-Yau structure ϕ := exp(B)σ with period p
and has therefore the Hodge structure defined above. In particular, we have

Pic(X,B) = H̃1,1(X,B) ∩H∗(X,Z) ∼= Λ̃1,1 ∩ Λ̃ = Γ.
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As the signature of Pic(X,B) is (2, rk Γ − 2), the K3 surface X is algebraic by
Rem. 3.4. �

Remark 3.6. By Meyer’s theorem, an even lattice Γ of rank 5 ≤ rk Γ ≤ 12 and
signature (2, rk Γ− 2) satisfies the assumptions of the proposition.

The situation is very different for high Picard rank, where comparatively few
Picard groups can appear.
Proposition 3.7. Let (X,αB) be a twisted K3 surface. Then there exists a K3
surface Y with Db(Y ) ' Db(X,αB) if and only if Pic(X,B) contains a hyperbolic
plane U ⊂ Pic(X,B).

Proof. Every equivalence Db(Y ) ' Db(X,αB) induces a Hodge isometry H̃(Y,Z) ∼=
H̃(X,B,Z). Under this isometry (H0 ⊕H4)(Y,Z) ⊂ H̃1,1(Y,Z) maps to a hyper-
bolic plane U ⊂ Pic(X,B).

For the other direction, we assume that there is an embedding U ↪→ Pic(X,B).
Then there is a sublattice Γ ⊂ Pic(X,B) with Pic(X,B) = U⊕Γ. Since T (X,B) =
Pic(X,B)⊥ ⊂ H̃(X,B,Z) is primitive and H̃(X,B,Z) is unimodular, we have
`(T (X,B)) = `(Pic(X,B)) by [29, Prop. 1.6.1]. It follows that

`(T (X,B)) + 2 = `(Pic(X,B)) + 2 = `(Γ) + 2 ≤ rk Γ + 2
= rk Pic(X,B) = rk Λ̃− rk T (X,B).

Thus, we can conclude from [29, Thm. 1.14.4] that there exists a primitive embed-
ding ι : T (X,B) ↪→ Λ̃.

This embedding induces on Λ̃ a Hodge structure of K3 type with
Λ̃2,0 = ιC(T 2,0) and Λ̃1,1 = (Λ̃2,0 ⊕ Λ̃0,2)⊥

whose transcendental lattice is again ι(T (X,B)) ⊂ Λ̃. By the surjectivity of the
period map, this is the Hodge structure H̃(Y,Z) of some K3 surface Y .

We have now two primitive embeddings
T (X,B) ↪→ H̃(X,B,Z) and T (X,B) ∼= T (Y ) ↪→ H̃(Y,Z)

into Hodge structures with the same underlying lattice Λ̃. But by [29, Thm. 1.14.4],
the embedding T (X,B) ↪→ Λ̃ is unique up to automorphisms of Λ̃ (Note that we
need the existence of a hyperbolic plane U ⊂ T (X,B)⊥ in order to draw this
conclusion!). Hence, we can follow that there exists a lattice isometry

ϕ : H̃(X,B,Z) ∼−→ H̃(Y,Z) with ϕ�T (X,B)= ι.

This property of ϕ together with the choice of Y guarantees that ϕ is in fact a Hodge
isometry. Composing with idH0 ⊕ − idH2 ⊕ idH4 if necessary, we may in addition
assume that ϕ preserves the natural orientation of the four positive directions.

Căldăraru’s conjecture, proven in [19], now implies that ϕ can be lifted to a
Fourier-Mukai equivalence Φ: Db(X,αB) ∼= Db(Y ). �

In particular, this shows that the strong version of the Twisted Derived Global
Torelli theorem is true for the set of all (X,αB) with U ⊂ Pic(X,B).
Corollary 3.8. Let (X,αB) be a twisted K3 surface with Picard number ρ(X) ≥ 12.
Then there exists an K3 surface Y with Db(Y ) ∼= Db(x, αB).
Proof. If ρ(X) ≥ 12, NS(X) ⊂ Pic(X,B) contains a hyperbolic plane by [23,
Lem. 4.1]. �

Remark 3.9. Note that Cor. 3.8 has already been shown in [18, Prop. 7.3]. However,
the use of Căldăraru’s conjecture, which had not been verified then, simplifies the
proof significantly.
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3.2. The spinor norm of Hodge isometries. In this subsection, we investigate
which values the spinor norm can take on a Hodge isometry ϕ : H̃(X,B,Z) ∼−→
H̃(X,B,Z).

Definition 3.10. Let V be a real vector space equipped with a non-degenerate
symmetric bilinear form β : V × V → R. We define the real spinor norm

θ : O(V, β)→ {±1}
on the orthogonal group O(V, β) of (V, β) as follows:

For the reflection τv : w 7→ w − 2β(w,v)
β(v,v) v along a vector v ∈ V with β(v, v) 6= 0,

we put

(1) θ(τv) :=
{

1 if β(v, v) < 0,
−1 if β(v, v) > 0.

By the Cartan-Dieudonné theorem, every g ∈ O(V, β) is a composition of reflections.
Hence, we can extend the spinor norm θ to the whole automorphism group of (V, β).

If Λ is a lattice, we have a canonical inclusion O(Λ) ⊂ O(ΛR). We can therefore
define the spinor norm θ : O(Λ) → {±1} for Λ as the restriction of the real spinor
norm for ΛR to O(Λ).

Remark 3.11. Note that there is another definition of the spinor norm in the liter-
ature in which the signs in (1) are switched. However, our definition will be more
appropriate for our approach.

Restricting the attention to the Mukai lattice H̃(X,B,Z) of a twisted K3 surface
(X,αB), one can ask in which cases there exist a Hodge isometry ϕ : H̃(X,B,Z)
with θ(ϕ) = −1. This is the first question from the Introduction because ϕ has
spinor norm −1 if and only if it reverses the natural orientation of the four positive
directions.

In the untwisted case B ∈ H2(X,Z), such a g always exists and is given by
ϕ = − idH2(X,Z)⊕ id(H0⊕H4)(X,Z). Although ϕ is in general not a Hodge isometry
of a twisted Hodge structure H̃(X,B,Z), we have

Lemma 3.12. Let (X,αB) be a twisted K3 surface. If its generalized Picard
group contains a hyperbolic plane U ⊂ Pic(X,B), there exists a Hodge isometry
ϕ : H̃(X,B,Z) ∼−→ H̃(X,B,Z) with spinor norm θ(ϕ) = −1.

Proof. By Prop. 3.7, there is a K3 surface Y with H̃(X,B,Z) ∼= H̃(Y,Z). But
− idH2(Y,Z) is a Hodge isometry of H̃(Y,Z) with non-trivial spinor norm. �

Corollary 3.13. Let (X,αB) be a twisted K3 surface with Picard number ρ(X) ≥
12. Then there exists a Hodge isometry ϕ : H̃(X,B,Z) ∼−→ H̃(X,B,Z) with spinor
norm θ(ϕ) = −1.

Proof. If ρ(X) ≥ 12, NS(X) ⊂ Pic(X,B) contains a hyperbolic plane by [23,
Lem. 4.1]. �

Remark 3.14. The Hodge isometry with non-trivial spinor norm can also be con-
structed explicitly once the existence of a hyperbolic plane U ⊂ NS(X) has been
established.

One may ask oneself whether the condition in Lemma 3.12 is not only sufficient,
but also necessary. As the following counterexample shows, this is not the case.

Example 3.15. By Prop. 3.5, there is a twisted K3 surface (X,αB) with general-
ized Picard group Pic(X,B) = 〈4〉 ⊕ U(2). Then 〈x, x〉 ∈ 4Z for all x ∈ Pic(X,B).
In particular, Pic(X,B) contains no +2-classes and there is no primitive embedding
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U ↪→ Pic(X,B). Nevertheless, the orientation reversing isometry id〈4〉⊕ − idU(2)
of the generalized Picard group Pic(X,B) acts trivially on APic(X,B) and therefore
induces a Hodge isometry ϕ : H̃(X,B,Z) ∼−→ H̃(X,B,Z) of spinor norm θ(ϕ) = −1,
which does not arise as the reflection at some +2-class.

Now we want to show that for almost all B and almost all αB-twisted K3 surfaces
(X,αB), there does not exist a Hodge isometry ϕ : H̃(X,B,Z) ∼−→ H̃(X,B,Z)
of spinor norm θ(ϕ) = −1. To make this precise, note that for fixed B ∈ ΛQ,
every marked K3 surfaces (X,φ) can be made in a unique way into a twisted K3
surfaces by choosing the Brauer class αB := exp((φ−1(B))0,2). In this way, we
obtain a moduli space NB of marked, “B-twisted” K3 surfaces. By the Local
and Global Torelli Theorem, the global period map PB : NB → DB from the
moduli space NB of marked, B-twisted K3 surfaces to the period domain DB :=
expB ({x ∈ P(ΛC) | (x.x) = 0, (x.x̄) > 0}) is surjective and a local isomorphism.

