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Introduction

In this thesis we explore the arithmetic of Hassett’s association, which assigns K3
surfaces to special cubic fourfolds, cf. Section 2. We demonstrate that this association,
which a priori is transcendental, descends to number fields, cf. Section 3. The motivation
for this is the Tate Conjecture for K3 surfaces over finite fields, and its relation to finiteness
statements, cf. Section 1. More precisely, by a Theorem of Lieblich–Maulik–Snowden, cf.
Theorem 1.2.5, the Tate Conjecture for K3 surfaces over finite fields is true if and only if
for each fixed finite field there exist only finitely many K3 surfaces over this field. Now,
the idea is that we embed the moduli spaces of polarized K3 surfaces into a fixed moduli
space (in our case the moduli space of cubic fourfolds) which has only finitely many points
over a finite field. While doing so, we try to avoid the Kuga–Satake construction, which
plays an important role in several proofs of the Tate conjecture for K3 surfaces in the
literature, as well as sophisticated theories like Shimura varieties.

We work towards a proof of the Tate Conjecture in special cases using this approach
via a finiteness statement. For this we continue Charles study, cf. [Cha16], of the proof of
Lieblich–Maulik–Snowden’s theorem and discuss which (weaker) finiteness statements are
actually enough to conclude the Tate Conjecture for a given K3 surface, cf. Section 1. In
the last section we bring this together with Hassett’s association by discussing lifting of
K3 surfaces to characteristic 0, and by gathering together our results into a strategy of
proof, cf. Section 4. At this point we want to remark, that our ansatz does not provide
a complete proof, since we need to assume good reduction modulo p of cubic fourfolds
that are associated to K3 surfaces which have good reduction. We leave this question for
further study.

Prerequisites. We certainly assume familiarity with scheme theory, and to some extent
complex algebraic geometry and Hodge theory. Since we study K3 surfaces and cubic
fourfolds in this thesis, we assume some knowledge of their theories. See [HuyK3] for an
excellent introduction to K3 surfaces, [Vár17] for a quick introduction to the arithmetic
of K3 surfaces, and the notes [HuyC4] for an introduction to cubic hypersurfaces. Most
of our approach is driven by various moduli spaces, e.g. moduli spaces of sheaves on K3
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2 PABLO MAGNI

surfaces, cf. [HL10] and [Lie07]. We require the reader to at least accept the existence
and basic properties of these spaces. Occasionally, we use the theory of Fourier–Mukai
transformations, cf. [HuyFM] for a general introduction, and [Huy09] for an introduction
in the case of twisted sheaves on K3 surfaces.

This being said, we provide ample references so that a reader, who has less acquaintance
with some of the mentioned theories, does not get lost. This takes into account that we
discuss complex algebraic geometric constructions as well as arithmetic questions. We
hope that this thesis serves both the complex geometer, as well as the arithmetic geometer.

Acknowledgment. I would like to thank Daniel Huybrechts very much for proposing the
topic for this thesis, discussing various aspects of it, and answering numerous questions. He
guided me through all of my mathematical study in the last five years at the University of
Bonn, gave many lectures which shaped me mathematically, and served as a role model for
how to do mathematics. I sincerely thank him for all this. I am very happy to thank Emma
Brakkee for discussions around special cubic fourfolds and Hassett’s association, as well as
Andrey Soldatenkov for a discussion regarding descent of transcendental constructions.
Parts of the work in this thesis were presented on various occasions in a seminar of the
Arbeitsgruppe Komplexe Geometrie in Bonn, from which the author profited.

1. The Tate Conjecture for K3 surfaces via finiteness results

1.1. The Tate Conjecture. Let us briefly recall the Tate Conjecture, focusing on the
case of divisors. We refer the reader to [Tat94] and [Mil07] for a general discussion and
equivalent formulations.
Conjecture 1.1.1 (Tate Conjecture). Let X be a geometrically connected, smooth, pro-
jective variety over a field k which is finitely generated over its prime field. Let ` 6= char(k)
be a prime number. Then

CHm
∼hom(X,Q`)

∼−→ H2m
ét (Xksep ,Q`(m))Gal(ksep/k)

is surjective for 0 ≤ m ≤ dim(X).
Remark 1.1.2. The cases m = 0 and m = dim(X) are always satisfied, since both sides
become the vector space Q` (with trivial Galois-action) and the map becomes the identity.
Remark 1.1.3. When k is a finite field, then the Tate Conjecture for cycles of codimension
m in conjunction with Standard Conjecture1 D for cycles of codimension m is independent
of the prime `, cf. [Tat94, Theorem 2.9]. Standard Conjecture D is verified for divisors2, cf.
[SGA6, XIII Théorème 4.6], so we will just say ‘Tate Conjecture’ or ‘Tate Conjecture for
divisors’ in the following, without mentioning some prime `.

The Tate Conjecture is in general wide open, but some instances are known for designated
families of varieties. Let us state the results for varieties that are most interesting to us.
Remark 1.1.4. The Tate Conjecture for divisors (i.e. m = 1 in the formulation above) is
verified for abelian varieties A over k. The case k = Fq is due to Tate’s Isogeny Theorem

End(A)⊗ Z` ' EndGal(ksep/k)(T`(A)),

cf. [Tat66, Main Theorem], and is closely related to the inception of the Tate Conjecture,
cf. [Tat65]. The case where k is a function field of positive characteristic greater than 2
was settled by Zarhin in [Zar75; Zar76], and also by Mori in [Mor78]. The case where k is
a number field is part of Faltings’s work on the Mordell Conjecture, cf. [Fal83], and for a
generalization to finitely generated extensions of Q see [FW92, Chapter VI].

1Standard Conjecture D says that numerical equivalence with rational coefficients is the same as `-adic
homological equivalence.

2We even have that numerical equivalence with rational coefficients coincides with algebraic equivalence.
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In this thesis we are concerned with the Tate Conjecture for K3 surfaces. Thus we shall
provide an insight into the history of the conjecture in this case. For more details we refer
to the surveys [Tot17] and [Ben15].

Remark 1.1.5. Let k/Q be a finitely generated field, and let S be a K3 surface over k.
For the K3 surface S we can consider its associated3 Kuga–Satake abelian variety KS(S),
which comes with a Gal(k/k)-equivariant map

H2
ét(Sk,Q`(1)) ↪→ End(H1

ét(KS(S)k,Q`)).

Now, one can deduce the Tate Conjecture for divisors on S from the case for the abelian
variety KS(X), which is known as remarked above, cf. Remark 1.1.4. For more details we
refer to [HuyK3, Section 17.3.2].

Theorem 1.1.6 (Tate Conjecture for K3 surfaces). Let S be a K3 surface over a field k
of positive characteristic. Then S satisfies the Tate Conjecture.

Reference. The genesis of a complete proof required the work of many mathematicians.
Denote by p = char(k) the characteristic of the field k, let d denote the degree of some
polarization of S, and let h denote the height of S. For example h =∞ means that S is
supersingular, cf. Definition 4.1.6.

Authors Year Reference Assumptions
Artin–Swinnerton-Dyer 1973 [AS73, Theorem 5.2] elliptically fibered
Rudakov–Zink–Shafarevich 1983 [RZS83, Theorem 4] p ≥ 5, d = 2, h =∞
Nygaard 1983 [Nyg83, Corollary 3.4] p ≥ 5, h = 1
Nygaard–Ogus 1985 [NO85, Theorem 0.2] p ≥ 5, h <∞
Charles 2013 [Cha13, Theorem 1] p ≥ 5, h =∞
Maulik 2014 [Mau14, Main Theorem] p > d+ 4, h =∞
Madapusi Pera 2015 [MP15, Theorem 1] p 6= 2
Charles 2016 [Cha16, Theorem 1.4] p ≥ 5 or ρ(S) ≥ 2
Kim–Madapusi Pera 2016 [KMP16, Theorem A.1] p = 2

The assumption ‘elliptically fibered’ means that S admits some elliptic fibration. �

1.2. The Tate Conjecture and finiteness statements.

Definition 1.2.1. Let X be a quasi-projective variety, then the (cohomological) Brauer
group of X is Br(X) := H2

ét(X,Gm)tors.4

Remark 1.2.2. In Definition 1.2.1, we make the assumption on X to be quasi-projective
so that we do not have to distinguish between the Brauer group and the cohomological
Brauer group, cf. [Jon06]. We could also assume that X is a regular surface, cf. [Gro68].

Proposition 1.2.3 (Tate). Let S be a geometrically connected, smooth, projective surface
over Fq. Then the Tate Conjecture holds for S if and only if # Br(S) <∞.

Sketch. See [Tat94, Section 4] for details. Let us just sketch the equivalence of the Tate
Conjecture with the finiteness of Br(S)[`∞], when ` 6= char(Fq) is some prime, and NS(SFq

)
has no `-torsion. Applying étale cohomology to the Kummer sequence yields

0→ Pic(S)⊗ Z` → H2
ét(S,Z`(1))→ T` Br(S)→ 0.

The rightmost term is 0 if and only if # Br(S)[`∞] < ∞. Note that the middle term is
H2

ét(S,Z`(1)) ' H2
ét(SFq

,Z`(1))Gal(Fq/Fq) by applying the Hochschild–Serre spectral sequence,
cf. [HuyK3, Lemma 2.5]. �

3We suppress that we might need to take a finite field extension in order to construct the Kuga–Satake
variety.

4When X is integral and regular, all elements of H2
ét(X,Gm) are already torsion.
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As seen in Remark 1.1.5, the Tate Conjecture for K3 surfaces in characteristic 0 builds
upon the case of abelian varieties, which was settled by Faltings. While he does this
he proves a few finiteness results, and deduces the Tate Conjecture from the following
theorem.

Theorem 1.2.4 (Faltings). Let k/Q be a number field and let A be an abelian variety
over k. Then there exist only finitely many (up to isomorphism) abelian varieties over k
that are isogenous to A.

Reference. See [Fal83, Satz 1, Satz 2], where (a priori) a slightly weaker statement is
proven, which suffices to deduce the Tate Conjecture. See [FW92, Theorem V.3.5] for a
more detailed proof of the full statement. �

Now one could wonder whether it is possible to attack the Tate Conjecture for K3
surfaces via some finiteness result for K3 surfaces, avoiding the Kuga–Satake abelian
variety. Indeed, this is possible as the next theorem shows.

Theorem 1.2.5 (Lieblich–Maulik–Snowden). Let Fq be a finite field with char(Fq) ≥ 5.
i) There exist only finitely many K3 surfaces over Fq that satisfy the Tate Conjecture
over all finite extensions of Fq.

ii) If there are only finitely many K3 surfaces over Fq2, then every K3 surface over Fq
satisfies the Tate Conjecture over Fq2.

Reference. See [LMS14, Main Theorem]. �

Remark 1.2.6. The assumption on the characteristic can be weakened. For i) it is sufficient
to assume char(Fq) ≥ 3. For ii) one does not need any assumption on the characteristic as
observed in Charles modification of the argument5, cf. [Cha16].

Remark 1.2.7. The K3 surfaces in Theorem 1.2.5.ii) will also satisfy the Tate Conjecture
over Fq, since when k ⊂ k′ ⊂ ksep is a finite Galois extension, then the validity of the Tate
conjecture for divisors over k′ implies the validity over k, cf. [HuyK3, Remark 17.3.2].

When trying to prove such a finiteness statement, the first, naive, idea would be to use
that the moduli spaces of polarized K3 surfaces of degree d are of finite-type over Fq, so
in particular, there exists only finitely many K3 surfaces over the finite field Fq once we
have fixed a degree d. But, since there are infinitely many possible degrees d, we cannot
conclude the desired finiteness statement without fixing the degree d. Now, the next hope
might be to look at the moduli space of K3 surfaces without a polarization, K3d ↪→ K3.
But this space is not well-behaved at all, more precisely it is not an algebraic stack, as
observed in [Sta06, Proof of Claim 3.5], and cannot be used in the algebraic setting.

The Kuga–Satake construction provides, eventually, a quasi-finite morphism

K3′d → AVg,d′ ,

where g = 219.6 Furthermore, using Zarhin’s trick, cf. [Zar75, Section 5.3], we can assemble
all the latter moduli spaces in the moduli space of principally polarized abelian varieties

AVg,d′ → PPAV8g .

Let us pretend for a moment, that this works over a finite field Fq. Then there are
only finitely many Fq-points in PPAV8g and we might try to deduce that there are only
finitely many K3 surfaces over Fq. But immediately some technical problem arise, e.g.
when infinitely many images of K3d intersect at one point in PPAV8g. Also, a priori the

5He still assumes char(Fq) ≥ 5 for the case of geometric Picard rank 1, since his finiteness result
requires it.

6The space K3′d is a covering of K3d, corresponding to additional ‘spin structures’.
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Kuga–Satake construction is transcendental and it takes quite some work to get it over
number fields and eventually over finite fields. This leads to the question if there is a
moduli space into which we can embed many K3d, and for which we have some geometric
control. The role will be taken by the moduli space of cubic fourfolds.

1.3. Further finiteness statements for K3 surfaces. We give some finiteness results
for K3 surfaces that are useful for our discussion below, where we refer to them from time
to time.

Theorem 1.3.1 (Bridgeland–Maciocia). Let S be a K3 surface over an algebraically
closed field k of characteristic char(k) 6= 2. Then S has only finitely many Fourier–Mukai
partners, i.e. there are only finitely many K3 surfaces S ′ such that Db(S) ' Db(S ′).

Reference. See [HuyK3, Proposition 16.3.10] or the original articles [BM01, Corollary 1.2]
for the case char(k) = 0, and [LO15, Theorem 1.1.ii)] for the case char(k) > 0. �

Theorem 1.3.2 (Huybrechts–Stellari). Let S be a K3 surface over C. Then S has only
finitely many twisted Fourier–Mukai partners, i.e. there are only finitely many pairs (S ′, α),
where S ′ is a K3 surface over C and α ∈ Br(S ′), such that Db(S) ' Db(S ′, α).

Reference. See [HS05, Corollary 0.5]. �

See Section 1.4 for the definition of the category of α-twisted coherent sheaves, and a
fortiori its derived category Db(S, α). In Section 2.4 more details regarding Fourier–Mukai
partners are provided.

Proposition 1.3.3. Let S be a K3 surface over C, and let d ∈ N. Then S admits at most
finitely many polarizations of degree d, up to isomorphism. Furthermore, there is no bound
on the cardinality of this set.

Reference. The statement follows from the cone conjecture (which is valid for K3 surfaces),
cf. [HuyK3, Corollary 8.4.10], and [Huy18a] for a proof which does not rely on the cone
conjecture. �

We discuss the following two finiteness results for motivational purposes. We do not use
them in later sections of this thesis. They come from related work of Artin–Swinnerton-
Dyer, cf. [AS73], and Orr–Skorobogatov, cf. [OS17].

Proposition 1.3.4. Let S be a K3 surface. Then S admits at most finitely many elliptic
fibrations7 X → P1 up to isomorphism.

Reference. See [HuyK3, Proposition 11.1.3.iii)]. �

This finiteness result can be taken as the last step in Artin–Swinnerton-Dyer’s proof of
the Tate Conjecture for K3 surfaces with elliptic fibration in positive characteristic. The
proof of Lieblich–Maulik–Snowden’s theorem, cf. Theorem 1.2.5, is a modern variant of
Artin–Swinnerton-Dyer’s strategy, which we will sketch now.

