Geometry of K3 surfaces and hyperkähler manifolds

Open problems and new perspectives

Daniel Huybrechts

DMV Annual Meeting

Chemnitz, 15 September 2020

For references see: http://www.math.uni-bonn.de/people/huybrech/K3HKDMV.pdf

§1 From elliptic curves to K3 surfaces and beyond

Topology of Riemann surfaces (~ algebraic curves)

Geometry: Add conformal / complex / algebraic structure

Elliptic curves: $\begin{cases} \bullet \text{ complex: As torus } \mathbb{C}/\Gamma, \ \Gamma = \mathbb{Z} \oplus \mathbb{Z}\tau, \ \tau \in \\ \bullet \text{ algebraic: As zero set of } y^2 \stackrel{(*)}{=} x^3 + ax + b, \text{ e.g. } x^3 + y^3 = 1 \\ \bullet \text{ arithmetic: Solutions of (*) but with } x, y \in \mathbb{Z}, \ \mathbb{Q}, \ \mathbb{F}_\rho \end{cases}$

Choices in higher dimensions

 $\mbox{Complex: } \mathbb{C}^2/\Gamma, \, \mathbb{Z}^4 \cong \Gamma \subset \mathbb{C}^2 \qquad \qquad \dots \qquad \mbox{equations?}$

Algebraic: $x^4 + y^4 + z^4 = 1$... uniformization?

→ K3 surfaces: Kähler, Kodaira, and Kummer

'… et de la belle montagne K2 au Cachemir' (A. Weil)

Think of K3 surfaces (hyperkähler) as alternative to replacing elliptic curves \mathbb{C}/Γ by complex tori \mathbb{C}^n/Γ .

K3 surface: simply connected & \exists holomorphic symplectic form σ . (locally $\sigma = f \, dz_1 \wedge dz_2$ with f holomorphic without zeros)

Hyperkähler: same definition in dim > 2 & σ unique & \exists Kähler metric

§2 What do we want to know

How many geometric structures?

Riemann surfaces

unique

1-dim family

3g-3-dim family: \mathcal{M}_a

ullet complex 20-dim: wild & ergodic ullet algebraically 19-dim: $M_d,\, d=2,4,6,\ldots$

Topological description

Elliptic curves, abelian varieties, complex tori:

topologically
$$\approx \mathbb{C}^n/\Gamma \approx \underbrace{S^1 \times \cdots \times S^1}_{\text{2n copies}}$$

K3 surfaces: topologically all the same \approx Fermat quartic

Hyperkähler manifolds dim > 2: More interesting!

- At least two topological types in each dimension!
- Only few topological restrictions known. Classification largely open.

Some typical questions

Uniformization

- $\exists \mathbb{C}^2 \xrightarrow{f} S$ with $\det(df) \not\equiv 0$?
 - $\exists \ \mathbb{C} \xrightarrow{f} S \text{ with } f(\mathbb{C}) \subset S \text{ Zariski dense } ?$

Points and curves •
$$x \in S \stackrel{?}{\Longrightarrow} \exists \mathbb{P}^1 \stackrel{f}{\longrightarrow} S \text{ with } x \in f(\mathbb{P}^1)$$

•
$$x_1, x_2 \in S \stackrel{?}{\Longrightarrow} \exists C \stackrel{f}{\longrightarrow} S \text{ with } C \cong \mathbb{P}^1 \text{ or } C \cong \mathbb{C}/\Gamma$$

and $x_1, x_2 \in f(C)$

Bundles

- $E \rightarrow S$: parametrization & moduli spaces
- Existence & Chern classes

§3 Linear algebra: the most efficient tool

Abstract Hodge theory Fix
$$\Lambda = \mathbb{Z}^n$$
 or $\Lambda = \mathbb{Q}^n \ \, \leadsto \ \, \Lambda_{\mathbb{C}} = \mathbb{C}^n$

Hodge structure of weight 1:
$$\Lambda_{\mathbb{C}} = \Lambda^{1,0} \oplus \Lambda^{0,1}$$

• \mathbb{C} -vector spaces • $v \in \Lambda^{1,0} \Leftrightarrow \bar{v} \in \Lambda^{0,1}$

Hodge structure of weight 2: $\Lambda_{\mathbb{C}} = \Lambda^{2,0} \oplus \Lambda^{1,1} \oplus \Lambda^{0,2}$

$$\Lambda_{\mathbb{C}} = \Lambda^{2,0} \oplus \Lambda^{1,1} \oplus \Lambda^{0,2}$$

•
$$\mathbb{C}$$
-vector spaces • $v \in \Lambda^{2,0} \Leftrightarrow \bar{v} \in \Lambda^{0,2}$ • $v \in \Lambda^{1,1} \Leftrightarrow \bar{v} \in \Lambda^{1,1}$