Definition 3.16. A rational B-field B ∈ ΛQ is spinor trivial if there is some
A ⊂ NB such that NB rA is a countable union of closed submanifolds of positive
codimension and H̃(X,B,Z) does not have a Hodge isometry of spinor norm −1
for all (X,φ) ∈ A.

It is d-polarized spinor trivial if the same holds true for NB replaced by NB
d .

Theorem 3.17. Let B ∈ ΛQ be a rational B-field and a := min{n ∈ N∗ | aB ∈ Λ}.
Then B is spinor trivial if and only if neither 2

a ∈ Z nor (aB.aB)
2 ≡ 1 mod a.

Proof. As before we denote by NB the moduli space of marked B-twisted K3 sur-
faces and by DB := expB(D) = expB ({x ∈ P(ΛC) | (x.x) = 0, (x.x̄) > 0}) the
B-twisted period domain. Since the period map PB : NB → DB is surjective and a
local isomorphism, it suffices to show the corresponding lattice theoretic statement
for DB : Let B ∈ ΛQ and a := min{n ∈ N∗ | aB ∈ Λ}. Then there is a subset
A ⊂ DB whose complement is a countable union of linear sections of positive codi-
mension such that x + B ∧ x /∈ Fix(ḡ) for all x + B ∧ x ∈ A and all isometries
g ∈ O(Λ̃) of spinor norm −1 if and only if neither 2

a ∈ Z nor (aB.aB)
2 ≡ 1 mod a.

Here, ḡ denotes of course the linear map on P(ΛC) induced by g ∈ O(Λ) and Fix(g)
the set of its fixed points.

We first give the elementary

Lemma 3.18. Let t be an automorphism of a vector space V over a field k, σ(t)
the set of its eigenvalues, Eig(t;λ) the eigenspace of t corresponding to λ ∈ σ(t)
and t̄ the projective linear map on P(V ) induced by t. Then

Fix(t̄) =
⊔

λi∈σ(t)

P(Eig(t;λi)).

Proof. Follows directly from the definition of eigenspaces. �

Continuing with the proof of Theorem 3.17, we use Lemma 3.18 to obtain yet an-
other equivalent version of the statement. Let ΛBC := expB(ΛC). For all λ ∈ σ(gC),
the subset DB ∩ P(Eig(gC;λ)) ⊆ DB is a linear section of positive codimension if
and only if ΛBC * Eig(gC;λ) because DB

C ⊂ ΛBC is a non-degenerate quadric. As
there are only countably many isometries g ∈ O(Λ̃), it suffices to prove the follow-
ing: There exists an isometry g ∈ O(Λ̃) of spinor norm −1 with ΛBC ⊆ Eig(gC, λ)
for some λ ∈ σ(gC) if and only if either 2

a ∈ Z or (aB.aB)
2 ≡ 1 mod a.

On the other hand, the signature of the lattice Λ̃C is (4, 20) and dim ΛBC = 20 ≥
4 = min(4, 20). In particular, ΛBC contains a vector v ∈ ΛBC with (v.v) 6= 0. Thus if
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an isometry g ∈ O(Λ̃) has an eigenvalue λ ∈ σ(gC) with ΛBC ⊆ Eig(gC, λ), it follows
from

λ2(v.v) = (λv.λv) = (gv.gv) = (v.v)
that λ = ±1, i.e. that gC�ΛB

C
= ± id.

Let Γ := (ΛBC )⊥ ∩ Λ̃. Then by [14, Lemma 2.4, Prop. 2.5], there is a one-to-one
correspondence

{g ∈ O(Λ̃) | gC �ΛB
C

= ± id} ←→ {g ∈ O(Γ) | ḡ = ± id ∈ O(AΓ)}

where AΓ denotes the discriminant group of Γ. Since θ(± idΛB
C

) = ±1 and the
spinor norm is multiplicative, we have furthermore

{g ∈ O(Λ̃) | gC�ΛB
C

= ± id, θ(g) = −1} ←→ {g ∈ O(Γ) | ḡ = ± idAΓ , θ(g) = ∓1}.

Hence, the theorem follows from Prop. 3.19. �

Proposition 3.19. Let B ∈ ΛQ, a := min{n ∈ N∗ | aB ∈ Λ} and Γ := (ΛBC )⊥ ∩ Λ̃.
Then there exists a g ∈ O(Γ) with ḡ = ± id ∈ O(AΓ) and θ(g) = ∓1 if and only if
2
a ∈ Z or (aB.aB)

2 ≡ 1 mod a.

Proof. As we can always compose g with − idΓ, which satisfies θ(− id) = −1, we
may prove the following equivalent statement: There exists a g ∈ O(Γ) with ḡ =
− id ∈ O(AΓ) and θ(g) = 1 if and only if 2

a ∈ Z or (aB.aB)
2 ≡ 1 mod a.

We have Λ̃ = Λ⊕ U and denote the standard basis vectors of U again by e and
f . Then
(ΛBC )⊥ = (expB(ΛC))⊥ = expB(Λ⊥C ) = expB(〈e, f〉C) = 〈(expB · e), (expB · f)〉C

=
〈(
e+B + (B.B)

2 f
)
, f
〉
C

= 〈(e+B), f〉C.

Defining b := (aB.aB)
2 , we conclude that

Γ = (ΛBC )⊥ ∩ Λ̃ = 〈(e+B), f〉C ∩ Λ̃ = 〈(ae+ aB), f〉Z
has intersection matrix

( 2b −a
−a 0

)
.

Let us first find a necessary and sufficient condition for the existence of a g ∈ O(Γ)
with ḡ = − idAΓ , θ(g) = 1 and det g = 1. Since Γ is isotropic (i.e. there exists an
x ∈ Γ with (x.x) = 0), it follows from the classical theory of isotropic binary
quadratic forms that the only g ∈ O(Γ) with det g = 1 are ± idΓ, cf. [9, Lemma
13.3.2]. But θ(− id) = −1, so we are left with the question when id, which has
spinor norm 1, acts on the discriminant group AΓ as − id.

This is the case if and only if the finite abelian group AΓ is of the form AΓ =
(Z/2)k, k ∈ Z≥0. As Γ is of rank 2, AΓ has at most two generators. Hence,
id = − id ∈ O(AΓ) if and only if AΓ = (Z/2)k, k = 0, 1, 2. On the other hand, we
have |AΓ| = |disc Γ| = a2, so this is only possible if a = 1 or a = 2. For a = 1, one
immediately obtains AΓ ∼= 1, and in case a = 2, one sees that

AΓ =
〈(

1/2
0

)
,

(
0

1/2

)〉
∼= Z/2× Z/2.

We conclude that there exists an g ∈ O(Γ) with ḡ = − idAΓ , θ(g) = 1 and det g = 1
if and only if a = 1 or a = 2, i.e. 2

a ∈ Z.
We now look at the case ḡ = − idAΓ , θ(g) = 1 and det g = −1. Let us assume

that there exists such a g ∈ O(Γ). We shall use the following

Lemma 3.20. If a (non-degenerate) lattice Γ of rank 2 possesses an isometry
g ∈ O(Γ) of determinant det g = −1, its intersection matrix is, after some base
change, given by
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(i)
(

2b′ 0
0 2c′

)
or (ii)

(
2b′ b′

b′ 2c′
)

.

In the first case, g is given by
( 1 0

0 −1
)
. In the second case, we have g =

( 1 1
0 −1

)
.

Proof. Cf. [9, Lemma 3.1, Thm. 3.2, Lemma 3.4]. �

We can thus conclude the proof of Prop. 3.19 by treating the two cases of Lemma
3.20 separately.

In case (i), we have c′ < 0 and b′ > 0 because θ(g) = 1, and then b′ = 1 because
ḡ = − idAΓ . Therefore, Γ contains a 2-class, i.e. an element δ ∈ Γ with (δ.δ) = 2,
and g is the reflection τδ along δ. Conversely, every 2-class δ ∈ Γ gives, via the
reflection τδ, rise to an orthogonal decomposition Γ =

( 2 0
0 2c′

)
, c′ < 0, and thus to

a g ∈ O(Γ) with ḡ = − idAΓ , θ(g) = 1 and det g = −1.
Case (ii) cannot occur: Since Γ is isotropic, one finds x, y ∈ Z such that

0 =
(
x y

)
·
(

2b′ b′

b′ 2c′
)
·
(
x
y

)
= 2b′(x2 + xy) + 2c′y2.

It follows that v :=
(

2x2+2xy
b′(2x+y)2 ,

y2

b′(2x+y)2

)
∈ Γ∗ ⊂ ΓQ. Let v̄ ∈ AΓ be the induced

class in the discriminant group. As ḡ = − id ∈ O(AΓ), we must have

v + g(v) =
(

1
b′
, 0
)
∈ Γ,

i.e. |b′| = 1 and Γ =
(±2 ±1
±1 2c′

)
. In particular, this means that disc Γ = ±4c′ − 1 ≡ 3

mod 4. But Γ is isotropic, hence disc Γ has to be a square number, a contradiction.
We have shown that there exists a g ∈ O(Γ) with ḡ = − idAΓ , θ(g) = 1 and

det g = −1 if and only if there exists a 2-class δ ∈ Γ, i.e. some x, y ∈ Z with

2 =
(
x y

)
·
(

2b −a
−a 0

)
·
(
x
y

)
= 2x(bx− ay).