Let S be an elliptic K3 surface (with section) over a finite field Fq. By Proposition 1.2.3,
we want to show that # Br(S) <∞. Let us assume the contrary. Then we find infinitely
many (suitable) Brauer classes αj ∈ Br(S) that satisfy dj := ord(αj) → ∞ for j → ∞.8
The Brauer group of S and its Tate-Shafarevich group are isomorphic

Br(S) 'X(S) =

{
(S ′/P1, ϕ)

∣∣∣∣∣ S ′ elliptic K3, ϕ : S ∼−→ J(S ′) over P1

and respecting group structures

}
,

7See [HuyK3, Chapter 11] for an introduction to elliptic K3 surfaces.
8Let ` 6= char(Fq) be a prime, and note that we even have # Br(S)(`) =∞. Applying the Kummer

sequence, and extracting finiteness for H2
ét(S, µ`n) from the Hochschild–Serre spectral sequence over Fq,

shows that # Br(S)[`n] <∞ for each n ≥ 1.
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cf. [HuyK3, Corollary 11.5.5, Proposition 11.5.6], hence each αj corresponds to an elliptic K3
surface Sj, whose Jacobian fibration is J(Sj) ' S. We have index(Sj/P1) = ord(αj) = dj,
so Jdj(Sj) ' J(Sj) ' S, cf. [HuyK3, Remark 11.4.4], and the section of S/P1 induces a
multisection Dj on Sj/P1 with fibre degree dj . At this point Artin–Swinnerton-Dyer tweak
the multisection Dj so that (Dj)

2 = d is constant, independent of j, and Dj is big and nef.
Now, there are only finitely many such K3 surfaces over the fixed finite field Fq, cf. the
discussion in Remark 1.4.14. So, infinitely many elliptic fibrations Sj/P1 are defined on
one K3 surface, contradicting Proposition 1.3.4.9

Theorem 1.3.5 (Orr–Skorobogatov). There are only finitely many K3 surfaces of CM
type over a number field of given degree, up to isomorphism over Q.

The preceding finiteness result is relevant for us because of its method of proof, which
provides a Zarhin trick for K3 surfaces, assembling the moduli spaces of polarized K3
surfaces K3d in some common space. This is motivated by Charles’s Zarhin trick for
K3 surfaces (with suitable polarization), cf. [Cha16, Theorem 2.10, Theorem 3.3], which
assembles some moduli spaces of polarized K3 surfaces in a moduli space of irreducible
holomorphic symplectic varieties. In contrast, Orr-Skorobogatov’s space has no apparent
moduli interpretation. Let us sketch their strategy.

Sketch. See [OS17, Theorem 4.1] for details. The construction is on the level of Shimura
variety components, cf. [OS17, Section 3] for a quick recollection. Let

Sd := Sh+
KΛd

(SO(Λd),D(Λd))

be the Shimura variety component10 of orthogonal type associated to the polarized K3
lattice Λd, cf. Section 2.2 for the notation around these lattices. We have a period
map K̃3d ↪→ Sd that is is an open immersion, where K̃3d � K3d is the double cover11
corresponding to trivializing determinants det(H2

ét(S,Z2(1)) ∼−→ det(Λd ⊗ Z2).
Now, Orr and Skorobogatov construct a Shimura variety component S# of orthogonal

type, such that there is a finite morphism Sd → S# for every even natural number d,
cf. [OS17, Section 4.3]. This is done via lattice theory by constructing a lattice Λ# and
(chosen) primitive embeddings Λd ↪→ Λ#. This lattice is unimodular of signature (2, 26),
in fact Λ# = E8(−1)⊕3 ⊕ U⊕2. We can now take

S# := Sh+
KΛ#

(SO(Λ#),D(Λ#)).

Since the Shimura variety component S# is of orthogonal type, it is in particular of abelian
type, as witnessed by the Kuga–Satake construction , cf. [OS17, Section 3.3]. This reduces
the finiteness of points on S#, corresponding to K3 surfaces of CM type, to the case of
abelian varieties, cf. [OS17, Theorem 2.5, Proposition 3.1].

To finish the proof, one has to handle the situation when infinitely many Sd intersect
inside S# at a common point. One notes that the transcendental lattices of two K3 surfaces
that map to the same point in S# are Hodge isometric, cf. [OS17, Lemma 4.3]. This is
enough to conclude the finiteness statement (when forgetting the polarization of the K3
surfaces), cf. Section 2.3 for a discussion in a similar situation. �

9Technically, the last step in Artin–Swinnerton-Dyer’s proof is different, and more in the style of
Charles’s modification of Lieblich–Maulik–Snowden’s argument below. They show that dj = index(Sj/P1)
is bounded, contradicting dj →∞, cf. [AS73, Lemma 5.18].

10The complex points of this Shimura variety component are S̃O(Λd)+\D(Λd)
+, where KΛd

:= S̃O(Λd)

is the discriminant kernel, cf. Õ(Λd) in Section 2.2, and the plus signs indicate (preservation of) a chosen
connected component.

11Note that later, when we consider period maps in Theorem 2.2.5, the double cover is not necessary.
The reason is that we can use the orthogonal group instead of the special orthogonal group as dictated by
the formalism of orthogonal Shimura varieties.
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1.4. A refinement of Lieblich–Maulik–Snowden’s theorem. In this section we
sketch the proof of Theorem 1.2.5 and present a refinement due to Charles, cf. [Cha16],
which, as we observe, is sufficient to make it compatible with Hassett’s numerical conditions
introduced in Section 2.

Usually Brauer classes give obstructions, e.g. to the existence of rational points, projective
bundles, or universal sheaves, e.g. cf. [HuyK3, Section 10.2.2.ii)]. We have seen in
Proposition 1.2.3 that (infinitely many) Brauer classes can also obstruct the Tate Conjecture.
We will turn this around and instead use Brauer classes to construct objects, and eventually
attack the Tate Conjecture.

Definition 1.4.1. Let α ∈ Br(X) and represent it by a Čech-cocycle (αijk ∈ O×(Uijk))ijk.
An (αijk)ijk-twisted sheaf E on X consists of sheaves Ei on Ui together with isomorphism
ϕij : Ej|Uij ∼−→ Ei|Uij such that ϕii = id, ϕij = ϕ−1

ji , and ϕij ◦ ϕjk ◦ ϕki = αijk · id.

Remark 1.4.2. We can form the category Coh(X,α) of α-twisted coherent sheaves on
X by requiring the Ei in Definition 1.2.1 to be coherent. Note that different cocycle
representations of α yield equivalent categories, cf. [Căl00, Lemma 1.2.8].

For technical reasons it is nevertheless advisable to have a Čech-cocycle or a gerbe
representing the Brauer class. We will not do this and refer again the reader to [LMS14]
for such details.

Situation 1.4.3. Let S be a K3 surface over Fq, with p = char(Fq), and let ` 6= p be a
prime number.

Definition 1.4.4. An `-adic B-field is an element B = β/`n ∈ H2
ét(S,Q`(1)) where n ≥ 0

and β ∈ H2
ét(S,Z`(1)) is primitive12. The Brauer class associated to an `-adic B-field B is

defined via
H2

ét(S,Z`(1)) → H2
ét(S, µ`n) → Br(S)[`n]

β 7→ αn.

Remark 1.4.5. Let us compare the `-adic approach to associate a Brauer class to a B-field
with the complex approach when S is a complex variety. Consider the exponential sequence
of sheaves in the complex analytic topology, and push it out along Z→ µn, 1 7→ e2πi/n to
get the Kummer sequence.

0 Z OS O×S 0

0 µn O×S O×S 0

exp(2πi/n)

2πi

exp(·/n)

exp

id

⊂ ()n

Taking (singular) cohomology yields

H2(San,Z) H2(San,OS) H2(San,O×S )

H2(San, µn) H2(San,O×S ) H2(San,O×S ).

p

f

g(·/n)

g

h

Now take a B-field B ∈ H2(San,Z[1/`]) and write it as B = β/`k where β ∈ H2(San,Z) is
primitive, and specialize the diagrams above to n = `k. By definition, the Brauer class
associated in the complex sense to the B-field B is g(f(β)/`k), while in the `-adic sense we
associate h(p(β)) to it. Now the commutativity of the diagram implies g(f(β)`k) = h(p(β))
as desired. One can further compare singular cohomology with étale cohomology if required.

12When we write B in this form, we will always assume that n ≥ 0 and β is primitive.
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Definition 1.4.6. Denote by T(S,Z`) := (CH1
∼hom(S,Z`))⊥ ⊂ H2

ét(S,Z`(1)) the `-adic
transcendental lattice of S.

Definition 1.4.7. Let B = β/`n be an `-adic B-field on S. The B-twisted Chow lattice is

CHB(S,Z) := {(a`n, D + aβ, c) | a, c ∈ Z, D ∈ Pic(S)},
with intersection pairing

(a`n, D + aβ, c) . (a′`n, D′ + a′β, c′) := (D + aβ) . (D′ + a′β)− a`nc′ − a′`nc.

The twisted Chow lattice is the natural recipient of Mukai-vectors of twisted sheaves.

Definition 1.4.8. Let α ∈ Br(S) and B = β/`n an `-adic B-field inducing α. Let E be a
locally free (or more generally a perfect complex of) −α-twisted13 sheaf on S of positive
rank, then its twisted Mukai-vector is

νB(E) := eB ch(E⊗`
n

)1/`n
√

td(S).

Proposition 1.4.9. Let E be a perfect complex of −α-twisted sheaves on S, then we have
that νB(E) ∈ CHB(S,Z).

Reference. See [LMS14, Lemma 3.3.7]. �

Remark 1.4.10. The Grothendieck–Riemann–Roch Theorem justifies the intersection
product on CHβ/r(S,Z), cf. [LMS14, Lemma 3.3.7.(2)]. Indeed, calculate

−νB(P) . νB(Q) = −(eB ch(P⊗r)1/r
√

td(S)) . (eB ch(Q⊗r)1/r
√

td(S))

= deg((eB ch(P⊗r)1/r
√

td(S))∨(eB ch(Q⊗r)1/r
√

td(S)))

= deg((e−B ch(P⊗−r)1/r
√

td(S)
∨
)(eB ch(Q⊗r)1/r

√
td(S)))

= deg(ch((P∨ ⊗ Q)⊗r)1/r td(S))

= deg(ch(Hom (P,Q)) td(S))

= χ(P,Q),

where the dual c∨ of a cohomology class c in degree 2k means multiplying it by (−1)k. In
the equation chain we expand the definitions, use that td(S) = td(S)∨ since c1(S) = 0
for a K3 surface, and that the twist of P∨ and Q cancels, and in the last step apply the
Grothendieck–Riemann-Roch Theorem.

Let M(α, ν) be the stack of simple −α-twisted sheaves on S with twisted Mukai vector ν.
The objects over a Fq-scheme T are

M(α, ν)(T ) =

F ∈ QCoh(S ×Fq T, (−α� 1)),

ϕ : det(F) ∼−→ O(D)

∣∣∣∣∣∣∣
F finitely-presented and flat over T ,

ν(Ft) = ν, and End(Ft) = k(t)

for every geometric point t ∈ T

.
Proposition 1.4.11. Let B = β/`n be a B-field with associated Brauer class α, and
let ν ∈ CHB(S,Z) be a twisted Mukai-vector on S. In particular, we have ord(α) = `n.

i) If rk(ν) = `n and (ν)2 = 0, then M(α, ν) is coarsely represented by a K3 surface,
which we denote by M(α, ν).

ii) If, in addition, there exists some twisted Mukai-vector υ ∈ CHB(S,Z) such that
gcd(υ . ν, `) = 1, then M(α, ν) is a fine moduli space, and we have

Db(M(α, ν)) ' Db(S, α).

Reference. See [LMS14, Proposition 3.4.2]. �
13We place the minus sign here so that it will not intervene later in the twisted derived equivalences.
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Remark 1.4.12. Usually, when discussing moduli spaces of (twisted) sheaves one requires
some stability condition on the sheaves. In contrast, we do not require any stability condi-
tion on our sheaves. The reason is that our numerical conditions say rk(F) = `n = ord(α),
so that there are no α-twisted subsheaves and a fortiori stability conditions become vacuous,
cf. [Lie07, Section 2.2.5] where the keyword is “optimal gerbe”.

Let us sketch the proof of Lieblich–Maulik–Snowden’s theorem, cf. Theorem 1.2.5.ii).

Sketch of Theorem 1.2.5.ii). Fix a polarization D on S of degree, say, d. Let us assume,
for the sake of a proof by contradiction, that # Br(S) = ∞. Then we can find by
Proposition 1.4.17 below a transcendental B-field β ∈ T(S,Z`) with

(β)2 = −d.
Note that the B-field β is indeed primitive, cf. [LMS14, Proof of Proposition 3.5.6]. Now,
let αj be the Brauer class associated to the B-field β/`j. They satisfy ord(αj) = `j. Also,
define the twisted Mukai-vectors

νj := (`j, D + β, 0) ∈ CHβ/`j(S,Z).

Note that rk(νj) = `j and (νj)
2 = (D + β)2 = (β)2 + (D)2 = −d + d = 0, since β is

transcendental, so Mj := M(αj, νj) are K3 surfaces. Furthermore, we have

νj . (`j, β, 0) = −d,
and choosing an ` such that ` - −2d, we see that M(αj, νj) is a fine moduli space.

By the finiteness hypothesis, infinitely many M(αj, νj) must be isomorphic to, say, M .
Now, we see

Db(S, αj) ' Db(M(αj, νj)) ' Db(M),

and hence S has infinitely many twisted Fourier–Mukai partners. This is a contradiction
(after lifting to characteristic 0) to Theorem 1.3.2. �

The last step of the proof, where we need to lift to characteristic 0, is quite technical.
Charles looks instead at the discriminant of the twisted Mukai lattice and can thus avoid
these complications, as well as Theorem 1.3.2.

Proposition 1.4.13. Define λj by (νj . CHβ/`j(SFq
,Z)) = λjZ. Then there exists tj ∈ N

such that
λ2
jp
tj disc NS(M(αj, νj)Fq

) = `2j disc NS(SFq
).

Reference. See [Cha16, Proposition 4.3]. �

In the situation above, we have νj . (`j, β, 0) = −d, and hence λ2
j ≤ d2. Looking at the

`-adic valuation of disc NS(Mj,Fq
), we see that only finitely many can be isomorphic. More

precisely, as soon as j′ > ln(d)/ ln(`) we have that Mj,Fq
and Mj+j′,Fq

are not isomorphic.

Remark 1.4.14. Charles considers in [Cha16, Theorem 1.4] the case of geometric Picard
rank ρ(S) ≥ 2 separately. He proves finiteness without resorting to cubic fourfolds. Namely,
choose a divisor B on S such that n0 := (B)2 > 0, and14 (B . D) = 0. From this we get
bj := (0, B, 0) ∈ CHβ/`j(S,Z), satisfying (bj . νj) = 0 and (bj)

2 = b. We use the injective
isometry

ν⊥j /Zνj ↪→ NS(Mj),

cf. [Cha16, Theorem 2.4.vi), Equation (4.2)], to get a divisor Bj on Mj for each j ≥ 1 that
satisfies (Bj)

2 = n0, i.e. the degree of Bj is independent of j. But, there exist only finitely
many such K3 surfaces, cf. [Cha16, Corollary 3.2].