•
$$v \in \Lambda^{1,1} \Leftrightarrow \bar{v} \in \Lambda^{1,1}$$

Hodge theory from geometry (weight one)

• Torus
$$T = \mathbb{C}^2/\Gamma \implies \Lambda := H^1(T, \mathbb{Z}) \cong \Gamma^*$$

$$\Lambda_{\mathbb{C}} = H^1(T, \mathbb{C}) \stackrel{(*)}{=} \underbrace{H^{1,0}(T)}_{= \langle dz_1, dz_2 \rangle} \oplus H^{0,1}(T)$$

• Riemann surface / algebraic curve $C \rightsquigarrow \Lambda := H^1(C, \mathbb{Z})$

$$\Lambda_{\mathbb{C}} = H^{1}(C, \mathbb{C}) \stackrel{(*)}{=} \underbrace{H^{1,0}(C)}_{q\text{-dim}} \oplus H^{0,1}(C)$$

Torelli theorem

- Tori: $T_1 \cong T_2 \iff H^1(T_1, \mathbb{Z}) \cong H^1(T_2, \mathbb{Z})$ compatible with (*)
- Curves: $C_1 \cong C_2 \Leftrightarrow H^1(C_1,\mathbb{Z}) \cong H^1(C_2,\mathbb{Z})$ compatible with (*) & (.)

Open: What happens if (.) is dropped?

Hodge theory from geometry (weight two)

• Torus
$$T = \mathbb{C}^2/\Gamma$$
 \rightsquigarrow $\Lambda := H^2(T, \mathbb{Z}) \cong \bigwedge^2 H^1(T, \mathbb{Z})$
$$\Lambda_{\mathbb{C}} = H^2(T, \mathbb{C}) \stackrel{(*)}{=} \underbrace{H^{2,0}(T) \oplus H^{1,1}(T) \oplus H^{0,2}(T)}_{= \langle dz_1 \wedge dz_2 \rangle}$$

• K3 / hyperkähler $S \rightsquigarrow \Lambda := H^2(S, \mathbb{Z}) \& (.)$

$$\Lambda_{\mathbb{C}} = H^2(S, \mathbb{C}) \stackrel{(*)}{=} \underbrace{H^{2,0}(S)} \oplus H^{1,1}(S) \oplus H^{0,2}(S) \text{ orthogonal wrt. (.)}$$
$$= \langle \sigma = f \ dz_1 \wedge dz_2 \ \text{loc.} \rangle$$

Kuga-Satake: weight two → weight one

K3 surface → complex torus.

Open: Geometric description.

$$\Lambda := H^2(S, \mathbb{Z})$$
 with rk = 22 & sign = (3.19)

$$\widetilde{\Lambda} := H^*(S, \mathbb{Z})$$
 with rk = 24 & sign = (4, 20)

Leech / Niemeier lattices
$$N_1, \ldots, N_{24}$$
 with rk = 24 & sign = (0, 24)

Theorem Finite group G and Mathieu group $M_{23} \subset M_{24} \subset O(N_2)$:

- $G \subset \operatorname{Aut}_s(S) \Leftrightarrow G \subset M_{23} \text{ with } \geq 5 \text{ orbits}$
- Aut(D(S)) & Conway groups
- Mathieu moonshine & CFT

Higher dimensions: $\Lambda = H^2(S, \mathbb{Z})$ with rk = r & sign = (3, r - 3)

Open: Which lattices can arise (≈ topological classification)?

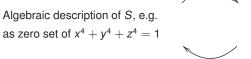
Known: $rk(\Lambda) = 7, 8, 22, 23, 24$. Can $rk(\Lambda) = 3$ be excluded?

Complex geometry S_0 K3 / hyperkähler

$$\rightarrow H^2(S_0, \mathbb{C}) \stackrel{(*)}{=} H^{2,0}(S_0) \oplus H^{1,1}(S_0) \oplus H^{0,2}(S_0)$$

Surjectivity of period map

• Every Hodge structure on $\Lambda = H^2(S_0, \mathbb{Z})$ comes from some S



Linear description of S by Hodge structure $H^2(S, \mathbb{Z})$

Example

- ullet Not all S= K3 / hyperkähler are described as zero sets (algebraic)
- S is algebraic \Leftrightarrow $\exists \alpha \in H^2(S,\mathbb{Z}) \cap H^{1,1}(S) : (\alpha.\alpha) > 0$

Torelli theorem S_1 , S_2 K3 surface / hyperkähler manifolds

•
$$S_1 \cong S_2 \iff H^2(S_1, \mathbb{Z}) \cong H^2(S_2, \mathbb{Z}) \& (*) \& (.) \& (**) \text{ in dim } > 2$$

Open: What happens if (.) is dropped or $\mathbb{Z} \rightsquigarrow \mathbb{Q}$?