This is equivalent to x = bx − ay = ±1, or in other words, to b ≡ 1 mod a. As b
is by definition given by b = (aB.aB)

2 , this concludes the proof of Prop. 3.19. �

We now look at the situation of primitively polarized marked K3 surfaces of
degree 2d. We may assume without loss of generality that the polarization is with
respect to a class e′ + df ′ where e′, f ′ form the basis of some hyperbolic plane
U ⊂ Λ ⊂ Λ̃.

Let B ∈ ΛQ. As in the complex setting, every d-polarized marked K3 sur-
face (X,L, φ) gives rise to the (unique) twisted, d-polarized marked K3 surface
(X,αφ−1(B), L, φ). This makes sense because Pic(X) ⊂ Pic(X,B). That proced-
ure gives again rise to a moduli space NB

d of B-twisted, d-polarized marked K3
surfaces and a B-twisted polarized period map PBd : NB

d → DB
d from NB

d to the B-
twisted polarized period domain DB

d := expB(Dd) = expB({x ∈ P(ΛdC) | (x.x) =
0, (x.x̄) > 0}). As in the untwisted case, PBd is a local isomorphism, injective and
its image is dense in DB

d . We are immediately left to an

Open Question. Let B ∈ ΛQ and d ∈ N∗. What are necessary and sufficient
conditions for B to be d-polarized spinor trivial?

In the following, we shall describe a possible approach to solving this problem.
Since PBd is a local isomorphism with image dense in DB

d , it suffices again to answer
the corresponding lattice theoretic question: For which B ∈ ΛQ is there a subset
A ⊂ DB

d whose complement is a countable union of linear sections of positive
codimension such that x+B ∧ x /∈ Fix(ḡC) for all x+B ∧ x ∈ A and all isometries
g ∈ O(Λ̃) with θ(g) = −1.
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As in the proof of Thm. 3.17, one sees that such an A exists if and only if there
is no g ∈ O(Λ̃) with gC�ΛB

dC
= ± id and θ(g) = −1. Defining Γd := (ΛBdC)⊥ ∩ Λ̃, we

have furthermore a one-to-one correspondence

{g ∈ O(Λ̃) | gC�ΛB
dC

= ± id, θ(g) = −1} ←→ {g ∈ O(Γd) | ḡ = ± idAΓd
, θ(g) = −1}.

Thus, we are interested in the following

Open Question. Let B ∈ ΛQ, d ∈ N∗ and Γd := (ΛBdC)⊥ ∩ Λ̃. When does there
exist a g ∈ O(Γd) with ḡ = ± id ∈ O(AΓd

) and θ(g) = −1?

Composing with − idΓd
if necessary, one may additionally assume that det g = 1.

Recall that Λ̃ = Λ⊕U and we denoted the canonical basis of U by e, f . The basis
of a further hyperbolic plane U ⊂ Λ was denoted by e′, f ′ and our polarization was
with respect to the integral class ` = e′+df ′. Then B is of the form B̃+η1e

′+η2f
′

with (B̃.e′) = (B̃.f ′) = 0 and η1, η2 ∈ Q. If we additionally put B′ := B − η1`,
a := min{n ∈ N∗ | aB′ ∈ Λ}, b := (aB′.aB′)

2 and c := (aB′.`) = a(η2−dη1), we have

Γd = (ΛBdC)⊥ ∩ Λ̃ = expB(Λ⊥dC) ∩ Λ̃ = expB(〈e, `, f〉C) ∩ Λ̃
=
〈(
e+B + (B.B)

2 f
)
, `, f

〉
C
∩ Λ̃ = 〈e+B, `, f〉C ∩ Λ̃ = 〈e+B′, `, f〉C ∩ Λ̃

= 〈(ae+ aB′), `, f〉Z.

Hence, Γd is given by the intersection matrix 2b c −a
c 2d 0
−a 0 0

 .

Let us put PSL±(2,R) := {M ∈ GL(2,R) | detM = ±1}/〈−I2〉. It is known that
the group of real isometries of determinant 1 of the lattice

Γ0 :=

 0 0 −d
0 2d 0
−d 0 0


can be described by the isomorphism

ρ : PSL±(2,R) ∼−→ O+
R (Γ0),

[
α β
γ δ

]
7→ 1

αδ − βγ

α2 2αγ γ2

αβ αδ + βγ γδ
β2 2βδ δ2


and that ρ(PSL+(2,R)) = {g ∈ O+

R (Γ0) | θ(g) = 1}, ρ(PSL−(2,R)) = {g ∈
O+

R (Γ0) | θ(g) = −1}, cf. [31, Thm. 2.I.1] and [9, Lemma 5.1, Lemma 5.2]. Since
Γ0 and Γd are rationally equivalent via1 0 −b/d

0 1 −c/d
0 0 a/d

 ·
 0 0 −d

0 2d 0
−d 0 0

 ·
 1 0 0

0 1 0
−b/d −c/d a/d

 =

 2b c −a
c 2d 0
−a 0 0


and

( 1 0 0
0 1 0
−b/d −c/d a/d

)−1
=
( 1 0 0

0 1 0
b/a c/a d/a

)
, the set O+

R (Γd)∩θ−1(−1) of real isometries
of Γd of determinant 1 and spinor norm −1 consists of all elements of the form 1 0 0

0 1 0
b/a c/a d/a

 ·
α2 2αγ γ2

αβ αδ + βγ γδ
β2 2βδ δ2

 ·
 1 0 0

0 1 0
−b/d −c/d a/d


=

α2 − bγ2

d 2αγ − cγ2

d
aγ2

d

αβ − bγδ
d αδ + βγ − cγδ

d
aγδ
d

M N L

 , where (2)



19

M = bα2 + cαβ + dβ2 − bδ2

a
− b2γ2 + bcγδ

ad
,

N = 2bαγ + cαδ + cβγ + 2dβδ − cδ2

a
− bcγ2 + c2γδ

ad
and

L = δ2 + bγ2 + cγδ

d

and αδ − βγ = −1.
We want to find all g ∈ O+

Z (Γd) ∩ θ−1(−1) ⊂ O+
R (Γd) ∩ θ−1(−1) with ḡ =

± id ∈ O(AΓd
). The property g ∈ O+

Z (Γd) means that all entries of the matrix
in (2) have to be integral. Since

[
1
a ,−

c
2da ,

2b
a2 − c2

2a2d

]
∈ AΓd

= Γ∗d/Γd has order
2a2d and |disc Γd| = 2a2d, the discriminant group of Γd is the cyclic group AΓd

=〈[
1
a ,−

c
2da ,

2b
a2 − c2

2a2d

]〉
generated by this class. In particular, the second condition

ḡ = ± id ∈ O(AΓd
) implies that γ2

d ,
αγ
d ,

γδ
d ∈ Z because

[
0, 0, 1

a

]
,
[
0, 1

2d ,
c

2ad
]
∈ AΓd

.
It remains an open question whether we can find conditions on B which are

equivalent to the existence of such a g ∈ O+
Z (Γd) ∩ θ−1(−1).

4. Deformation of Fourier-Mukai kernels

We generalize the deformation theory of [1], which is itself based on the works
[16] and [32], to twisted Fourier-Mukai kernels.

4.1. Hochschild homology and cohomology. The notions of Hochschild homo-
logy and cohomology have been introduced for twisted sheaves by Căldăraru and
Willerton in [7]. Let us, for the convenience of the reader, recall the basic defini-
tions and properties. In the following, we shall always work with smooth projective
varieties (X,α) and (X ′, α′) of dimension m resp. m′ over some base A. All relative
constructions are taken over A if not noted otherwise, e.g. X ×X = X ×A X. As
O∆ may be regarded as an α−1 � α-twisted sheaf on X ×X, we can give

Definition 4.1. The N -th (relative) Hochschild cohomology of (X,α) is

HHN (X,α) := HomDb(X×X,α−1�α)(O∆,O∆[N ]).

Although Hochschild cohomology is in general not functorial, we have the fol-
lowing result.

Lemma 4.2. Let P ∈ Db(X×X ′, α−1�α′) such that the induced twisted Fourier-
Mukai transform ΦP : Db(X,α)→ Db(X ′, α′) is fully faithful. Then ΦP gives rise
to a natural map

ΦHHN

P : HHN (X ′, α′)→ HHN (X,α).