14Here D is not required to be ample.
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The idea for the last statement is as follows: There exist natural numbers N and d
depending only on n0, such that Mj is birational to a closed subvariety of Pn of degree at
most d and n ≤ N , cf. [Cha16, Proposition 3.1]. Since there exist only finitely many closed
subvarieties of Pn of degree at most d, there are only finitely many such varieties up to
birationality. But K3 surfaces are minimal, i.e. two birational K3 surfaces are isomorphic,
so there are only finitely many such K3 surfaces up to isomorphism.

Proposition 1.4.15. Continuing with the notation above, in particular S has a polar-
ization D of degree d. Assume that ρ(S) = 1, then the K3 surface Mj above admits a
polarizations of degree d`2j.

Sketch. See [Cha16, Proof of Theorem 1.3] for details. Let us define the twisted Mukai
vector hj := (`2j, `jβ,−2d) ∈ CHβ/`j(S,Z). Then we have hj . νj = 0 and

(hj)
2 = d`2j.

We conclude that Mj admits a polarization of degree d`jk = deg(S,D) ord(αj)
2. �

Remark 1.4.16. Doing some lattice yoga, one sees that we can not do better then this
degree (having to assume pessimistically that ρ = 1 and we only have one choice of β).

When showing the existence of the transcendental B-field β above, there are some
requirements on `, but nevertheless there are infinitely many suitable `. We will impose
later in Remark 2.1.8 the additional requirement ` ≡ 1 mod 3. We cannot hope to
implement these additional assumptions without modifying Lieblich–Maulik–Snowden’s
proof, since by Chebotarev’s Density Theorem, the density of primes satisfying our extra
assumption is 1/ϕ(6) = 1/2 and the density of primes satisfying Lieblich–Maulik–Snowden’s
requirements is also less then 1/2. Conveniently, Charles states the proposition more
carefully, and we can apply his version, cf. Proposition 1.4.19.

Proposition 1.4.17. Assume15 # Br(S) = ∞ and let d ∈ Q be some rational number.
Then there exist primes p1,. . . ,pr such that for every prime ` � 0, for which all pi are
squares modulo `, there exists a transcendental B-field β ∈ T(S,Z`) with (β)2 = d.

Reference. See [Cha16, Lemma 4.4] and [LMS14, Lemma 3.5.2]. This is proven via a
lattice theoretic argument which we do not reproduce here for space reasons. The reader
who enjoys lattice theory is invited to look it up. �

Remark 1.4.18. There are indeed infinitely many primes ` that satisfy the requirements of
Proposition 1.4.17, i.e. given finitely many integers p1,. . . ,pr, there exist infinitely many
primes ` such that all pi are squares modulo `. This is essentially due to Dirichlet’s theorem
on primes in arithmetic progressions, cf. [Cha16, Lemma 4.6] for details.

Proposition 1.4.19. There exist integers p1 and p2 such that for a prime number ` 6= 3
both p1 and p2 are a squares modulo ` if and only if ` ≡ 1 mod 3.

Proof. Take p1 = −1, i.e. assume −1 is a square modulo `. We claim that ` 6≡ 2 mod 3 if
and only if 3 is square modulo `, so that we can take p2 = 3. Indeed, let us apply quadratic
reciprocity. By our assumption we have

(−1
`

)
= 1, which is equivalent to ` ≡ 1 mod 4. In

particular, we have 2| `−1
2
. Now, we have(

3

`

)(
`

3

)
= (−1)

3−1
2

`−1
2 = 1,

i.e. we have that 3 is a square modulo ` if and only if ` is a square modulo 3. But the
latter means ` 6≡ 2 mod 3, since 2 is not a square modulo 3. �

15We implicitly replace Fq by Fq2 at this point. This is needed because [LM11, Lemma 3.5.1] only
provides control over the discriminant of the sublattice fixed by Frobenius up to a sign. The quadratic
extension counteracts this.
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2. Hassett’s associated cubic fourfolds

2.1. Special cubic fourfolds. The notion of special cubic fourfolds as well as their
associated K3 surfaces, which we will use to map moduli spaces of polarized K3 surfaces to
the moduli space of cubic fourfolds, was introduced by Hassett in [Has00]. In this section
we recall his results. We work in the setting of complex algebraic geometry, i.e. all our
varieties are defined over C.

Recall that a cubic fourfold X over a field k is a closed subscheme X ⊂ P5
k of codimen-

sion 1 and degree 3. We will be concerned only with smooth cubic fourfolds.
Let us look at the Hodge diamonds of a K3 surface and a cubic fourfold, cf. Figure 1.

We see some similarities in the center of the diamonds, that might suggest that the second
cohomology of a K3 surface and the primitive fourth cohomology of a cubic fourfold look
Hodge isometric. But, this does not work out, e.g. for signature reasons. We see that we
need at least a rank 2 modification together with a sign change on the cohomology of a
cubic fourfold and should consider primitive cohomology of a polarized K3 surface.

1
0 0

1 20 1
0 0

1

(a) Hodge diamond of K3 surface

1
0 0

0 1 0
0 0 0 0

0 1 21 1 0
0 0 0 0

0 1 0
0 0

1

(b) Hodge diamond of cubic fourfold

sign H2 = (3, 19)

sign H2
prim = (2, 19)

(c) Signature of K3 surface

sign H4 = (21, 2)

sign H4
prim = (20, 2)

(d) Signature of cubic fourfold

Figure 1. Hodge diamonds

Definition 2.1.1.
i) A smooth cubic fourfold X is special if rk H2,2(Xan,Z) ≥ 2.
ii) A labeling on it is a positive definite, rank 2, primitive sublattice K ⊂ H2,2(Xan,Z)

with h2 ∈ K, where h denotes the cohomology class of a hyperplane section.
iii) The discriminant of a labeled special cubic fourfold (X,K) is discK.
iv) A marking16 on it is a primitive embedding of a labeling K ↪→ H2,2(Xan,Z) that

preserves h2.

Remark 2.1.2. For the very general smooth cubic fourfold, we have rk H2,2(Xan,Z) = 1,
which explains the terminology “special” in Definition 2.1.1, cf. Proposition 2.1.4. The
general special cubic fourfold has rk H2,2(Xan,Z) = 2, and a fortiori has a unique labeling.

Remark 2.1.3. Since the integral Hodge conjecture is true for smooth cubic fourfolds, cf.
[Zuc77, Theorem 3.2] and [Voi13, Theorem 1.4], we see that every element in a labeling K
is algebraic, i.e. it is in the image of the cycle class map CH2(X,Z)→ H4(Xan,Z).

16This should not be confused with a marking in the sense of Hodge theory. When we say ‘marked
cubic fourfold’, we will always refer to the notion defined here.
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(?) 8 12 14 18 20 24 26 30 32 36 38 42 44 48 50 54 56 60 62
(??) 14 26 38 42 62

Table 1. Table of numbers (up to 62) satisfying Hassett’s conditions

Let us denote by C4 the coarse moduli space of smooth cubic fourfolds17. This is an
open subscheme of the coarse moduli space of (GIT-stable) cubic fourfolds, which arises
as the GIT-quotient P(H0(P5,OP5(3)))st // SL(6), cf. [HuyC4, Section 2.1.3] for details. We
denote the locus of special cubic fourfolds admitting a labeling of discriminant d by

C4d(C) := {X special cubic fourfold | ∃ labeling K : disc(K) = d} ⊂ C4(C).

This set-theoretic definition can be enhanced to a scheme-theoretic one.

Proposition 2.1.4 (Hassett).
i) C4d ⊂ C4 is an irreducible divisor, for d ≥ 1.
ii) C4d 6= ∅ if and only if

d > 6 and d ≡ 0, 2 mod 6. (?)

Reference. See [Has00, Theorem 3.2.3] and [Has00, Theorem 4.3.1, Proposition 3.2.3]. �

Hassett also explains how to associate a polarized K3 surface to a labeled special cubic
fourfold with suitable discriminant.

Theorem 2.1.5 (Hassett). Let (X,K) be a labeled special cubic fourfold, say with dis-
criminant d. Then there exists a polarized K3 surface (S, f) of degree d together with an
isometric isomorphism of Hodge-structures

H2(San,Z) ⊃ 〈f〉⊥ ' K⊥ ⊂ H4(Xan,Z)−,

if and only if

d > 6, 2 | d, 4 - d, 9 - d, and
p - d for any odd prime p with p ≡ 2 mod 3.

(??)

Reference. See [Has00, Theorem 5.1.3]. �

Remark 2.1.6. Note that condition (??) implies condition (?). Indeed d must be even, and
then we are asking if d/2 ≡ 0, 1 mod 3. But this is valid, since no prime p with p ≡ 2
mod 3 is allowed to divide d/2.

Remark 2.1.7. In the case that d is an even number, and d > 6, Hassett’s condition (??)
might be easier to remember as the condition

d | 2(n2 + n+ 1)

for some n ∈ N, cf. [Add16]. These unintuitive conditions are motivated by the lattice
theory behind Hassett’s association.

Remark 2.1.8. If d satisfies (??), and if ` is a prime with ` ≡ 1 mod 3, then d′ = d`2k also
satisfies (??). Indeed, d′ > 6 and 2|d′ is clear, while 4 - d′ means ` 6= 2 and 9 - d′ means
` 6= 3. Now, no odd prime p with p ≡ 2 mod 3 is allowed to divide d′. This translates
into ` ≡ 1 mod 3, since we have ` 6= 2, 3 already.

17Of course one can analogously consider the moduli spaces C3, C5 etc., while K2, etc. do not make
sense. The reader may forgive us this asymmetry.
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2.2. Hassett’s association on the level of moduli spaces. The association comes
into life at the level of period domains and is induced by isomorphisms of lattices, which
come on one side from K3 surfaces and on the other side from cubic fourfolds. So, let us
introduce these lattices, period domains and their arithmetic quotients. We are guided by
Huybrechts’s notes [Huy18b; Huy18c], and refer for details to Hassett’s article [Has00].

First, let us introduce the relevant lattices18.
Name Lattice Signature Discriminant

Cubic lattice Γ̃ := H4(Xan,Z)− (2, 21) 1

Primitive cubic lattice Γ := H4(Xan,Z)−prim ⊂ Γ̃ (2, 20) 3
K3 lattice Λ := H2(San,Z) (3, 19) 1
Polarized K3 lattices Λd := H2(San,Z)prim ⊂ Λ (2, 19) d

Cubic labeling lattices Kd ⊂ Γ̃ (cf. Definition 2.1.1) (0, 2) d ≡ 0, 2 mod 6

Remark 2.2.1. The lattice Kd is indeed well-defined, one can write down a specific choice
of Kd concretely, cf. [Huy18b, Lecture 1]. Later, Proposition 2.2.3 shows that the choice
of such a lattice is not problematic.

Definition 2.2.2. Let V be a vector space over R with symmetric bilinear form (.) of
signature (n+, n−) with n+ ≥ 2. Define the period domain associated to V as

D(V ) := {x ∈ P(V ⊗R C) | (x . x) = 0, (x . x) > 0}.
If V arises from a lattice L via V = L⊗Z R, we allow to write D(L) for D(L⊗Z R).

Let us apply this to our lattices. On the K3 side, we have
Qd := D(Λd) ⊂ Q := D(Λ)

with dimension 19 and 20, respectively. While Q is connected, the space Qd has two
connected components. On the cubic fourfold side, we have

Dd := D(K⊥d ) ⊂ D := D(Γ)

which have again dimension 19 and 20, respectively. Both have two connected components.
To get the arithmetic varieties19, and get closer to the moduli spaces, we want to

quotient out by suitable isometric group actions. We consider the following groups of
isometries.20

Õ(Λd) := {g ∈ O(Λ) | g(`) = `}

Õ(Γ) := {g ∈ O(Γ̃) | g(h2) = h2}

Õ
lab

(K⊥d ) := {g ∈ Õ(Γ) | g(Kd) = Kd}

Õ
mar

(K⊥d ) := {g ∈ Õ(Γ) | g|Kd
= id}

As promised, the choice of Kd is irrelevant up to the action of Õ(Γ).

Proposition 2.2.3 (Hassett). Let K ⊂ Γ̃ and K ′ ⊂ Γ̃ be two labelings. Then there exists
an isometry γ ∈ Õ(Γ) such that γ(K) = K ′ if and only if disc(K) = disc(K ′).

Reference. See [Has00, Proposition 3.2.4]. �

18For concreteness, one can write down these lattices using standard lattices, e.g. Z(n), U , A2, E8.
This facilitates calculation and pinning down distinguished elements, like the polarization ` in Λ, such
that Λd = `⊥. We refer to [Huy18b, Lecture 1] for details.

19The pedantic reader may forgive us for using the terminology ‘arithmetic variety’ even when we do
not quotient out by a torsion-free group.

20Recall that ` corresponds to a polarization, so Λd = `⊥ ⊂ Λ, and h is the class of a hyperplane
section of X.
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When L is a lattice with sign(L) = (2, n−), the orthogonal group O(L) acts properly
discontinuous on D(L). This leads to the following arithmetic varieties, and morphisms
between them.

Nd := Õ(Λd)\D(Λd)

Cmar
d := Õ

mar
(K⊥d )\D(K⊥d )→ Clab

d := Õ
lab

(K⊥d )\D(K⊥d )→ C := Õ(Γ)\D(Γ)

By the Baily–Borel theorem, cf. [BB66], these arithmetic varieties are normal, quasi-
projective varieties, and by the Borel extension theorem, cf. [Bor72], the morphisms are
algebraic21. We denote by Cd the image of Clab

d in C.

Proposition 2.2.4 (Hassett).
i) The index of Õ

mar
(K⊥d ) in Õ

lab
(K⊥d ) is 2 if d ≡ 0 mod 6, and is 1 if d ≡ 2 mod 6.

Consequently, the morphism Cmar
d → Clab

d is two-to-one, respectively one-to-one.
ii) The subvariety Cd ⊂ C is a divisor, which is non-empty if and only if d satisfies the

condition d ≡ 0, 2 mod 6.
iii) The morphism Clab

d → Cd is the normalization morphism.

Reference. See [Has00, Proposition 5.2.1, Theorem 3.2.3, Proposition 3.2.2, Page 7] respec-
tively. �

The period domains parametrize Hodge structures of polarized K3 surfaces and smooth
cubic fourfolds, respectively. In the end we are interested in K3 surfaces and cubic fourfolds
itself, and, what is more, their moduli spaces. The connection with the period domains,
and arithmetic varieties, is established via period maps and Torelli theorems.

Consider the mapping τd : K3d → Nd which maps a polarized K3 surface (X, f) ∈ K3d(C)
to its Hodge structure H2,0(San) ⊂ H2(San,Z)prim ⊗Z C ' Λd ⊗Z C. Similarly, consider
the mapping τ : C4 → C which maps a smooth cubic fourfold X ∈ C4(C) to its Hodge
structure H3,1(Xan) ⊂ H4(Xan,Z)prim ⊗Z C ' Γ⊗Z C.

Theorem 2.2.5 (Global Torelli).
i) The map τd : K3d → Nd is algebraic and an open immersion.
ii) The map τ : C4→ C is algebraic and an open immersion.

