
GEOMETRY OF K3 SURFACES AND HYPERKÄHLER MANIFOLDS
– OPEN PROBLEMS AND NEW PERSPECTIVES –

D. HUYBRECHTS

Abstract. These are notes of my plenary talk with the same title at the annual meeting
of the DMV, Chemnitz 2020. We keep the informal style of the oral presentation. Usually
the results are not stated with all their technical assumptions or in full generality, but we do
provide detailed references.

I wish to thank the program committee for the invitation to speak at this year’s annual
meeting of the DMV which gives me the opportunity to make some publicity for a fascinating
research direction in algebraic geometry, which has a long history with roots going back several
decades and which, at the same time, has been driven by constant innovation. The type of
geometries I will talk about, K3 surfaces and hyperkähler manifolds, has often served as a
testing ground for new techniques and ideas. Very much like the classical theory of abelian
varieties, deep conjectures have been and still are first tested in the K3 and hyperkähler setting,
and new techniques are developed and fine tuned there, before they are used to approach more
general situations. The best example is probably Deligne’s proof of the Weil conjecture for
K3 surfaces [De72], a couple of years before his proof of the conjecture in complete generality.
Not only was the conjecture verified in a meaningful situation, but it was achieved by applying
Grothendieck’s philosophy of motives to a concrete geometric situation. Other more recent
examples include the proof of the Tate conjecture in degree two [Ma14, Ch13, Ma15, Mo17] or
the verification of certain aspects of conjectures due to Bloch, Beilinson, and Kimura.
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1. From elliptic curves to K3 surfaces and beyond

1.1. Let me begin by recalling the classification of compact Riemann surfaces (of which as an
algebraic geometer I usually refer to as algebraic curves).

Topologically every compact Riemann surface looks like this: Either it is a sphere, or a torus,
or has more than one whole. The number of wholes is called the genus.

g = 0 g = 1 g > 1

Once the topological structure is fixed, we would like to enhance it to actually do geometry.
There are various ways of achieving this. We could fix a Riemannian metric (or a conformal
structure) on the surface, we can endow the surface with a complex structure, or we describe
the surface algebraically as the zero set of polynomials. In dimension two, all three options
eventually lead to equivalent notions.

For example, putting any of the three structures on a topological surface of genus g = 1 leads
to the concept of elliptic curves which of course is a central notion in mathematics.

• A complex geometer would describe an elliptic curve as a quotient C/Γ of the complex
plane by a lattice which we may assume to be of the form Γ = Z⊕Z · τ ⊂ C with the parameter
τ being an element in the upper half-plane H.

• Algebraically, an elliptic curve is the zero set of a cubic equation say of the form

(1.1) y2 = x3 + ax+ b.

The solutions are taken in C and are conveniently compactified by a point at infinity to get a
compact surface. To be specific, we could consider the Fermat cubic equation x3 + y3 = 1.

• More arithmetically, one could look at the zeroes of the equation (1.1) in Z, Q, or Fp.

Note that in all three settings we have completely ignored the group structure of the elliptic
curve. It is, of course, responsible for much of the appeal of elliptic curves, but geometrically it
is not central for what follows. However, many people would call an elliptic curve without its
group structure simply a curve of genus one.

1.2. Now, venturing into higher dimensions, say complex dimension two (so real dimension
four), there exists more than one natural generalization of the notion of elliptic curves.

• From the complex geometric point of view, two-dimensional complex tori suggest them-
selves, so manifolds of the form C2/Γ with now Z4 ' Γ ⊂ C2 a lattice of rank four. Unlike the
curve case, usually a torus of this form cannot be described by polynomial equations. Moreover,
even when it can be, determining the polynomial equations is a difficult task.
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• If an elliptic curve is described by a cubic equation (1.1), for example the Fermat equation,
it is naturally to look at similar equations in one more variable, for example the Fermat equation

(1.2) x4 + y4 + z4 = 1.

Here, the degree is raised by one in order to keep some properties of the curvature. However,
for manifolds described in this way there is no (obvious) uniformization as for tori of dimension
one or two as above.
Surfaces of this form have been dubbed K3 surfaces by
André Weil [We79], to honor the three mathematicians
Kähler, Kodaira, and Kummer et la belle montagne K2
au Cachemire. There is in fact also a mountain top called
K3 or ‘Broad Peak’. (Photo: Vittorio Sella 1909)

I would like the reader to think of K3 surfaces (and hy-
perkähler manifolds, their higher dimensional versions)
as the more interesting alternative to replacing an elliptic
curve C/Γ
by just higher-dimensional tori Cn/Γ. They come without a group structure, but their geometry
is more interesting, for example they are not flat.

