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CHAPTER 1

Basic definitions

Algebraic K3 surfaces can be defined over arbitrary fields. Over the field of complex
numbers a more general notion exists that includes non-algebraic K3 surfaces. In Section
1, the algebraic variant is introduced and some of the most important explicit examples
are discussed. Classical numerical invariants are computed in Section 2. In Section 3,
complex K3 surfaces are defined and Section 4 contains more examples which are used
for illustration in later chapters.

1. Algebraic K3 surfaces

Let k be an arbitrary field. A variety over k (usually) means a separated, geometrically
integral scheme of finite type over k.

Definition 1.1. A K3 surface over k is a complete non-singular variety X of dimension
two such that1

Ω2
X/k ' OX and H1(X,OX) = 0.

Once the base field is fixed, we often simply write ΩX instead of ΩX/k. The canonical
bundle of a non-singular variety X, i.e. the determinant of ΩX , shall be denoted KX or
ωX , depending on whether we regard it as a divisor or as an invertible sheaf.
By definition, the cotangent sheaf ΩX of a K3 surface X is locally free of rank two and

ωX ' OX . Moreover, the natural alternating pairing

ΩX × ΩX
//ωX ' OX ,

of which we think as an algebraic symplectic structure, induces a non-canonical isomor-
phism

TX := Ω∗X := Hom(ΩX ,OX) ' ΩX .

Remark 1.2. Any smooth complete surface is projective. So, with the above definition,
K3 surfaces are always projective.
There are various proofs for the general fact. For example, Goodman, see [233], shows

that the complement of any non-empty open affine subset is the support of an ample
divisor. The proof in [32], written for smooth compact complex surfaces, uses fibrations
of the surface associated with some rational functions. See [373, Ch. 9.3] for a proof over
an arbitrary field.

1By definition, a variety over a field k is complete if the given morphism X // Spec(k) is proper and
X over k is non-singular if the cotangent sheaf ΩX/k is locally free of rank dim(X), which is equivalent
to Xk̄ := X ×k k̄ being regular, see e.g. [373, Prop. 6.2.2].

7



8 1. BASIC DEFINITIONS

Example 1.3. i) A smooth quartic X ⊂ P3 is a K3 surface. Indeed, from the short
exact sequence

0 //O(−4) //O //OX // 0

on P3 and the vanishings H1(P3,O) = H2(P3,O(−4)) = 0 one deduces H1(X,OX) = 0.
Taking determinants of the conormal bundle sequence (see [234, II.Prop. 8.12])

0 //O(−4)|X //ΩP3 |X //ΩX
// 0

yields the adjunction formula ωX ' ωP3 ⊗ O(4)|X ' OX . In local homogeneous coordi-
nates with X given as the zero set of a quartic polynomial f , a trivializing section of ωX
can be written explicitly as the residue

(1.1) Res

(∑
(−1)ixidx0 ∧ . . . d̂xi ∧ . . . ∧ dx3

f

)
,

which, for example, on the affine chart x0 = 1 with affine coordinates y1, y2, y3 is

(1.2) Res

(
dy1 ∧ dy2 ∧ dy3

f(1, y1, y2, y3)

)
.

A particularly interesting special case is provided by the Fermat quartic X ⊂ P3 defined
by the equation

x4
0 + x4

1 + x4
2 + x4

3 = 0.

In order for it to be smooth one has to assume char(k) 6= 2.
ii) Similarly, a smooth complete intersection of type (d1, . . . , dn) in Pn+2 is a K3 surface

if and only if
∑
di = n+ 3. Note that under the natural assumption that all di > 1 there

are in fact only three cases (up to permutation): n = 1, d1 = 4 (as in i)); n = 2, d1 =

2, d2 = 3; and n = 3, d1 = d2 = d3 = 2. This yields examples of K3 surfaces of degree
four, six, and eight.
iii) Let k be a field of char(k) 6= 2 and let A be an abelian surface over k.2 The natural

involution ι : A � //A, x � // − x, has the 16 two-torsion points as fixed points. (They
are geometric points and not necessarily k-rational.) The minimal resolution X //A/ι

of the quotient, which has only rational double point singularities (cf. Section 14.0.3),
defines a K3 surface. K3 surfaces of this type are called Kummer surfaces. For details in
the case of k = C see [42, Prop. VIII.11] and for a completely algebraic discussion [27,
Thm. 10.6].3

An alternative way of describing X starts with blowing-up the fixed points Ã //A.
Since the fixed points are ι-invariant, the involution ι lifts to an involution ι̃ of Ã. The

2The standard reference for abelian varieties is Mumford’s [441], but the short introduction [405]
by Milne is also highly recommended.

3The same construction works in characteristic 2 under additional assumptions on A, see [281, 558].
There are fewer fixed points (4, 2, or 1), but the singularities of the quotient A/ι are worse and the minimal
resolution defines a K3 surface if and only if A is not supersingular. Recently the case of char(k) = 2 has
been revisited by Schröer, Shimada, and Zhang in [529, 555].



2. CLASSICAL INVARIANTS 9

quotient Ã //X by ι is a ramified double covering of degree two. A local calculation
shows that smoothness of X and Ã are equivalent (in characteristic 6= 2).