Proof. As ΦP∗O∆
X′

= ΦO∆
X′
◦ ΦP = idDb(X′,α′) ◦ΦP = ΦP , it follows from

Prop. 2.48 that P ∗ O∆X′
∼= P. Hence, convolution with P induces a morphism

P∗ : HHN (X ′, α′) = Hom(O∆X′ ,O∆X′ [N ])→ Hom(P,P[N ]), f 7→ idP ∗f.
Similarly, one has

∗P : HHN (X,α) = Hom(O∆X
,O∆X

[N ])→ Hom(P,P[N ]), f 7→ f ∗ idP .
As ΦP is fully faithful, composition with the left adjoint yields ΦPL

◦ ΦP ∼=
idDb(X,α) and therefore P ∗ PL ∼= O∆X

. Since ∗PL is left adjoint to ∗P,

Hom(O∆X
,O∆X

[N ]) Hom(P ∗ PL,O∆X
[N ])

Hom(P,P[N ])

∼

∗P ∼
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shows that the vertical map ∗P is an isomorphism. Thus, we can define the natural
morphism

ΦHHN

P : HHN (X ′, α′) P∗−−→ Hom(P,P[N ]) (∗P)−1

−−−−−→ HHN (X,α). �

Definition 4.3. The N -th (relative) Hochschild homology of (X,α) is

HHN (X,α) := HomDb(X×X,α−1�α)(∆X∗ω
−1
X [N −m],O∆X

).

It turns out that Hochschild homology is in fact functorial.

Lemma 4.4. Let P ∈ Db(X ×X ′, α−1 � α′). Then there is a natural map

ΦHHN

P : HHN (X,α)→ HHN (X ′, α′).

Proof. One has ∆X∗ω
−1
X ∗ P ∼= P ⊗

(
πX×X

′

1
)∗
ω−1
X . Furthermore, it follows from

Def. 2.46 that PR = PL ⊗
(
πX
′×X

1
)∗
ω−1
X′ ⊗

(
πX
′×X

2
)∗
ωX [m−m′]. Hence,

PR ∗
(
P ⊗

(
πX×X

′

1
)∗
ω−1
X

)
=
(
PL ⊗

(
πX
′×X

1
)∗
ω−1
X′ ⊗

(
πX
′×X

2
)∗
ωX [m−m′]

)
∗
(
P ⊗

(
πX×X

′

1
)∗
ω−1
X

)
=
(
πX
′×X×X′

13
)
∗

((
πX×X

′×X
12

)∗PL ⊗ (πX′×X×X′2
)∗
ωX

⊗
(
πX
′×X×X′

13
)∗(

πX
′×X′

1
)∗
ω−1
X′ [m−m

′]⊗
(
πX
′×X×X′

23
)∗P ⊗ (πX′×X×X′2

)∗
ω−1
X

)
∼= (PL ∗ P)⊗

(
πX
′×X′

1
)∗
ω−1
X′ [m−m

′].

As above, convolution from the left with PR and from the right with P gives a
map

HHN (X,α) = Hom(∆X∗ω
−1
X [N−m],O∆X

)→ Hom(PL∗P⊗π∗1ω−1
X′ [N−m

′],PR∗P)

sending f to idPR
∗f ∗ idP . Since ∗PL a ∗P and ∗P a ∗PR, we have a unit

η : O∆X′ → PL ∗ P and a counit ε : PR ∗ P → O∆X′ . Together with the identity
π∗1ω

−1
X′ ⊗O∆X′

∼= ∆X′∗ω
−1
X′ , these give rise to a natural map

ΦHHN

P : HHN (X,α)→ Hom(O∆X′ ⊗ π
∗
1ω
−1
X′ [N −m

′],O∆X′ ) ∼= HHN (X ′, α′)
f 7→ ε ◦ (idPR

∗f ∗ idP) ◦ η. �

Definition 4.5. A (right) action of HH∗(X,α) on HH∗(X,α) is given by the map

Hom(∆X∗ω
−1
X [i−m],O∆X

)⊗Hom(O∆,O∆[j])→Hom(∆X∗ω
−1
X [i− j −m],O∆X

)
f ⊗ g 7→ (g ◦ f)[−i].

This action is compatible with the action of ΦHH∗
P and ΦHH∗

P in the sense of

Proposition 4.6. Let P ∈ Db(X ×X ′, α−1 � α′). Then for all c ∈ HHj(X ′, α′),
the following diagram commutes

HHi(X,α) HHi(X ′, α′)

HHi−j(X,α) HHi−j(X ′, α′).

ΦHH∗
P

ΦHH∗
P (c) c

ΦHH∗
P

Proof. The proof merely consists of plugging in the definitions of ΦHH∗
P and ΦHH∗

P
from the previous lemmata and is completely analogous to the untwisted case. For
details (in the untwisted case) and a wonderful diagram see e.g. [1, Prop. 6.1]. �
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4.2. Atiyah classes. We continue to generalize the deformation theory of [1] to
the twisted case.

Definition 4.7. Let (Y, β) be a projective variety, I∆Y
the ideal sheaf of the di-

agonal ∆Y ⊂ Y × Y and 2∆Y ⊂ Y × Y the first-order thickening of ∆Y with
ideal sheaf I2

∆Y
. Then the universal Atiyah class of Y is the class A(Y,β) ∈

Ext1
Db(Y×Y,β−1�β)(O∆Y

,∆Y ∗ΩY ) induced by the boundary map O∆Y
→ ∆Y ∗ΩY [1]

of the obvious short exact sequence (in Db(Y × Y, β−1 � β))

0→ ∆Y ∗ΩY → O2∆Y
→ O∆Y

→ 0. (3)

Definition 4.8. With the same definition as in the previous definition, let E ∈
Db(Y, β). Then the Atiyah class A(E) ∈ Ext1

Db(Y,β)(E , E⊗ΩY ) of E is the morphism
E → E ⊗ ΩY [1] obtained by applying the natural transformation of Fourier-Mukai
functors ΦO∆Y

→ Φ∆Y ∗ΩY [1] induced by A(Y,β) to E .

Remark 4.9. The Atiyah class A(E) can also be described as the connecting homo-
morphism of the exact triangle

E ⊗ ΩY → J1(E)→ E

which is obtained by applying the short exact sequence (3) of Fourier-Mukai kernels
to E . Here J1(E) := π2∗(π∗1E ⊗ O2∆Y

) denotes the first jet space of E .

We know look at the case of later interest where (Y, β) = (A×B, βA � βB) is a
product.

Definition 4.10. Assume that (Y, β) = (A × B, βA � βB) and let E ∈ Db(Y, β).
Then the isomorphism ΩY

∼−→ π∗1ΩA ⊕ π∗2ΩB induces a splitting

θ : Ext1
Db(Y,β)(E , E ⊗ ΩY ) ∼−→ Ext1

Db(Y,β)(E , E ⊗ π∗1ΩA)⊕ Ext1
Db(Y,β)(E , E ⊗ π∗2ΩB).

The partial Atiyah classes AA(E) and AB(E) are the components of the image
θ(A(E)) = (AA(E), AB(E)) of A(E) under this isomorphism.

Lemma 4.11. Let P ∈ Db(X ×X ′, α−1 � α′). Applying the exact Fourier-Mukai
functor ∗P resp. P∗ to the exact triangle

∆X∗ΩX → O2∆X
→ O∆X

resp. ∆X′∗ΩX′ → O2∆X′ → O∆X′

in Db(X ×X,α−1 � α) resp. Db(X ′ ×X ′, α′−1 � α′) yields an exact triangle

P ⊗ ΩX → O2∆X
∗ P → P resp. P ⊗ ΩX′ → P ∗ O2∆X′ → P

in Db(X × X ′α−1 � α′). The connecting homomorphism of this triangle is the
relative Atiyah class AX(P) resp. AX′(P).

Proof. Once more, the proof is entirely similar to the untwisted one in [1, Lemma
7.2, Lemma 7.3] (Note that the short exact sequence (7.10) has to be considered in
Db(A×B ×A, β−1

A � 1� βB). �

Lemma 4.12. The two partial Atiyah classes A1(O∆X
) and A2(O∆X

) of O∆X
∈

Db(X ×X,α−1 � α) satisfy the relation

A1(O∆X
) = A(X,α) = −A2(O∆X

) ∈ Ext1
Db(X×X,α−1�α)(O∆X

,∆X∗ΩX)

where we canonically identify O∆X
⊗ π∗i ΩX ∼= ∆X∗(∆∗Xπ∗i ΩX) ∼= ∆X∗ΩX via the

projection formula.

Proof. We indicate the caveats when transferring the untwisted proof [1, Lemma
7.4, Cor. 7.5] to the twisted one.
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Note that Lemma 7.4 only makes sense if Y = (X ×X,α−1 � α) and Z = ∆X

which is the case we will need in the progress of the proof. As usual, we can then
regard (7.15) as a sequence in Db(X ×X,α−1 � α) and the short exact sequence

0→ ΩY ⊗O∆Y
→ O2∆Y

→ O∆Y
→ 0

in Db(X ×X ×X ×X, (α−1 � α)−1 � (α−1 � α))).
Later, we again have to regard the conormal sheaf I∆X

/I2
∆X

and the cotangent
sheaf Ω∆X

as α−1 � α-twisted sheaves on X ×X. �

Remark 4.13. The minus sign in the Lemma comes from choosing the canonical
identification of I∆X

/I2
∆X

with ∆X∗ΩX via π1. If we chose the other canonical
identification via π2, the minus sign would occur before A1(O∆X

).