Reference. See [HuyK3, Proposition 6.2.8, Theorem 6.3.5] and the original [PSS72] for the
case of K3 surfaces. See [Voi86] and [Voi08, Théorème 1] for the case of cubic fourfolds. �

The period map τ is not surjective, which will cause slight difficulties later on. Never-
theless the image can be specified.

Theorem 2.2.6 (Laza, Looijenga). The image of the period map τ : C4→ C for smooth
cubic fourfolds is C \ (C2 ∪ C6).

Reference. See [Laz10] and [Loo09]. �

Now define C4mar
d , C4labd , and C4d ⊂ C4 by pull-back via the period map τ . Note that

by construction the variety C4d parametrizes special cubic fourfolds of discriminant d,
the points of C4labd correspond to special cubic fourfolds together with a labeling K of
discriminant d, and the points of C4mar

d correspond to special cubic fourfolds together with
a marking K ' Kd of discriminant d. Let us summarize the situation with the following
diagram.

21One has to be careful with torsion when applying the Baily–Borel and Borel extension theorem.
But, one can find torsion free, normal subgroups of finite index, and then take the quotient in two steps,
cf. [Has00, Proof of Proposition 2.2.2] and [HuyK3, Remark 6.4.2].
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Qd Dd Dd Dd D

Nd Cmar
d Clab

d Cd C

K3d C4mar
d C4lab

d C4d C4

≤2:1 normaliz. divisor

τd

x x x
τ

Proposition 2.2.7 (Hassett).
i) There exists an isomorphism of lattices K⊥d ' Λd if and only if d satisfies the
condition (??). In particular, we get D(K⊥d ) ' D(Λd).

ii) We have Õ
mar

(K⊥d ) ' Õ(Λd) under such an isomorphism.

Reference. See [Has00, Proposition 5.1.4] and [Has00, Theorem 5.2.2]. �

In conclusion, for d satisfying (??), this yields the diagram

Qd Dd

Nd Cmar
d

K3d C4mar
d

∼

∼
φ

mar
d

φmar
d

τd

x

and the maps of moduli spaces φd : K3d 99K C4mar
d → C4d. Note that by Theorem 2.2.6

the domain of the map φd is the preimage of C \ (C2 ∪ C6) in K3d. For every marked cubic
fourfold (X,K) of discriminant d there exists a polarized K3 surface (S, f) of degree d,
that maps to it, i.e. the map φmar

d is surjective. This comes from the surjectivity of the
period map for pseudo-polarized K3 surfaces and the fact that H2,2(Xan,Z)prim does not
contain any class w with (w)2 = +2, cf. [Voi86, Proposition 4.1], which witnesses that f is
a polarization as desired.

For the joy of the reader, we have visualized the situation involving Hassett’s maps φd
in Figure 2. The moduli spaces of polarized K3 surfaces float freely, without interaction
among each other, above the moduli space of cubic fourfolds, where they are mapped to
and assembled in a common space. The gray gaps in the moduli spaces of polarized K3
surfaces signal that φd is not defined everywhere.

2.3. Further study of Hassett’s association. Assume, for motivational purposes, that
Hassett’s association works over finite fields Fq and gives

#{K3 surface S/Fq | S has a polarization of degree satisfying (??)} <∞.

Now, after checking that the K3 surfacesMj in the proof of Theorem 1.2.5 satisfy Hassett’s
condition (??), we win and prove the Tate Conjecture. Of course we have to be careful,
e.g. since the maps φd are not defined everywhere, might map infinitely many polarized
K3 surfaces to the same cubic fourfold (when varying d), and most important arise via a
transcendental construction, so that they are, a priori, only available over C. It is the goal
of the next sections to work towards solutions or workarounds for these problems.
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C4 C414

C4d

C438

C426

...

...

φd

...

...

K314

K3d

K326

Figure 2. Visualization of Hassett’s maps from moduli spaces of polarized
K3 surfaces to Hassett’s divisors.

The next proposition gives control over K3 surfaces that are associated with some cubic
fourfold lying on (possibly infinitely) many Hassett divisors C4d. This is visualized in
Figure 3, again for the reader’s joy.

Proposition 2.3.1. Let X be a special cubic fourfold. Then all K3 surfaces associated
to X are mutually Fourier–Mukai equivalent22. In particular, X has only finitely many
associated (non-polarized) K3 surfaces.

Proof. Let (S, f) and (S ′, f ′) be two polarized K3 surfaces (of possibly different degree)
that are associated with X. Say, the corresponding labelings are K and K ′. That means
we have Hodge isometries

H2(San,Z)prim ' K⊥ ⊂ H4(Xan,Z)−

H2(S ′an,Z)prim ' K ′⊥ ⊂ H4(Xan,Z)−,

cf. Theorem 2.1.5. This induces in particular a Hodge isometry of transcendental lattices

T(S) ' T(X)− ' T(S ′).

By the Derived Torelli Theorem, cf. [Huy09, Theorem 5.13], we conclude that S and
S ′ are Fourier–Mukai partners. Now, recall that a K3 surface has only finitely many
Fourier–Mukai partners, cf. Theorem 1.3.1.23 �

Remark 2.3.2. Examining the proof of Theorem 1.2.5 shows that we only need finiteness
of K3 surfaces up to Fourier–Mukai equivalence. So we do not need Theorem 1.3.1 for our
applications. Indeed, take Proposition 1.4.13 into account and compare the discriminants of
the Néron–Severi lattices under a Fourier–Mukai equivalence, cf. [HuyK3, Corollary 16.2.8].

Now, Proposition 2.3.1 rectifies the problem that the maps ϕd are only generically
two-to-one, and also the problem when infinitely many C4d intersect at one point. Still,
there is the problem that a K3 surface, even one satisfying Hassett’s condition (??), could
have no associated cubic fourfold. Since Hassett’s association comes into live on the level
of period domains, it is not clear how to compute the associated cubic fourfold for a given
K3 surface. Furthermore, criteria for deciding whether a K3 surface has an associated
cubic fourfold at all are missing. The only criterion we can give, and will use later, is the
following.

22This notion is recalled in Definition 2.4.1
23The finiteness result in Theorem 1.3.1 is proved via studying the situation on the level of transcendental

lattices, so our use of the Derived Torelli Theorem is canceled.
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C4
C414

C426

C438
. . .

...

...

Figure 3. Intersection of (possibly infinitely) many Hassett’s divisors at a
common intersection point.

Proposition 2.3.3. Let (S, f) be a polarized K3 surface over C. Assume that S has
Picard rank ρ(S) = 1, and its degree d satisfies Hassett’s condition (??). Then (S, f) has
an associated cubic fourfold, i.e. it lies in the domain of φd.

Proof. By Theorem 2.2.6, we need to check that φ̄mar
d does not map the period of (S, f)

into the Hassett divisors C2 ∪ C6. If it would lie on C2 or C6, then it would lie on at least
two Hassett divisors, since it already lies on Cd. But, then the period point would admit
two different labelings Kd and Kd′ , which is impossible, since ρ(S) = 1 only leaves space
for one labeling. �

Remark 2.3.4. There are different competing notions of what we might mean when we say
a K3 surface S is associated to a cubic fourfold X. It could mean

i) φd(S, f) = X,
ii) H2(San,Z) ⊃ 〈f〉⊥ ' K⊥ ⊂ H4(Xan,Z)−, or
iii) T(S) ' T(X)−.
In the following, we take ii) as our definition of being ‘associated’. We have the

implications i)⇒ ii)⇒ iii). The first one holds by construction, and for the second one
see Proposition 2.3.1. Note that the converse implication ii)⇒ i) does not hold, not even
when we trivialize Diagram 2 by requiring ρ(S) = 1 and d ≡ 2 mod 6. The problem
is that the map φd is not canonical, there are choices involved. But, when we have an
association in the sense of ii), then there is a choice of φd such that φmar

d (S, f) = (X,K)
and i) is verified.

See [Add16] for further discussion, which also touches upon the question when a cubic
fourfold is rational, i.e. when it is birational to the projective space P4.

Proposition 2.3.5. Assume that d satisfies (??), and define24

Gd := Isom(Disc(K⊥d ),Disc(−Λd)).

Then the possible choices of Hassett’s identification φ̄mar
d : Nd → Cmar

d are in bijection with
Gd/{±1}. The group R2,d := {n ∈ Z/dZ | n2 = 1} acts faithfully and transitively on Gd.
In particular

#{φ̄mar
d : Nd

∼−→ Cmar
d } =

1

2
#R2,d.

Reference. See [Has00, Theorem 5.2.3]. �
24The notation Disc(L) denotes the discriminant group of a lattice L.
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Proposition 2.3.6.
i) There is a unique choice of Hassett’s association φ̄mar

d : Nd → Cmar
d if and only if we

have d = 6 or d = 2pk where k ≥ 0 and p is a prime with p ≡ 1 mod 3.
ii) Let ` be a prime with ` 6≡ 2 mod 3, and let d > 2 be coprime to `. For d′ = `kd

there are exactly twice as many choices of Hassett’s association φ̄mar
d : Nd → Cmar

d as
for d.

Proof. By Proposition 2.3.5 we have to look at the cardinality f(n, 2) := #R2,n of R2,d.
The function f(n, 2) is a multiplicative arithmetic function, cf. [FMS10, Section 2].

ii) Write the equation a2 ≡ 1 as (a+ 1)(a− 1) ≡ 0. Since ±1 are always solutions, let
us assume a 6≡ ±1. So, `k - a+ 1 and `k - a− 1, which implies ` | a+ 1 and ` | a− 1. But
this is only possible for ` = 2. So f(`k, 2) = 2 as desired.

i) For the case d = 6 see [Has00, Theorem 5.2.3], so let us now assume d 6= 6. By the
multiplicativity of f , and ii), we have f(2pk, 2) = f(2, 2)f(pk, 2) = 1 · 2.

Conversely, write d =
∏

p p
kp factored into primes. Since d must satisfy Hassett’s

conditions (??), we have that k2 = 1, k3 ≤ 1, and kp = 0 for every odd prime p satisfying
p ≡ 2 mod 3. Then 2 = f(d, 2) =

∏
p f(pkp , 2), but f(pkp , 2) ≥ 2 for p ≥ 3 and kp ≥ 1.

So, we must have d = 2pk with p and k as claimed. �

2.4. Hassett–Kuznetsov association. In this section we discuss an alternative notion
for a cubic fourfold to be associated to a K3 surface, due to Kuznetsov, cf. [Kuz10],. The
association takes place on the level of derived categories, so let us recall the relevant
definitions, cf. [HuyFM] for details.

Definition 2.4.1. Let X and Y be schemes over a field k.
i) Denote byDb(X) := Db(Coh(X)) the bounded derived category of coherent sheaves

on X.
ii) We say that X and Y are derived equivalent if there exists a k-linear exact equiva-

lence Db(X) ' Db(Y ).

Remark 2.4.2. We will usually sayX and Y are Fourier–Mukai equivalent, or Fourier–Mukai
partners, when they are derived equivalent. This is justified when X and Y are smooth
projective varieties, since then an exact equivalence Φ : Db(X)→ Db(Y ) can be written
as a Fourier–Mukai functor, i.e. there exists a Fourier–Mukai kernel P ∈ Db(X ×k Y ) such
that

Φ(F) = ΦP(F) := R(prY )∗(pr∗X F ⊗L P)

for F ∈ Db(X), cf. [HuyFM, Theorem 5.14] and the survey [CS12].

The first, naive, idea one could have is to say that a K3 surface S and a smooth cubic
fourfold X are associated if they are derived equivalent. The problem is that a smooth
cubic fourfold is a Fano variety, i.e. ω∨X is ample, and in particular never isomorphic to a
K3 surface, which is a Calabi–Yau variety, i.e. ωS ' OS. But, by Bondal–Orlov S and X
must be isomorphic as soon as they are derived equivalent, cf. [HuyFM, Proposition 4.11].

Instead, Kuznetsov restricts attention to a part Ku(X) ⊂ Db(X) that looks like the
derived category of a K3 surface, if you will, a ‘noncommutative K3 surface’. We refer to
the articles [Kuz10], [Kuz16], and the notes [MS18] for details.

Definition 2.4.3. For a smooth cubic fourfold X define the Kuznetsov component as

Ku(X) := 〈OX ,OX(1),OX(2)〉⊥

= {F ∈ Db(X) | HomDb(X)(OX(i),F[j]) = 0 for i = 0, 1, 2 and j ∈ Z}
= {F ∈ Db(X) | H•(X,F(i)) = 0 for i = 0,−1,−2}.
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Remark 2.4.4. The Kuznetsov component Ku(X) looks like a the derived category of a
K3 surface. More precisely it is a 2-dimensional Calabi–Yau category, whose Hochschild
cohomology look like that of a derived category of a K3 surface.

Definition 2.4.5. We say X is associated to some K3 surface in Kuznetsov’s sense when
the Kuznetsov component Ku(X) is geometric, i.e. there exists a K3 surface S together
with a Fourier–Mukai equivalence Ku(X) ' Db(S).

Remark 2.4.6. The K3 surface S in Definition 2.4.5 does not need to have anything to do
with an associated K3 surface in Hassett’s sense. But as soon as one knows that Ku(X) is
geometric, one can indeed get a Fourier–Mukai equivalence with a Hassett associated K3
surface.

Proposition 2.4.7. Let (X,K) be a marked cubic fourfold with associated polarized K3
surface (S, f), i.e. we have a Hodge isometry

ϕ : H2(San,Z)prim ' K⊥ ⊂ H4(Xan,Z)−.

If Ku(X) is geometric, then there exists a Fourier–Mukai equivalence ΦP : Db(S)→ Ku(X)
that induces ϕ on cohomology.

Reference. See [AT14, Proposition 5.1]. �

The question remains if X has an associated K3 surface in Hassett’s sense if and only if
the Kuznetsov component Ku(X) is geometric. This was answered by Addington–Thomas
generically, and completed in announced work of Bayer–Lahoz–Macrì–Nuer–Perry–Stellari.

Theorem 2.4.8 (Addington–Thomas, Bayer–Lahoz–Macrì–Nuer–Perry–Stellari). Let X
be a special cubic fourfold of discriminant d that satisfies Hassett’s condition (??), i.e. it
has an associated K3 surface, then Ku(X) is geometric.

Reference. See [AT14, Theorem 1.1] and [BLM+17, Corollary 4].
Since this theorem is central to us, let us give a few words about its proof. First, one

uses concrete geometric knowledge of cubic fourfolds in C48 to see that their Kuznetsov
component is Fourier–Mukai equivalent to the derived category of a twisted K3 surface.
Then one looks for, and finds, special cubic fourfolds X that lie on both C48 and C4d,
where d satisfies Hassett’s condition (??). One goes on to show that the twist above must
be trivial for such X, and a fortiori Ku(X) is geometric.

Now, Proposition 2.4.7 shows that one can find the ‘right’ K3 surface S and Fourier–
Mukai equivalence. This Fourier–Mukai equivalence is then deformed along with X and
S, which themselves deform in ‘synchronization’ according to a chosen Hassett map φd.
This is visualized in Figure 4. Now, to complete the result, one has to take ‘limits’ of the
Fourier–Mukai equivalences, as made possible by a suitable moduli space of stable objects,
cf. [BLM+17]. �

3. Arithmetic of Hassett’s association

In the end we would like to have Hassett’s association available over a finite field Fq.
We will not go as far and instead employ lifting to characteristic 0 in Section 4 and then
apply Hassett’s association. Nevertheless, we study the descent of Hassett’s association to
subfields of C, like Q, or (local)25 number fields.