Ãι̃ 77
//

��

A

��
X // A/ι.

Moreover, the canonical bundle formulae for the blow-up Ã //A (cf. [234, V.Prop. 3.3])
and for the branched covering π : Ã //X (cf. [32, I.16] or [440, Ch. 6]) yield

ωÃ ' O(
∑

Ei) and ωÃ ' π
∗ωX ⊗O(

∑
Ei).

This shows π∗ωX ' OÃ. Here, the Ei are the exceptional divisors of Ã //A. Their
images Ēi in X satisfy π∗O(Ēi) ' O(2Ei). Note that π∗OÃ ' OX ⊕ L∗, where the
line bundle L is a square root of O(

∑
Ēi), and hence π∗ωX ' OÃ implies ωX ' OX .

Finally note that the image of the injection H1(X,OX) �
� // H1(Ã,OÃ) = H1(A,OA) is

contained in the invariant part of the action induced by ι. Hence, H1(X,OX) = 0. See
Remark 14.3.16 for a converse describing which K3 surfaces are Kummer surfaces.
The Fermat surface in i) is in fact a Kummer surface, but this is not obvious to see, cf.

Example 14.3.18.
iv) Consider a double covering

π : X //P2

branched along a curve C ⊂ P2 of degree six. Then π∗OX ' OP2 ⊕ O(−3) which in
particular shows H1(X,OX) = 0. Note that for char(k) 6= 2 the surface X is non-
singular if C is. The canonical bundle formula for branched coverings shows ωX '
π∗(ωP2 ⊗ O(3)) ' OX and, therefore, for C non-singular X is a K3 surface (of degree
two), called a double plane.
If C is the union of six generic lines in P2, a local calculation reveals that the double

cover X has 15 rational double points. The 15 points correspond to the pairwise inter-
sections of the six lines. Blowing-up these 15 singular points produces a K3 surface X ′.
The canonical bundle does not change under the blow-up, see [32, III.Prop. 3.5].

2. Classical invariants

We start by recalling basic facts on the intersection pairing of divisors on general smooth
surfaces before specializing to the case of K3 surfaces.

2.1. Let X be an arbitrary non-singular complete surface over k. For line bundles
L1, L2 ∈ Pic(X) the intersection form (L1.L2) can be defined as the coefficient of n1 · n2

in the polynomial χ(X,Ln1
1 ⊗ L

n2
2 ) (Kleiman’s definition, see [233, I. Sec. 5]) or, more

directly, as (see [435, Lect. 12])

(2.1) (L1.L2) := χ(X,OX)− χ(X,L∗1)− χ(X,L∗2) + χ(X,L∗1 ⊗ L∗2).

Of course, both definitions define the same symmetric bilinear form with the following
properties:
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i) If L1 = O(C) for some (e.g. for simplicity integral) curve C ⊂ X, then (L1.L2) =

deg(L2|C).

ii) If Li = O(Ci) for two curves Ci ⊂ X, i = 1, 2, intersecting in only finitely many points
x1, . . . , xn, then

(L1.L2) =

n∑
i=1

dimk(OX,xi/(f1,xi , f2,xi)).

Here, f1,xi , f2,xi are the local equations for C1 and C2, respectively, in xi.

iii) If L1 is ample and L2 = O(C) for a curve C ⊂ X, then

(2.2) (L1.L2) = (L1.C) = deg(L1|C) > 0.

iv) The Riemann–Roch theorem for line bundles on surfaces asserts:4

(2.3) χ(X,L) =
(L.L⊗ ω∗X)

2
+ χ(X,OX).

We often write (L.C) and (C1.C2) instead of (L.O(C)) and (O(C1).O(C2)) for curves
or divisors C,Ci on X. Instead of (L.L), we often use (L)2 and similarly (C)2 instead of
(C.C).
The Néron–Severi group of an algebraic surface X is the quotient

NS(X) := Pic(X)/Pic0(X)

by the connected component of the Picard variety Pic(X), i.e. by the subgroup of line
bundles that are algebraically equivalent to zero.
A line bundle L is numerically trivial if (L.L′) = 0 for all line bundles L′. For example,

any L ∈ Pic0(X) is numerically trivial. The subgroup of all numerically trivial line
bundles is denoted Pic(X)τ ⊂ Pic(X) and yields a quotient of NS(X)

Num(X) := Pic(X)/Picτ (X).

Clearly, Num(X) is a free abelian group endowed with a non-degenerate, symmetric
pairing:

( . ) : Num(X)×Num(X) //Z.

Proposition 2.1. The Néron–Severi group NS(X) and its quotient Num(X) are finitely
generated. The rank of NS(X) is called the Picard number ρ(X) = rk NS(X).5

4Of course, this is a special case of the much more general Hirzebruch–Riemann–Roch theorem (or
of the even more general Grothendieck–Riemann–Roch theorem), but a direct much easier proof exists
in the present situation, see [435, Lect. 12] or [234, V.1].

