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1 Introduction

Torelli’s theorem states, that a curve is uniquely determined by its polarized Jacobian
variety. There are many variants and generalizations of this theorem. Based on [3] the
goal of this thesis will be to establish the following generalization:

Theorem 1.1. Let C and D be two smooth, projective, irreducible curves of genus g > 2
over an algebraically closed field k. If C(d) ∼= D(d) for some d ≥ 1, then C ∼= D.

Here C(d) denotes the d-th symmetric power of the curve C, i.e. the quotient of the
d-fold product Cd by the action of the symmetric group Sd. One can think of the points
of C(d) as the degree d effective divisors on C. The statement of the theorem is then, that
this data is enough to uniquely determine the underlying curve itself. This is an exten-
sion of Torelli’s Theorem because the image of C(g−1) in J(C) determines the canonical
polarization. So Torelli’s theorem would be the case d = g − 1 in Theorem 1.1.

In section 2 we will start with recalling some definitions and establishing some general
constructions, the most important being, that we may reconstruct the Jacobian variety
from the symmetric product. Section 3 will cover the case d < 2g − 2. The idea is to
use the above mentioned interpretation of points of C(d) as effective divisors to deduce
combinatorial statements.

Before we can continue with the proof for d ≥ 2g−2 we have to do some preparations.
In section 4 we will introduce Picard sheaves, which can be seen as a special case of Fourier–
Mukai transformations. We will establish general properties of Picard sheaves with the
two goals being the calculation of their Chern classes and to investigate their connection to
the symmetric product. These statements will be used in section 5 to explicitly calculate
the connection between the Chern classes associated to the symmetric products, which
allows us to finish the proof with a criterion by Matsusaka.

Finally in section 6 we will investigate how Theorem 1.1 extends to smaller genus and
how it does not. The main result will be, that there are non-isomorphic genus two curves
with isomorphic second symmetric power, hence the theorem does not extend to the case
d = g = 2.

Deutsche Zusammenfassung

Das Hauptziel dieser Arbeit wird sein, die folgende Verallgemeinerung von Torellis Theo-
rem zu beweisen

Theorem. Seien C und D zwei glatte, irreduzible, projective Kurven über einen allge-
braisch abgeschlossenen Körper. Wenn für ein d ≥ 1 gilt, dass C(d) ∼= D(d) , dann gilt
schon C ∼= D.

Hierbei bezeichnet C(d) das d-te symmetrische Produkt einer Kurve, also den Quo-
tienten von Cd nach der Aktion der symmetrischen Gruppe durch Vertauschung. Dies ist
eine Verallgemeinerung von Torellis Theorem, da die Polarisation der Jakobischen Varietät
durch des Bild von C(g−1) in der Jakobischen induziert ist. Dies wird vom Fall d = g − 1
in unserem Theorem abgedeckt.

Der Beweis verläuft für d < 2g−2 über die Interpretation der Punkte von C(d) als effek-
tive Grad d Divisoren auf C. Damit kann man den Fall durch kombinatorische Überlegun-
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gen abhandeln und braucht nur an einer Stelle Schnitttheorie, um einen Automorphismus
von J(C) zu konstruieren.

Für d ≥ 2g − 2 läuft der Beweis sehr verschieden. Hier bildet C(d) ein projektives
Bündel über J(C) (im Fall d = 2g − 2 müssen wir vorher einen Punkt entfernen). Um
die Chern Klassen dieses Bündels auszurechenen werden wir Picard Garben einführen, für
die diese Berrechnung einfacher ist und ihre Verbindung zu den symmetrischen Produkt
untersuchen. Sobald wir die Chern Klassen berechnet haben, können wir ein Kriterium
von Matsusaka nutzen um den Beweis abzuschließen.

Im letzten Abschnitt werden wir untersuchen, wie sich das Theorem auf Genus kleiner
drei erweitern lässt. Es wird sich herausstellen, dass es nicht isomorphe Kurven in Genus
zwei gibt, mit isomorphen zweiten symmetrischen Produkt. Damit kann das Theorem
insbesondere nicht auf den Fall d = g = 2 erweitert werden.
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An dieser Stelle möchte ich mich herzlich bei allen bedanken, die mir beim Anfertigen
dieser Arbeit geholfen haben. Allen voran bei meinem Betreuer, Daniel Huybrechts, für
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2 Definitions and preparation

In this thesis a curve will be irreducible, smooth and projective, unless specified differently.
We first recall some important definitions.

Definiton 2.1. Let X be a variety. An Albanese variety for X with a given point x ∈ X is
an abelian variety Alb(X) with a morphism ax : X → Alb(X) with the following universal
property. Any morphism f : X → A into an abelian variety A satisfying f(x) = 0A factors
uniquely over Alb(X) by a morphism of abelian varieties.

X A

Alb(X)

f

ax ∃!

Indeed any variety has an Albanese, see for example [11, II §3] and the Albanese is
uniquely determined by its universal property. For a curve C we have an explicit model of
Alb(C). We can consider Pic0(C), the set of degree zero divisor modulo linear equivalence
or equivalently degree zero line-bundles modulo isomorphism. One can equip it with the
structure of an abelian variety to get the Jacobian J(C). Given a point c ∈ C the albanese
morphism into J(C) = Alb(C) is then given by c′ 7→ [c′ − c] when working with divisors
respectively c′ 7→ O(c′ − c) if one works with line-bundles. Given a positive integer n one
can further consider the n-fold product Cn of C. It comes with a natural Sd-action by
permuting the factors.

Definiton 2.2. We define the n-th symmetric product C(n) of C to be the quotient of Cn

by the Sn action: C(n) = Cn/Sn.

The points of C(n) correspond to effective degree n divisors on C. This gives rise to
a natural morphism ϕn : C(d) → J(C), (c1 + · · · + cn) 7→ [c1 + · · · + cn − nc] given a base
point c on C. For 0 < n < g denote the image of C(n) in J(C) by Wn. For the second
curve D the image of D(n) will be denoted by V n. We will identify C with its image W 1.
This is possible for g(C) > 0 as then ac is injective for any c ∈ C.

Next we want to investigate, how we may reconstruct J(C) from C(n).

Lemma 2.3. For a smooth projective curve C there is an isomorphism Alb(C(n)) ∼= J(C)
for any n ≥ 1.

In the setting of Theorem 1.1 the condition C(d) ∼= D(d) thus establishes J(C) ∼= J(D).
As dim(J(C)) = g(C) this also shows, that we may drop the condition, that C and D
have the same genus.

We will prove Lemma 2.3 in a more general setting. First we need a theorem which
allows us to compare the maps from a product into an abelian variety with maps defined
on the factors.

Theorem ([11, II. Thm. 3]). Let V,W be varieties over k and let A be an abelian
variety. Let f : V × W → A be a rational map. Then there exist two rational maps
f1 : V 99K A, f2 : W 99K A such that for any point (P,Q) on V ×W where both are defined
one has f(P,Q) = f1(P ) + f2(Q) and f1, f2 are uniquely determined up to an additive
constant.
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We can extend this from rational maps to morphisms via the following statement:

Theorem ([16, Thm. 3.1]). Any rational map f : V 99K A from a non-singular variety
into an abelian variety is defined on the whole of V .

Proposition 2.4. Let X and Y be non-singular varieties over k. Then Alb(X)×Alb(Y )
together with the map X × Y → Alb(X)×Alb(Y ) induced by X × Y → X → Alb(X) and
X × Y → Y → Alb(Y ) is an Abelian variety for X × Y .

Proof. We show directly, that Alb(X) × Alb(Y ) satisfies the universal property of the
Albanese variety of X × Y with base point (x0, y0). Here x0 respectively y0 are the base
points chosen for Alb(X) and Alb(Y ). Take any morphism f : X×Y → A into an abelian
variety A. By the above theorems we get f1 : X → A and f2 : Y → A which are unique
up to a constant with f(x, y) = f1(x) + f2(y). Chose the constant such that f1(x0) = 0,
then f(x0, y0) = 0 implies f2(y0) = 0. By the universal property of Alb(X) and Alb(Y )
we get morphisms g1 : Alb(X)→ A and g2 : Alb(Y )→ A such that

X A Y A

Alb(X) Alb(Y ).

aX

f1

aY

f2

g1 g2

So we get a map g : Alb(X) × Alb(Y ) → A, (a, b) 7→ g1(a) + g2(b). Obviously g is a
morphism of abelian varieties when equipping Alb(X)×Alb(Y ) with pointwise addition.
We then have g(aX×Y (x, y)) = g1(aX(x)) + g2(aY (y)) = f1(x) + f2(y) = f(x, y) for all
(x, y) ∈ X × Y . This morphism is unique, as any map Alb(X)×Alb(Y )→ A factors as a
sum of morphisms Alb(X)→ A,Alb(Y )→ A, unique up to a constant. So consider

X × Y A

Alb(X)×Alb(Y ).

f

g

g′

By factorizing both g and g′ with fitting constants we get

X A Y A

Alb(X) Alb(Y ).

f1 f2

g1

g′1

g′2

g2

Now we may use the universal property of Alb(X) and Alb(Y ) to get uniqueness.