4.3. HKR isomophism and decomposition theorem. Hochschild homology
and cohomology draws its significance from its close relation with deformation the-
ory. This is due to the (relative) Hochschild-Kostant-Rosenberg isomorphism which
leads to a direct sum decomposition of Hochschild homology and cohomology sim-
ilar to the Hodge decomposition.

We start by constructing the HKR-isomorphism I : ∆∗YO∆Y
→
⊕

i ΩiY [i].

Definition 4.14. Let (Y, β) be a smooth proper twisted variety over some base A.
The universal Atiyah class A(Y,β) ∈ Ext1

Db(Y×Y,β−1�β)(O∆Y
,∆Y ∗ΩY ) gives, via its

exponential, rise to a morphism

exp(A(Y,β)) : O∆Y
→
⊕
i

∆Y ∗ΩiY [i]

in Db(Y ×Y, β−1�β). The image of this morphism under the adjunction isomorph-
ism

Hom(O∆Y
,
⊕
i

∆Y ∗ΩiY [i]) ∼= Hom(∆∗YO∆Y
,
⊕
i

ΩiY [i])

is called the HKR-isomorphism

I : ∆∗YO∆Y
→
⊕
i

ΩiY [i].

Lemma 4.15. This naming is justified, i.e. I is really an isomorphism.

Proof. Cf. [3, Thm. 3.1.3]. �

This Lemma provides us with the promised Hodge-like decomposition.

Definition 4.16. Let Y be a smooth proper variety over some base A of dimension
m. Then the isomorphisms

IHKR : HH∗(Y, β) ∼= Ext∗Db(Y )(∆∗YO∆,OY ) ◦I
−1

−−−→ Ext∗Db(Y )(
⊕
i

ΩiY [i],OY ) ∼=

∼=
⊕
i+j=∗

Hj(Y,
i∧
TY ) td(X)−1/2y−−−−−−−→

∼

⊕
i+j=∗

Hj(Y,
i∧
TY )

IHKR : HH∗(Y, β) = Ext−∗Db(Y×Y,β−1�β)(∆Y ∗ω
−1Y [−m],O∆Y

) ∼=
∼= Ext−∗Db(Y )(OY ,∆

∗
YO∆Y

) I◦−→ Ext−∗Y (OY ,
⊕
i

ΩY [i]) ∼=
⊕
i−j=∗

Hj(ΩiY )

td(X)1/2∧−−−−−−−→
∼

⊕
i−j=∗

Hj(ΩiY )

are called the HKR-isomorphisms for Hochschild cohomology resp. homology.
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Inclusions such as H1(TY ) ⊂ HH2(Y ) will always be understood under these
isomorphisms.

Remark 4.17. The fact that IHKR resp. IHKR is an isomorphism is sometimes
called the decomposition theorem for Hochschild cohomology resp. homology.

The contraction with td(X)−1/2 resp. the exterior product with td(X)1/2 are
added in order to make firstly the action of HH∗(Y, β) on HH∗(Y, β) compatible
with the action of H∗(

∧∗
TY ) on H∗(Ω∗Y ), and secondly the map ΦHH∗

P compatible
with ΦHP . Let us make this precise. As the proofs of the relevant statements are
quite technical, we shall henceforth restrict ourselves to the untwisted case (i.e. the
Brauer class β will be trivial and suppressed in the notation) which is completely
sufficient for our treatment and has been discussed exhaustively in the literature.
Nevertheless, it is expected that everything can be generalized to the twisted world
in the obvious ways.

Proposition 4.18. Let Y be a smooth proper variety. Then the HKR-isomorphism
IHKR for Hochschild cohomology is a ring isomorphism (with the ring structure on
HH∗(Y ) given by composition of maps). Furthermore, the module structures of
HH∗(Y ) over HH∗(Y ) and

⊕
i−j=∗H

j(ΩiY ) over
⊕

i+j=∗H
j(Y,

∧i
TY ) are compat-

ible, i.e. for all c ∈ HH∗(Y ), the following diagram commutes:

HH∗(Y )
⊕

i−j=∗H
j(ΩiY )

HH∗(Y )
⊕

i−j=∗H
j(ΩiY ).

IHKR

c IHKR(c)y

IHKR

Proof. Cf. [5, Cor. 1.5] and [4, Thm. 1.4]. �

Lemma 4.19. For all smooth projective varieties X, X ′ and P ∈ Db(X×X ′), the
following diagram commutes:

HH∗(X) HH∗(X ′)

H∗(X,C) H∗(X ′,C).

ΦHH∗
P

IHKR IHKR

ΦH
P

Proof. Cf. [25, Thm. 1.2]. �

4.4. First-order liftings of Fourier-Mukai kernels. In this subsection, we will
use the theory built up so far to give a criterion for the liftability of Fourier-
Mukai kernels to first order. We shall again stick to the untwisted case, which has
been developed in [16] and [32], and refrain from giving a generalization to twisted
Fourier-Mukai kernels. We will once more follow the simplified account in [1].

Let Rn := C[t]/(tn+1) and An := SpecRn. Let Y be a smooth proper variety.
If f1 : Y1 → A1 is a smooth proper first-order deformation of Y , it has been shown
in [16] that the relative Kodaira-Spencer class which parametrizes this deformation
provides an obstruction for complexes E ∈ Db(Y ) to be liftable to E1 ∈ Db(Y1).
Recall

Definition 4.20. Let fn+1 : Yn+1 → An+1 be a smooth proper (n + 1)-th-order
deformation of Y . The (relative) Kodaira-Spencer class κYn ∈ H1(Yn, TYn) ∼=
Ext1

Yn
(ΩYn

,OYn
) of order n is the extension class induced by the boundary map

ΩYn
→ OYn

[1] of the natural short exact sequence
0→ OYn → ΩYn+1/C�Yn→ ΩYn → 0.
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Note that as always, all relative constructions are taken over the base if not noted
otherwise, so ΩYn

= ΩYn/An
.

Proposition 4.21. Let f1 : Y1 → A1 be a smooth proper first-order deformation
of a smooth proper variety Y with Kodaira-Spencer class κY1 and in : Y ↪→ Y1
the canonical inclusion. Let E ∈ Db(Y ) be a (perfect) complex with Atiyah class
A(E) : E → E ⊗ ΩY [1]. Then there exists an E1 ∈ Db(Y1) with derived restriction
i∗E1 ' E if and only if the relative obstruction class o(E) ∈ Ext2

Y (E,E) corres-
ponding to the map

(idE ⊗κY1) ◦A(E) : E → E ⊗ ΩY [1]→ E ⊗OY [2] = E[2]
is trivial.

Proof. Cf. [20, Cor. 3.4]. �

In [16], [1, Thm. 7.1], this criterion is used to give a sufficient condition for
Fourier-Mukai kernels to be liftable to first order.

Theorem 4.22. Let X and X ′ be smooth proper varieties and X1 → A1 resp.
X ′1 → A1 smooth proper deformations of X resp. X ′. If P ∈ Db(X × X ′) is a
Fourier-Mukai kernel such that ΦHH∗

P (κX1) = κX′1 , it deforms to a kernel P1 ∈
Db(X1 ×A1 X

′
1).

Proof. By the previous Proposition, we only have to show that
(4) 0 =

(
idP ⊗κX1×A1X

′
1

)
◦A(P ) = (idP ⊗π∗1κX)◦AX(P )+(idP ⊗π∗2κX′)◦AX′(P )

in Ext2
X×X′(P, P ). The strategy is to explicitly compute the images of κX1 , κX′1

under the inclusions H1(X,TX) ⊂ HH2(X), H1(X,TX) ⊂ HH2(X) via the cohomo-
logical HKR-isomorphisms, compare them to the summands in (4) and finally use
ΦHH∗
P (κX1) = κX′1 .
Since td(X)−1/2y acts as the identity on H1(X,TX) and the component of the

HKR-isomorphism I in degree 1 is given by the adjoint of AX under ∆Y , we have
(IHKR)−1(κX1) = (∆X∗κX1) ◦ AX : O∆X

→ O∆X
[2].

Using the natural identification O∆X
⊗ π∗i ΩX ∼= ∆X∗ΩX from Lemma 4.12, we ob-

tain (IHKR)−1(κX1) = (idO∆X
⊗π∗1κX1) ◦ A1(O∆X

). Similarly, (IHKR)−1(κX′1) =
−(idO∆

X′
⊗π∗2κX′1) ◦A2(O∆X′ ).

Now ΦHH∗
P (κX1) = κX′1 means by the definition of Fourier-Mukai transforms in

Hochschild cohomology that (P∗)(κX1) = (∗P )(κX′1). But by Lemma 4.11, we have
(P∗)(κX1) = (P∗)((idO∆X

⊗π∗1κX1) ◦A1(O∆X
)) = (idP ⊗π∗1κX1) ◦AX(P ) and

(∗P )(κX′1) = (∗P )(−(idO∆
X′
⊗π∗2κX′1) ◦A2(O∆X′ )) = −(idP ⊗π∗2κX′1) ◦AX′(P ).