25After choosing an embedding Qp ↪→ C.
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C4

C48

C4d

C426

C414

...

Figure 4. Hassett’s divisors in the situation of the proof of Theorem 3.1.5.
3.1. Descend of Hassett’s associated cubic fourfold. So, as a first step, let us discuss
the descent of associated special cubic fourfolds. In this regard we want to answer the
following question.

Question 3.1.1. Let k ⊂ C be a field, and S a K3 surface over k with a cubic fourfold XC
associated to SC. Is XC defined over the field k?

Theorem 3.1.2 (Hulek–Kloosterman). Let k be a number field and assume that Hilb2(S)
has a k-rational point, that26 F(XC) ' Hilb2(SC), and that the associated line bundle27
descends to k. Then XC is defineable over k.

Reference. See [HK07, Theorem 1.1]. �

Remark 3.1.3. If we assume that S has a k-rational point, then there is a universal bound
on the degree of the field extension k′/k that is needed to descend the associated line
bundle, cf. Remark 4.1.21. So after replacing k by a finite extension of controlled degree we
can remove the line bundle descent assumption in the theorem, trading it for a k-rational
point.

Remark 3.1.4. The theorem does not help in our situation, since in order to ensure that
there is an isomorphism F(XC) ' Hilb2(SC), we want d = 2(n2 + n+ 1) for some n ∈ N
and XC is generic, cf. [Has00, Theorem 6.1.4], or, alternatively, da2 = 2(n2 + n+ 1) for
some a, n ∈ N, d ≡ 0 mod 6, and ρ(SC) = 1, cf. [Bra18, Proposition 4.3, Proposition 4.5].
But we cannot assume that `2kd0 will be of this form for k � 1.

We will give ourselves a bit of freedom and ask in Question 3.1.1 whether XC is defined
over some finite extension of k, or equivalently by spreading out (when we do not control
the degree of this extension), whether it is defined over k.

Theorem 3.1.5 (Addington–Thomas). Let (S, f) be a polarized K3 surface over C and
let (X,K) be some labeled cubic fourfold, which is associated to (S, f). Then the Hodge
isometry H2(San,Z) ⊃ 〈f〉⊥ ' K⊥ ⊂ H4(Xan,Z)− from Theorem 2.1.5 is induced by an
algebraic cycle in CH3(S ×C X,Q).

26Here F(XC) denotes the Fano variety of lines on XC, cf. [HuyC4, Chapter 3].
27The associated line bundle is a line bundle on SC defined as follows. Pull-back the Plücker polarization

to Hilb2(SC) via Hilb2(SC) ' F(XC). Now, write this line bundle as O(f + aE) using the canonical
decomposition Pic(Hilb2(SC)) ' Pic(SC) × 1

2Z · E, where E is the exceptional divisor on Hilb2(SC)
(corresponding to the locus of non-reduced subschemes), cf. [Fog73, Corollary 6.3]. Finally, call O(f) the
associated line bundle.
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Reference. See [AT14, Theorem 1.2]. This is a corollary of Theorem 2.4.8, by taking Mukai
vectors of the Fourier–Mukai equivalences there. By taking limits of algebraic cycles, the
generic version of the theorem by Addington–Thomas is sufficient. �

Let σ ∈ Aut(C) and let X be a scheme over C. Recall that the conjugation Xσ of X by
the automorphism σ is defined as the pull-back

Xσ X

Spec(C) Spec(C).

σ−1

p

Spec(σ)

Via pull-back this also explains fσ for a divisor f on X, or e.g. Kσ for a marking K on a
special cubic fourfold X, cf. Remark 2.1.3.

Corollary 3.1.6. Let (S, f) be a polarized K3 surface, associated to the marked cubic
fourfold (X,K). Let σ ∈ Aut(C) be an automorphism of the field C. Then the polarized
K3 surface (Sσ, fσ) is associated to the marked cubic fourfold (Xσ, Kσ).

Proof. By Theorem 3.1.5, we know that the association

H2(San,Z) ⊃ 〈f〉⊥ ' K⊥ ⊂ H4(Xan,Z)− (3.1.1)

is induced by an algebraic correspondence γ ∈ CH3(S ×CX,Q). Conjugating γ by σ gives
us the algebraic correspondence γσ, which still induces a Hodge isometry, now for (Sσ, fσ)
and (Xσ, Kσ), cf. [CS11, Section 2] for a discussion about conjugating Hodge classes.

Since the cycle γ has rational coefficients, it is not clear if γσ induces an isometry of
integral Hodge structures. The reason behind this is that γ arises from a Fourier–Mukai
equivalence via taking Mukai vectors, cf. Theorem 2.4.8 and Theorem 3.1.5, and this
Fourier–Mukai equivalence preserves not the usual integral structure on cohomology, but
instead the integral structure coming from topological K-theory, cf. [AT14, Section 2].

So, let us take a Fourier–Mukai kernel P inducing28 the Hodge isometry in Equation 3.1.1,
cf. Theorem 2.4.8 and Proposition 2.4.7. We can now consider Pσ, which induces the
Hodge isometry of integral Hodge structures

H2((Sσ)an,Z) ⊃ 〈fσ〉⊥ ' (Kσ)⊥ ⊂ H4((Xσ)an,Z)−,

as desired, cf. [AT14, Section 5.1]. �

Remark 3.1.7. As observed in the proof of Corollary 3.1.6, it is not just a corollary of
Theorem 3.1.5, but uses the complete version of Theorem 2.4.8.

We might try to conclude, that when S is defined over a subfield k ⊂ C, with associated
cubic fourfold X over C, then also X is definable over k. The problem is that, even when
there is a canonical choice of φd, we only know that X ' Xσ for some isomorphism over
C, and when varying σ they will in general not satisfy the cocycle condition needed by
Galois descent, cf. [MilAG, Section 16.f].

Proposition 3.1.8 (Galois descent for subvarieties and morphisms). Let k ⊂ C be a
subfield29, and let X be a variety over k. Define the action of Aut(C/k) on the C-rational
points X(C) = Mor/k(Spec(C), X) of X via its action on Spec(C), or when thinking in
coordinates it is just the coordinate-wise action of Aut(C/k). Then we have the following:

28Take the Mukai vector ν(P) = ch(P)
√

td(S ×C X) and view it as a cohomological correspondence
from S to X.

29Or more generally, let Ω be a separably closed field and k ⊂ Ω a subfield such that k = ΩAut(Ω/k).
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i) If YC ↪→ XC is a closed subvariety such that YC(C) ⊂ X(C) is stable under the
action of Aut(C/k), then there exists a subvariety Y ↪→ X over k whose base change
to C is YC.

ii) Let X and Y be varieties over k, and let fC : XC → YC be a morphism over C.
If fC commutes with the action of Aut(C/k), i.e. we have f(x) = σ. f(σ−1. x) for
every automorphism σ ∈ Aut(C/k) and x ∈ X(C), then there exists a unique
morphism f : X → Y over k whose base change to C is fC.

Reference. See [MilAG, Proposition 16.8, Proposition 16.9]. �

Remark 3.1.9. Note that when the subvariety is just a point, then one does not need the
machinery of Galois descent, but can argue just using Galois theory.

Proposition 3.1.10. Let k ⊂ C be an algebraically closed subfield. If G ⊂ Aut(C/k) is a
subgroup of finite index, then the fixed field is CG = k.

Proof. This proof is based on [MilFT, Theorem 9.29]. Let us assume that there is an element
α ∈ CG that is transcendental over k. Choose automorphisms ϕi ∈ Aut(C/k) extending the
mapping α 7→ α+ i for i ∈ N. Fix a system of representatives {h1, . . . , hn} of Aut(C/k)/G
and write ϕi = hji ◦ gi with some suitable gi ∈ G. We arrive at a contradiction by choosing
i ∈ N large enough, since we have α + i = ϕi(α) = hji(gi(α)) = hji(α). �

Proposition 3.1.11. Let (S, f) be a polarized K3 surface over C with associated cubic
fourfold (X,K) of discriminant d. Denote by x ∈ C4(C) the point corresponding to X
in the moduli space of cubic fourfolds. If (S, f) is definable over k ⊂ C, then the point
x descends to a k′-rational point of C4, where k′/k is a Galois extension with bounded
degree [k′ : k] ≤ C1(d) := (#R2,d)!.

Proof. For every σ ∈ Aut(C/k) we know that (S, f) = (S, f)σ is associated to (X,K)σ,
cf. Corollary 3.1.6. Hence, the cardinality of the set {(X,K)σ | σ ∈ Aut(C/k)}/'C is
bounded by 1

2
#R2,d, cf. Proposition 2.3.5. The subgroup G ⊂ Aut(C/k) of automorphism

that fix every element of this set is a normal subgroup of finite index, which is bounded
by C1(d) = (1

2
#R2,d)!. Now, Galois theory provides us with a finite Galois extension30

k′/k with G = Aut(C/k′), and whose degree is bounded by C1(d). Finally, Galois descent,
cf. Proposition 3.1.8, shows that x is a k′-rational point. �

Remark 3.1.12. Proposition 3.1.11 is also valid with the roles of (X, k) and (S, f) exchanged.

Remark 3.1.13. If one does not want a normal field extension in Proposition 3.1.11, one
can get rid of the factorial in the bound.

3.2. Level structures on cubic fourfolds. Let X be a special cubic fourfold of discrim-
inant d with associated polarized K3 surface (S, f). Assume that (S, f) is definable over
some subfield k ⊂ C. In the last section we have seen that the point corresponding to X
in the moduli space C4 of cubic fourfolds is k′-rational, where k′/k is a finite extension
whose degree is bounded by C1(d). We would like to conclude that X is definable over k′.
The problem is that the moduli space C4 is only a coarse moduli space, and hence we only
know over the algebraically closed field k′ that C4(k′) is the set of smooth cubic fourfolds
over k′. We will use level structures on cubic fourfolds to remedy this problem and get a
uniform bound on the degree of a field extension k′′/k′ such that X is definable over k′′.

Situation 3.2.1. Fix a perfect field k0 and let k be its algebraic closure, e.g. k0 = Q and
k = Q. We work (for simplicity) relative to this setup, so in the following k denotes an
intermediate field k0 ⊂ k ⊂ k.

30Note that by Proposition 3.1.10 we can first replace C by k and then G is a closed subgroup
G ⊂ Gal(k/k), since it is defined by fixing points in the moduli space of marked cubic fourfolds that
correspond to the (X,K)σ.
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Definition 3.2.2. Let X be a scheme over k.
i) We say k is a field of definition of X if X is definable over k, i.e. there exists a

scheme Xk over k such that Xk ×k k ' X.
ii) We say k is a field of moduli of X if we have an isomorphism Xσ ' X over k for

every automorphism σ ∈ Aut(k/k).31

Remark 3.2.3. Analogous to Definition 3.2.2, we can talk about the field of definition
and field of moduli of a scheme X over k endowed with some extra structure and some
required properties. We shall assume that these extra structures can be base changed
along field extensions, and that the properties are stable under such base changes, so that
an extension k′/k of a field of definition k of X is also a field of definition.

Remark 3.2.4. If k is a field of definition of X then it is also a field of moduli of X.

Remark 3.2.5. Assume X (together with extra structures and properties) is parametrised
by a coarse moduli space M over k0. If k is a field of moduli of X, then X corresponds to
a k-rational point of M . Indeed, by the definition of the field of moduli we see that the
point corresponding to X over k is invariant under every automorphism σ ∈ Aut(k/k).
Now, since k is a perfect field, we have k = k̄Aut(k̄/k), cf. [MilAG, Proposition 16.1], and
we are done.

Proposition 3.2.6. Assume that X (together with extra structures and properties) is
parametrised by a fine moduli space M over k0. If X corresponds to some k-rational
point p of M (in particular k is a field of moduli of X), then k is a field of definition of X.

Proof. Since M is a fine moduli space, there exists a universal family X over it. Now the
fibre of X over the k-rational point p is a model of X over k as desired. �

The moduli space of smooth cubic fourfolds is coarse but not fine. The problem is that
some smooth cubic fourfolds have nontrivial automorphisms, cf. [HuyC4, Section 2.1.5].
So let us get a feeling for the automorphism group of a smooth cubic fourfold. Some of
the following statements are specializations of more general results about hypersurfaces or
complete intersections to the case of cubic fourfolds.

Proposition 3.2.7. The general cubic fourfold X has trivial automorphism group. More
precisely, there exists a non-empty open subset U ⊂ C4k0, such that we have X ∈ U(k) if
and only if Aut(X) = {id}.
Reference. More generally, this is true for hypersurfaces of degree d ≥ 3 and dimen-
sion n ≥ 1, except when (n, d) = (1, 3) or (n, d) = (2, 4). See [Poo05] and [HuyC4,
Theorem 1.3.12] for an overview. In [KS99, Lemma 11.8.5] it is proven, that U is open.
See [MM64a, Theorem 5] and [KS99, p. 10.6.18] for the non-emptiness of U . �

Remark 3.2.8. More generally, let X be a smooth cubic fourfold, then Aut(X) is finite, cf.
[HuyC4, Corollary 1.3.6]

Remark 3.2.9. The open set U in Proposition 3.2.7 is the fine moduli space of smooth
cubic fourfolds with trivial geometric32 automorphism group, i.e. there exists a universal
family over U , cf. [HuyC4, Remark 2.1.14.ii)].

Corollary 3.2.10. Let X be a smooth cubic fourfold over k with trivial automorphism
group. Say, it corresponds to some geometric point x : Spec(k)→ Spec(k(x))→ C4k0, in
particular k(x) is the33 field of moduli of X. Then k(x) is the field of definition of X.

31See also the note [HH03] for a discussion of the field of moduli, where the focus is on curves.
32Since the automorphism group is finite, in particular discrete, it cannot grow under a base-change of

algebraically closed fields.
33In the sense of ‘the smallest’ relative to k0.
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Proof. Let U ⊂ C4 be the open subset of cubic fourfolds with trivial automorphism group,
cf. Proposition 3.2.7. By Remark 3.2.9, we know that there is a universal family X over U .
Now, the fibre Xx of this family over the point x : Spec(k(x))→ C4k0 provides a model of
X over k(x) as desired. �

Proposition 3.2.11. Let X be a generic special cubic fourfold over C, i.e. we have
the equality rk(H2,2(Xan,Z)) = 2, with discriminant d satisfying (??). Then we have
that Aut(X) ⊂ Z/2Z. If in addition d ≡ 2 mod 6, then we have that Aut(X) = {id}.

Proof. Let f ∈ Aut(X) be some isomorphism. Denote by K the34 labeling on X, and let S
be an associated K3 surface, cf. Theorem 2.1.5. We have f ∗(K) ⊂ K, since f ∗ preserves
algebraic classes. It follows that f ∗(K) = K, by calculating with the lattice or, simpler in
our situation, by looking at f−1.