With this we are equipped to prove the promised generalization of Lemma 2.3:

Proposition 2.5. Let X be a non-singular variety over k, then Alb(X(n)) ∼= Alb(X) for
any n ∈ N.

2



Proof. First by Proposition 2.4 we know Alb(Xn) = Alb(X)n. Now for an abelian variety
A and a morphism f : X(n) → A we can consider the diagram:

Xn X(n) A

Alb(X)n.

p f

ϕ

The vertical composition is Sn-invariant, as p is. So the constructed morphism ϕ will be
Sn-invariant as well. The following lemma concludes the proof.

Lemma 2.6. Given an abelian variety B and a symmetric morphism of abelian varieties
ϕ : Bn → A there is a unique factorization

Bn A

B

ϕ

s

where s(b1, . . . , bn) = b1 + · · ·+ bn.

Proof. Uniqueness is the easy part, since s is surjective. In order to show existence we
have to show, that ϕ is constant on the fibres of s. For this fix b ∈ B. Then we have
s−1(b) = {(b1, . . . , bn) | b1 + · · ·+ bn = b}, which is isomorphic to Bn−1 via

(b1, . . . , bn−1) 7→ (b1, . . . , bn−1, b− (b1 + · · ·+ bn−1)).

On this fibre ϕ has the form

ϕ(b1, . . . , bn−1, b− b1 − · · · − bn−1)

= ϕ(b1, . . . , bn−1, b)− ϕ(0, . . . , 0, b1)− · · · − ϕ(0, . . . , 0, bn−1)

= ϕ(b1, . . . , bn−1, b)− ϕ(b1, 0, . . . , 0)− · · · − ϕ(0, . . . , 0, bn−1, 0)

= ϕ(b1 − b1, . . . , bn−1 − bn−1, b) = ϕ(0, . . . , 0, b).

Altogether we see, that ϕ is indeed constant on fibres.

This enables us to do the following construction, allowing us to assume that C(d) ∼= D(d)

over a common Jacobian J : Use Lemma 2.3 to fix an abelian variety J ∼= J(C) ∼= J(D).
Then we are given a diagram

C(d) D(d)

J J.

∼

ϕ1 ϕ2

We can use the universal property of J being the Albanese of C(d) and D(d) to get mor-
phisms f, f ′ : J → J fitting into a diagram

C(d) D(d)

J J..

∼

ϕ1 ϕ2f

f ′
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Now f, f ′ give isomorphisms on J . To see this apply the uniqueness part of the universal
property of the Albanese variety, implying f ◦ f ′ = idJ = f ′ ◦ f . We may replace D ∼= V 1

by f−1(V 1) to assume that f is idJ . Hence we are in the following situation

C(d) D(d)

J.

ϕ1

∼

ϕ2

3 The case d ≤ 2g − 3

We first want to prove the case d ≤ g − 1, following Martens approach in [12]. So assume
C(d) ∼= D(d), which by our preliminary construction implies W d = V d. Recall that W d

and V d denote the images of C(d) respectively D(d) in J under ϕd. This will be enough
to conclude C ∼= D, we may even allow that W d and V d differ by a translation. First we
will collect the statements we will need later in the proof.

3.1 Combinatorial preliminaries

We begin with a bit of notation. For a subvariety Z of J we denote by Za = {a+z | z ∈ Z}
its translate by any a ∈ J and by Z− its image under the reflection map u 7→ −u of J .
Let K denote a canonical divisor on C. For subsets A and B of J(C) we set

A	B :=
⋂
b∈B

A−b.

Here one can observe that u ∈ A 	 B exactly when u + b ∈ A for all b ∈ B. The latter
is the case precisely if Bu ⊂ A. For the sake of readability we will loosen our convention
a bit and drop the index n from the maps ϕn : C(n) → J , so for an effective divisor A we
have ϕ(A) = [A− deg(A)c].

Remark 3.1. In the following we will frequently use, that we may interpret the fibres
of ϕr as complete linear systems. We can interpret A,B ∈ C(n) as effective divisors and
ϕ(A) = ϕ(B) implies A−nc ∼ B−nc so A ∼ B and ϕ−1(x) is the complete linear system
of x ∈ J . More generally if A is of degree n and B is of degree m then ϕ(A) = ϕ(B) if
and only if A− nP ∼ B −mP so A+ (n−m)c ∼ B.

We will need a few combinatorial preliminaries.

Lemma 3.2. Let 0 ≤ r ≤ t ≤ g − 1 and a, b ∈ J . Then

(i) W r
a ⊂W t

b exactly when a ∈W t−r
b

(ii) W t
b 	W r

a = W t−r
b−a

(iii) B ⊂ A	 (A	B) for all subsets A,B ⊂ J

Proof. (i) If a ∈ W t−r
b then a = b+ ϕ(A) for an effective degree t − r divisor A on C.

Hence for any c = a + ϕ(B) ∈ W r
a we have c = b + ϕ(A) + ϕ(B) = b + ϕ(A + B) ∈ W t

b ,
using A+B has degree (t− r) + r. This establishes W r

a ⊂W t
b .
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Conversely assume W r
a ⊂W t

b . Since a ∈W r
a ⊂W t

b we get an effective degree t divisor
A with a = ϕ(A) + b. For any degree r effective divisor B we find by assumption an
effective degree t divisor B with a + ϕ(B) = b + ϕ(B). Then ϕ(B) + ϕ(A) = ϕ(B) and
thus B +A ∼ B + rc. By Riemann–Roch we have

h0(K −A) = h0(A)− deg(A) + g − 1 = h0(A)− t+ g − 1 ≥ h0(A) ≥ 1.

For B we get

h0(K −B) = h0(B)− deg(B) + g − 1 = h0(B)− t+ g − 1 ≥ g − t.

So we find an effective divisors A′ and a linear system of dimension g − t − 1 of effective
divisors B′ with A+A′ ∼ K ∼ B+B′. Note that this linear system is independent of the
choice B. Combining this with ϕ(B)+ϕ(A) = ϕ(B) implies B+B′ ∼ A′+rc. Now B was
an arbitrary effective degree r divisor so we get h0(A′+ rc) ≥ r+ (g− t−1) + 1 = g− t+ r
if we vary B and B. So by Riemann Roch h0(K−A′−rc) ≥ 1 and we in particular find an
effective divisor A of degree t−r such that A+A′+rc ∼ K giving us A+rc ∼ K−A′ ∼ A.
Thus ϕ(A) = ϕ(A′) and a = b+ ϕ(A) ∈W t−r

b , what was to be shown.

(ii) We have u ∈ W t
b 	W r

a exactly if W r
a+u ⊂ W t

b . The later is by part (i) equivalent to
a+ u ∈W t−r

b and thus to u ∈W t−r
b−a .

(iii) We have for all b ∈ B that (A	B)b ⊂ (A−b)b = A, hence b ∈ A	 (A	B).

The next lemma might seem a bit technical, we will need it in the proof of Lemma 3.4
and later in the actual proof.

Lemma 3.3. Let 0 < r + 1 ≤ t ≤ g − 1, x ∈W 1, y ∈W t−r. Then W r+1
a ⊂W t

a+x−y or

W r+1
a ∩W t

a+x−y = W r
a+x ∪ (W r+1

a ∩ (W t
a−y 	 (W 1)−)). (1)

Proof. We can write x = ϕ(p) for a point p on C and y = ϕ(A) for A an effective degree
t− r divisor. If p is a point of A then a = y − x+ x+ a− y = ϕ(A− p) + a+ x− y and
thus a ∈ W t−r−1

a+x−y. By Lemma 3.2.(i) we get W r+1
a ⊂ W t

a+x−y. So we assume p is not a
point of A.

Consider some u ∈ W r+1
a ∪ W t

a+x−y, so there are effective divisors E and E′ on C
of degree r + 1 respectively t with u = ϕ(E) + a = ϕ(E′) + a + x − y. This gives us
ϕ(E) + ϕ(A) = ϕ(E′) + ϕ(p) and therefore E +A ∼ E′ + p.

If E +A = E′ + p, then p is a point of E, as we assumed it is no point of A. Then

u = ϕ(E′) + a+ x− y = ϕ(E′) + a+ x− ϕ(A)

= ϕ(E − p+A) + a+ x− ϕ(A) = ϕ(E − p) + a+ x

with E − p being an effective divisor of degree r. Thus u ∈ W r
a+x meaning it lies in the

right hand side of (1).
For the final case we assume E+A 6= E′+ p. Then h0(E+A) ≥ 2 as its linear system

contains two effective divisors. Take any point Q ∈ C. Then by Riemann–Roch

h0(E +A−Q) = h0(K − E −A+Q) + deg(E +A−Q)− g + 1

≥ h0(K − E −A) + deg(E +A)− g + 1− 1 = h0(E +A)− 1 ≥ 1.
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This especially gives us an effective degree t divisor Q′ with Q + Q′ ∼ E + A. Then we
get u = ϕ(E) + a = ϕ(Q′) + ϕ(Q) − ϕ(A) + a, thus u ∈ W t

a−y+ϕ(Q). As Q runs over C,

ϕ(Q) runs over W 1 so

u ∈
⋂
q∈W 1

W t
a−y+q = W t

a−y 	 (W 1)−.