5In [346] Lang and Néron gave a simplified proof of Néron’s original result. To prove that
Num(X) is finitely generated, one can use an appropriate cohomology theory. See page 15 for an ar-
gument in the complex setting. Numerically trivial line bundles form a bounded family and, therefore,
NS(X) //Num(X) has finite kernel and, in particular, NS(X) is finitely generated as well. Also,
ρ(X) = rk NS(X) = rk Num(X).
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2.2. The signature of the intersection form on Num(X) is (1, ρ(X) − 1). This is
called the Hodge index theorem, cf. e.g. [234, V.Thm. 1.9]. Thus, ( . ) on

NS(X)R := NS(X)⊗Z R

can be diagonalized with entries (1,−1, . . . ,−1).

Remark 2.2. The Hodge index theorem has the following immediate consequences.
i) The cone of all classes L ∈ NS(X)R with (L)2 > 0 has two connected components.

The positive cone CX ⊂ NS(X)R is defined as the connected component that is distin-
guished by the property that it contains an ample line bundle. See Chapter 8 for more
on the positive cone of K3 surfaces.
ii) If L1 and L2 are line bundles such that (L1)2 ≥ 0, then

(2.4) (L1)2(L2)2 ≤ (L1.L2)2.

Just apply the Hodge index theorem to the linear combination (L1)2L2 − (L1.L2)L1

(written additively) which is orthogonal to L1. Note that (2.4) is simply expressing the
fact that the determinant of the intersection matrix(

(L1)2 (L1.L2)

(L1.L2) (L2)2

)
is non-positive.

2.3. For a K3 surface X one has by definition h0(X,OX) = 1 and h1(X,OX) =

0. Moreover, by Serre duality H2(X,OX) ' H0(X,ωX)∗ and hence h2(X,OX) = 1.6

Therefore,
χ(X,OX) = 2.

Remark 2.3. This can be used to prove that the (algebraic) fundamental group π1(X)

of a K3 surface X over a separably closed field k is trivial. Indeed, if X̃ //X is an
irreducible étale cover of finite degree d, then X̃ is a smooth complete surface over k with
trivial canonical bundle such that

χ(X̃,OX̃) = dχ(X,OX) = 2 d

and h0(X̃,OX̃) = h2(X̃,OX̃) = 1 (use Serre duality). Combined this yields 2−h1(X̃,OX̃) =

2 d and hence d = 1.

The Riemann–Roch formula (2.3) for a line bundle L on a K3 surface X reads

(2.5) χ(X,L) =
(L)2

2
+ 2.

Recall that a line bundle L is trivial if and only if H0(X,L) and H0(X,L∗) are both
non-trivial. Thus, as Serre duality for a line bundle L shows H2(X,L) ' H0(X,L∗)∗,

6In [234] Serre duality is proved over algebraically closed fields, but it holds true more generally.
The pairing is compatible with base change, so one can pass to algebraically closed fields once the trace
map is shown to exist over k. In fact, the trace map exists in much broader generality, see Hartshorne’s
[232]. For our purposes working with Serre duality over an algebraically closed field is enough: By flat
base change H2(X,OX)⊗ k̄ = H2(Xk̄,OXk̄

) and Xk̄ is again a K3 surface.
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the Riemann–Roch formula for non-trivial line bundles L expresses h0(X,L)− h1(X,L)

or h0(X,L∗)− h1(X,L).
Also note that for an ample line bundle L the first cohomology H1(X,L) vanishes (we

comment on this in Theorem 2.1.8 and Remark 2.1.9) and hence (2.5) computes directly
the number of global sections of an ample line bundle L:

h0(X,L) =
(L)2

2
+ 2.

Proposition 2.4. For a K3 surface X the natural surjections are isomorphisms7

Pic(X) ∼− // NS(X) ∼− // Num(X).

Moreover, the intersection pairing ( . ) on Pic(X) is even, non-degenerate, and of signa-
ture (1, ρ(X)− 1).

Proof. Suppose L is non-trivial, but (L.L′) = 0 for an ample line bundle L′. Then
H0(X,L) = 0 and H2(X,L) ' H0(X,L∗)∗ = 0 by (2.2). Therefore, (2.5) yields 0 ≥
χ(X,L) = (1/2)(L)2 + 2 and thus (L)2 < 0. In particular, L cannot be numerically
trivial and, hence, Pic(X) ∼− // NS(X) ∼− // Num(X). Moreover, the intersection form is
negative definite on the orthogonal complement of any ample line bundle, which proves the
claim on the signature. Finally, the Riemann–Roch formula (L)2 = 2χ(X,L)− 4 ≡ 0 (2)

shows that the pairing is even. �

For a K3 surface X the lattice (NS(X), ( . )) is thus even and non-degenerate, but rarely
unimodular. For more information about lattices that can be realized as Néron–Severi
lattices of K3 surfaces see Section 14.3.1 and Chapter 17.

Remark 2.5. Even without using the existence of an ample line bundle, one can show
that there are no non-trivial torsion line bundles on K3 surfaces. Indeed, if L is torsion,
then by the Riemann–Roch formula χ(L) = 2 and hence L (or its dual) is effective.
However, if 0 6= s ∈ H0(X,L), then 0 6= sk ∈ H0(X,Lk) for all k > 0 and, moreover, the
zero sets of both sections coincide. Thus, if Lk is trivial, also L is trivial. The argument
also applies to (non-projective) complex K3 surfaces.
The non-existence of torsion line bundle can also be related to the triviality of the

(algebraic) fundamental group π1(X), see Remark 2.3. Indeed, the usual unbranched
covering construction, see e.g. [32, I.17], would define for any line bundle L of order d
(not divisible by char(k)) a non-singular étale covering X̃ //X.