→ Hodge conjecture

K3 surface S

•
$$\gamma \in H^{1,1}(S) \cap H^2(S,\mathbb{Z}) \implies \exists C \subset S \ \forall \ \alpha \in H^2(S): (\gamma.\alpha) = \int_C \alpha.$$

Products of K3 surfaces $S_1 \times S_2$

•
$$\varphi \colon H^2(S_1, \mathbb{Q}) \longrightarrow H^2(S_2, \mathbb{Q})$$
 with $\varphi(H^{p,q}(S_1)) \subset H^{p,q}(S_2)$

$$\stackrel{??}{\Longrightarrow} \exists Z \subset S_1 \times S_2 : (\varphi(\alpha_i).\alpha_j) = \int_Z (\alpha_i \times \alpha_j)$$

Theorem

• OK for φ orthogonal (\Rightarrow OK for S with CM)

§4 New ways in geometry

Points and curves

→ Chow groups and Chow motives (linearizing geometry)

Linearizing points:
$$x \in S \rightsquigarrow CH_0(S) := \{ \sum n_i x_i \} / \sim \text{, where } \}$$

$$x_1 \sim x_2 \in S$$
 equivalence relation generated by:

$$\exists f: \mathbb{P}^1 \longrightarrow S: x_1, x_2 \in f(\mathbb{P}^1) \& \text{ natural generalization}$$

Theorem If $g: S \xrightarrow{\sim} S$, then:

•
$$g = id \text{ on } H^{2,0}(S) \Leftrightarrow g = id \text{ on } CH_0(S)$$

Linearizing S: Grothendieck's philosophy of motives ...

...Linearizing S: Replace geometry by linear category Mot (pseudo-abelian)

$$\begin{array}{cccc} S & \leadsto & \mathfrak{h}_S \in Mot \\ \\ Mor(S_1,S_2) & \text{set} & \leadsto & Mor(\mathfrak{h}_{S_1},\mathfrak{h}_{S_2}) & \mathbb{Q}\text{-vector space} \\ \\ = \{ \, S_1 \, \longrightarrow \, S_2 \, \} & = \operatorname{CH}_2(S_1 \times S_2) \end{array}$$

Open: Are all \$\mathfrak{h}_S\$ 'finite-dimensional' ?

Motivic Hodge / Torelli S_1, S_2 K3 surfaces

• $\mathfrak{h}_{S_1} \cong \mathfrak{h}_{S_2}$ multiplicative $\Leftrightarrow H^2(S_1,\mathbb{Q}) \cong H^2(S_2,\mathbb{Q})$ compatible with (*) & (.)

Open: What happens if (.) is dropped?

Bundles → linear category

Instead of one bundle ightharpoonup consider complexes

$$E \longrightarrow S$$
 $\cdots \xrightarrow{d} E_1 \xrightarrow{d} E_2 \xrightarrow{d} \cdots$ with $d^2 = 0$

 \rightarrow D(S) triangulated (dg) category (or 'twisted' version D(S, α))

Categorical Hodge / Torelli S_1, S_2 K3 surfaces

$$\bullet \ \mathrm{D}\big(S_1,\alpha_1\big)\cong \cdots \cong \mathrm{D}\big(S_2,\alpha_2\big) \ \Leftrightarrow \ H^2\big(S_1,\mathbb{Q}\big)\cong H^2\big(S_2,\mathbb{Q}\big) \ \text{compatible with $(*)$ \& (.)}$$

Open: What happens if (.) is dropped?

Further questions: Relation to other motivic and categorical invariants:

•
$$K_0(Var)$$
, $K_0(treat)$ • $CH(S) \& D(S)$ for $S/\overline{\mathbb{Q}}$ • ...

§5 Unexpected findings

Cubic hypersurfaces $X \subset \mathbb{P}^5$, e.g. zero set of $x_0^3 + \cdots + x_4^3 = 1$

Geometric:
$$\rightsquigarrow F(X) = \{ L \subset X \mid \text{line } \}$$
 (Fano variety of lines) is hyperkähler of dim = 4

Hodge theory:
$$\rightsquigarrow H^4(X,\mathbb{C}) = H^{3,1}(X) \oplus H^{2,2}(X) \oplus H^{1,3}(X)$$

frequently $\approx H^2(S_X,\mathbb{C}) = H^{2,0}(S_X) \oplus H^{1,1}(S_X) \oplus H^{0,2}(S_X)$

Open: What is the geometric relation:

$$F(X) \stackrel{?}{\longleftrightarrow} S_X \stackrel{?}{\longleftrightarrow} X$$

Clearer picture: Using motives and categories

$$\mathfrak{h}_{F(X)} \approx S^2 \mathfrak{h}_{S_X}$$
 and $\mathfrak{h}_{S_X}^{\mathrm{tr}} \approx \mathfrak{h}_X^{\mathrm{tr}}$

$$D(F(X)) \longleftrightarrow S^2 D(S_X) \text{ and } D(S_X) \hookrightarrow D(X)$$

• • •