Moreover u = ϕ(E) + a and deg(E) = r + 1 implies u ∈ W r+1
a . In total we have shown

the ⊂ inclusion of (1).
Now consider the opposite inclusion. Assume first u ∈ W r

a+x, so we have a degree r
effective divisor E such that u = ϕ(E) + a + x = ϕ(E + c) + a = ϕ(E + A) + a + x − y,
with deg(E + c) = r + 1 and deg(E +A) = t. This implies u ∈W r+1

a ∩W t
a+x−y. Observe

that (W t
a−y 	 (W 1)−)) ⊆ W t

a+x−y as the left hand side is an intersection and the right
hand side is a set of those we intersect. So in total

W r+1
a ∩ (W t

a−y 	 (W 1)−) ⊆W r+1
a ∩W t

a+x−y.

We come to the final combinatorial Lemma:

Lemma 3.4. Let 1 ≤ t ≤ g − 1 and assume W t = V t
c for some c ∈ J . Suppose for some

1 ≤ r ≤ t and some b ∈ J the intersection V 1 ∩W r
b contains two different points u and v,

then V 1 is contained in a translate of W r or (W r)−.

Proof. Since u, v are in W r
b and since 	 is defined as an intersection, we have

W t−r
−b

3.2.(ii)
= W t 	W r

b ⊂W t
−u ∩W t

−v = V t
c−u ∩ V t

c−v.

Now we may apply Lemma 3.3, with W replaced by V , r = t− 1, a = c− u, x = u, y = v,
to the intersection on the right, to get

W t−r
b ⊂ V t

c−u ∩ V t
c−v = V t−1

c ∪ (V t
c−u ∩ (V t

c−u−v 	 (V 1)−)).

Observe that W t−r
b is irreducible so W t−r

b is contained in one of the sets of the right hand
side union. In the first case we get W t−r

b ⊂ V t−1
c and hence

V 1 3.2.(ii)
= V t

c 	 V t−1
c ⊂W t 	W t−r

−b = W t
−b.

Otherwise we have W t−r
b ⊂ V t

c−u−v 	 (V 1)−. Then

(V 1)−
3.2.(iii)
⊂ V t

c−u−v 	 (V t
c−u−v 	 (V 1)−) ⊂W t

−u−v 	W t−r
−b = W r

b−u−v.

In the first case V 1 is contained in a translate of W r, in the second one it is contained in
a translate of (W r)−, establishing the claim.

As a last ingredient we will need to introduce some endomorphisms of J :
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Definiton 3.5. Let Y be a divisor on J . Then we define an endomorphism α(W 1, Y ) of
J by

α(W 1, Y )(u) = S(W 1 · (Yu − Y ))

for u ∈ J . This means we intersect W 1 with a translate of Y minus Y and then add up
the resulting points with multiplicity with respect to the addition on J . Analogous we
define α(V 1, Y ).

In order to analyse the morphisms we will need the following proposition, for a proof
see [11].

Proposition 3.6 ([11, VI, Thm. 3]). For a divisor X on J there is a unique x ∈ J with

X ∼W g−1
x −W g−1.

Moreover x can be expressed as x = S(W 1 ·X).

Corollary 3.7. In the above setting we have

Yu − Y ∼W g−1
α(W 1,Y )(u)

−W g−1.

Corollary 3.8. We have α(W 1,W g−1) = idJ .

Proof. We trivially have W g−1
u −W g−1 ∼W g−1

u −W g−1 so the uniqueness part of Propo-
sition 3.6 gives us the desired.

Altogether we deduce

α(V 1, Y )(u) = S(V 1 · (Yu − Y )) = S(V 1 · (W g−1
α(W 1,Y )(u)

−W g−1))

= α(V 1,W g−1) ◦ α(W 1, Y )(u)

and the analogous statement with V and W exchanged.
In particular

idJ = α(V 1, V g−1) = α(V 1,W g−1) ◦ α(W 1, V g−1)

idJ = α(W 1,W g−1) = α(W 1, V g−1) ◦ α(V 1,W g−1)

so α(V 1,W g−1) and α(W 1, V g−1) are inverse automorphisms of J .
We have collected all results we will need for the proof.

3.2 The proof

Recall we are assuming W d = V d
b for some b ∈ J . Let r be the smallest integer for which

an inclusion of the form V 1 ⊂ W r+1
a or (V 1)− ⊂ W r+1

a holds for some a ∈ J . Assume
V 1 ⊂ W r+1

a , in the other case the argument is the same with an extra involution at the
end. As V 1 ⊂ V d we surely have r < d. We consider intersections of the form V 1∩W g−1

a+x−y
where x ∈W 1 and y ∈W g−1−r. If for some x and all y ∈W g−1−r we had V 1 ⊂W g−1

a+x−y,
then

V 1
−a−x ⊂

⋂
y∈W g−1−r

W g−1
−y = W g−1 	W g−1−r 3.2.(ii)

= W r.
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This would imply V 1 ⊂W r
a+x, contradicting our minimality assumption for r. So we find

an y such that for at least one x ∈ W 1 we have V 1 * W g−1
a+x−y. Fix this y. We want

to investigate, for which x ∈ W 1 we have V 1 * W g−1
a+x−y. For a fixed v ∈ V 1 we have

{z ∈ J | v − z /∈W g−1
a−y } = J \ (W g−1

a−y−v)
− is open, as W g−1 ⊂ J is closed. This means

{z ∈ J | V 1 *W g−1
a+z−y} =

⋃
v∈V 1

{z ∈ J | v − z /∈W g−1
a+y }

is open as well and so is its intersection with W 1. So the x for which V 1 *W g−1
a+x−y form a

non-empty, open and hence dense subset of W 1. Now recall V 1 ⊂W r+1
a , so V 1 *W g−1

a+x−y
implies W r+1

a *W g−1
a+x−y. Then by Lemma 3.3 applied for t = g − 1 we have

W r+1
a ∩W g−1

a+x−y = W r
a+x ∪ (W r+1

a ∩ (W g−1
a−y 	 (W 1)−)).

Intersecting it with V 1 ⊂W r+1
a yields

V 1 ∩W g−1
a+x−y = (V 1 ∩W r

a+x) ∪ (V 1 ∩A)

with A ⊂ J independent of x. If we take the sum over the intersection points, the left
hand side is just α(V 1,W g−1)(a+x− y). On the right hand side, V 1 ∩A gives some fixed
element z ∈ J and V 1 ∩W r

a+x contains by Lemma 3.4 exactly one point of V 1 with some
multiplicity k. So we see that an open subset of the translate of W 1 by a− y gets mapped
by α into a translate of kV 1 := {kv | v ∈ V 1} by z. In total this yields an isomorphism
ψ of J , which maps an open subset of W 1 into kV 1. As W 1 is irreducible and kV 1 is
irreducible and closed, ψ has to map all of W 1 isomorphically onto kV 1.

So in total we get a morphism

V 1 v 7→kv−→ kV 1 ψ−1

−→W 1

To this composition we want to apply Hurwitz’s theorem:

Theorem (Hurwitz, [5, IV.2.4]). Let f : X → Y be a finite separable morphism of curves.
Let n = deg(f). Then

2g(X)− 2 = n(2g(Y )− 2) + deg(R)

where R denotes the ramification divisor.

As g(V 1) = g(D) = g(C) = g(W 1) > 1 we get, that the above composition is unram-
ified and has degree one, so it is an isomorphism. This completes the proof in the case
d ≤ g − 1

Remark 3.9. With further arguments it is possible to prove k = ±1, which gives rise to
a slightly more general theorem

Theorem. Let C and D be complete non-singular curves and assume J(C) = J(D) = J .
If for some t, 1 ≤ t ≤ g − 1 some translate of V t coincides with W t, then there exists an
automorphism λ of J such that λ(W 1) is a translate of V 1.

For details see [12].
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3.3 Extension to g ≤ d ≤ 2g − 3

With a small trick we may apply Theorem 3.9 to the case g ≤ d ≤ 2g − 3 as well. Let K
denote a canonical divisor on C. Then by Riemann–Roch for every E ∈ C(d) we have

h0(E) = h0(K − E) + deg(E)− g + 1.

So h0(E) > d − g + 1 exactly when h0(K − E) > 0. We can interpret the fibre of ϕd at
[B] ∈ J as complete linear system of dimension h0(B + dP0) − 1. So the divisors where
the fibre dimension is bigger than d − g form a subvariety isomorphic to W 2g−2−d under
the isomorphism induced by E 7→ K − E. The analogous result holds for D. By our
preliminary construction C(d) ∼= D(d) respects fibres, so we get W 2g−2−d = V 2g−2−d. As
0 < 2g − 2− d < g we may use Theorem 3.9 and get C ∼= D.