This proves equation (4). �

4.5. Higher-order liftings of Fourier-Mukai kernels. We shall finish our gen-
eral analysis of infinitesimal deformations of Fourier-Mukai kernels by considering
deformations to higher order. The problem of deforming complexes of sheaves to
higher order can be reduced to the problem of deforming to first order by T 1-lifting
methods. Since the arguments are rather formal, we shall refrain from developing
the theory and instead merely state the (sole) result needed for our purposes. For
introductions to the theory, see [30] and [22], or again [1, Sect. 7.2].

We shall consider families over the Artinian spaces
An := SpecC[t]/(tn+1) and
Bn := SpecC[x, y]/(xn+1, y2) = An ×A1.
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We have inclusions in : An ↪→ An+1 and the map t 7→ x + y induces a natural
surjection qn : Bn � An+1. Then every inductive system fn : Xn → An of n-th-
order-deformations of some smooth proper variety X induces via base change with
the pn an inductive system gn : X̃n := Xn+1 ×An+1 Bn → Bn. There are again
inclusions jn : X̃n ↪→ X̃n+1 and canonical morphisms X̃n → Xn+1, which we by
abuse of notation call again qn. Now n-th-order deformations Xn−1 ↪→ Xn can be
reduced to (already understood) first-order deformations Xn−1 ↪→ X̃n−1. In fact,
one can show

Proposition 4.23. Let Xn → An and X̃n → Bn be inductive systems of de-
formations as above and Pn ∈ Db(Xn). If there is some first-order deformation
P̃n+1 ∈ Db(X̃n) of Pn with j∗n−1P̃n+1 = q∗n−1Pn ∈ Db(X̃n−1), there exists a
Pn+1 ∈ Db(Xn+1) with i∗nPn+1 = Pn ∈ Db(Xn) and q∗nPn+1 = P̃n+1 ∈ Db(X̃n).

Proof. Cf. [1, Prop. 7.6]. �

5. A strong version of the Twisted Derived Global Torelli Theorem

In [16], Huybrechts, Macr̀ı and Stellari show the following strong version of the
Derived Global Torelli theorem.

Theorem 5.1 (Huybrechts, Macr̀ı, Stellari). Two projective K3 surfaces X and X ′
are derived equivalent if and only if there exists a Hodge isometry ϕ : H̃(X,Z) ∼−→
H̃(X ′,Z). Furthermore, a Hodge isometry ϕ : H̃(X,Z) ∼−→ H̃(X,Z) is induced by
a Fourier-Mukai equivalence ΦP : Db(X) ∼−→ Db(X ′) if and only if ϕ preserves the
natural orientation of the four positive directions.

Proof. Cf. [16, Cor. 4.10]. �

In the twisted case, only a weak version is known so far.

Theorem 5.2. If ϕ : H̃(X,B,Z) ∼−→ H̃(X ′, B′,Z) is a Hodge isometry between two
twisted projective K3 surfaces (X,αB) and (X ′, αB′) which preserves the natural
orientation of the four positive directions, there is a Fourier-Mukai equivalence
ΦP : Db(X,αB) ∼−→ Db(X ′, αB′) such that ϕ = ΦHP .

Proof. Cf. [19, Thm. 0.1]. �

In this section, we shall try to use the deformation theory developed before to
prove parts of a strong version of the Twisted Derived Global Torelli theorem.

Conjecture 5.3. Two twisted projective K3 surfaces (X,αB) and (X ′, αB′) are
derived equivalent if and only if there exists a Hodge isometry ϕ : H̃(X,B,Z) ∼−→
H̃(X ′, B′,Z) which preserves the orientation of the four natural directions. Fur-
thermore, a Hodge isometry ϕ : H̃(X,B,Z) ∼−→ H̃(X,B′,Z) is induced by a Fourier-
Mukai equivalence ΦP : Db(X,αB) ∼−→ Db(X ′, αB′) if and only if ϕ preserves the
natural orientation of the four positive directions.

Remark 5.4. The derived equivalence is here only equivalent to the existence of
an orientation preserving Hodge isometry because it is not clear whether arbitrary
twisted projective K3 surfaces are equipped with an orientation reversing Hodge
isometry, cf. the open question from Sect. 3. For untwisted K3 surfaces, such an
orientation reversing Hodge isometry is given by idH0⊕H4 ⊕− idH2.
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5.1. Algebraic families. We use the description of twisted sheaves as ordinary
sheaves on Brauer-Severi varieties to obtain a good deformation theory of twisted
K3 surfaces.

By results of Yoshioka, every family (X ,H) → S of polarized K3 surfaces with
base point s0 can be made into a family of twisted polarized K3 surfaces which
reduces over the base point s0 to (Xs0 , α0) for some given Brauer class α0 ∈ Br(Xs0).
Let us make this precise.

Proposition 5.5. Let f : (X ,H) → S be a family of polarized K3 surfaces and
α0 ∈ Br(Xs0). Then there exists a smooth morphism U → S whose image contains
s0 and a projective bundle Y → X ×S U such that the Brauer class associated to
Ys0 is δ(Ys0) = α0.

Proof. By [34, Prop. 3.15] there is a projective bundle p : Y → Xs0 such that
δ(Y ) = α0 and Gp is µ-stable. The claim now follows from [34, Prop. 3.17]. �

On the other hand, we have

Proposition 5.6. The periods of all twisted projective K3 surfaces (X,αB) whose
derived categories Db(X,αB) do not contain any spherical objects (i.e. any E ∈
Db(X,αB) with Hom(E , E [∗]) = H∗(S2,C)) are dense in the period domain

D̃ = exp(ΛR)({x ∈ P(ΛC) | (x.x) = 0, (x.x̄) > 0, ∃h ∈ Λ with h2 > 0, (x.h) = 0})

of all twisted algebraic K3 surfaces. For two such (X,αB), (X ′, α′B), Conj. 5.3
holds true.

Proof. This is [15, Cor. 3.21, Cor. 3.23]. �

The obvious question which springs to mind is whether these two results go to-
gether. In other words, does there, for every twisted projective K3 surface (X,αB),
exist a family f : (X ,H) → S together with a projective bundle p : Y → X such
that δ(Ys0) = αB and Db(Xt, δ(Yt)) contains no spherical object for some dense
subset T ⊂ S? If a Hodge isometry ϕ : H̃(X,B,Z) ∼−→ H̃(X ′, B′,Z) which does
not preserve the natural orientation of the positive four directions can be lifted to
a Fourier-Mukai equivalence ΦP : Db(X,αB) ∼−→ Db(X ′, αB′), the corresponding
twisted Fourier-Mukai kernel P ∈ Db(Y ×Y ′/(X,X ′)) deforms to any order by the
results from the previous section. Using algebraicity, it even deforms over some
open subset of Y × Y ′. Hence, if there were dense subsets T ⊂ S with the above
properties, we would obtain a contradiction to Prop. 5.6 (because the induced co-
homological Fourier-Mukai transforms stay constant under this deformation), and
therefore a proof of the Conjecture. Unfortunately, it turns out that the answer to
the above question is negative.

Recall that in Def. 2.16, we defined the Brauer class δ(Y ) associated to a project-
ive bundle Y → X as the image of the cohomology class [Y ] ∈ H1(X,PGL(r+ 1))
of Y under the connecting homomorphism of the short exact sequence

1→ O∗X → GL(r + 1)→ PGL(r + 1)→ 1.

The diagram

1 µr+1 SL(r + 1) PGL(r + 1) 1

1 O∗X GL(r + 1) PGL(r + 1) 1

of Rem. 2.17 leads us to
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Definition 5.7. For a projective bundle p : Y → X which corresponds to [Y ] ∈
H1(X,PGL(r + 1)), the class δ′(Y ) ∈ H2(X,µr+1) is the image of [Y ] under the
connecting homomorphism induced by the short exact sequence

1→ µr+1 → SL(r + 1)→ PGL(r + 1)→ 1.
Furthermore, κ : H2(X,µr+1)→ H2(X,O∗X) is the homomorphism induced by the
inclusion of sheaves µr+1 ↪→ O∗X .

This definition allows us to render more precisely how Brauer classes stay con-
stant in families of twisted K3 surfaces.

Lemma 5.8. Let f : (X ,H) → S be a flat family of polarized K3 surfaces over a
simply connected base S together with a projective bundle p : Y → X . Then the
cohomology classes δ′(Ys) ∈ H2(Xs, µr+1) stay constant (under the canonical iden-
tifications H2(Xs, µr+1) ∼= H2(Xs,Z)⊗ µr+1 ∼= H2(Xs0 , µr+1) with the cohomology
group corresponding the base point s0).

Proof. By [34, Thm. 3.16, Step 4], we know that we can find a vector bundle G on Y
whose fibres satisfy Gs ∼= Gps for the old extensions Gps of the bundles ps : Ys → Xs
from Def. 2.21. Now we can use

Lemma 5.9. (i) For a projective bundle p : Y → X of relative dimension r over a
K3 surface X, the pullback of δ′(Y ) ∈ H2(X,µr+1) under p is given by p∗(δ′(Y )) =
[c1(Gp)] ∈ H2(Y, µr+1).