The formal definition goes as follows:
A K3 surface is a compact complex manifold of dimension two, so small open sets in C2 glued

together to a global structure by biholomorphic maps. It is required to be simply connected,
so every closed loop can be contracted continuously to a point, and to carry a holomorphic
symplectic structure, i.e. a form σ which locally looks like fdz1 ∧ dz2 with f holomorphic and
nowhere vanishing. For example, for the Fermat quartic the symplectic form σ can be given
explicitly as the residue

σ = Res

(
dx ∧ dy ∧ dz

x4 + y4 + z4 − 1

)
A hyperkähler manifold (in this talk) is a compact complex manifold, which is simply con-

nected, again to simplify the topology as much as possible, and which comes with a (unique,
up to scaling) holomorphic two-form σ, non-degenerate at every point. In addition one requires
the manifold to be Kähler, which in dimension two is automatic and in any case holds whenever
the structure can be described algebraically.

2. What do we want to know

2.1. The first question one would like to understand is in how many ways can we do geometry
on a given topological structure. Let us briefly go back to the case of Riemann surfaces. Here
we know that for g = 0 there is only one geometry, that of the round Riemann sphere (or, more
algebraically, the complex projective line P1

C), and for g = 1 there is a one-dimensional family,
reflected by the choice of the parameter τ ∈ H. However, with increasing genus g > 1 there are
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more and more possibilities which eventually amount to a family, or a moduli space as we say,
of dimension 3g − 3.

unique!  P1 1-dim family ≈ C (3g − 3)-dim family ≈Mg

2.2. For K3 surfaces, and similarly for hyperkähler manifolds, something more intriguing hap-
pens: It turns out that on the topological structure underlying the Fermat quartic (1.2) there is
a 20-dimensional family of possible complex structures. However, the result is not a nice moduli
space, nothing at all like the moduli spaceMg of Riemann surfaces of genus g. The situation
becomes a bit better when one restricts to those complex structures that can be described as
zero sets of polynomials. If in addition certain numerical invariants like the degree of the poly-
nomials are fixed, then there is only a 19-dimensional family Md depending on this numerical
invariant d which can be any even integer. The spaces Md are very similar to Riemann’s clas-
sical space Mg and in recent years people who have studied the global structure of Mg (and
its compactification M̄g) are now turning to these spaces Md. They seem as interesting and
intricate as their famous cousinsMg.

2.3. In the above, we always first fixed a topology and then tried to introduce a geometric
structure on it. For Riemann surfaces the topology was unique once the genus was fixed, g = 1

for elliptic curves. For K3 surfaces and hyperkähler manifolds that is actually not so clear.

• Elliptic curves, abelian varieties, and complex tori are all topologically uniquely determined
(by their dimension). They are just tori S1 × · · · × S1.

• K3 surfaces are also topologically uniquely determined,
i.e. two K3 surfaces are always homeomorphic, see [Hu16,
Thm. 7.1] for references. Being of real dimension four, K3
surfaces are difficult to visualize. The glass cube on the right
is the real cut of a (singular) quartic K3 surface [Labs].

• The situation is much more interesting for hyperkähler
manifolds of higher dimensions and in fact some of the most
urgent questions in the theory concern exactly this point. In
any even complex dimension > 2, there are at least two distinct topologies that can carry a
hyperkähler structure (in contrast to just having one torus S1× · · · ×S1) [Be83]. Moreover, we
know two further topologies, one in dimension six and another one in dimension ten [O’G99,
O’G03], but otherwise the topological classification is wide open.
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2.4. Once we have agreed on the geometric structure, either in terms of a complex structure, a
hyperkähler metric, or algebraic equations describing it, there are natural questions one would
like to answer. Here is a selection:
• For example, one may want to know whether a K3 surface can be ‘uniformized’, which in a

loose sense could mean that there is at least a holomorphic map C2 //S with a two-dimensional
image. This is not known in general [BL00].
• Or, weaker, one may ask whether there exist entire curves, so non-constant holomorphic

maps C //S. In fact, this is true but not completely trivial to prove.