4 Picard Sheaves and Chern class of the symmetric product

Before we are able to prove Theorem 1.1 for higher d, we first need to collect some pre-
requisites. Following [19] we will introduce Picard sheaves associated to a curve, which
we use to calculate the Chern classes corresponding to C(d). For another approach to
the calculation of the Chern classes see also [15]. From now on we will consider Pic0 as
line-bundles rather than as divisors.

4.1 Introduction of Picard sheaves and first properties

Let C be a complete, non-singular curve of genus g defined over an algebraically closed
field k and c ∈ C a fixed basepoint. We can consider the invertible sheaf ξn = OC(nc)
corresponding to the divisor nc. This gives an exact sequence of sheaves:

0 −→ ξn−1 −→ ξn −→ ξn/ξn−1 −→ 0 (2)

The last sheaf has support c and restriction Oc there. This comes from the exact sequence

0→ OC(−c)→ OC → Oc → 0

by tensoring with ξn.
Given an abelian variety J , a curve C, x ∈ J and y ∈ C we have four canonical maps

we will need in the definitions below, πJ : J × C → J, πC : J × C → C, iy : J → J × C
and jx : C → J × C. These are given by πJ(x, y) = x, πC(x, y) = y, iy(x) = (x, y) and
jx(y) = (x, y).

Definiton 4.1. A pair (J,P) of an abelian variety J and an invertible sheaf P on J ×C
is called a Picard variety for C if ϕ(x) = j∗xP defines an isomorphism ϕ : J → Pic0(C).
To ensure that (J,P) is uniquely defined, we demand i∗cP = OJ for the base point c ∈ C.
The sheaf P is called a Poincaré sheaf for C.

For any curve C the Jacobian can be equipped with a line bundle to form a Picard
variety of C, see [11].
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Definiton 4.2. The sheaves

En = πJ∗(P ⊗ π∗Cξn) and Fn = R1πJ∗(P ⊗ π∗Cξn)

are called Picard sheaves on J . Here R1πJ∗ denotes the first derived functor of πJ∗ or in
other words the first higher directed image.

Remark 4.3. The motivation, why we consider P ⊗ π∗Cξn is its pull-back along the
morphism ϕ̃n : C(n)×C → J×C induced by ϕn. ForA = c1+· · ·+cn ∈ C(n) we can consider
ϕ̃n
∗P on the fibre of A. There it is just (ϕ̃n ◦ jA)∗P = j∗ϕn(A)P = O(c1 + · · ·+ cn − nc).

So ξn is chosen such that the fibre over c1 + · · ·+cn is OC(c1 + · · ·+cn). We will investigate
this more thoroughly in section 4.4.

Proposition 4.4. For each integer n there is an exact sequence

0→ En−1 → En → OJ → Fn−1 → Fn → 0. (3)

Proof. We take the exact sequence (2) and apply the exact functor P ⊗ π∗C(−) to get a
short exact sequence

0→P ⊗ π∗Cξn−1 →P ⊗ π∗Cξn →P ⊗ π∗C(ξn/ξn−1)→ 0.

Denote P ⊗ π∗C(ξn/ξn−1) by M. Now we can consider the long exact sequence we get
from the right derived functor of πJ∗:

0→ En → En−1 → πJ∗(M)→ Fn−1 → Fn → R1πJ∗(M)

The sheaf M has support J × c and restricts there to OJ . So first we get πJ∗(M) =
OJ . Next we use, that we have an explicit description for R1πJ∗(M), namely it is the
sheaf associated to U 7→ H1(π−1

J (U),M) ∼= H1(U,OJ(U)). So it is the same sheaf as
R1(idj∗)(OJ) which is 0 since idJ∗ is exact.

To investigate the structure of Picard sheaves further we need a proposition from EGA.
For this let f : Y → X be a proper morphism, F an f -flat OY -module and x a point of
X. We denote by Fx = F ⊗OX

k(x) the fibres of F along f . Then:

Proposition 4.5 ([4, III, Prop. 4.6.1]). If we have Hn(f−1(x),Fx) = 0 for some n ≥ 0,
then Rnf∗(F ) = 0 in some neighbourhood of x. Furthermore the canonical morphism

Rn−1f∗(F )x → Hn−1(f−1(x),Fx)

is surjective.

The proposition is a bit stronger in EGA, there we have surjectivity for Fx replaced
by F ⊗OX

(Ox/mp+1
x ) but we will only need the case p = 0. We will apply this proposition

for πJ : J ×C → J and F locally free, so F will surely be πJ -flat. The fibre of F at x is
j∗xF and the fibres of πJ can be identified with C.

Corollary 4.6. (i) For all n > 1 we have RnπJ∗(F ) = 0

(ii) The natural morphism R1πJ∗(F )x → H1(π−1
J (x),Fx) is surjective for all x ∈ J .
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(iii) If H1(π−1
J (x),Fx) = 0, there is a neighbourhood of x in which R1πJ∗(F ) is zero

and R0πJ∗(F ) is locally free.

(iv) If H0(π−1
J (x),Fx) = 0, there is a neighbourhood of x in which R0πJ∗(F ) is zero

and R1πJ∗(F ) is locally free.

Proof. The first two statements follow from Proposition 4.5 by observing dim C = 1
implies Hn(f−1(x),Fx) = 0 for n > 1.

To prove (iii) we apply Proposition 4.5 to get a neighbourhood U of x, where R1πJ∗(F )
is zero. Furthermore as the Euler characteristic of the fibres is locally constant we may
assume the fibres Fx′ for x′ ∈ U all have the same Euler characteristic. Combining this
with the vanishing of h1(π−1

J (x′),Fx′) implies h0(π−1
J (x′),Fx′) is constant on U . Choose a

basis for H0(π−1
J (x),Fx). Since the homomorphism πJ∗(F )x → H0(π−1

J (x),Fx) is surjec-
tive, again using Proposition 4.5, we may extend this basis to sections in a neighbourhood
U ′ ⊂ U . These sections remain linearly independent so R0πJ(F ) is free in U ′.

The proof for (iv) works similar but we have to use (ii) to get the surjectivity of
R1πJ∗(F )x → H1(π−1

J (x),Fx).

The first statement will not be used later, but it motivates why we only consider R0πJ∗
and R1πJ∗, because those are the only non vanishing higher direct images. By applying
the corollary to the situation of Picard sheaves we get:

Proposition 4.7 ([19, Proposition 2/3]). We have that En is torsion-free for all n. If
n < 0 then Fn is locally free of rank g − n+ 1, if n < g then En is zero and conversely if
n > 2g − 2 then En is locally free of rank n− g + 1 and Fn is zero.

Proof. Since the pushforward of a torsion free sheaf along a dominant morphism is torsion
free and observing that P ⊗ π∗Cξn is torsionbfree as it is a line bundle, we get that
En = πJ∗(P ⊗ π∗Cξn) is torsion free as well.

For the other statements we notice, that H0(π−1
J (x), j∗xP ⊗ ξn) = 0 for n < 0 as

j∗xP ∈ Pic0(C) so j∗xP ⊗ ξn has degree n < 0 and hence no global sections. Then
Corollary 4.6 gives that Fn is locally free for n < 0. To get the rank we apply Riemann–
Roch to the fibre to get h1(π−1

J (x), j∗xP ⊗ ξn) = −χ(j∗xP ⊗ ξn) = −(n− g+ 1). For n < g
the morphism ϕn : C(n) → J(C) is not surjective. Take any point x ∈ J not in the image,
then the linear system of x is empty, hence H0(π−1

J (x), j∗xP ⊗ ξn) = 0. Altogether we
get that there are fibres where En vanishes. Since En is torsion free this already implies
En = 0.

If n ≥ 2g − 1 we have H1(π−1
J (x), j∗xP ⊗ ξn) = H0(C,ω⊗(j∗xP ⊗ ξn)∗) = 0, where ωC

denotes the canonical line bundle on C. Here we used Serre duality and that there are
no global section because of deg(ωC ⊗ (j∗xP ⊗ ξn)∗) = 2g − 2 − n < 0. Then apply the
Corollary 4.6 again.

Remark 4.8. For 0 ≤ n ≤ g − 1 we still have that Fn is locally free on the set of x ∈ J
with H0(π−1

J (x), j∗xP ⊗ ξn) = 0. This is the complement of Wn, as the fibres of ϕn are
exactly the linear systems. Furthermore for g ≤ n ≤ 2g − 2 we know that Fn vanishes at
all x ∈ J for which H1(π−1

J (x), j∗xP ⊗ ξn) = 0, which by Serre duality is the complement
of θ(W 2g−2−n) for θ : J → J,L 7→ ωC ⊗ L∗ ⊗OC(−(2g − 2)c).