2.4. We shall next explain how to use the general Hirzebruch–Riemann–Roch for-
mula to determine the Chern number c2(X) and the Hodge numbers

hp,q(X) := dimHq(X,Ωp
X)

of a K3 surface X.

7Warning: The second isomorphism does not hold for general complex K3 surfaces, see Section 3.2
and Example 3.3.2.
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For a locally free sheaf (or an arbitrary coherent) sheaf F on a K3 surface X the
Hirzebruch–Riemann–Roch formula reads

(2.6) χ(X,F ) =

∫
ch(F ) td(X) = ch2(F ) + 2 rk(F ).

The general version of this formula can be found e.g. in [234, App. A]. For F = OX the
first equality is the Noether formula

χ(X,OX) =
c2

1(X) + c2(X)

12
=

c2(X)

12

which yields c2(X) = 24.
Next, by definition one knows hp,q(X) = 1 for (p, q) = (0, 0), (0, 2), (2, 0), (2, 2) and

h0,1(X) = 0 for any K3 surface. For the remaining Hodge numbers (2.6), implies

2h0(X,ΩX)− h1(X,ΩX) = ch2(ΩX) + 4 = 4− c2(ΩX) = −20.

It is also known that h0(X,ΩX) = 0 and hence h1(X,ΩX) = 20. Using TX ' ΩX ,
this vanishing can be rephrased, maybe more geometrically, as H0(X, TX) = 0, i.e. a K3
surface has no global vector fields. In positive characteristic this is a difficult theorem on
which we comment later, see Sections 9.4.1 and 9.5.8 For char(k) = 0 it follows from the
complex case to be discussed below and the Lefschetz principle. In any event, the Hodge
diamond of any K3 surface looks like this:

(2.7)

h0,0 1

h1,0 h0,1 0 0

h2,0 h1,1 h0,2 1 20 1

h2,1 h1,2 0 0

h2,2 1

This holds for K3 surfaces over arbitrary fields and also for non-projective complex
ones, see below.

3. Complex K3 surfaces

Even if interested solely in algebraic K3 surfaces (and maybe even only in those de-
fined over fields of positive characteristic), one needs to study non-projective complex K3
surfaces as well. For example, the twistor space construction, used in the proof of the
Global Torelli Theorem (see Chapter 7), which is one of the fundamental results in K3
surface theory, always involves non-projective K3 surfaces. For this reason, we try to deal
simultaneously with the algebraic and the non-algebraic theory throughout these notes.

8Note, however, that it can often easily be checked in concrete situations. For example, it is easy to
see that H0(X, TX) = 0 for smooth quartics X ⊂ P3, complete intersection K3 surfaces, and Kummer
surfaces (for the latter see [27, Rem. 10.7]). Thanks to Christian Liedtke for pointing this out.
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3.1. The parallel theory in the realm of complex manifolds starts with

Definition 3.1. A complex K3 surface is a compact connected complex manifold X
of dimension two such that Ω2

X ' OX and H1(X,OX) = 0.

Serre’s GAGA principle (see [543, 444]) allows one to associate with any scheme of
finite type over C a complex space Xan whose underlying set of points is just the set
of all closed points of X. Moreover, with any coherent sheaf F on X there is naturally
associated a coherent sheaf F an on Xan. These constructions are well behaved in the
sense that, for example, Oan

X ' OXan and Ωan
X/C ' ΩXan . Also, there exists a natural

morphism of ringed spaces Xan //X.
For X projective (proper is enough) the construction leads to an equivalence of abelian

categories
Coh(X) ∼− // Coh(Xan).

In particular, H∗(X,F ) ' H∗(Xan, F an) for all coherent sheaves F on X and smoothness
of X implies that Xan is a manifold.
These general facts immediately yield:

Proposition 3.2. If X is an algebraic K3 surface over k = C, then the associated
complex space Xan is a complex K3 surface.

It is important to note that all complex K3 surfaces obtained in this way are projective,
but that there are (many) complex K3 surfaces that are not. In this sense we obtain a
proper full embedding

{ algebraic K3 surfaces over C } �
� // { complex K3 surfaces }.

The image consists of all complex K3 surfaces that are projective, i.e. that can be embed-
ded into a projective space. This is again a consequence of GAGA, because the ideal sheaf
of X ⊂ Pn is a coherent analytic sheaf and hence associated with an algebraic ideal sheaf
defining an algebraic K3 surface. A natural question at this point is whether complex K3
surfaces are at least always Kähler. This is in fact true and of great importance, but not
easy to prove. See Section 7.3.2.