• More algebraically, one maybe wants to know whether there exist rational curves, i.e.
holomorphic maps P1 //S, and how many. By now we do have a satisfactory answer to this
question [BJT11, LL11, CGL19], there are always countably many, but we do not know a useful
criterion to decide when there is a rational curve through a given fixed point. This question
can be given an arithmetical flavor.
• Or, to make a connection to elliptic curves, is there an elliptic curve through any given

point? Yes, there is. But what about fixing two points?

• Other types of geometric objects include bundles and sheaves, everything in the algebraic
or holomorphic category. It is a classical problem, for Riemann surfaces going back to Andé
Weil, to ask for a parametrization of all bundles and to study the geometry of their moduli
spaces.
• In fact, already the existence of bundles, e.g. for given Chern classes (in various cohomology

theories), is a highly non-trivial problem, especially in higher dimensions.

3. Linear algebra: the most efficient tool

No matter how we describe the geometry, via algebraic methods or more transcendental ones,
we need the appropriate tools to tackle interesting geometric problem. One of the most efficient
tools (and almost the only universal one at our disposal) is Hodge theory, which was developed
and promoted by Deligne and Griffiths (and his students) in the seventies. It is essentially a
piece of linear algebra, most of which one could teach in a first year course, but, somewhat
surprisingly, it is able to capture and encode intricate geometric information. So, let me first
explain the linear algebra. I will restrict to Hodge structures of weight one and two, before
showing how those arise in our geometric context and how they are used there.

For the following we fix a free Z-module or a finite-dimensional Q-vector space Λ and its
naturally associated C-vector space ΛC:

Λ = Zn or Λ = Qn  ΛC = Cn.

Fixing Λ essentially corresponds to fixing the underlying topological structure in the previous
section.
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3.1. A Hodge structure of weight one on Λ consists of writing ΛC as a direct sum of two
subspaces

ΛC = Λ1,0 ⊕ Λ0,1,

which satisfy the additional condition of being conjugate to each other, i.e.

v ∈ Λ1,0 if and only if v̄ ∈ Λ0,1.

Note that complex conjugation makes only sense if
one starts with a Z-module, a Q-vector space or at
least a R-vector space. What makes the notion of a
Hodge structure so powerful is the interplay between
the decomposition of the complex vector space and
the position of the original lattice Λ with respect to
it. Here, the vertices of the grid are the elements of the lattice and the red line is one of
the complex sub-vector spaces. Also note that the notion is not rigid. Once a decomposition
is given, small changes of Λ1,0, inducing small changes of its complex conjugate Λ0,1, again
describe Hodge structures of weight one.

A Hodge structure of weight two is defined similarly. This time one considers decompositions
in three sub-vector spaces1

ΛC = Λ2,0 ⊕ Λ1,1 ⊕ Λ0,2,

satisfying the two conditions:

(i) v ∈ Λ2,0 if and only if v̄ ∈ Λ0,2 and (ii) v ∈ Λ1,1 if and only if v̄ ∈ Λ1,1.

Maybe it is worth stressing again, that what makes the notion of a Hodge structure so
effective is the mix of this direct sum of complex vector spaces and the relative position of the
lattice. For example, the intersection of the lattice Λ with the complex vector space given by its
(1, 1)-part Λ1,1 is a sublattice of Λ whose rank is an important invariant of the Hodge structure.

There is a very easy way of transforming a Hodge structure of weight one into one of weight
two: Pass from Λ to

∧2 Λ and define the (2, 0)-component of the associated complex vector
space

∧2 ΛC simply as
∧2 Λ1,0 and, similarly, the (1, 1)-component as Λ1,0 ⊗ Λ0,1, etc.

1In the situation we are interested in, one additionally has that Λ2,0 (and hence also Λ0,2) is of dimension
one.
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There is also a procedure to go back, at least for Hodge structure of weight two with one-
dimensional Λ2,0.

Λ � //
∧2 Λ

{ weight one }
''

{ weight two }
gg

Kuga–Satake

This was applied to K3 surfaces with great success already in [De72, PSS75] and we shall
come back to this shortly. Roughly, one could think of the following diagram as saying that
there is a left adjoint construction (Kuga–Satake) to taking

∧2, cf. [vG00] or [Hu16, Ch. 3].