As special cases we see that F0 is locally free in the complement of one point which we
will use quite frequently. In the other boarder case F2g−2 vanishes in the complement of

11



one point κ. By using (3) one sees, that it has at most rank 1 there. On the other hand
there is an epimorphism F2g−2,κ → H1(C,ω), so it has exactly rank 1 at κ. This will be
useful for Proposition 4.21 as the corresponding projective fibred variety will consist of
one point.

We need to investigate the connection between Er and Fs for high r and low s.

Proposition 4.9. For r > 2g − 2 and s < g there is an exact sequence

0→ Er →M→ Fs → 0

where M is a successive extension of (r − s) copies of OJ . Especially we get for the total
Chern classes that c(Er)c(Fs) = c(M) = 1.

Proof. We want to use the exact sequence (2) to get a sequence

0→ ξs → ξr → T → 0 (4)

where T is an extension of (r− s) copies of Oc. Then we could apply P ⊗ π∗C(−) and the
long exact sequence of Rπ∗ to get

Es → Er →M→ Fs → Fr

At last we observe that r and s are chosen such that Es = 0 = Fr.
So we are left to construct (4). For this we want to show in the general setting, that

given a morphism f : A → B and an injective morphism g : B → C, coker(g ◦ f) is an
extension of coker(f) by coker(g). We have the following diagram

A B coker(f) 0

A C coker(g ◦ f) 0

0 B C coker(g) 0.

f α

g ϕ

g◦f

f

β

ψ

g γ

Here ϕ and ψ are constructed by the universal property of cokernels. It remains to show,
that the sequence

0→ coker(f)
ϕ→ coker(g ◦ f)

ψ→ coker(g)→ 0

is exact. This is a direct diagram chase, where the most involved part is to show, that
ϕ is injective. So take an x ∈ ker(ϕ). Then x = α(b) for some b ∈ B. Furthermore
0 = ϕ(α(b)) = β(g(b)) and exactness of the middle row implies g(b) = g(f(a)) for some
a ∈ A. By injectivity of g we get b = f(a) and therefore x = α(f(a)) = 0.

Next want to show a duality statement for En and F2g−2−n. Define K ∈ Pic0(C) by
K = ωC ⊗ ξ2−2g so the canonical line bundle has the form ωC = K ⊗ ξ2g−2. Consider the
automorphism θ of Pic0 that is given by θ(L) = K⊗L∗. This also gives an automorphism
of J . It extends to J × C as θ × idc which we shall denote by θ̃. We are interested in the
pullbacks of the Picard sheaves under θ.
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Lemma 4.10. There are isomorphisms

θ∗(En) ∼= πJ∗(θ̃
∗P ⊗ π∗Cξn) ∼= πJ∗(π

∗
CK ⊗P∗ ⊗ π∗Cξn)

θ∗(Fn) ∼= R1πJ∗(θ̃
∗P ⊗ π∗Cξn) ∼= R1πJ∗(π

∗
CK ⊗P∗ ⊗ π∗Cξn)

Proof. First we notice that since θ is an endomorphism of J we can use flat base change
to get θ∗πJ∗F ∼= πJ∗(θ̃

∗F ) and θ∗R1πJ∗F ∼= R1πJ∗(θ̃
∗F ). We are left to show

θ̃∗(P ⊗ π∗Cξn) = θ̃∗P ⊗ π∗Cξn = π∗CK ⊗P∗ ⊗ π∗Cξn

The first equation follows from θ̃∗π∗C = (πC ◦ θ̃)∗ = π∗C . For the second we see that the
line bundles θ̃∗P and π∗CK ⊗P∗ are equal on every fibre over x ∈ J , where both are
K ⊗ L∗x. Here Lx denotes the line bundle corresponding to x. At last observe that both
line bundles are equal on the fibre of c ∈ C so by the seesaw principle we are done.

An important consequence of this is, that applying θ∗ to (3) yields an exact sequence,
the sequence we get when we replaced P by P∗ ⊗ π∗CK in the proof of (3).

It will be convenient to prove the duality in a slightly more general setting, as we will
need this form to construct the isomorphism to the symmetric product. For this consider
a variety X and a morphism h : X → J . This defines a diagram

X × C J × C

X J.

h̃

πX πJ

h

On X we can define the sheaves

hEn = πX∗(h̃
∗P ⊗ π∗Cξn) and hθ∗Fn = (R1πX∗)(h̃

∗θ̃∗P ⊗ π∗Cξn).

In order to prove the general duality for these sheaves we will need Grothendieck-Verdier
duality in the form of [10, Thm. 3.34]. For a proof see [6].

Theorem 4.11. Let f : Y → Z be a morphism of smooth schemes. Set dim(f) = dim(Y )−
dim(Z) and ωf = ωY ⊗ f∗ω∗Z . Then for all F • ∈ Db(Y ), E• ∈ Db(Z) there exists a
functorial isomorphism

Rf∗RHom(F •, Lf∗E• ⊗ ωf [dim(f)]) ∼= RHom(Rf∗F
•, E•). (5)

Proposition 4.12. There is an isomorphism λn : hθ∗F2g−2−n
∼−→ hE∗n for all n > 2g− 2.

Proof. We want to apply Theorem 4.11 to πX : X × C → X, E• the complex consisting
of OX in degree 0 and F • the complex consisting of h̃∗P ⊗ π∗Cξn in degree 0. Abbreviate
h̃∗P ⊗ π∗Cξn to F . Then Lπ∗XE

• = OX×C , dim(πX) = 1 and we have to calculate ωπX .
For this use ωX×C = π∗XωX × π∗CωC , thus

ωπX = ωX×C ⊗ π∗Xω∗X = π∗CωC = π∗C(K ⊗ ξ2g−2).

In total (5) reduces to

RπX∗RHom(F , ωπX [1]) ∼= RHom(RπX∗(F ),OX).
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Then the left hand side in degree 0 is

R1πX∗(F
∗ ⊗ ωπX ) = R1πX∗(π

∗
CK ⊗ h̃∗P∗ ⊗ π∗Cξ2g−2−n) = hθ∗F2g−2−n.

Since n > 2g− 2 we know that RπX∗(F ) = hEn is locally free so RHom can be computed
by Hom. Hence the right hand side in degree 0 is just R0πX∗(F )∗. Altogether we have

hθ∗F2g−2−n = R1πX∗(π
∗
CK ⊗ h̃∗P∗ ⊗ π∗Cξ2g−2−n) ∼= R0πX∗(h̃

∗P ⊗ ξ2g−2)∗ = hE∗n.

Remark 4.13. For n = 2g − 2 there is an analogous isomorphism in the complement of
one point. To prove this we use that RπX∗(F ) is locally free in the complement of one
point by the considerations of Remark 4.8.

Remark 4.14. It is possible to show an isomorphism hEn ∼= hθ∗F∗2g−2−n for all n when ap-
plying Serre duality to the fibres. See [19, Prop. 5] for the idea, but it is quite cumbersome
to get the details right.

Theorem 4.15 ([19, Thm. 1]). When n ≥ 2g − 1 then there are isomorphisms

θ∗F2g−2−n ∼= E∗n and En ∼= θ∗F∗2g−2−n.

Proof. We get the first isomorphism directly by applying Proposition 4.12 for X = J and
h = idJ . For the second statement we get a dual isomorphism λ∗n : E∗∗n → θ∗F∗2g−2−n
which we compose with the epimorphism En → E∗∗n . The latter is an isomorphism when
En is locally free, which by Proposition 4.7 is the case for n ≥ 2g − 1.

Applying this to Proposition 4.9 allows us to relate the Chern classes of En and θ∗E∗n.

Corollary 4.16. For r > 2g − 2 and s > 2g − 2 there is an exact sequence

0→ Er →M→ θ∗E∗s → 0

where M is a successive extension of (r + s − 2g + 2) copies of OJ . In particular we get
for the total Chern classes that c(Er)c(θ∗Es) = c(M) = 1.

4.2 Varieties associated to Picard sheaves and their Chern classes

Given a coherent sheaf E on J we will consider the projective fibred variety associated to
E defined as P(E) := Proj(Sym•(E)). For E locally free this is the associated projective
bundle. First recall two general statements for the projective fibred variety, for proofs we
refer to EGA.

Lemma 4.17 ([4, II, 4.1.2]). Let E and F be coherent sheaves and u : E → F an
epimorphism of sheaves. Then it induces a closed immersion q : P(F ) → P(E) and
q∗OP(E)(1) = OP(F )(1).

Lemma 4.18 ([4, II, 4.1.3]). Let h : X → J be a morphism, then

P(h∗E) ∼= P(E)×J X.
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Furthermore we will need a more concrete lemma which will be used to calculate the
Segre classes of Fn.

Lemma 4.19. If u : E → F is an epimorphism of OJ -modules with ker u = OJ , then
the immersion q : P(F ) → P(E) is represented by the sheaf of ideals OP(E)(−1) dual to
OP(E)(1).

Proof. The hypothesis gives us a short exact sequence

0→ OJ
f→ E

u→ F → 0

From this we get another exact sequence

0→ Sym•(E)[−1]
f̄→ Sym•(E)

ū→ Sym•(F )→ 0.