Example 3.3. The constructions described in the algebraic setting in Example 1.3
work as well here. They define different incarnations of the same geometric objects. Only
for Kummer surfaces we gain some flexibility by working with complex manifolds. Indeed,
abelian surfaces A (over C) can be replaced by arbitrary complex tori of dimension two,
i.e. complex manifolds of the form A = C2/Γ with Γ ⊂ C2 a lattice of rank four. The
surface X, obtained as the minimal resolution of A/ι or, equivalently, as the quotient of
the blow-up of all two-torsion points Ã //A by the lift ι̃ of the canonical involution, is a
complex K3 surface. Indeed all algebraic arguments explained in Example 1.3, iii) work
in the complex setting.
One can show that X is projective if and only if the torus A is projective, i.e. the

complex manifold associated with an abelian surface. It is known that many (in some
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sense most) complex tori C2/Γ are not projective, cf. [63, 137]. Thus, we obtain many
K3 surfaces this way that really are not projective.
Describing other examples of non-projective K3 surfaces is very difficult, which reflects

a general construction problem in complex geometry.

3.2. Many but not all of the remarks and computations in Section 2 are valid for
arbitrary complex K3 surfaces. For complex K3 surfaces, however, we have in addition
at our disposal singular cohomology which sheds a new light on some of the results.
First, the long cohomology sequence of the exponential sequence

0 //Z //O //O∗ // 0

yields the exact sequence

0 //H1(X,Z) //H1(X,O) //H1(X,O∗) //H2(X,Z) //

//H2(X,O) //H2(X,O∗) //H3(X,Z) // 0

which for a complex K3 surface X (where H1(X,O) = 0) shows

H1(X,Z) = 0

and by Poincaré duality also H3(X,Z) = 0 up to torsion. So, in addition to H0(X,Z) '
H4(X,Z) ' Z, the only other non-trivial integral singular cohomology group of X is
H2(X,Z). We come back to the computation of its rank presently.
From the above sequence and the usual isomorphism Pic(X) ' H1(X,O∗), one also

obtains the exact sequence

(3.1) 0 //Pic(X) //H2(X,Z) //H2(X,O).

In other words, Pic(X) can be realized as the kernel of H2(X,Z) //H2(X,O). As
C ' H2(X,O) and by Remark 2.5 also Pic(X) are both torsion free, one finds that also
H2(X,Z) is torsion free. A standard fact in topology says that the torsion of H i(X,Z)

can be identified with the torsion of HdimRX−i+1(X,Z), which in our case shows that
H3(X,Z) is indeed trivial (and not only up to torsion).

The intersection form ( . ) on Pic(X) is defined as in the algebraic case. In the com-
plex setting it corresponds, under the above embedding Pic(X) �

� // H2(X,Z), to the
topological intersection form on H2(X,Z). The inclusion also shows that

Pic(X) ∼− // NS(X),

holds for complex K3 surfaces as well, cf. Proposition 2.4.

Remark 3.4. However, it can happen (but only for non-projective complex K3 sur-
faces) that the subgroup of numerically trivial line bundles Pic(X)τ is not trivial and
hence Pic(X) 6' Num(X). Indeed, Pic(X) could be generated by a class of square zero
and hence Num(X) = 0, but Pic(X) ' Z, see Example 3.3.2.
Hence, the Hodge index theorem does not necessarily hold any longer on Pic(X) '

NS(X). In fact, this can happen even when NS(X) ' Num(X), which could be generated
by a class of negative square. The Hodge index theorem for H1,1(X) of a complex
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surface X with b1 = 0, however, still ensures that the intersection form on Pic(X) has
at most one positive eigenvalue. Of course, the Hodge index theorem holds whenever X
is projective, because then it underlies an algebraic K3 surface and the two intersection
pairings coincide.9

3.3. For an arbitrary compact complex surface the Hodge–Frölicher spectral se-
quence degenerates (see [32, IV]) and hence

H1(X,C) ' H1(X,OX)⊕H0(X,ΩX).

For a K3 surface we have seen already that H1(X,Z) = 0 and hence H1(X,C) = 0.
Thus, one gets H0(X,ΩX) = 0 for free. In other words, a complex K3 surface has no
non-trivial global vector fields, cf. comments in Section 2.4.
These arguments conclude the computation of all the Hodge numbers of a complex K3

surface, confirming (2.7), and in particular show h1,1(X) = 20. This last Hodge number
tells us also something about the Picard number. Indeed, by the Lefschetz theorem on
(1, 1)-classes, which follows from (3.1),

(3.2) Pic(X) ' H2(X,Z) ∩H1,1(X).

Thus, Pic(X) ⊂ H2(X,Z) is (contained in) the intersection H2(X,Z) ∩H1(X,ΩX), the
complexification of which is a subspace of the 20-dimensional H1(X,ΩX). Hence

(3.3) ρ(X) = rk(Pic(X)) ≤ 20.

In fact every Picard number between 0 and 20 is realized by some complex K3 surface.10

The Riemann–Roch computations in Section 2.4 remain valid for complex K3 surfaces.
So, we still have c2(X) = 24 which for a complex surface can be read as an equality for
the topological Euler number

e(X) = c2(X) = 24,

i.e.
∑

(−1)ibi(X) = 24. Since b1(X) = b3(X) = 0 and b0(X) = b4(X) = 1, this shows

b2(X) = 22,

which can also be deduced from the Hodge–Frölicher spectral sequence and the compu-
tation of the Hodge numbers above.
Thus, H2(X,Z) is a free abelian group of rank 22. It is also generally known that the

intersection form ( . ) on H2(X,Z) of a compact oriented real four-dimensional manifold
(modulo torsion, which is irrelevant for a K3 surface) defines a unimodular lattice. For
general facts on lattices and the relevant notation see Chapter 14.