3.2. Let us now turn back to geometry and explain how Hodge structures come up there. We
start again with tori and Hodge structures of weight one. Two instances shall be discussed.

• Assume T = C2/Γ is a two-dimensional complex torus. Then we let Λ be its first cohomol-
ogy which is just the dual lattice Γ∗:

Λ := H1(T,Z) ' Γ∗,

which comes with a natural Hodge structure of weight one

(3.1) ΛC = H1(T,C) = H1,0(T )︸ ︷︷ ︸
=〈dz1,dz2〉

⊕H0,1(T ),

where the (1, 0)-part is spanned by the two constant one-forms dz1 and dz2.
This seems almost too naive to be meaningful. However, describing this Hodge structure for

the Fermat elliptic curve given by x3 + y3 = 1 is already not trivial.

• Consider a Riemann surface (or, equivalently, a complex algebraic curve) C. Its first
cohomology Λ := H1(C,Z), which is generated by the 2g loops up to homotopy is also naturally
endowed with a Hodge structure of weight one

(3.2) H1(C,Z) = H1,0(C)︸ ︷︷ ︸
dim=g

⊕H0,1(C).

The amazing fact now is that this linear algebra structure associated to an a priori complicated
geometric situation captures the geometry faithfully. This is known as the Torelli theorem which
really is the prototype of results one aims for in Hodge theory. We state two examples, the first
one being elementary while the second one certainly is not.

Theorem 3.1 (Torelli theorem). (i) There exists a biholomorphic map T1 ' T2 between two
complex tori T1 = Cn/Γ1 and T2 = Cn/Γ2 if and only if there exists an isomorphism of Hodge
structures H1(T1,Z) ' H1(T2,Z), i.e. an isomorphism Γ∗1 ' Γ∗2 compatible with the decomposi-
tions (3.1):

T1 ' T2 ⇔ H1(T1,Z) ' H1(T2,Z) & Hodge .
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(ii) There exists biholomorphic map C1 ' C2 between two Riemann surfaces C1 and C2 if and
only if there exists an isometry of Hodge structures H1(C1,Z) ' H1(C2,Z), i.e. an isomorphism
Γ∗1 ' Γ∗2 compatible with the decompositions (3.2) and the intersection pairing ( . ):

C1 ' C2 ⇔ H1(C1,Z) ' H1(C2,Z) & Hodge & ( . ).

Despite its classical nature, there are aspects of this result that are poorly understood. For
example, what happens if in (ii) the compatibility with the intersection product ( . ) is dropped
and how often does this happen? This can be rephrased in more geometric terms by asking
when do two curves have isomorphic unpolarized Jacobian varieties Jac(C1) ' Jac(C2).

A similar theory has been developed for K3 surfaces and hyperkähler manifolds. But maybe
it is instructive to treat again the case of a two-dimensional torus T = C2/Γ first, this time
using its second cohomology. So, we consider the lattice Λ := H2(T,Z) '

∧2 Γ∗, which can
be expressed in terms of the lattice Γ. Then the Hodge structure of weight two in this case
is described by the linear algebra procedure of taking the second exterior power of the Hodge
structure of weight one that was mentioned before:

ΛC = H2(T,C) =
∧2

H1(T,C) = H2,0(T )︸ ︷︷ ︸
=〈dz1∧dz2〉

⊕H1,1(T )⊕H0,2(T ).

The (2, 0)-part is spanned by the constant two form dz1 ∧ dz2.
By definition, the second cohomology Λ := H2(S,Z) of a K3 surface or a hyperkähler manifold

is also naturally endowed with such a Hodge structure of weight two

(3.3) ΛC = H2(S,C) = H2,0(S)︸ ︷︷ ︸
=〈σ=fdz1∧dz2〉

⊕H1,1(S)⊕H0,2(S),

where in general the (2, 0)-part is more complicated to describe.
The second cohomology comes with a natural intersection product, i.e. an integral symmetric

quadratic form ( . ), and the decomposition is orthogonal with respect to it.
As alluded to before, there is a purely algebraic way of going back, from the Hodge structure

of weight two H2(S,Z) to a Hodge structure of weight one [KS67]. It is one of the hardest
problems in this area to interpret this linear algebra construction geometrically. Only a few
examples have been worked out, e.g. in [Pa88].