Here Sym•(E)[−1] denotes the same sheaf of rings as Sym•(E) but with grading shifted
by one. On any open set we define f̄(e1⊗ · · · ⊗ en−1) = e1⊗ · · · ⊗ en−1⊗ f(1) respectively
ū(e1 ⊗ · · · ⊗ en) = u(e1)⊗ · · · ⊗ u(en) and extend linearly. Both definitions are symmetric
in the ei and hence descend to well-defined morphisms of the symmetric algebras.

Now [4, II 3.6.2] states, that the closed immersion corresponding to ū is exactly corre-

sponding to k̃er(ū). Observing ˜Sym•(E)[−1] = OP(E)(−1) yields the claim.

As an next step we want to consider the varieties associated to the Picard sheaves.

Definiton 4.20. We define Cn = P(θ∗F2g−2−n). Write πn : Cn → J for the projection
and On(1),On(−1) for the tautological sheaf and its dual. By Lemma 4.17 we get a closed
immersion Cn−1 → Cn from applying θ∗ to (3), which we denote by qn.

Let us investigate the structure of the Cn more closely.

Proposition 4.21. For n < 0, Cn is empty and for n ≥ 0 we have dim Cn = n. Moreover
for n ≥ 2g − 1, Cn is a projective fibre bundle with fibre Pn−g.

Proof. By Proposition 4.7 we know θ∗Fn is zero for n > 2g− 2 and locally free for n < 0.
This directly gives that Cn is empty for n < 0 and that it is a projective bundle for
n ≥ 2n − 1. Furthermore F2g−2 is supported at a single point so C0 consists of a single
point. For n = 0 and n ≥ 2g− 1 we thus already have that Cn is irreducible of dimension
n. Let j : X → J be the inclusion of a subvariety and consider the sequence

j∗OJ
ϕ→ j∗θ∗F2g−2−n → j∗θ∗F2g−1−n → 0

which we get from the sequence (3) by right exactness of j∗ and θ∗. First we inductively
show, that dim Cn ≤ n. The induction start n = 0 is already done. So assume Cn had a
component of dimension bigger than n and let X be its support. By Lemma 4.18 we know
P(j∗θ∗F2g−2−n) is π−1

n (X). The fibre of P(j∗θ∗F2g−2−n) at x ∈ X is just the projective
space corresponding to j∗θ∗F2g−2−n ⊗ k(x). The above sequence tells us therefore, that
the dimension of the fibres of π−1

n (X) have at most one bigger dimension than the fibres of
π−1
n−1(X). Therefore Cn−1 would have a component of dimension at least n, contradicting

the induction assumption.
On the other hand we can use the same argument from above. Then dim C2g−1 = 2g−1

yields dim Cn ≥ n so altogether we get the desired dimension.

15



The idea of the proof can be extended, which will enable us to apply Proposition 4.19:

Proposition 4.22. If X = supp θ∗F2g−2−n and j : X → J is the inclusion, then

ϕ : j∗OJ → j∗θ∗F2g−2−n

given by applying j∗θ∗ to (3), is a monomorphism.

Proof. We want to show that otherwise Cn−1 had a component of dimension n. For this
assume that ϕ were not a monomorphism, then we have an ideal sheaf I on Z with

0→ I → OX
ϕ→ j∗θ∗F2g−2−n → j∗θ∗.F2g−1−n → 0

Ideal sheaves are torsion free, so supp(I) = X. Further I ⊗ k(x) does not vanish so
by dimension arguments we know that the fibres of π−1

n (X) and π−1
n−1 have the same

dimension, so Cn−1 has a component of dimension n. This is the desired contradiction.

We are ready to prove an important theorem over the Cn. It will allow us to calculate
the Segre and Chern classes of the Picard sheaves.

Theorem 4.23. The closed immersion qn : Cn−1 → Cn is associated to the sheaf of ideals
On(−1). If α ∈ CH1(Cn) is the class of Cn−1, then αr is the class of Cn−r.

Proof. By Proposition 4.22 we may apply Lemma 4.19. Thus qn : Cn−1 → Cn is associated
to the sheaf of ideals On(−1). Now q∗nOn(1) = On−1(1) implies q∗nOn(−1) = On−1(−1).
So we can express α2 as q∗nα ∈ CH1(Cn−1) which represents the subvariety Cn−2 of Cn−1.
Continuing this inductively yields the theorem.

In order to calculate the Chern classes of the Picard-bundles we will also need their
Segre classes and how they are connected with the Chern classes. We will use the definition
given in [2].

Definiton 4.24. Let X be a smooth projective variety, E be a vector bundle of rank r on
X and π : P(E)→ X be its projectivization. Set ζ = c1(OP(E)(1)). The i-th Segre class of
E is the class

si(E) = π∗(ζ
r−i+1) ∈ CHi(X)

and the (total) Segre class of E is the sum

s(E) = 1 + s1(E) + s2(E) + · · ·

Proposition 4.25. The Segre class and the Chern class are reciprocals of each other:

c(E)s(E) = 1

Proof. See [2, Prop. 10.3].

Finally we have gathered all statements we will need in order to calculate the Chern
classes. Let Wn = πn(Cn) and Un = θ(Wn) for 0 ≤ n ≤ g and denote the classes of
Ug−i,Wg−i in the Chow ring of J by ui respectively wi. We will later show C(n) ∼= Cn as
projective bundles, so Wn will coincide with Wn.
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Theorem 4.26. We have ci(En) = (−1)iui for n > 2g − 2 and ci(Fn) = wi for n < g.

Proof. Let n > 2g − 2 and abbreviate θ∗F2g−2−n to Fn. Denote the Chern class of Fn

by
∑
di. We want to calculate its Segre class. By Proposition 4.7 we know that F2g−2−n

is of rank n − g + 1, so we have si(Fn) = π∗(ζ
(n−g+1)−1+i) = π∗(ζ

n−g+i), where ζ is
c1(OP(Fn)(1)) = c1(OCn(1)) = (−α). Thus si(Fn) = π∗((−α)n−g+i). By Theorem 4.23 we
know that αn−g+i represents the class of Cn−(n−g+i) = Cg−i, so si(Fn) = π∗((−α)n−g+i)
is the class of (−1)n−g+iπ(Cg−i) = (−1)n−g+iwi.

Applying Proposition 4.25 for Fn gives the equation∑
di
∑

(−1)iwi = (−1)n−g.

Now if we consider the dual of Fn using ci(F ∗n) = (−1)ici(Fn) and si(F ∗n) = (−1)isi(Fn)
we get ∑

(−1)idi
∑

wi = (−1)n−g.

Theorem 4.15 gives us En ∼= θ∗F∗2g−2−n and hence c(En) =
∑

(−1)idi. By Corollary 4.16 we

have c(θ∗E∗n) = c(En)−1 = (−1)n−g
∑
wi for n > 2g − 2. Using ci(θ

∗E∗n) = θ∗((−1)ici(En))
we conclude

c(En) =
∑

(−1)iui for n > 2g − 2.

In a similar way Proposition 4.9 gives us c(Fs) = c(Et)−1 for s < g and t > 2g − 2, so we
conclude

c(Fn) =
∑

wi for n < g.

4.3 Structure of fibres

We want to investigate π−1
n (X) for subvarieties X of J . In particular we are interested

the structure of the fibres of πn. In order to do so we have to relate h∗θ∗Fn and hθ∗Fn to
each other. Recall that

h∗θ∗Fn = h∗θ∗R1πJ∗(P ⊗ π∗Cξn) hθ∗Fn = (R1πX∗)(h̃
∗θ̃∗P ⊗ π∗Cξn)

We will further need a theorem to connect the fibres of Rf∗ and the fibrewise cohomology:

Theorem 4.27. Let f : X → Y be a proper morphism of Noetherian schemes and assume
y 7→ dimk(y)H

p(Xy,Fy) is constant, then

Rp−1f∗F ⊗ k(y)→ Hp−1(Xy,Fy)

is an isomorphism for all y ∈ Y .

For a proof see [18, 5 Cor. 2].

Proposition 4.28. Let h : X → J be a morphism, then there is an isomorphism

un : h∗θ∗F ∼−→ hθ∗Fn

for all n.
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Proof. Recall that we are working in the following setting:

X × C J × C

X J

πX

θ̃◦h̃

πJ

θ◦h

which can be interpreted as a fibre product diagram. Abbreviate P ⊗ π∗Cξn by F . Then
by [5, III 9.3.1] we get a natural map

h∗θ∗R1πJ∗(F )→ (R1πX∗)(h̃
∗θ̃∗F ). (6)

We have to show, this map is an isomorphism. First we claim, that for all x ∈ X

R1πX(h̃∗θ̃∗F )⊗ k(x) ∼= H1(C, j∗xh̃
∗θ̃∗F ).

To see this observe, that πX : X × C → X is proper by base change, as C is smooth
and projective hence proper. Applying Theorem 4.27, using H2(C,Fx) = 0 as C is one
dimensional, establishes the claim.