(ii) The canonical maps p∗ : H2(X,µr′) → H2(Y, µr′) are injective for all r′ ∈
N∗. In particular, the class δ′(Y ) ∈ H2(X,µr+1) is uniquely determined by (i).

Proof. Cf. [34, Lemma 1.3, Lemma 1.6]. �

Bearing in mind this result, we can easily finish the proof of Lemma 5.8: Since
f ◦ p : Y → X → S is a flat family and G is locally free, the first Chern classes
c1(Gs) ∈ H2(Ys,Z) of the fibres Gs stay constant under the canonical identifications
H2(Ys,Z) ∼= H2(Ys0 ,Z). In particular, this is true for the [c1(Gs)] ∈ H2(Ys, µr+1),
and then by Lemma 5.9 also for the family δ′(Ys). �

We can now use this Lemma to explain why for a twisted projective K3 surface
(X,αB), there does in general not exist an algebraic deformation f : (X ,H)→ S to-
gether with a projective bundle p : Y → X such that δ(Ys0) = αB and Db(Xt, δ(Yt))
contains no spherical object for some dense subset T ⊂ S.

Proposition 5.10. Let (X,α) be a twisted projective K3 surface of Picard rank
ρ(X) = 1. Let furthermore f : (X ,H) → S be a (flat) family of polarized K3
surfaces with Xs0 = X and Y → X be a projective bundle of relative dimension r
such that δ(Ys0) = α. Then if Pic(Xs0 , α) contains a class x ∈ Pic(Xs0 , α) with
(x.x) = −2, the same holds true for all s in some open neighbourhood U ⊂ S of s0.

Proof. By passing to a smaller open subset if necessary, we may assume without loss
of generality that S is simply connected. Choose a marking φs0 : H2(Xs0 ,Z) ∼−→ Λ
such that φs0(Hs0) = ` := e′+df ′ with e′, f ′ the canonical basis of some hyperbolic
plane U ⊂ Λ and d ∈ N∗. Since S is simply connected, φs0 induces canonical
markings φs : H2(Xs,Z) ∼−→ Λ which satisfy φs(Hs) = ` for all s ∈ S.

Let now B ∈ Λ such that [φ−1
s0 (B)] = δ′(Ys0) ∈ H2(X,µr+1). From the choice

of the markings φs, it follows that [φ−1
s (B)] = δ′(Ys) ∈ H2(Xs, µr+1) for all s ∈ S.

Hence, φ−1
s (B) is a B-field lift for all twisted K3 surfaces (Xs, δ(Ys)). As ρ(X) = 1,

we have Pic(X, 0) ∼=φs0
(U ⊕ 〈`〉) ∩ Λ̃, and therefore

Pic(X,φ−1
s0 (B)) ∼=φs0

expB(U ⊕ 〈`〉) ∩ Λ̃ = (ΛBdC)⊥ ∩ Λ̃ =: Γd.
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Since we have φs(Hs) = ` for all s ∈ S, we deduce furthermore that there is an
embedding of lattices

Pic(X,α) ∼= Pic(X,B) ∼= Γd ↪→ Pic(Xs, φ−1
s (B)) ∼= Pic(Xs, δ(Ys)).

In particular, if Pic(X,α) contains a (−2)-class, so do all the Pic(Xs, δ(Ys)). �

On the other hand, one can in general only exclude the existence of a spherical
object in Db(Xt, δ(Yt)) if Pic(Xt, δ(Yt)) contains no (−2)-class. As a result, we
cannot necessarily find a dense subset T ⊂ S with the property that Db(Xt, δ(Yt))
contains no spherical object for all t ∈ T because the lattice Γd might represent −2.

5.2. The strong Twisted Derived Global Torelli theorem for sheaf ker-
nels. By the previous section, we cannot pass from generic to arbitrary twisted K3
surfaces by algebraic deformations in order to prove Conj. 5.3. We therefore try to
adapt the approach taken in the proof of strong version of the (untwisted) Global
Derived Torelli theorem in [16] to the twisted case. As a weak Twisted Derived
Global Torelli theorem has already been shown in [19] (cf. Thm. 5.2, we have to
prove the following

Conjecture 5.11. Let ΦP : Db(X,αB) ∼−→ Db(X ′, αB′) be a Fourier-Mukai equi-
valence between to twisted K3 surfaces (X,αB) and (X ′, αB′). Then the induced
Hodge isometry ϕ := ΦHP : H̃(X,B,Z) ∼−→ H̃(X ′, B′,Z) preserves the natural ori-
entation of the four positive directions.

In order to transfer the geometric arguments from [16] to our situations, we need

Lemma 5.12. In the situation of Conj. 5.11, we may assume that ϕ((1, 0, 0)) =
(1, 0, 0), ϕ((0, 0, 1)) = (0, 0, 1), that ϕ(B) = B′ and that ϕ maps the ample cone
Amp(X) isomorphically onto Amp(X ′) or −Amp(X ′), depending on whether ϕ
preserves the natural orientation of the positive four directions or not.

Remark 5.13. In particular, ϕ can be assumed to preserve the grading of H̃.

Proof. The proof can be taken almost word for word from the proof of Thm. 5.2 in
[19, Thm. 0.1]. The idea is to compose ϕ with standard (cohomological) Fourier-
Mukai isometries who are known preserve the natural orientation of the positive
four directions. Using the theory of moduli spaces of αB-twisted sheaves on X
with some Mukai vector v and the shift functor, one can first reduce to the case
ϕ((0, 0, 1)) = ±(0, 0, 1). Composing with Fourier-Mukai equivalences which come
from integral B-fields, on arrives at ϕ((1, 0, 0)) = (1, 0, 0), ϕ((0, 0, 1)) = (0, 0, 1).
Changing B′ by a (1, 1)-class yields ϕ(B) = B′. Lastly, as ϕ preserves the grading of
H̃, composing with reflections at (−2)-classes guarantees ϕ(Amp(X)) = Amp(X ′)
or ϕ(Amp(X)) = −Amp(X ′), depending on whether ϕ preserves the orientation
of the positive four directions or not. For details see [19]. �

Using these assumptions, we can now generalize [19, Lemma 4.8] and obtain a
proof of Conj. 5.11 in the case that the Fourier-Mukai kernel P is a sheaf.

Proposition 5.14. Let (X,αB) and (X ′, αB′) be twisted K3 surfaces and P ∈
Coh(X × X ′, α−1

B � αB′) be a twisted sheaf such that the corresponding Fourier-
Mukai transform ΦP : Db(X,αB) ∼−→ Db(X ′, αB′) is an equivalence. Then the in-
duced Hodge isometry ϕ := ΦHP : H̃(X,B,Z) ∼−→ H̃(X ′, B′,Z) preserves the natural
orientation of the four positive directions.

Proof. Assume that ϕ reverses the natural orientation of the positive four directions,
i.e. ϕ(Amp(X)) = −Amp(X ′). Choose an αB-twisted, locally free sheaf E of rank
r ∈ N∗ on X and an α−1

B′ -twisted, locally free sheaf E′ of rank r′ ∈ N∗ on X ′. Then
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P̃ := π∗1E⊗P ⊗ π∗2E′ is an untwisted sheaf on X ×X ′. Choose furthermore ample
line bundles L and L′ on X resp. X ′.

Since π∗1L is π2-relatively ample, we have Riπ2∗(P̃ ⊗ π∗1Ln) = 0 for all i > 0
and n� 0. Furthermore, π∗1L⊗ π∗2L′n

′ is ample for all n′ � 0. Therefore, we can
choose n, n′ � 0 such that P̃n,n′ := P̃ ⊗ π∗1Ln ⊗ π∗2L′n

′ is globally generated and
π2∗(P̃n,n′) = π2∗

(
P̃ ⊗ π∗1Ln ⊗ π∗2L′n

′) = π2∗(P̃ ⊗ π∗1Ln)⊗ L′n′ is a sheaf.
As P̃n,n′ is globally generated, there is a short exact sequence 0 → K →

ONX×X′ → P̃n,n′ → 0. We have again Riπ2∗(K ⊗ π∗1L
m) = 0 for all i > 0 and

m� 0 because π∗1L is π2-ample. This implies that the map π2∗(ONX×X′⊗π∗1Lm)�
π2∗(P̃n+m,n′) is surjective. Since π2∗(ONX×X′ ⊗ π∗1Lm) = OX′ ⊗ H0(X,Lm), the
direct image π2∗(P̃n+m,n′) is also globally generated for all m� 0.

On the other hand, as ϕ((1, 0, 0)) = (1, 0, 0) by Lemma 5.12, it follows that

rk(π2∗(P ⊗ π∗1(E ⊗ Ln+m))) = rk(ΦP(E ⊗ Ln+m)) = rk(E ⊗ Ln+m) = r.