3.3. Before saying more about the weight two Hodge structure associated with a K3 surface
and how it is used to describe geometric phenomena, let us stay for with the lattice Λ = H2(S,Z)

itself (without the Hodge structure) a little longer.
The lattice Λ is a unimodular, even lattice of surprisingly large rank rk(Λ) = 22. The full

cohomology Λ̃ := H∗(S,Z) of a K3 surface is also an even, unimodular lattice, now of rank
rk(Λ̃) = 24.
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For everyone with an interest in lattice theory this 24 will ring a bell, it is the rank of the
famous Leech lattice and its cousins, the other 23 Niemeier lattices. Although there is no direct
link between the definite Leech and Niemeier lattices and the indefinite K3 lattices Λ and Λ̃,
there seems to exist a mysterious link between both worlds that has been observed again and
again in the theory of K3 surfaces.

The classical example is the following result first proved in [Mu88], see als [Ko06, Ko20] or
[Hu16, Ch.15].

Theorem 3.2. For a finite group G the following conditions are equivalent:
(i) There exists an algebraic K3 surface S with a faithful action of G that fixe the symplectic
structure σ.
(ii) There exists an injection of G into the Mathieu group M23 with at least five orbits.

Recall that the Mathieu group M23 is the stabilizer subgroup of the Mathieu group M24

which in turn is linked to the orthogonal group of one of the Niemeier lattices N by O(N) =

M24 n (Z/2Z)⊕24.
There are other links that have been observed. For example between groups of auto-

equivalences of the derived category and the Conway group [Hu13] and the larger Mathieu
group and symmetries of conformal field theories [CDH14, GV12, TW13].

The classification of the H2-lattice of higher-dimensional hyperkähler manifolds is largely
open. It essentially corresponds to a topological classification and indeed once the lattice is
fixed the topology is determined up to finite ambiguity [Hu03]. Here I have listed the ranks in
all the known examples and it is not unlikely that we have found all of them already, but just
to demonstrate our ignorance, at this point we do not even know how to exclude the smallest
possible value, namely rank three.

3.4. Let us come back to complex geometry. We have seen that to any K3 surface S0 one
naturally associates a Hodge structure of weight two:

H2(S0,C) = H2,0(S0)⊕H1,1(S0)⊕H0,2(S0).

The first natural question one should ask is what happens if the purely linear algebra structure
is modified slightly. Does it correspond to deforming the complex structure defining S0? Locally
this is not difficult to check, this is what is called the local Torelli theorem, but it turns out to
be true globally, see [To80, Hu99] and [Hu16, Ch. 7] for more on the history of the result.

Theorem 3.3 (Surjectivity of the period map). Any admissible Hodge structure on the K3
lattice Λ is the Hodge structure associated with some K3 surface.

Here, admissible means that the decomposition is orthogonal and its (2, 0)-part is of dimension
one.

Note, however, that unlike the case of complex tori it is not possible to simply write down a
K3 surface to a given admissible Hodge structure. In fact, also going the other way is highly
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non-trivial. For example, describing the Hodge structure associated with the Fermat quartic is
a non-trivial matter. So both arrows in this diagram are hard to realize in practice.

Nevertheless Hodge theory often allows one to deal with elusive geometric properties in an
effective way. For example, we alluded already to the fact that as for complex tori many
K3 surfaces cannot be described by polynomial equations. Those that can, which are called
algebraic, are characterized by a specific property of their Hodge structure. For K3 surfaces
this follows from general surface theory and for hyperkähler manifolds see [Hu99].

Theorem 3.4. A K3 surface or a hyperkähler manifold S is algebraic if and only if

∃α ∈ H2(S,Z) ∩H1,1(S) : (α.α) > 0.

Of course, finding the equation is a completely different matter.

Clearly, the most important single result in the theory is the next result. For K3 surfaces
this goes back to [PSS71] in the algebraic situation and to [BuRa75] in the non-algebraic, see
[Hu16, Ch. 7] for further references and historical comments. For hyperkähler manifolds of
higher dimensions the result is [Ve13], see also [Hu11a, Lo19, Ma11].

Theorem 3.5 (Torelli theorem). There exists a biholomorphic map S1 ' S2 between two K3
surfaces if and only if there exists an isometry of Hodge structures H2(S1,Z) ' H2(S2,Z). For
hyperkähler manifolds the same assertion is true if the Hodge isometry is required to satisfy an
additional technical condition (∗):

S1 ' S2 ⇔ H2(S1,Z) ' H2(S2,Z) & Hodge & ( . ) & (∗∗).