9Maybe this is a good point to recall the following general result on the algebraicity of complex
surfaces, see [32, IV.Thm. 6.2]: A smooth compact complex surface X is projective if and only if there
exists a line bundle L with (L)2 > 0. See Remark 8.1.3.

10In the case of algebraic K3 surfaces over an arbitrary base field k (in which case clearly 1 ≤ ρ(X))
one can replace singular cohomology by étale cohomology and finds the upper bound ρ(X) ≤ 22, see
Remark 3.7. For more on the Picard group of K3 surfaces see Chapters 17 and 18, where it is explained
why ρ = 21 is impossible for algebraically closed fields, see [16, p. 544] or Remark 18.3.12, and that
ρ(X) is always even for K3 surfaces over F̄p, see Corollary 17.2.9.
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Proposition 3.5. The integral cohomology H2(X,Z) of a complex K3 surface X en-
dowed with the intersection form ( . ) is abstractly isomorphic to the lattice

(3.4) H2(X,Z) ' E8(−1)⊕ E8(−1)⊕ U ⊕ U ⊕ U.

Proof. Here, U is the hyperbolic plane, i.e. the lattice of rank two that admits a basis
of isotropic vectors e, f with (e.f) = 1, and E8(−1) is the standard E8-lattice with the
quadratic form changed by a sign, see Section 14.0.3. Due to the general classification
of unimodular lattices (see e.g. [544] or Corollary 14.1.3) it is enough to prove that
H2(X,Z) is even of signature (3, 19).
According to Wu’s formula (see [275, Ch. IX.9] or [410]), the intersection product of a

compact differentiable fourfold M is even if and only if its second Stiefel–Whitney class
w2(M) is trivial. Moreover, w2(M) ≡ c1(X) (2) for any almost complex structure X on
M . Hence, its intersection form even.11

The signature of the intersection pairing can be computed by the Thom–Hirzebruch
index theorem which in dimension two says that the index is

p1(X)

3
=

c2
1(X)− 2c2(X)

3
= −16.

Since b2(X) = 22, the signature is therefore (3, 19). �

It would be interesting to exhibit a particular K3 surface for which the identification of
H2(X,Z) as (3.4) can be seen easily, i.e. by writing down appropriate cycles, and without
using any abstract lattice theory. A good candidate is a Kummer surface, see Example
3.3 and Section 14.3.3.

Remark 3.6. i) Theorem 7.1.1 shows that all complex K3 surfaces are diffeomorphic
to a quartic X ⊂ P3, e.g. the Fermat quartic, and hence in particular simply connected.
The unbranched covering trick, mentioned in Remark 2.3, only shows that the profinite
completion of the topological fundamental group π1(X) is trivial. If one is willing to
use the existence of a Kähler–Einstein metric on a K3 surface (Calabi conjecture, see
Theorem 9.4.11), then π1(X) = {1} can be deduced from H1(X,O) = 0, see e.g. [267,
App. A].
ii) There are complex surfaces X with the homotopy type of a K3 surface, i.e. simply

connected complex surfaces with an intersection pairing on H2(X,Z) given by (3.4),
which, however, are not diffeomorphic to a K3 surface. As proved by Kodaira in [307],
these homotopy K3 surfaces are all obtained by logarithmic transforms of elliptic K3
surfaces. Note that any complex surface diffeomorphic to a K3 surface is in fact a K3
surface, see [184, VII.Cor. 3.5], and that due to results of Freedman any homotopy K3
surface is homeomorphic to a K3 surface.

11Note that this confirms our earlier observation that the Riemann–Roch formula implies (L)2 ≡ 0 (2)

line bundles L on X, see Proposition 2.4. Unfortunately, line bundles do not span H2(X,Z) (at least
not if the complex structure stays fixed), so that this is not quite enough to conclude.
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Remark 3.7. Replacing singular cohomology by étale cohomology, similar considera-
tions hold true for arbitrary K3 surfaces. See Milne’s [403] for basics on étale cohomology.
Indeed, the Kummer sequence 0 // µn //Gm //Gm // 0 for n prime to the charac-

teristic of k and the observation that Pic(X) ' H1(X,Gm) is torsion free suffice to show
that H1

ét(X,µn) ' k∗/(k∗)n. For k separably closed and using duality, this yields for
` 6= char(k):

H1
ét(X,Z`) = 0 and H3

ét(X,Z`) = 0.

Then, from c2(X) = 24 one can deduce that H2
ét(X,Z`) is a free Z`-module of rank 22.