Assume now that f is an isomorphism of marked cubic fourfolds, i.e. we have f ∗|K = id.
We see that f ∗ ∈ Õ

mar
(K⊥d ), and a fortiori f ∗ ∈ Õ(Λd) by Proposition 2.2.7.ii). The

Global Torelli Theorem implies that f ∗ corresponds to some automorphism of S, cf.
[HuyK3, Theorem 7.5.3]. Since ρ(S) = 1, this automorphism must be trivial and a
fortiori we have f ∗ = id, cf. [HuyK3, Corollary 15.2.12]. But f acts faithfully on the
cohomology H4(X,Z), cf. Proposition 3.2.13, and we see f = id.

We conclude that in general Aut(X) ↪→ O(K,h2) = {g ∈ O(K) | g(h2) = h2}.
By [Has00, Proposition 5.2.1] we have O(K,h2) = {id} when d ≡ 2 mod 6, and we
have O(K,h2) = {id, ι} when d ≡ 0 mod 6 �

Remark 3.2.12. The involution ι on Kd in the case d ≡ 0 mod 6 comes from an involution
on the cubic lattice Γ̃, cf. [Has00, Proposition 5.2.1]. In [Bra18, Theorem 1], the action of
the involution on K3d is determined.

Proposition 3.2.13. Let X be a smooth cubic fourfold over k. Let N ≥ 3 and let ` be a
prime, both coprime to char(k). Then the following two maps are injective:

Aut(X) ↪→ Aut(H4
ét(X,Q`))

Aut(X) ↪→ Aut(H4
ét(X,Z/NZ))

Reference. See [CPZ15, Theorem 1.6] and [JL17, Corollary 2.2]. �

The proposition shows that we can eliminate automorphism of our cubic fourfolds X by
equipping them with an isomorphism

H4
ét(X,Z/NZ) ∼−→ Γ̃⊗Z Z/NZ.

Such an isomorphism is a called35 a level N structure on X. One can formulate the moduli
problem of smooth cubic fourfolds with level N structure and arrives at the stack C4[N ]

over Z[1/N ] parametrizing these objects, cf. [JL17, Section 3]. Eventually we will consider
the stack C4[N ] over Q only.

Theorem 3.2.14. Let N ≥ 3 be a natural number.
i) The stack C4[N ] is represented by a smooth, affine scheme C4[N ] over Z[1/N ].
ii) The stack C4[N ] is a GL23(Z/NZ)-torsor over the stack C4 of cubic fourfolds36.

In particular, the induced morphism C4[N ] → C4 of (coarse) moduli space is finite.

Reference. See [JL17, Theorem 3.2]. �
34Note that it is unique, since rk(H2,2(Xan,Z)) = 2.
35To be compatible with our discussion in Section 3.3 we should require that h2 ∈ H4

ét(X,Z/NZ),
where h is the class of a hyperplane section, is mapped to the abstract element h2 ∈ Γ̃⊗Z Z/NZ.

36The stack of cubic fourfolds is the quotient stack [PGL6\Hilb3,4] where Hilb3,4 is the Hilbert scheme
of degree 4 hypersurfaces in P5.
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Corollary 3.2.15. Let x ∈ C4(k) be some k-rational point, and let X be the smooth cubic
fourfold over k corresponding to x, so X has k as a field of moduli. Then there exists a
field extension k′/k, whose degree is bounded by the constant # GL(23,F3), such that X
descends to k′, i.e. k′ is a field of definition for X.
Proof. As soon as we have a k′-rational point of C4[3] we get a cubic fourfold over k′, since
the moduli space is fine37. Now we lift a k-rational point to a k′-rational point through
the finite morphism C4[3] → C4. �

3.3. Descent of Hassett’s association. In this section we want to discuss the descent
of Hassett’s association φd : K3d 99K C4d. The fact that φd is not canonical in general
introduces some difficulties. As a start, let us discuss the case when φd is canonical.
Proposition 3.3.1. Let d = 2pk, where p is some odd prime with p ≡ 1 mod 3
and k ≥ 1. Let (S, f) be in the domain of φd, and set (X,K) = φmar

d (S, f) Then we
have φmar

d (Sσ, fσ) = (Xσ, Kσ) for every σ ∈ Aut(C). In particular, Hassett’s associa-
tion φd descends to Q.
Proof. By Corollary 3.1.6, we know that (Sσ, fσ) is associated to the marked cubic fourfold
(Xσ, Kσ). So, by Remark 2.3.4, we see that there is some choice of φmar

d such that we
have φmar

d (Sσ, fσ) = (Xσ, Kσ). But, for d = 2pk as in the hypothesis, there is only one
choice of φmar

d , cf. Proposition 2.3.6.
Now, by Corollary 3.3.1 the map φd commutes with conjugation by σ ∈ Aut(C/Q).

Hence by Galois descent, cf. Proposition 3.1.8, the map (as well as the domain where it is
defined) is definable over Q. �

Proposition 3.3.2. Let d ∈ N be a natural number that satisfies Hassett’s condition (??),
and let φd : K3d 99K C4 be a Hassett map. Then φd descends to a number field k/Q, whose
degree is bounded by [k : Q] ≤ #R2,d/2.
Proof. If the subgroup G ⊂ Aut(C) which fixes φd under conjugation38, i.e. φσd = φd for
each σ ∈ G, has finite index, which is bounded by #R2,d/2, then the fixed field k := CG

is a number field as desired39 We get this control over G as soon as we verify that for
every choice of Hassett map φ′d, also φ′d

σ is a Hassett map. Indeed, then Aut(C) acts on
the set A := {φσd | σ ∈ Aut(C)} by τ . φ := φτ , and #A ≤ #R2,d/2, cf. Proposition 2.3.5,
shows that G = Stab(φid

d ) is as desired.
Now, take σ ∈ Aut(C) and fix some Hassett map40 φd. We want to show that φσd is

again one of Hassett’s maps. Recall that Hassett’s maps are only rational maps, so we
shrink the domain to an open U , where φσd and all choices of Hassett’s map φ′d are defined

41.
If φσd would not be a Hassett map, then the locus where it coincides with some is a closed
subscheme E of codimension at least 1. Now, we consider an irreducible divisor D in the
domain U , and not lying in E, and consider all the images φ′d(D). By shrinking U we can
assume that the images are pairwise disjoint. Now, Proposition 3.3.2 shows that

φσd(D) ⊂
⋃
φ′d

φ′d(D),

37Actually it is enough to use that cubic fourfolds with level 3 structure have trivial automorphism
group, cf. Proposition 3.2.13

38Recall that σ ∈ Aut(C) acts (locally) coordinatewise, so we have pointwise φσ(s) = σ. φ(σ−1. s).
39As above, we can apply Proposition 3.1.10 in order assume G ⊂ Gal(Q/Q) is of finite index. Note

that it is a closed subgroup, since it is defined as the fixed group of the map φd, and the involved spaces
are of finite type. Now we can apply Galois theory to see that k satisfies [k : Q] ≤ #R2,d/2.

40From this point on, we consider Hassett’s maps φmar
d : K3d 99K C4mar

d , but still refer to them by φd
to keep the indices and superscript in the notation under control.

41Recall that there are only finitely many choices. This fact is also important for the remaining steps
of this proof.
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and since D is irreducible, there exists a choice φ′d such that φσd(D) ⊂ φ′d(D). We conclude
that φσd |D = φ′d|D, again using Proposition 3.3.2. Indeed, for every point s ∈ D the image
point φσd(s) lies in φ′d(D) and is ‘associated’ to s. The only possibility is that φσd(s) = φ′d(s).
This reaches a contradiction as desired.

Last but not least, use that K3d is irreducible, and that C4mar
d is separated to extend

the equality φσd = φ′d beyond the open set U . �

Remark 3.3.3. For the proof of Proposition 3.3.2, we only need the generic version of
Theorem 2.4.8. Indeed, in the proof, we only work on some open subset U , and this can
take the open subset from the generic version of Theorem 2.4.8 into account.

Note that a postiori, this removes the dependence of Proposition 3.1.11 on the full
version of Theorem 2.4.8, by establishing it as a Corollary of Proposition 3.3.2.

Let us also look at the situation on the level of arithmetic varieties. We will demonstrate
descent to Q, when using suitable level structures, without depending on Theorem 2.4.8
or Theorem 3.1.5.

Proposition 3.3.4 (Rigid descent). Let P be a property of morphisms of schemes over Q
that is stable under base change and compatible with limits of schemes. Let X be a variety
over a field Ω/Q that satisfies P. If X is P-rigid, i.e. every deformation X of X over a
connected variety T over Ω which satisfies P, is the trivial deformation, then X is definable
over Q.

Proof. Spread out X to X over T = Spec(A), where Q ⊂ A ⊂ Ω is of finite-type over Q,
non-empty, and connected. Since X/Ω satisfies P and P is compatible with limits of
schemes, we can assume that X/T satisfies P. The inclusion A ⊂ Ω gives an Ω-point
of T whose image is the generic point η of T . Now base-changing back to Ω we get a
deformation of X which satisfies P, since the latter is stable under base change. By our
hypothesis, it must be the trivial deformation. So for every closed point t ∈ T , say with
associated Ω-rational point t ∈ T (Ω), we have Xt is isomorphic to X. But now, Xt is
definable over Q, since T is of finite-type over Q. �

A more principled approach and exposition of rigidity and rigid descent can be found
in [Pet17]. Our version which does not mention deformation theory is sufficient for our
applications.

Proposition 3.3.5 (Piatetski-Shapiro–Shafarevich). Let X and Y be varieties over Q, and
let φ : XC → YC be a morphism over C. Assume that X is irreducible, and that Y is quasi-
projective. If there exists an everywhere dense, in the Zariski-topology, subset S ⊂ X(C)
such that every x ∈ S is a Q-rational point42, and every φ(x) ∈ Y (C) is a Q-rational point,
then φ descends to a morphism φ : X → Y over Q.

Sketch. See [PSS75, Lemma 9] for details. By pulling-back projective coordinates Y1, . . . , YN
on the codomain Y , we can reduce to the case where φ is a rational function. Now write

φ =
p(X1, . . . , Xn)

q(X1, . . . , Xn)
,

where p, q ∈ C[X1, . . . , Xn], and X1, . . . , Xn are rational coordinates on X. The infinite
linear system

q(x1, . . . , xn)φ(x) = p(x1, . . . , xn), x ∈ S

solving for the coefficients of p and q has by definition a solution over C. Since C is flat
over Q, the system also has a solution over Q, say p̃, q̃. We have φ(x) = p̃(x)

q̃(x)
for every

42Fix some embedding Q ↪→ C in order to fix the notion of Q-rational point.



THE TATE CONJECTURE FOR K3 SURFACES VIA CUBIC FOURFOLDS 27

point x ∈ S, so the density of S ⊂ X(C) and the irreducibility of X show that φ is a
rational function over Q. �

We can descend morphisms using Proposition 3.3.5, but it is unhelpful for descending the
domain of definition of a rational map. To remedy this, we look at the level of arithmetic
varieties instead of moduli spaces. Furthermore, we use level structures to guarantee that
the involved arithmetic varieties are definable over Q. See [AT14, Proposition 5.2] for a
similar discussion.

Recall the period domains from Section 2.2, Qd for polarized K3 surfaces of degree d,
D for cubic fourfolds, and Dd for special cubic fourfolds of discriminant d. Instead of
taking quotients by Õ(Λd), Õ(Γ), and Õ

mar
(K⊥d ) respectively, to arrive at the arithmetic

varieties Nd, C, and Cmar
d respectively, we take quotients by the finite-index subgroups

Õ(Λd)[N ] := {g ∈ Õ(Λd) | g ≡ id mod N},

Õ(Γ)[N ] := {g ∈ Õ(Γ) | g ≡ id mod N},

Õ
mar

(K⊥d )[N ] := {g ∈ Õ
mar

(K⊥d ) | g ≡ id mod N}.
We arrive at the arithmetic varieties

Nd,[N ] := Õ(Λd)[N ]\Qd, Cmar
d,[N ] := Õ

mar
(K⊥d )[N ]\Dd, C[N ] := Õ(Γ)[N ]\D,

corresponding to polarized K3 surfaces of degree d with level structure, marked cubic
fourfolds of discriminant d with level structure, and cubic fourfolds with level structure
respectively.

Now, Proposition 2.2.7 establishes a Hassett map φ̄d,[N ] : Nd,[N ] → Cmar
d,[N ] → Cd,[N ], which

becomes a Hassett map φ̄d from before when forgetting level structures, i.e. when N = 1.
We want to consider the arithmetic varieties over Q. For this let us recall the notion of

neat group, cf. [Bor69, Section 17.1].

Definition 3.3.6. A matrix g ∈ GLn(k) is called neat if the subgroup of k× generated by
its eigenvalues is torsion-free. A subgroup G ⊂ GLn(k) is called neat if all its elements
are neat.

Proposition 3.3.7. The arithmetic varieties Nd,[N ], and C[N ] respectively, are definable
over Q if the groups Õ(Λd)[N ], and Õ(Γ)[N ] respectively, are neat.

Reference. This is a special case of a Theorem by Faltings, cf. [Fal84, Theorem 1], or
[Pet17, Proposition 3.1] for another exposition of his result. �

Remark 3.3.8. Let us examine for which N ∈ N the groups Õ(Λd)[N ], and Õ(Γ)[N ] re-
spectively, are neat. As a first approximation, we have that for N ≥ 3 the group
GLn(Z)[N ] := {g ∈ GLn(Z) | g = id mod N} is torsion-free, cf. [Min87], and a fortiori
the groups Õ(Λd)[N ] and Õ(Γ)[N ] are also torsion-free. But, the condition N ≥ 3 is also
sufficient to guarantee neatness, cf. [Sch10, Section 4.3].

Proposition 3.3.9. The morphism φ̄d,[N ] : Nd,[N ] → C[N ] is definable over Q, when we
have N ≥ 3.

Proof. Consider the set S ⊂ Nd,[N ] of periods of singular K3 surfaces (S, f, ϕ) ∈ K3d,[N ](C),
i.e. we have ρ(S) = 20. By rigid descent, cf. Proposition 3.3.4, singular K3 surfaces are
definable over Q.43

43A fortiori the points of S are definable over Q, since the period map K3d,[N ] → Nd,[N ] is definable
over Q, cf. [PSS75, Lemma 7]. In fact their argument also considers singular K3 surfaces, and shows
that S is definable over Q by drawing on the Kuga–Sata construction, cf. [PSS75, Page 50] and [PSS75,
Corollary to Lemma 4].
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Indeed, denote by P the property to be a family of polarized K3 surfaces of degree d
over a Q-scheme, having fibres of Picard rank 20. Note that P satisfies the hypotheses
of Proposition 3.3.4, use, among others, that the Picard rank can only increase under
specialization, but Picard rank 20 is already maximal in characteristic 0. Also, every
singular K3 surface is P-rigid, since (in characteristic 0) a smooth, proper family of K3
surfaces over a connected, quasi-projective base is isotrivial, cf. [HuyK3, Remark 6.2.10].

In the same way, elements44 of the set φ̄d,[N ](S) ⊂ C[N ], which is zero dimensional as just
noticed, are definable over Q.

We can now conclude using Proposition 3.3.5, since S ⊂ Nd,[N ] is indeed everywhere
dense, cf. [HuyK3, Proposition 6.2.9] applied to K3d,[N ] and using induction. �

Remark 3.3.10. When S is a singular K3 surface over C, i.e. ρ(S) = 20, we just saw that S
is definable over Q. This was originally observed in [SI77, Theorem 6]. One can determine
the number field over which S is defined concretely, cf. [Sch07, Proposition 4.1].