The assumption that ϕ(Amp(X)) = −Amp(X ′) implies that there is an ample line
bundle M on X ′ with ϕ(c1(L)) = −c1(M). Hence, we have

c1(π2∗(P̃n+m,n′)) = c1
(
π2∗
(
P ⊗ π∗1(E ⊗ Ln+m)⊗ π∗2(E′ ⊗ L′n

′)))
= c1

(
π2∗(P ⊗ π∗1(E ⊗ Ln+m))⊗

(
E′ ⊗ L′n

′))
= r′ · cB

′

1 (ΦP(E ⊗ Ln+m)) + r · c−B
′

1
(
E′ ⊗ L′n

′)
= r′ ·

(
ΦHP
(
vB(E ⊗ Ln+m)

))
2 + r · c−B

′

1
(
E′ ⊗ L′n

′)
= r′ ·

(
ϕ
(
vB(E) · ch(Ln+m)

))
2 + r · c−B

′

1
(
E′ ⊗ L′n

′)
= r′ · (s− r(n+m) · c1(M)) + r · s′

for certain s ∈ H1,1(X ′, B′,Q), s′ ∈ H1,1(X ′,−B′,Q). Therefore, for all m � 0,
π2∗(P̃n+m,n′) is a globally generated coherent sheaf of rank r · r′ whose first Chern
class

c1(π2∗(P̃n+m,n′)) = r′ · (s− r(n+m) · c1(M)) + r · s′ =: t− rr′(n+m) · c1(M)

lies in −Amp(X ′): Indeed, since the ample cone Amp(X ′) is open, there is an ε > 0
such that εt − c1(M) ∈ −Amp(X ′), or equivalently t − 1

ε · c1(M) ∈ −Amp(X ′).
Using the convexity of Amp(X ′), we obtain t−rr′(n+m) ·c1(M) = (t− 1

ε ·c1(M))−
(rr′(n+m)− 1

ε ) · c1(M) ∈ −Amp(X ′) for all m� 0. But by the following lemma,
the first Chern class of a globally generated sheaf is nef, a contradiction. �

Lemma 5.15. The first Chern class c1(G) of a globally generated coherent sheaf
G on a smooth complex surface X is nef.

Proof. Let us first assume that G is torsion-free. Since X is smooth, there are
finitely many points x1, . . . , xn such that G�U is locally free on the subset U :=
X r {x1, . . . , xn}. The determinant bundle det(G�U ) of the locally free, globally
generated sheaf G�U is still globally generated, hence it has a global section and
is either trivial or of the form O(C) for some curve C ⊂ U . As X is normal and
XrU has codimension 2, the extension of the line bundle det(G�U ) = (detG)�U is
unique. Thus, we have either detG = OX or detG = O(C̄) where C̄ is the closure
of C in X. In particular, c1(G) = c1(detG) is nef.

In the general case, let T (G) be the torsion part of G, T0(G) its maximal subsheaf
of dimension 0 andD the (one-dimensional) support of T (G)/T0(G). As the determ-
inant of a zero-dimensional sheaf is trivial, det(T (G)) = det(T (G)/T0(G)) = O(D)
is nef. By passing to the globally generated quotient G/T (G), we can therefore
reduce to the torsion-free case. �
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5.3. Where to go from here. One can now apply the deformation theory de-
veloped in Sect. 4 in order to pass from the case that P ∈ Db(X ×X ′, α−1

B � αB′)
is a sheaf to the general case. Unfortunately, due to the time limitations for this
thesis, we were not able to check this approach rigorously. Let us therefore only
give an outlook how one could proceed. We hope to be able to make this into a
substantial proof in the near future.

Let (X,αB) and (X ′, αB′) be twisted K3 surfaces and P ∈ Db(X × X ′, α−1
B �

αB′) be the kernel of a Fourier-Mukai equivalence. We would like to show that
the induced Hodge isometry ϕ : ΦHP : H̃(X,B,Z) ∼−→ H̃(X ′, B′,Z) preserves the
natural orientation of the positive four directions. Assume that this is not the
case. By Lemma 5.12, we may then without loss of generality restrict to the case
ϕ(Amp(X)) = −Amp(X ′). By [34, Prop. 3.15], we can furthermore find simple αB-
resp. αB′ -twisted vector bundles E resp. E′ on X resp. X ′. These correspond to
projective bundles p : Y := P(E)→ X resp. p′ : Y ′ := P(E′)→ X ′ with δ(Y ) = αB
and δ(Y ′) = αB′ , cf. Lemma 2.18.

The idea of [16] in the untwisted case is to find a formal twistor deformation
X×X ′ with special fibre X×X ′ such that P deforms to a complex P ∈ Db(X×X ′).
Its general fibre PK can be shown to be a sheaf, which lifts to a sheaf P̃ on X ×X ′.
Then P and P̃ agree up to torsion complexes, so the special fibres P = P0 and P̃0
induce the same action on cohomology. The assertion follows from the untwisted
analogue of Prop. 5.14.

Let us discuss how we could adapt this strategy to twisted sheaves, using the
theory developed so far. As in the untwisted case, we start by choosing a very
general real ample class ω ∈ Amp(X), i.e. ω⊥ ∩ H1,1(X,Z). Then the associated
twistor space X(ω)→ P(ω) with base point 0 ∈ P(ω) gives a non-algebraic deform-
ation of X = X0. Choosing a local parameter t around 0, we obtain an algebraic
(!) formal deformation X → A where A := lim←−An = SpecCJtK. Our first aim is to
find successively for all n ∈ N deformations X ′n of X ′, pn : Yn → Xn of p : Y → X
and p′n : Y ′n → X ′n of p′ : Y ′ → X ′ such that the complex Q ∈ Db(Y × Y ′/(X,X ′))
corresponding to P ∈ Db(X ×X ′, α−1

B �αB′) (cf. Rem. 2.49) can be lifted to some
Qn ∈ Db(Yn × Y ′n/(Xn, X

′
n)).

Assume that such deformations have already been found for n ∈ N, with n = 0
being the trivial case X ′n = X ′, Y0 = Y etc. We want to construct the respective
deformations for n+ 1. In [16, Sect. 4.1, 4.2], it is shown that if ΦHP preserves the
Kähler cone up to sign, the class ΦHH∗

Pn
(κXn+1) lies in H1(X ′n, TX′n) and that we can

further find an infinitesimal twistor deformation X ′n+1 of X ′n such that κX′n+1
=

ΦHH∗
Pn

(κXn+1). With the reductions from Lemma 5.12, all arguments are still valid in
the twisted setting, i.e. we can find a deformation X ′n with ΦHH∗

Pn
(κXn+1) = κX′n+1

.
Since E and E′ are simple, we can find deformations pn+1 : Yn+1 → Xn+1 of

pn : Yn → Xn and p′n+1 : Y ′n+1 → X ′n+1 of p′n : Y ′n → X ′n. Although we have
no rigorous proof, we expect that pn+1 and p′n+1 can be chosen in such a way
that still ΦHH∗

Qn
(κYn+1) = κY ′n+1

where Qn ∈ Db(Yn × Y ′n/(Xn, X
′
n)) is again the

complex corresponding to Pn. In that case, let Ỹn ×Bn Ỹ
′
n → Bn be the family

obtained from Yn+1 ×An+1 Y
′
n+1 → An+1 via the base change Bn � An+1 as in

Prop. 4.23. Following [1, Thm. 7.7], we could then argue that by (a relative version
of) Thm. 4.22 that there is a complex Q̃n+1 ∈ Db(Ỹn × Ỹ ′n) whose restriction to
Db(Yn × Y ′n) is Qn. Via the isomorphism ∗Pn from Lemma 4.2, we have

Ext1(Pn, Pn) ∼= HH1(Yn) ∼= H1(Yn,OYn
)⊕H0(Yn, TYn

) = 0,

hence the deformation Q̃n+1 is unique and restricts to q∗n−1Qn on Db(Ỹn−1× Ỹ ′n−1).
By Prop. 4.23, we therefore obtain a deformation Qn+1 ∈ Db(Yn+1 × Y ′n+1) of Qn.
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Since the condition that
(p′n+1 × pn+1)∗(p′n+1 × pn+1)∗(Gp′n+1

⊗ F ⊗G∨pn+1
) ' Gp′n+1

⊗ F ⊗G∨pn+1

in Db(Yn+1× Y ′n+1) is open, we still have Qn+1 ∈ Db(Yn+1× Y ′n+1/(Xn+1, X
′
n+1)).

Arguments of these kind would show that we can find the deformations X ′n, Yn,
Y ′n and Qn for all n ∈ N. Putting X ′ := lim←−X

′
n, Y := lim←−Yn and Y ′ := lim←−Y

′
n,

we would obtain a formal deformation X × X ′ of X ×X ′ with projective bundles
Y → X , Y ′ → X ′. By results of Lieblich [24, Sect. 3.6], we would furthermore have
a complex Q ∈ Db((Y × Y ′), (X ,X ′) which restricts to the Qn on Db(Yn × Y ′n).
Provided the general fibre PK was still a sheaf in twisted case, we would then be
able to deduce the strong version of the Twisted Derived Global Torelli theorem
from Prop. 5.14.
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