Despite of having been proved early in the history of the theory of K3 surfaces (the higher
dimensional case is more recent), there are aspects that we do not fully understand. For example,
what happens if the compatibility with the intersection form is dropped?

H2(S1,Z) ' H2(S2,Z) & Hodge (but not ( . )) ⇒ S1 oo
? // S2

There is no geometric object that would play the role of the Jacobian in the case of curves.
Also, it is not really clear how often this does happen.

3.5. Instead of dropping the intersection form one could instead relax the coefficients and take
Q instead of Z. This leads us the Hodge conjecture for K3 surfaces. The Hodge conjecture for
a K3 surface S itself is the question whether for any class γ ∈ H1,1(S)∩H2(S,Z) there exists in
fact a curve C �

� //S such that the topological paring with the class γ amounts to integrating
over the curve C, i.e. for all classes α ∈ H2(S,C) we have

(γ.α) =

∫
C
α
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This is in fact well known in general as the Lefschetz (1, 1)-theorem. Note however, that an
arithmetic analogue of this, the Tate conjecture, has been proved only recently and essentially
only for K3 surfaces [Ma14, Ch13, Ma15, Mo17].

More interesting is the Hodge conjecture for products of K3 surfaces S1 × S2. It could be
phrased in terms of integral (2, 2)-class on the product or using Hodge morphisms.

Conjecture 3.6. Assume ϕ : H2(S1,Q) //H2(S2,Q) is a linear map with ϕ(Hp,q(S1)) ⊂
Hp,q(S2). Then there exists a complex surface

Z �
� //S1 × S2

(or rather a Q-linear combination of surfaces) such that for an orthonormal basis αi we have

(ϕ(αi).αj) =

∫
Z

(αi × αj).

Alternatively, one requires that the cohomology class [ϕ] ∈ H4(S1×S2) determined by ϕ we
have ([ϕ].α) =

∫
Z α for all α ∈ H4(S1 × S2).

The conjecture, despite being one of the easiest non-trivial cases of the general Hodge con-
jecture, is wide open. It has been proved for Hodge morphisms ϕ which are compatible with
the quadratic form.

Theorem 3.7 (Hodge conjecture for CM K3 surfaces). Assume ϕ : H2(S1,Q) //H2(S2,Q) is
compatible with the Hodge structure and the intersection product. Then the corresponding class
[ϕ] ∈ H2,2(S1 × S2) ∩H4(S1 × S2,Q) is algebraic, i.e. there exists a surface Z as above.

The original proof [Bu19], heavily inspired by [Ma20], is an ingenious application of twistor
theory. Another proof, also providing an isomorphisms between certain derived categories and
Chow motives, was given in [Hu18, Hu19]. Note that the theorem in particular shows that the
full Hodge conjecture holds for S × S whenever S is a K3 surface with complex multiplication,
cf. [Za80] or [Hu16, Ch. 3].

4. New ways in geometry

The language of standard algebraic geometry seems too limited to capture all aspects of the
situation that are detected by Hodge theory. We will demonstrate how to use more abstract
notions to explain certain observations for which the geometric picture seems blurred. The
two approaches we will discuss below could both be understood as a way of half-linearizing
geometry.

4.1. The Chow group of a K3 surface can be viewed as a replacement for the group structure
of an elliptic curve. A priori there is no way of forming the sum of two points on a K3 surface
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as we are used to do on elliptic curves, but completely abstractly one could form a group of all
finite formal linear combinations:

CH0(S) =
{ ∑

nixi | xi ∈ S, ni ∈ Z
}
/∼ .

This becomes useful only after dividing out by a certain equivalence relation ∼ taking into
account the geometry of the surface. The equivalence relation is called ‘rational equivalence’
and it is generated by, for example, declaring two points x1 and x2 to be rationally equivalent,
x1 ∼ x2, if they are both contained in the same rational curve, i.e. in the image of a map
f : P1 //S. The actual definition is a bit more involved, but this is the gist of it.

For complex K3 surfaces or hyperkähler manifolds CH0(S) is an absolutely enormous group
[Mu68, Vo02], it a divisible group, very much like the group attached to an elliptic curve, and
it is torsion free [Ro80], unlike an elliptic curve. And it certainly does not have any reasonable
geometric structure.