For any point x ∈ X we thus have

R1πX(h̃∗θ̃∗F )⊗ k(x) ∼= H1(C, j∗xh̃
∗θ̃∗F ) ∼= H1(C, j∗θ(h(x))F ) ∼= R1πJF ⊗ k(θ(h(x))).

Here the last isomorphism is shown the same way as above. So in total (6) induces
isomorphism on all fibres and thereby is an isomorphism.

Combining this with Lemma 4.18 yields:

Proposition 4.29. Let X be a subvariety of J and h : X → J the corresponding inclusion.
Then π−1

n (X) ∼= P(hθ∗F2g−2−n) and the closed immersion π−1
n−1(X)→ π−1

n (X) is induced
by hθ∗F2g−2−n → hθ∗F2g−1−n.

Proof. We have π−1
n (X) = Cn ×J X

4.18
= P(h∗θ∗F2g−2−n)

4.28
= P(hθ∗F2g−2−n). We also get

π−1
n−1(X) = P(hθ∗F2g−1−n).

Applying this to X a closed point x of J furthermore gives us:

Corollary 4.30. For a closed point x ∈ J , π−1
n (x) is isomorphic to the projective space

associated to H0(C, j∗xP ⊗ ξn) and π−1
n−1(x) is the subspace corresponding to sections van-

ishing at c.

Proof. In this case the map is h : {x} → J with h̃ = jx : {x} × C → J × C. We have
hθ∗F∗2g−2−n

∼= hEn by Theorem 4.15. Now by breaking down the definitions we observe

hEn = π{x}∗(j
∗
xP ⊗ ξn) ∼= H0(C, j∗xP ⊗ π∗Cξn), which establishes the first claim. For the

second part we have to investigate the map hθ∗F2g−2−n → hθ∗F2g−1−n. This comes from
H0(C, j∗xP ⊗ ξn−1)→ H0(C, j∗xP ⊗ ξn) with image those sections, vanishing at c.
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4.4 Application to the symmetric product

In order to apply our calculations of Chern classes we have to relate Cn and C(n). This
section is therefore dedicated to the construction of an isomorphisms rn : C(n) → Cn over
J . By [5, II.7.12] in order to give a map rn : C(n) → P(θ∗F2g−2−n) over J it suffices to
give an invertible sheaf L on C(n) and an epimorphism of sheaves ϕ∗n(θ∗F2g−2−n) → L.
Recall that ϕn is the canonical map corresponding to some basepoint c ∈ C given by
c1 + · · · + cn 7→ O(c1 + · · · + cn − nc). So the first step is to construct an appropriate
invertible sheaf and an epimorphism.

Consider on C(n) the divisor X consisting of points c1 + · · ·+ cn−1 + c containing the
base point and on C(n) × C the divisor X ′ consisting of points (c1 + · · · + cn, c1) where
the second coordinate is contained in the first. Denote the corresponding line bundles
on C(n) respectively C(n) × C by Ln respectively L′n. Moreover we extend ϕn to a map
ϕ̃n = ϕn × idC : C(n) × C → C(n) × C:

C(n) × C J × C

C(n) J.

ϕ̃n

π
C(n) πJ

ϕn

First we want to investigate, how the sheaves Ln and L′n are related.

Proposition 4.31. L′n = πC(n)
∗Ln ⊗ ϕ̃∗n(P ⊗ π∗Cξn), where P is a Poincare sheaf for C

in the sense of Definition 4.1.

Proof. We want to apply the seesaw principle, using that C is a projective, hence complete
variety. Consider both side on the fibre of πC(n) at A = c1 + · · ·+ cn. We have to calculate
its pullback under jA : C → C(n) × C. We do it for each factor separately. First

j∗Aϕ̃
∗
nπ
∗
Cξn = (πC ◦ ϕ̃n ◦ jA)∗ξn = id∗Cξn = O(nc)

j∗Aπ
∗
C(n)L∗n = (πC(n) ◦ jA)∗L∗n = const∗AL∗n = OC .

j∗Aϕ̃n
∗P = (ϕ̃n ◦ jA)∗P = j∗O(A−nc)P = O(c1 + · · ·+ cn − nc).

In the last step we used the universal property of P. Finally for the fibres of L′n we have
to consider the intersection of X ′ with {A} × C. By definition of X ′ this intersection
consists exactly of the points in A so j∗AL′n = O(c1 + · · · + cn). In total both sides are
OC(c1 + · · ·+ cn) on the fibre.

To complete the proof we must in addition find a point of C over which the fibres
of the line bundles agree. The canonical choice is to try the basepoint c. Then for the
inclusion ic : C(n) → C(n) × C we have:

i∗cϕ̃
∗
nπ
∗
Cξ
∗
n = (πC ◦ ϕ̃n ◦ ic)∗ξ∗n = const∗cξ

∗
n = OC(n)

i∗cπ
∗
C(n)Ln = (πC(n) ◦ ic)∗Ln = id∗

C(n)Ln = Ln = OC(n)(X)

i∗cϕ̃n
∗P = (ϕ̃n ◦ ic)∗P = (ic ◦ ϕn)∗ = ϕ∗ni

∗
cP = ϕ∗nOJ = OC(n) .

Lastly we observe, that L′ on the fibre of c corresponds to X ′ ∩ C(n) × c which is X × c,
hence L′|C(n)×{c} = OC(n)(X). So in total both line bundles are OC(n)(X) at the fibre of

the basepoint, finishing the proof.
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With this we can construct an epimorphism ϕ∗n(θ∗F2g−2−n)→ Ln. As Ln is invertible,
it is enough to find a nowhere vanishing section of (ϕ∗n(θ∗F2g−2−n))∗ ⊗ Ln. Consider the
above constructed subvariety X ′ of C(n)×C. Let s ∈ O(X ′) be a section representing X ′ in
its linear system, then s vanishes exactly at the points of X ′. By the previous calculations
s is a section of π∗

C(n)Ln ⊗ ϕ̃∗n(P ⊗ π∗Cξn). If its corresponding section πC(n)∗(s) of the
sheaf

πC(n)∗(π
∗
C(n)Ln ⊗ ϕ̃∗n(P ⊗ π∗Cξn)) = Ln ⊗ πC(n)∗(ϕ̃

∗
nP ⊗ π∗Cξn) = Ln ⊗ ϕ̃En

is zero at A = c1 + · · · + cn ∈ C(n) then X ′ contains π−1
n (A). This is not possible since

π−1
C(n)(c1 + · · ·+ cn) consists of all tuples (c1 + · · ·+ cn, c

′) with c′ ∈ C arbitrary, while X ′

only contains those where c′ appears in c1 + · · ·+ cn.
We have ϕ̃nEn ∼= (ϕ∗nθ

∗F2g−2−n)∗ by Proposition 4.12 and 4.28, so πC(n)∗(s) gives the
desired nowhere vanishing section. Altogether we get a morphism rn : C(n) → Cn such
that πC(n) ◦ rn = ϕn and r∗nOn(1) = Ln.

Theorem 4.32. The morphism rn induces an isomorphism between Cn and the symmetric
product C(n) for n ≥ 2g − 1.

Proof. We want to track, how rn acts on a fibre ϕ−1
n (x) for x ∈ J . For this let P denote

the projective space corresponding to H0(C, j∗xP ⊗ ξn). Then by Corollary 4.30 we know
P is isomorphic to πn(x). By tracing the effect of rn through the last propositions [19]
claims, that rn maps c1+· · ·+cn to the section of j∗xP⊗ξn, vanishing exactly at c1, . . . , cn.
So it is the identification of ϕ−1

n (x) with the complete linear system of x. Be aware that
the author did not manage to check the details. In the following we will assume, that rn
has this form on the fibre. Especially rn is fibre wise an isomorphism. For n ≥ 2g − 1 we
know that C(n) is a projective bundle so rn is an isomorphism.

As always the result holds for n = 2g − 2 over J without one point.

Remark 4.33. By combining Theorem 4.32 with Theorem 4.26 we get the main result
of this preparatory section, namely that for n ≥ 2g − 1 we can express C(n) as P(E)
for a rank n − g + 1 vector bundle E on J with Chern classes ci(E) exactly the class
of θ(W g−i) in the Chow ring of J . As mentioned at the beginning of this section, there
are other approaches leading to the same result. The advantage of this approach is, that
the isomorphism C(n) ∼= Cn extends to smaller n where both are only projective fibred
varieties. We kind of used this for the case n = 2g − 2. Moreover one can apply the
machinery of Fourier–Mukai transformations to the Picard sheaves. The latter is done by
Mukai in [17, §4, §5].

5 The case d ≥ 2g − 2

Assume g > 2 and d ≥ 2g − 1. We can return to the proof of Theorem 1.1.
By considerations of the Picard sheaves we have C(d) ∼= P(EC), D(d) ∼= P(ED) for rank

d − g + 1 vector bundles EC , ED on J . By Theorem 4.26 we have cj(EC) ∼= [θ(W g−j)]
respectively cj(ED) ∼= [θ(V g−j)] for 1 ≤ j ≤ g − 1. To relate EC and ED we need the
following result:
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Proposition 5.1 ([2, Cor 9.5]). Let E and F be vector bundles such that P(E) ∼= P(F ).
Then there is a line bundle L on J with E ∼= F ⊗ L.