This definability over Q is true in greater generality for K3 surfaces of CM type, cf.
[PSS75, Theorem 4].

Remark 3.3.11. Going back to the level of moduli spaces, this shows again descent of
Hassett’s maps φd : K3d 99K C4 to Q.

Remark 3.3.12. If one wants to descend the morphisms φ̄d,[N ] to number fields of controlled
degree, one first needs to find models of the arithmetic varieties we considered, that are
defined over number fields of controlled degree. Hence, one should replace the arithmetic
varieties by Shimura varieties. We do not carry on in this thesis with the discussion in
this direction.

3.4. Reduction of Kuznetsov association. We want to reduce Hassett’s association
modulo p. We consider the association on the level of derived categories as discussed
in Section 2.4. The following ideas should be considered as a rough sketch or even
just a hope that rely on announced results by Bayer–Lahoz–Macrì–Nuer–Perry–Stellari,
cf. [BLM+17]. Before we consider Fourier–Mukai equivalences, let us recall a classical
theorem of Matsusaka–Mumford which allows for of K3 surfaces to reduce the property to
be isomorphic modulo p.

Theorem 3.4.1 (Matsusaka–Mumford). Let X and Y be families of varieties over a
discrete valuation ring A, say with generic point η and special point s. Assume that X is
proper over A, and that the special fibre Ys is geometrically non-ruled.

i) Assume that (X, f) and (Y, g) are smooth, projective, polarized schemes over A.
Then any isomorphism of generic fibres (X, f)η and (Y, g)η extends to an isomor-
phism of (X, f) with (Y, g) over A.

ii) If the generic fibres Xη and Yη are birational, then also the special fibres Xs and Ys
are birational.

Proof. See [MM64b, Theorem 2] and [MM64b, Theorem 1]. �

Corollary 3.4.2. Let X and Y be K3 surfaces over a discrete valuation ring A, say with
generic point η and special point s. If the generic fibres Xη and Yη are isomorphic, then
also the special fibres Xs and Ys are isomorphic.

They also demonstrate that a singular K3 surface is definable over Q, cf. [PSS75, Lemma 8]. Namely,
given a singular, polarized K3 surface (S, f), we have to show that {(S, f)σ | σ ∈ Aut(C/Q)} is finite.
We have NS(Sσ) ' NS(S), and see disc(T(Sσ)) = disc(T(S)), which shows by lattice-theory that the
lattices T(Sσ) fall into finitely many isomorphism classes. Note that the transcendental lattice T(S) of a
singular K3 surface determines the latter up to isomorphism, cf. [PSS72, Theorem 8]. To get finiteness
when also considering polarizations use Proposition 1.3.3.

44Shrink S such that φ̄d,[N ](S) ∩ (C2,[N ] ∪ C6,[N ]) = ∅, so that we can talk about smooth cubic fourfolds
instead of their periods.
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Proof. By Theorem 3.4.1.ii), the K3 surfaces Xs and Ys are birational. Since both Xs

and Ys are minimal surfaces (meaning that their canonical bundles are nef), this birational
map extends to an isomorphism. �

Remark 3.4.3. Note that Corollary 3.4.2 says that for K3 surfaces the property to be
isomorphic reduces modulo p, not that a particular isomorphism reduces modulo p.

The following desideratum is inspired by announced results in [BLM+17], see also the
lecture notes [MS18, Section 5].

Desideratum 3.4.4. Let A be a discrete valuation ring with generic point η and special
point s. Let S be a relative K3 surface over A and let X be a relative smooth cubic fourfolds
over A. If there exists a Fourier–Mukai equivalence Db(Sη) ' Ku(Xη), then there also
exists a Fourier–Mukai equivalence Db(Ss) ' Ku(Xs).

Sketch. Write S as a moduli space of stable objects in Ku(X), say S ' M(Ku(X), ν, σ)
and formulate the induced relative moduli problem

M := M(Ku(X), ν, σ).

Now, the special fibre Ms is a K3 surface by the numerics of ν, and since it arises as a
moduli space of sheaves we get a Fourier–Mukai equivalence Db(Ms) ' Ku(Xs). Using
Corollary 3.4.2, we see that Ss 'Ms, since the generic fibres of S andM are isomorphic. �

Remark 3.4.5. Analogous to Remark 3.4.3, in Desideratum 3.4.4 it is the property to be
Fourier–Mukai equivalent, that specialises, not a particular Fourier–Mukai equivalence.

Remark 3.4.6. The Desideratum can also be used with valuation rings like OQp
. These

rings are not noetherian, hence not discrete valuation rings, but one can apply spreading
out to the situation in order to reduce the problem to one over the discrete valuation
ring OK of a finite field extension K/Qp.

Question 3.4.7. In Desideratum 3.4.4, we assumed that X is a smooth hypersurface over a
discrete valuation ring. To get into this situation, the question arises if a smooth cubic
fourfold, that is associated to a K3 surface which has good reduction modulo p, also has
good reduction as a hypersurface.

Eventually, we want to apply this desideratum over an algebraically closed subfield k ⊂ C,
like Q or Qp. So we want that if S and X are varieties over k that are45 Fourier–Mukai
equivalent over C, then they are already Fourier–Mukai equivalent over k.

Proposition 3.4.8. Let S be a K3 surface over K, and ΦP a Fourier–Mukai equivalence
between S and some variety46 X. Then the Fourier–Mukai kernel P ∈ Db(S ×K X) is
rigid, i.e. has no nontrivial deformation. In particular, if k ⊂ K is an algebraically closed
subfield, then ΦE descends to a Fourier–Mukai equivalence over k.

Proof. The set of deformations of P is a torsor under H1(S ×K X,Hom (P,P)). We
show that this cohomology group is trivial. The local to global Ext spectral sequence
Epq

2 = Hp(Ext q(P,P))⇒ Extp+q(P,P) shows that H1(Hom (P,P)) = 0 if Ext1(P,P) = 0.
Now, use that

Ext•(P,P) ' Ext•(O∆X
,O∆X

),

cf. [AT14, Section 6.1], and the latter is by definition Hochschild cohomology HH•(S).
The modified Hochschild–Kostant–Rosenberg isomorphism identifies

HH•(S) '
⊕
i+j=•

Hi(∧jTS),

45Or S is Fourier–Mukai equivalent to Ku(X) when X is a cubic fourfold.
46Or Kuznetsov component.



30 PABLO MAGNI

cf. [AT14, Section 6.3]. But, we have HH1(S) = 0, since S is a K3 surface.
Now apply rigid descent for sheaves, cf. Proposition 3.3.447, to see that P is already

definable over k. It remains to note that P over k induces a Fourier–Mukai equivalence.
Indeed, the base change from k to K is faithfully flat, and thus we can check the criterion
for being a Fourier–Mukai equivalence over K, cf. [HuyFM, Lemma 1.50]. �

Remark 3.4.9. In the proposition, we do not need the full strength of the assumption that
S is a K3 surface. We could instead assume that H0(S,TS) = 0 and H1(S,OS) = 0.

4. Towards the Tate Conjecture for K3 surfaces

In order to apply Lieblich–Maulik–Snowden’s theorem, cf. Theorem 1.2.5, we want
to prove a finiteness statement for K3 surfaces. We aim to do this using special cubic
fourfolds. So far we have considered associated cubic fourfolds over (local) number fields.
To get into this realm, we need to lift our K3 surfaces to characteristic 0.

4.1. Lifting K3 surfaces. In this section we will discuss results about lifting K3 surfaces
to characteristic 0. Let us remark that most of this section is a digression, as our main
application will only use Theorem 4.1.2.

The motivation for this section is the quest to lift possibly infinitely many K3 surfaces
from a finite field to characteristic 0 simultaneously. This would help in lifting all the
moduli spaces of sheaves appearing in Lieblich–Maulik–Snowden’s argument.

Situation 4.1.1. Let k be a perfect field of characteristic char(k) = p > 0. Let S be a
K3 surface over k, and let L ∈ Pic(S) be a non-trivial line bundle on S.

Theorem 4.1.2 (Deligne). Let S be a K3 surface over a perfect field k, and let L be
an ample line bundle on S. Then there exists a smooth, proper lift of (S,L) over some
complete discrete valuation ring W that is finite over W(k).

Reference. See [Del81, Corollaire 1.7]. �

Remark 4.1.3. Lifting a K3 surface formally over W(k) is comparatively easier, cf. [HuyK3,
Proposition 9.5.2]. The extra difficulty lies in lifting an ample line bundle L along with S.
Then one can apply Grothendieck’s algebraization theorem, cf. [FGAex, Theorem 8.4.10],
to see that the lift is given by a scheme.

Remark 4.1.4. Note that a proper, smooth lift of a K3 surface is again a K3 surface.

Since the Tate Conjecture for K3 surfaces over finite fields is verified, we know by
Theorem 1.2.5 that there are only finitely many K3 surfaces over a fixed finite field Fq of
characteristic at least 3.

Corollary 4.1.5. Let Fq be a finite field of characteristic at least 3. Then there exists a
complete discrete valuation ring W that is finite over W(Fq) such that every K3 surface S
over Fq lifts to a proper, smooth scheme over W .

For our purposes we would certainly like to deduce this corollary without using the Tate
Conjecture. In the rest of this section we work towards this end, but will not quite achieve
it. Another question one can ask is: What is the degree of the extension W/W(Fq)? We
will give a uniform bound (independent of q) for this degree, cf. Corollary 4.1.23.

We will now discuss a class of K3 surfaces that are special to positive characteristic
and provide most difficulties in lifting, more precisely this is the class of supersingular K3
surfaces and in particular superspecial K3 surfaces.

47There we discuss rigid descent for varieties.
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Definition 4.1.6. Let S be a K3 surface over an algebraically closed field k = k of
characteristic char(k) = p > 0.

i) We call S (Artin-)supersingular if its formal Brauer group48 B̂rS has height ∞, i.e.
we have B̂rS ' Ĝa.

ii) We call S Shioda-supersingular if ρ(S) = 22.

Remark 4.1.7. In characteristic 0 there cannot be any Shioda-supersingular K3 surfaces,
since Hodge theory implies ρ ≤ 20, cf. [HuyK3, Section 1.3.3]. Also the formal Brauer
group becomes uninteresting, since in characteristic 0 all one-dimensional formal group
laws are isomorphic, cf. [Haz12, Theorem 1.6.2].

Remark 4.1.8. As remarked in Section 1, Nygaard and Nygaard–Ogus, cf. [Nyg83] and
[NO85], prove the Tate Conjecture for non-supersingular K3 surfaces in positive character-
istic. They find lifts of these K3 surfaces to characteristic 0 with nice properties, so called
‘(quasi) canonical lifts’, and can then conclude the Tate Conjecture from the characteristic
0 case.

Conjecture 4.1.9 (Artin). The notion to be Artin-supersingular is equivalent to the
notion to be Shioda-supersingular.

Remark 4.1.10. In view of Remark 4.1.8 the remaining cases of the Tate Conjecture for K3
surfaces over finite fields become equivalent to the above conjecture of Artin. So nowadays,
one can work with the simpler definition, namely Shioda-supersingular49.

Recall that the deformation functor for our K3 surface S with non-trivial line bundle L

is given by

Def(S,L) : Art/W(k)→ Set

A 7→ {flat, proper lift of S over A together with a lift of L}
f 7→ f ∗,

where Art /W(k) is the category of Artinian local algebras over W(k) with residue field k.

Theorem 4.1.11. The functor Def(S,L) is pro-representable by a formal scheme Def(S,L)
which is flat and of relative dimension 19 over Spf W(k).

Reference. See [HuyK3, Theorem 9.5.4] and the original [Del81, Théorème 1.6]. �

Remark 4.1.12. Now, if Def(S,L) is (formally) smooth over W(k), then there exists a
formal lift of (S,L). Using Remark 4.1.3, this lift is algebraic.

Let us recall the Hodge filtration and the conjugate filtration. The Hodge filtration
is a descending filtration Fi H2

dR on the algebraic de Rham cohomology H2
dR(S/k). It is

induced by the filtration

Fi Ω•S := (· · · → 0→ Ωi
S → Ωi+1

S → . . . )

on the algebraic de Rham complex, which also induces the Hodge–de Rham spectral
sequence Epq

1 = Hq(X,Ωp
S) ⇒ Hp+q

dR (S/k). This spectral sequence degenerates at the
E1-page in our situation. In our case we get

0 = F3 H2
dR ⊂ F2 H2

dR ⊂ F1 H2
dR ⊂ F0 H2

dR = H2
dR(S/k)

with subquotients Fi H2
dR /F

i+1 H2
dR ' H2−i(S,Ωi

S).

48See [HuyK3, Section 18.1.3, Section 18.3.1] for a definition of the formal Brauer group and its height.
49Of course we have to be more careful here, since we do not want to presuppose the Tate Conjecture.
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Now let us come to the conjugate filtration Ficon H2
dR, which is also a descending filtration

on H2
dR(S/k). Denote by FrS/k : S → S(p) the relative Frobenius of S over k. Consider the

spectral sequence for hypercohomology

Eij
2 = Hi(S(p),Hj((FrS/k)∗Ω•S/k))⇒ Hi+j

dR (S/k),

which also degenerates at its first page50. The Cartier isomorphism, cf. [DI87, Théorème 1.2],

Hj((FrS/k)∗Ω•S/k)
∼−→ Ωj

S(p)/k

identifies the E2-page with Hi(S(p),Ωj

S(p)/k
), and in conclusion we get the filtration

0 = F3
con H2

dR ⊂ F2
con H2

dR ⊂ F1
con H2

dR ⊂ F0
con H2

dR = H2
dR(S/k)

with subquotients Ficon H2
dR /F

i+1
con H2

dR ' (FrS/k)
∗Hi(S,Ω2−i

S ).

Definition 4.1.13. We call a K3 surface S over k superspecial if the de Rham filtration
and conjugate filtration coincide, i.e. Fi H2

dR(S/k) = Ficon H2
dR(S/k) for i = 0, 1, 2, 3.

Proposition 4.1.14 (Ogus).
i) Assume that k = k, and ρ(S) = 22. Then S is superspecial if and only if we

have disc NS(S) = −p2.
ii) There exists a unique superspecial K3 surface S over k with ρ(S) = 22.

Reference. See [Ogu79, Proposition 7.1] and [Ogu79, Corollary 7.14, Remark 2.4]. �

Remark 4.1.15. If S is a superspecial K3 surface, then it is also Artin-supersingular, cf.
[GK00, Proposition 7.1, Lemma 9.6]51. In particular, embracing Artin’s conjecture, cf.
Conjecture 4.1.9), there is a unique superspecial K3 surface over k.

Remark 4.1.16. The unique superspecial K3 surface S over k admits a model S over Fp,
cf. [Sch12, Theorem 1]. It has Picard rank ρ(S) = 21, which is optimal by Remark 4.1.22
below. Let us reiterate that S can have (finitely many) different models over a given finite
field, cf. [LMS14, Proposition 2.4.1].