By definition, the group CH0(S) depends very much on the surface, but it is a little unwieldy
and hard to pin down. There is a general set of conjectures due to Bloch and Beilinson that
clarify the role of Chow groups, but they seem out of reach for the moment. However, as often in
the past, studying these conjectures for K3 surfaces is interesting and rewarding: The situation
is far from being trivial but at the same time certain things can be proved. To illustrate one
aspect of the expected behavior, we mention the following result which combines [Mu68] for the
‘only if’ and [HK13, Hu12, Vo12] for the converse.

Theorem 4.1. Consider an automorphism g : S
∼ // S of finite order of a K3 surface S.

Then

g = id on CH0(S) ⇔ g = id on H2,0(S).

The guiding principle here is that although CH0(S) only uses points in the surface, which
directly do not leave any trace in the cohomology H∗(S,Z), the behavior of certain natural
operations on CH0(S) is nevertheless governed by their behavior on the cohomology (and,
moreover, on parts that a priori are not geometric at all).

Note, however, that even for K3 surfaces not all questions raised by the Bloch–Beilinson
conjectures have been answered yet. For example, for g of infinite order the theorem has not
been proved and there is not even an example of a K3 surface over a number field for which
the expectation that CH0(S) = Z has been checked [Hu11b]. Also, Chow groups of K3 surfaces
and hyperkähler manifolds show some features that are not expected in general. This has been
attracted a lot of attention over the last 15 years or so. It started with [BV04] for K3 surfaces,
a more general set of conjectures for hyperkähler manifolds in [Be07, Vo08], with partial results
e.g. in [Ri16] linking them to expectations in mirror symmetry.
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4.2. Chow groups are also used in the linearization of the K3 surface itself. Of course, there
is a category whose objects are K3 surfaces, hyperkähler manifolds, or just arbitrary vari-
eties. But the morphisms in this categories just form sets without much additional structures.
Grothendieck suggested to build a linear category Mot (which is almost as good as could wish
for, it is a pseudo-abelian category), see [MNP13]. Each K3 surface still occurs there as an ob-
ject hS ∈ Mot, but the set of morphisms has been enlarged: Instead of actual maps, one defines
the set of morphisms between two K3 surfaces S1, S2 in Mot as the Chow group CH2(S1 × S2)
of their product. Here, instead of looking at linear combinations of points, one considers linear
combinations of surfaces modulo rational equivalence. One of the hardest questions in this
area asks whether the category Mot really behaves like the category of finite-dimensional (su-
per)vector spaces [Ki05]. Even for K3 surfaces this has been settled only in very few cases. A
geometric explanation of the Kuga–Satake construction could solve this problem. More geo-
metrically, it would be enough to show that any K3 surface is dominated by a product of two
curves, although many experts think that this should not hold.

The next result can be seen as a motivic explanation of the Hodge conjecture, see Theorem
4.3, or as a rational global Torelli theorem 3.5.

Theorem 4.2 (Motivic Hodge/Torelli). Two K3 surfaces S1 and S2 have isomorphic mul-
tiplicative Chow motives if and only if there exists a Hodge isometry of their rational Hodge
structures:

hS1 ' hS2 (mult)⇔ H2(S1,Q) ' H2(S2,Q) & Hodge & ( . ).

The isomorphism of Chow motives of isogenous K3 surfaces has been proved in [Hu19, Hu18].
The multiplicative nature of hS has been worked out in [FV19]. Dropping the compatibility
with the intersection pairing on the right hand side should correspond to isomorphisms of Chow
motives on the left hand side not necessarily respecting the multiplicative structure.

4.3. Another linearization of the geometry of a K3 surface or a hyperkähler manifold is realized
by instead of studying vector bundles taking all complexes of vector bundles into consideration.
This leads to the notion of the derived category, which is a linear category, so morphisms
between two objects are vector spaces. It is not abelian but triangulated. There are twisted
versions which I do not have the time to go into here.

These categories also allow one to express the relation between K3 surfaces with the same
rational Hodge structure. The following result is the main input in the proof of Theorem 4.2
and provides a categorical interpretation of [Bu19].

Theorem 4.3 (Derived Hodge/Torelli). Two K3 surfaces S1 and S2 are linked by a chain of
equivalences of twisted derived categories if and only if there exists a Hodge isometry of their
rational Hodge structures:

D(S1, α1) ' · · · ' D(S2, α2) ⇔ H2(S1,Q) ' H2(S2,Q) & Hodge & ( . ).
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The result with integral coefficient goes back to the early days of Fourier–Mukai transforms
[Mu84, Or97] and in the above form it is [Hu18].