For the following calculations we will need a result about the behaviour of Chern classes
under tensoring with line bundles:

Proposition 5.2 ([2, Prop 5.17]). Let E be a rank r vector bundle and L be a line bundle,
then

ck(E ⊗ L) =

k∑
l=0

(
r − l
k − l

)
c1(L)k−lcl(E) (7)

Denote [θ(W g−1)] by αC and [θ(V g−1)] by αD. Poincaré’s formula states that for
1 ≤ j ≤ g−1 we have [W g−j ] = [W g−1]j/j! and [V g−j ] = [V g−1]j/j! . Thus we also deduce
[θ(W g−j)] = αjC/j! and [θ(V g−j)] = αjD/j!. We claim, that we already get αg−1

C = αg−1
D .

Let r denote the rank of EC and ED. Then since EC ∼= ED ⊗ L we get by the case
E = ED, k = 1 of Proposition 5.2 that c1(EC) ∼= c1(ED)+rc1(L), so c1(L) = (αC−αD)/r.
Applying Proposition 5.2 again for k = 2 we deduce:

c2(EC) =

(
r

2

)
c1(L)2c0(ED) +

(
r − 1

1

)
c1(L)c1(ED) +

(
r − 2

0

)
c2(ED).

Plugging in c2(EC) = α2
C/2, c2(ED) = α2

D/2 and c1(L) = (αC − αD)/r leads to

α2
C

2
=
r(r − 1)

2

(αC − αD)2

r2
+(r−1)

αC − αD
r

αD+
α2
D

2
= (r−1)

(αC + αD)(αC − αD)

2r
+
α2
D

2
.

Which can be rearrange to
1

2r
(α2

C − α2
D) = 0.

This gives α2
C = α2

D. For g = 3 we are already done, for higher g we have to consider the
third Chern class as well. So we plug in k = 3:

c3(EC) =

(
r

3

)
c1(L)3c0(ED) +

(
r − 1

2

)
c1(L)2c1(ED) +

(
r − 2

1

)
c1(L)c2(ED) + c3(ED).

Use again our calculation of c3(Ei) = α3
i /3! and c1(L) = (αC − αD)/r, then

α3
C
6 equals

r(r − 1)(r − 2)

6

(αC − αD)3

r3
+

(r − 1)(r − 2)

2

(αC − αD)2αD
r2

+ (r − 2)
αC − αD

r

α2
D

2
+
α3
D

6
.

Collect the different α terms to get

α3
C

6
=

(r − 1)(r − 2)

6r2
α3
C +
−3(r − 1)(r − 2) + 3(r − 1)(r − 2)

6r2
α2
CαD

+
3(r − 1)(r − 2)− 6(r − 1)(r − 2) + 3r(r − 2)

6r2
αCα

2
D

+
−(r − 1)(r − 2) + 3(r − 1)(r − 2)− 3r(r − 2) + r2

6r2
α3
D.
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Reducing and expanding with 6r2 yields

0 = (2− 3r)α3
C + 3(r − 2)αCα

2
D + 4α3

D.

As a last step we have to use the proven equality α2
C = α2

D to get 0 = 4(α3
C − α3

D) which
gives α3

C = α3
D.

These two equalities are sufficient as we may write g − 1 = 2a + 3b for some natural
numbers a, b. Then αg−1

C = (α2
C)a(α3

C)b = (α2
D)a(α3

D)b = αg−1
D . One should note, that

these calculations fails in the genus two case as we can not directly show αC = αD.
To finish the proof, we will need Matsusaka’s criterion for the Jacobian. First one can

observe

Proposition 5.3 ([13, Prop. 3]). Let J be the Jacobian of a complete, non-singular curve
C and Θ = W g−1(C) its theta divisor, then deg(Θg) = g! and Θg−1 ≡ (g − 1)!C modulo
numerical equivalence.

The result of Matsusaka is that the reverse is true in the sense of:

Theorem 5.4 ([13, Thm. 3]). Let A be an n dimensional abelian variety, X an irreducible
divisor on A and C a 1-cycle on A. If deg(Xn) = n! and Xn−1 ≡ (n − 1)!C modulo
numerical equivalence in A, then C is irreducible, A is isomorphic to the Jacobian of C
and X is a corresponding theta divisor.

Denote [W g−1] by θC and [V g−1] by θD. Then from αg−1
C = αg−1

D we get θg−1
C = θg−1

D

as well. Applying Proposition 5.3 to (J,C) gives us θg−1
C ≡ (g − 1)!C and applying it to

(J,D) gives us deg(θgD) = g!. Together with θg−1
D = θg−1

C this gives θg−1
D ≡ (g−1)!C. Then

Theorem 5.4 implies that θD is a theta divisor for C and (J, θD) is a polarized Jacobian
for C. Since the theta divisor is unique up to translation we can conclude W g−1 = V g−1

c .
Applying our proof of the case d ≤ g − 1 gives C ∼= D. Alternatively one can argue that
(J, θD) is a polarized Jacobian variety for both C and D, which is the original form of
Torelli’s theorem.

Extension to d = 2g − 2

With more care one can extend the calculations to the case d = 2g − 2 as well. Here C(d)

is no longer a projective bundle over J , but it is in the complement of one point. There
we still have C(d) ∼= P(θ∗F2g−2−d) = P(EC) and EC are locally free. So after removing
one point we still find a line-bundle L relating EC and ED. Moreover EC and ED have by
Theorem 4.26 still the same Chern classes. As removing one point does not change Chern
and Segre classes except for the top class we can still do the above calculations. Note
that we never needed the top Chern class. For g = 3 we only needed the second Chern
class and for higher g the second and the third. Thus we get the case d = 2g − 2 as well,
finishing the proof of Theorem 1.1.
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6 Extensions to smaller g

In this section we want to discuss extensions of Theorem 1.1.
First of all it extends trivially to the case of genus zero and one. In genus zero there

is only one curve namely the projective line. In genus one any curve is itself an abelian
variety so J(C) ∼= C. Moreover we have shown in Lemma 2.3 that Alb(C(d)) ∼= J(C).
Altogether we can directly recover the curves C,D from their symmetric products.

Next we want to see, that Theorem 1.1 does not hold in total generality. There are
non-isomorphic curves in genus two whose second symmetric products are isomorphic. For
this we need to understand how second symmetric power and Jacobian are related.

Lemma 6.1. The second symmetric power of a smooth curve C of genus 2 is isomorphic
to the blow-up of the Jacobian J(C) at one point.

Proof. Fix a basepoint c of C and consider the canonical map ϕ2 : C(2) → J(C). We want
to compute the fibre of this map at L ∈ J(C). This fibre is the linear system associated
to L(2c) = L ⊗O(2c) with dimension h0(L(2c))− 1. Denote by ωC the canonical bundle
of C. By Riemann–Roch

h0(L(2c)) = h0(ωC ⊗ L∗ ⊗O(−2c)) + deg(L(2c))− g + 1 = h0(ωC ⊗ L∗ ⊗O(−2c)) + 1.

Now ωC⊗L∗⊗O(−2c) is a line bundle of degree zero so h0(ωC⊗L∗⊗O(−2c)) = 0 except
if ωC ⊗ L∗ ⊗ O(−2c) = OC then h0(ωC ⊗ L∗ ⊗ O(−2c)) = 1. So up to one point the
fibres all consist of exactly one point. The fibre at ωC(−2c) is a complete linear system
of dimension one, thus it is isomorphic to P1 . So ϕ2 is a birational transformation of
surfaces with ω(−2c) being a fundamental point. Thus by [5, V Prop. 5.3.] we know that
ϕ2 factors over the blow up of J at ω(−2c). This is only possible if the induced morphism
C(2) → BlP (J) is already an isomorphism.

There are indeed non-isomorphic smooth curves C and D of genus two with isomorphic
Jacobians. Notice that they are isomorphic as abelian varieties, not as polarized abelian
varieties since that would contradict the classical Torelli’s theorem. We refer to [7, 8, 9]
for examples over C, over Q and in positive characteristic. Then C and D have isomorphic
second symmetric products, possibly after a translation of one blow-up-point to the other.
On the other hand by construction the curves themselves are not isomorphic.

Remark. The author does not know whether the theorem is true for genus two and d > 2.
Note that the reasoning of [3] in this case is not quite correct, which was communicated to
and confirmed by Fakhruddin. It may still be possible to use the results of [17]. Another
approach for the opposite direction would be to investigate whether one can construct
C(d) for some d > 2 directly from C(2). With this one would be able to extend the above
counter example from the case d = 2.

Remark. In another related direction, one can investigate the automorphisms of C(d).
Indeed one can prove, that all these automorphisms come from automorphisms of C. For
this result we refer to [1].
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