However, it is more sensible to consider the Tate twist H2
ét(X,Z`(1)), which comes with

the natural map c1 : Pic(X) //H2
ét(X,Z`(1)) and a canonical perfect pairing that takes

values in Z` (and not in Z, as for singular cohomology of a complex K3 surface). In fact,
the induced inclusion

NS(X)⊗ Z` �
� // H2

ét(X,Z`(1))

respects the given pairings on both sides and, if X = X0 ×k0 k, also the natural actions
of Gal(k/k0), see Section 17.2.2. Note that this proves, as the analogue of (3.3), that

ρ(X) ≤ 22

for all K3 surfaces over arbitrary fields.

4. More examples

We collect a number of classical construction methods for K3 surfaces. One should,
however, keep in mind that most K3 surfaces, especially of high degree, do not admit
explicit descriptions. Their existence is solely predicted by deformation theory

4.1. Smooth hypersurfaces X ⊂ P2 × P1 and X ⊂ P1 × P1 × P1 of type (3, 2)

and (2, 2, 2), respectively, provide K3 surfaces. By choosing polarizations of the form
O(a, b)|X and O(a, b, c)|X one obtains polarized K3 surfaces of various degrees, 8, 10,
12, and many others. Note however that the very general polarized K3 surface of these
degrees is not isomorphic to such a hypersurface.

4.2. The following is an example of K3 surfaces of degree 14 that plays an important
role in the theory of Hilbert schemes of points on K3 surfaces and Fano varieties of lines on
cubic fourfolds, as e.g. in the paper [51] by Beauville and Donagi. Consider the Plücker
embedding Gr := Gr(2, 6) �

� // P14. It is of codimension six and degree 14. For the latter
one may use the general formula that gives the degree of Gr(r, n) ⊂ P(nr)−1 as (see e.g.
[430])

(r(n− r))!
∏

1≤i≤r<j≤n
(j − i)−1.

Then the intersection X := Gr ∩ P8 with a generic linear subspace P8 ⊂ P14 is a smooth
surface with an ample line bundle L := O(1)|X of degree (L)2 = 14. Similar to the
argument in Example 1.3, i) one shows thatH1(X,OX) = 0. The normal bundle sequence

0 // TX // TGr|X //L⊕6 // 0
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and ωGr ' O(−6)|Gr immediately show ωX ' OX , i.e. X is indeed a K3 surface.

4.3. The more general observation behind the last example is that Fano manifolds
of coindex three give rise to K3 surfaces. More precisely, if Y is a Fano manifold such
that ωY ' L−r with L very ample and dim(Y ) − r + 1 = 3, then the generic complete
intersection X := H1 ∩ . . . ∩Hr, Hi ∈ |L|, defines a K3 surface. For example, the double
cover π : Y //P2×P2 ramified over a divisor of bidegree (2, 2) is a Fano fourfold of coindex
three. Intersecting with H1, H2 ∈ |π∗O(1, 1)|, one obtains a K3 surface X = H1 ∩H2 of
degree 12.

Here is one more example of this type. Consider Gr(2, 5) with its Plücker embedding
Gr(2, 5) �

� // P9 and let π : Y //Gr(2, 5) be a double cover branched along a generic
section with a quadric. Then ωY ' π∗(ωGr ⊗ O(1)) ' π∗O(−4) and, therefore, Y is a
six-dimensional Fano variety of coindex three. The pre-image X = π−1(H1 ∩ . . .∩H4) of
the intersection of four generic hyperplane sections defines a K3 surface of degree 10.
For more examples see papers by Mukai, e.g. [429, 431]. In this way one indeed obtains

a description of the generic K3 surface of degree 2d = 2, 4, . . . , 18 or, equivalently, of genus
g = 2, 3, . . . , 10.

4.4. Many interesting K3 surfaces can be described as elliptic surfaces π : X //P1,
i.e. π is a surjective morphism with generic fibre a smooth elliptic curve. Often such
surfaces are given in terms of their Weierstrass normal form. Consider sections g2 ∈
H0(P1,O(8)) and g3 ∈ H0(P1,O(12)) and let X̄ ⊂ P(O(4)⊕O(6)⊕O) be the hypersurface
defined by the equation y2z = 4x3 − g2xz

2 − g3z
3. Under certain genericity assumptions

on g2, g3, e.g. ∆ := g3
2 − 27g2

3 6= 0, the surface X̄ has at most ordinary double points
and its minimal resolution defines indeed a K3 surface. See for example the books by
Friedman et al [183, 184]. For more on elliptic K3 surfaces see Chapter 11.

4.5. Classically, a quartic Y ⊂ P3 with the maximal number of 16 singular points is
also called a Kummer surface. The singular points are all ordinary double points and the
minimal resolution X // Y defines a K3 surface. Moreover, such a surface has 16 tropes,
i.e. tangent planes that are tangent along a conic in Y . Each trope contains exactly six
of the singular points and each singular point is contained in exactly six tropes. The
configuration of the 16 points and 16 tropes is called a (16, 6) configuration which in
fact determines the quartic uniquely. Due to work of Nikulin [446] (cf. Remark 14.3.19),
it is known that the minimal resolution X is in fact a Kummer surface in the sense of
Examples 1.3, iii). In fact, it is the Kummer surface associated with the Jacobian of the
genus two curve C given as the double cover C // C̄ of the intersection C̄ = Y ∩ P2 of a
trope P2 ⊂ P3 with the quartic Y ramified in the six singular points contained in C̄. See
[149, 209, 246].