5. Unexpected findings

I would like to end my talk by mentioning a few instances where K3 surfaces and hyperkähler
manifolds occur at places in algebraic geometry where a priori one would not expect them
to play any role. The example I chose which is arguably the most prominent case is that of
cubic fourfolds, it has become a hot topic as it connects various points of view and promises
applications to the Lüroth problem, cf. [Hu20, Ch. 6] for more details and references.

A cubic fourfold is defined by a cubic polynomial in five variable, e.g. the Fermat polynomial

x31 + · · ·+ x35 = 1.

(This is the affine case. In homogenous coordinates one would of course have six variables.)
While elliptic curves, tori, K3 surfaces, and hyperkähler manifolds all have trivial Ricci curva-
ture, cubic fourfolds have positive curvature and a priori rather behave like projective spaces,
so a completely different geometry.

Nevertheless, hyperkähler aspects crop up, geometrically and Hodge theoretically.
• For example, the Fano variety of lines, i.e. the set

F (X) = { L ⊂ X | line },

which itself is a manifold, in fact a smooth algebraic variety, turns out to be a hyperkähler
manifold of dimension four [BD85].
• The middle cohomology H4(X,Z) of a cubic fourfold has a Hodge decomposition of the

form
H4(X,C) = H3,1(X)⊕H2,2(X)⊕H1,3(X)

with H3,1(X) of dimension one [Ra72]. This looks suspiciously like the Hodge structure of a
K3 surface SX and, as worked out in [Ha00], it frequently is.

The geometric relation, however, between the Fano variety of lines F (X) (a hyperkähler
manifold of dimension four), the K3 surface SX (which is only determined via its Hodge structure
and not uniquely determined), and the cubic fourfold X itself is not apparent at all. This has
been studied intensively over the last years. Partially this is well understood, e.g. F (X) and
X are linked by the Fano correspondence and F (X) can also be interpreted as a moduli space
of certain bundles on X. A geometric interpretation of SX , when it exists, is not known and
probably does not always exist. It seems that a more conceptual way of understanding the
situation is provided by more abstract notions like Chow motives and derived categories as
explained before.

Very roughly, the Chow motive of the Fano variety F (X) is built out of the Chow motive of
SX (when it exists) by using basic linear algebra constructions like taking the symmetric power
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in the linear category Mot:
hF (X) ≈ S2hSX

.

Similarly, the essential (transcendental) parts of the Chow motives of SX and X are isomorphic
(up to Tate twist):

htrSX
' htrX .

A similar picture exists on the level of derived categories [AT14, Ku10]. Whenever Hodge
theory links a cubic fourfold X to a K3 surface SX , then the derived category D(SX) can be
realized as a full subcategory of the derived category (in fact, its essential part) of the derived
category D(X):

D(SX) �
� //D(X).

One should think of the derived category D(F (X)) of the Fano variety as the symmetric power
of D(SX).

One of the main motivation for the flurry of activities in this area is the Lüroth problem
which asks whether an easy variety like a cubic fourfold X is always rational, so isomorphic
to P4 on a big open set. For cubic threefolds the question has been answered to the negative,
but maybe more interestingly than settling the Lüroth problem was the innovation it triggered.
Fundamental concepts like the intermediate Jacobian have been introduced to answer the ques-
tion which subsequently has of course become a standard tool in algebraic geometry [CG72].
Something similar is currently happening for cubic fourfolds. The existence of SX is conjectured
to be linked to the question whether X is rational (Lüroth problem) [Ha00, Ku10].

6. Conclusion

K3 surfaces and hyperkähler manifolds should be seen as central building blocks in algebraic
geometry. Their geometry is extremely rich and yet, or therefore, more accessible than com-
pletely arbitrary algebraic varieties. There have been many instances where strong evidence for
deep general conjectures has been provided by studying them for K3 surfaces and hyperkähler
manifolds: Weil conjecture [De72, PSS71], Tate conjecture [Ma14, Ch13, Ma15], Grothendieck
standard conjectures [CM13], finite dimensionality of Chow motives [Yi15], Hodge conjecture
[Bu19], etc.
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