The first Chern class has image in F1 H2
dR, cf. [HuyK3, Proposition 2.1] or [Ogu79,

Corollary 1.4], and we define cHodge
1 as the composition

c1 : NS(S)⊗Z Fp F1 H2
dR

F1 H2
dR /F

2 H2
dR ' H1(S,Ω1

S).
cHodge
1

Theorem 4.1.17 (Ogus). Assume that k = k. If cHodge
1 (L) 6= 0, then the deformation

space Def(S,L) is smooth over W(k).

Reference. See [Ogu79, Proposition 2.2]. �

50The degeneration of the spectral sequences is linked with the Cartier isomorphism, cf. [DI87]. We
can formulate the isomorphism as Hi((FrS/k)∗Ω•S/k) ∼−→ Hi(

⊕
l Ω

l
S(p)/k[−l]) and ask if it comes from

a morphism (FrS/k)∗Ω•S/k
∼−→
⊕

i ΩiS(p)/k[−i] in Db
qcoh(S(p)). If this is the case, then we have that

Hn
dR(S/k) = Hn(S,Ω•S/k) ' Hn(S(p), (FrS/k)∗Ω•S/k) '

⊕
i Hn−i(S(p),ΩiS(p)/k) and the spectral sequences

must degenerate by looking at dimensions, already at its E1-page. This goes through in our situation,
since S lifts to a smooth, proper scheme over W2(k).

51And use that dim F1 H2
dR = 21.
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Remark 4.1.18. If on the contrary cHodge
1 (L) = 0, then studying the de Rham and conjugate

filtration one concludes that S must be superspecial, cf. [Ogu79, Section 1]. So in view
of Remark 4.1.10, and embracing Artin’s Conjecture, cf. Conjecture 4.1.9, we know that
there is only one K3 surface over k for which Theorem 4.1.17 does not apply immediately.

Proposition 4.1.19 (Esnault-Oguiso). Assume that k = k, and embrace Artin’s conjec-
ture. Then there exists a primitive, ample line bundle L on S such that cHodge

1 (L) 6= 0.

Sketch. See [EO15, Proposition 4.2] for details. Consider the case when S is not Artin-
supersingular. Then the map cHodge

1 : NS(S)⊗Z Fp ↪→ H1(S,Ω1
S/k) is already injective and

we just have to pick some primitive, ample line bundle.
In the case that X is Shioda-supersingular, van der Geer–Katsura show that cHodge

1 is
not the zero map, cf. [GK00, Proposition 11.9], so we find some line bundle M which
satisfies cHodge

1 (M) 6= 0. From this we get an ample line bundle by considering M +mpH,
where H is some ample line bundle on S and m� 1.

The case discrimination is exhaustive, since we embraced Artin’s conjecture. �

In conclusion, embracing Artin’s conjecture, we find for every K3 surface S over an
algebraically closed field k of positive characteristic, a primitive ample line bundle L on S
such that Def(S,L) is smooth over W(k). In order to lift a K3 surface S over k, which
need not be algebraically closed, we want to descend the line bundle L on S to one on S.

Proposition 4.1.20. Assume that k = Fq is a finite field. Define k̃ to be the degree
6 983 776 800 extension of k. Then NS(Sk̃)

∼−→ NS(Sk).

Sketch. See [LMS14, Section 2.3] for details. Let us just say that we want to take a
field extension that kills the Galois-action on NS(Sk). This eventually becomes linear
algebra, and eventually we want to eliminate roots-of-unity that can appear as a zero of a
polynomial of degree 21. Now, note that

lcm{m ∈ N | ϕ(m) ≤ 21}
= lcm{1, . . . , 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 36, 38, 40, 42, 44, 48, 50, 54, 60, 66}
= 25 · 33 · 52 · 7 · 11 · 13 · 17 · 19

= 6 983 776 800. �

Remark 4.1.21. In [HuyK3, Lemma 17.2.6], besides the case of finite fields, the case when
the field k has characteristic 0 is considered and a universal bound is obtained when the
K3 surface in question has a k-rational point. The bound is given by

# GL(ρ,F3) =

ρ−1∏
k=0

(3ρ − 3k),

which is already for ρ = 5 larger then the bound in Proposition 4.1.20. For the worst case
of ρ = 22 the decimal representation of # GL(ρ,F3) has 231 digits.

Remark 4.1.22. A universal bound as in Proposition 4.1.20 must be an even number.
Indeed in [Art74, (6.8)] the following is shown. Assume S is supersingular and k = Fpr ,
where r is an odd number, then the Galois action of Gal(k/k) on NS(Sk) is non-trivial. In
particular ρ(S) < ρ(Sk).

Corollary 4.1.23. All K3 surfaces over k = Fq can be lifted to a smooth, proper scheme
over W(k̃), where k̃ is the field extension from Proposition 4.1.20. �
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Remark 4.1.24. Note that in Corollary 4.1.23 we only have to take the field extension k̃/k
if Sk is superspecial, cf. Remark 4.1.18. So for most K3 surfaces S over a finite field we do
not need to take any extension, cf. Proposition 4.1.14.

Proposition 4.1.25 (Lieblich–Maulik, Lieblich–Olsson). Let S be a K3 surface over a
field k = k of characteristic char(k) 6= 2. Let E ⊂ Pic(S) be a saturated subgroup that
contains an ample line bundle. If S is not supersingular, then there exists a complete
discrete valuation ring W which is finite and flat over W(k), together with a relative K3
surface S over W lifting S, such that Pic(Sη) ' E.

Reference. See [LM11, Corollary 4.2] and [LO15, Proposition A.1]. See also [Cha16,
Proposition 1.5]. �

Remark 4.1.26. If we only need that E embeds into Pic(Sη), then we can take W = W(k),
where k is a perfect field that does not need to be algebraically closed, cf. [LM11, Corol-
lary 4.2].

Lieblich–Olsson have a version of Proposition 4.1.25 for supersingular K3 surfaces S,
where they assume rk(E) ≤ 10. In the argument a further deformation (from a supersin-
gular K3 surface to a non-supersingular one) is needed, which has as a consequence that
the residue field κ of W is just some field extension κ/k.

Once we have lifted a K3 surface, a further lifting problem is whether `-adic B-fields
can be lifted. We will need this in Section 4.2.

Proposition 4.1.27. Let W be an complete52 discrete valuation ring with residue field k,
say i : Spec(k)→ Spec(W ). Let F be an étale sheaf on Spec(W ). Then we have

Hr
ét(Spec(W ),F) ∼−→ Hr

ét(Spec(k), i∗F).

Reference. See [MilADT, Proposition II.1.1], or for more details [Maz73]. �

Proposition 4.1.28. Let W be a complete discrete valuation ring with perfect residue
field k of cohomological dimension cd(k) ≤ 1, e.g. k = Fq.53 Let f : X → Spec(W ) be a
smooth, proper scheme over W , and let F be an étale torsion sheaf on X with torsion order
prime to char(k). Then we have

Hr
ét(X,F|X) ' Hr

ét(X,F)

whenever Hr−1
ét (Xk,F|Xk

) = 0.

Proof. We compute the Leray spectral sequence Er,s
2 = Hr

ét(W,R
s
étf∗F) ⇒ Hr+s

ét (X,F),
which is depicted below.

s = 2 H0
ét(W,R

2
étf∗F) H1

ét(W,R
2
étf∗F) H2

ét(W,R
2
étf∗F)

s = 1 H0
ét(W,R

1
étf∗F) H1

ét(W,R
1
étf∗F) H2

ét(W,R
1
étf∗F)

s = 0 H0
ét(W,R

0
étf∗F) H1

ét(W,R
0
étf∗F) H2

ét(W,R
0
étf∗F)

r = 0 r = 1 r = 2

Since we have cd(k) ≤ 1, we also have cd(W ) ≤ 1, cf. Proposition 4.1.27. So starting
from the third column (r ≥ 2), the spectral sequence is zero. Hence, the spectral sequence
degenerates at the E2-page, and we extract the short exact sequences

0→ H1
ét(W,R

r−1
ét f∗F)→ Hr

ét(X,F)→ H0
ét(W,R

r
étf∗F)→ 0.

52Or, more generally, an excellent henselian discrete valuation ring.
53See [Fu11, Theorem 4.5.5].
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When Hr−1
ét (Xk,F|Xk

) = 0, then by proper base change, cf. [Fu11, Theorem 7.3.1], we
have that (Rr−1

ét f∗F)k = 0. Using smooth base change, cf. [Fu11, Theorem 7.7.2], we see
(Rr−1

ét f∗F)η = 0, and hence we conclude Rr−1
ét f∗F = 0.

In conclusion, we get Hr
ét(X,F) ' H0

ét(W,R
r
étf∗F), and analogously, replacing W by k,

we get Hr
ét(X,F|X) ' H0

ét(k,R
r
étf∗F|X). Together, using proper base change once more

and applying Proposition 4.1.27, they provide the desired morphism. �

Remark 4.1.29. Let S be a relative K3 surface over W , and let F = µ`n , where ` is prime,
which is prime to char(k). We know that H1

ét(Sk, µ`n) = 0, cf. [HuyK3, Remark 1.3.7]54, so
Proposition 4.1.28 can be applied and yields H2

ét(S, µ`n) ' H2
ét(S, µ`n).

4.2. Putting it all together. We now come to to the proof of the main theorem, which
is conditional on the following assumption whose assertions are left for further study.

Assumption 4.2.1. Let us make the following two assumptions.
i) Desideratum 3.4.4 concerning the reduction modulo p of Fourier–Mukai equivalences

is true, and
ii) cubic fourfolds associated to K3 surfaces with good reduction have good reduction,

cf. Question 3.4.7.

Theorem 4.2.2 (Main Theorem). Let S be a K3 surface over Fq that admits a polarization,
whose degree d satisfies Hassett’s condition (??). Assume the validity of Assumption 4.2.1.
Then S satisfies the Tate Conjecture over Fq, i.e. over all finite extensions of Fq.

Proof. First of all, we can, and will, assume55 that ρ(S) = 1, by handling the case ρ(S) ≥ 2
using finiteness results that do not depend on cubic fourfolds, cf. Remark 1.4.14. Also,
if S is not supersingular, then Proposition 4.1.25 can be used to lift to a K3 surface S̃
with geometric Picard rank ρ(S̃) = 1 which is enough for the argument below.56

We collect the results proven so far and argue in several steps, which are depicted in
Figure 5 and Figure 6.

Step 1) We will apply Lieblich–Maulik–Snowden’s strategy and continue with the setup
and notation of the proof of Theorem 2.2.6 on page 9. In particular, we have Brauer
classes αj ∈ Br(S) coming from a B-field β, and Mukai vectors νj ∈ CHβ/`j(S,Z) such
that the moduli spaces Mj := Mαj

(νj) of −αj-twisted sheaves on S with Mukai vector νj
are again K3 surfaces. By Proposition 1.4.19 we can assume that ` ≡ 1 mod 3, and using
Proposition 1.4.15 we find polarizations of degree dj := d`2j on Mj.

M̃j,C/C X̃j,C/C

Mj/Fq Mj/W M̃j/K X̃j/K
′
j Xj/W

′ Xj/Fq′

Hassett

3) 4)

2) 2) 5) 5)

Figure 5. Step 2) to 5) of the proof of Theorem 4.2.2

54Or use the Kummer sequence together with the fact that Pic(Sk) ' H1
ét(Sk,Gm) is torsion free.

55We need the assumption ρ(S) = 1 only to ensure that there is an associated cubic fourfold. If other
criteria to check this are available, one could (try to) use those.

56In case S is supersingular one could try to first deform S to a non supersingular K3 surface, as in [LO15,
Proposition A.1], and continue from there carrying a second deformation/lifting and degeneration/reduction
through the argument.
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Step 2) We lift the (polarized) K3 surface S to characteristic 0 using Theorem 4.1.2, say
the lift is realized over the complete discrete valuation ring W which is finite over W(Fq).
Now, we lift the Brauer classes αj, or more precisely the B-field β along with S, cf.
Proposition 4.1.28 and Remark 4.1.29, build corresponding lifts ν̃j of the Mukai vectors νj ,
and take the relative moduli spaceMj := Mα̃j

(ν̃j) overW . So, the moduli spacesMj also lift
to K3 surfaces M̃j over K := Quot(W(Fq)). Note that ρ(M̃j) = 1, since ρ(Mj) = ρ(S) = 1,
cf. [Cha16, Equation 4.2] or [LMS14, Proposition 3.5.6.(2)].
Step 3) We choose some embedding K ↪→ C and base change M̃j to M̃j,C over C.

Since dj satisfies (??), cf. Remark 2.1.8, and ρ(M̃j,C) = 1, we can associate57 a cubic
fourfold X̃j,C to it, cf. Theorem 2.1.5.
Step 4) We descend the cubic fourfold X̃j,C to X̃j over a finite field extension K ′j/K,

whose degree is bounded by a constant Cd that is independent of j, cf. Proposition 3.1.11,
Corollary 3.2.15 and Proposition 2.3.6.ii).

Step 5) Reducing modulo p we get a cubic fourfold Xj over Fq′ where [Fq′ : Fq] ≤ Cd.

Mj,Fq
/Fq M̃j,Qp

/Qp Ku(X̃j,Qp
)/Qp Ku(Xj,Fq

)/Fq

Mj/Fq M̃j/K Ku(X̃j)/K
′
j Ku(Xj)/Fq′

Fourier–Mukai equivalent

Kuznetsov

reduction reduction

Figure 6. Step 6) of the proof of Theorem 4.2.2

Step 6) We know that Db(M̃j,Qp
) ' Ku(X̃j,Qp

), cf. Theorem 2.4.8, Proposition 2.4.7 and
Proposition 3.4.8, and applying Assumption 4.2.1, Dessiderate 3.4.4 and Remark 3.4.6,
we conclude that Db(Mj,Fq

) ' Ku(Xj,Fq
). If Xj and Xj′ are isomorphic over Fq′ , then

they are in particular isomorphic over Fq. So, we get Mj,Fq
and Mj′,Fq

are Fourier–Mukai
equivalent.

Step 7) Since there are only finitely many cubic fourfolds over Fq′ , we conclude that there
appear only finitely many Mj,Fq

up to Fourier–Mukai equivalence. Then, by Theorem 1.3.1,
there are only finitely many Mj,Fq

up to isomorphism58, which is the desired contradiction,
since val`(disc(NS(Mj,Fq

)))→∞ for j →∞, cf. Proposition 1.4.13. �

Let us recap. We constructed (in a very ad-hoc way) a map Ξ from the set of K3
surfaces over some p-adic field K, that have geometric Picard rank 1, to the set of (possibly
singular) cubic fourfolds over a finite field Fq′ . Actually we would rather like to have as a
domain of the map Ξ the set of K3 surfaces over Fq, but we do not have enough control over
the lifting to characteristic 0 to implement this, cf. the discussion in Section 4.1. Instead
we just lift the K3 surfaces Mj that appear in the argument. Now, the codomain of Ξ, the
set of cubic fourfolds over Fq′ , is already finite, so we would like Ξ to be injective. Again,
we do not have enough control over this, but we only need injectivity up to Fourier–Mukai
equivalence over an algebraically closed field. So, we are in the situation of Section 2.4,
where we wanted to reduce a Fourier–Mukai equivalence modulo p. This is also the place
where Assumption 4.2.1 becomes relevant.

57Just choose some cubic fourfold that is associated at the level of Hodge structures, or, if you want,
choose and fix Hassett maps φdj .

58We could also apply Remark 2.3.2 instead.
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