References and further reading:
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The standard reference for the theory of complex surfaces is the book [32] by Barth et al,
which in particular contains an extra chapter on complex K3 surfaces. Other standard texts on
the theory of algebraic surfaces in general are [27, 42, 338, 506, 514]. A very elegant treatment
of the Riemann–Roch formula for surfaces can be found in Mumford’s lectures [435]. For complex
K3 surfaces we strongly recommend the beautiful collection [53] by Beauville et al. We give more
specific references in later chapters.

Questions and open problems:
That H0(X,ΩX) = 0 for a K3 surface in positive characteristic is a difficult theorem. It is

used in the deformation theory of K3 surfaces and, in particular, in the proof of the important
result that K3 surfaces in positive characteristic lift to characteristic zero, see Section 9.5. The
result is of course equivalent to h1(X,ΩX) ≤ 20 and one might wonder whether there is a way
to approach the problem from this side. Also, can one show that any K3 surface deforms to a
quartic without using this vanishing?



CHAPTER 2

Linear systems

There is a recurrent theme in the theory of algebraic K3 surfaces. The projective
geometry of K3 surfaces shows surprising analogies to the theory of linear systems on
curves and to a somewhat lesser extent to the theory of line bundles on abelian varieties.
This chapter explains the basic aspects of these analogies and in particular Saint-Donat’s
results on ample linear systems.
We start with a recap of some aspects of the classical theory for curves and state

the Kodaira–Ramanujam vanishing theorem in Section 1. The typical features of linear
systems on a K3 surface are directly accessible if the linear system is associated with a
smooth curve contained in the K3 surface. So, we treat this case first, see Section 2.
The general case is then studied in Section 3, where we also give a proof of the Kodaira–
Ramanujam vanishing theorem. The last section contains existence results for primitively
polarized K3 surfaces of arbitrary even degree.
As we shall not be interested in rationality questions in this section, we assume the

ground field k to be algebraically closed. If not mentioned otherwise, its characteristic is
arbitrary.

1. General results: linear systems, curves, vanishing

We collect standard results on linear systems on curves and explain first consequences
for the geometry of linear systems on K3 surfaces.

1.1. Recall that with any line bundle L on a variety X one associates the complete
linear system |L| which by definition is the projectivization of the spaceH0(X,L) of global
sections or, equivalently, the space of all effective divisors D ⊂ X linearly equivalent to
L. The base locus Bs|L| of |L| is the maximal closed subscheme of X contained in all
D ∈ |L|, i.e. Bs|L| =

⋂
s∈H0(X,L) Z(s).

If L has more than one section, i.e. h0(X,L) > 1, then it induces the rational map

ϕL : X // P(H0(X,L)∗)

which is regular on the complement of Bs|L|.
For a surface X the base locus Bs|L| can have components of dimension zero and one.

The fixed part of |L| is the one-dimensional part of Bs|L|, and we shall denote it by
F . Then h0(X,F ) = 1 and the natural inclusion L(−F ) �

� // L yields an isomorphism
H0(X,L(−F )) ' H0(X,L). In this sense, ϕL on X \Bs|L| can be identified with ϕL(−F )

Thanks to Chenyang Xu for many helpful comments on this chapter.
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and the latter can be extended to a morphism defined on X \ {xi}. Here, {xi} is the
finite set of base points of L(−F ), which contains the zero-dimensional locus of Bs|L|.
The mobile part of L, i.e. M := L(−F ), is nef and satisfies (M)2 ≥ 0. This observation
turns out to be very useful later on.
Decomposing L in its fixed and its mobile part, often written additively as L = M +F ,

is a basic technique in the study of linear systems.

1.2. The case of the canonical linear system on a smooth irreducible curve is un-
derstood classically and many results about linear systems on K3 surfaces are, at least
morally, reduced to it. Recall that a smooth irreducible curve C is called hyperelliptic if
there exists a morphism C //P1 of degree two. Often, one restricts to the case g(C) ≥ 2

such that ωC is base point free and the canonical map ϕωC is non-constant. Curves of
genus two are hyperelliptic. For genus g > 2 there exist both non-hyperelliptic and hy-
perelliptic curves and they are distinguished by the canonical linear system being very
ample or not. For the following see e.g. [234, IV.Prop. 5.2].

Proposition 1.1. Let C be a smooth irreducible complete curve of genus g(C) ≥ 2.
Then ωC is very ample if and only if C is not hyperelliptic.

Recall also that the canonical embedding C �
� // Pg−1 of a non-hyperelliptic curve is

projectively normal, i.e. the restriction map

(1.1) H0(Pg−1,O(k)) // //H0(C,ωkC)

is surjective for all k. This is the theorem of Max Noether, see [11, III.2]. If C is an
arbitrary curve of genus g > 2 and k ≥ 2 (or g = 2 and k ≥ 3), then ωkC is very ample,
i.e. ϕωkC is a closed embedding, see [234, IV.Cor. 3.2].

1.3. Let us also recall a few standard notions concerning curves on surfaces. Con-
sider a curve C ⊂ X in a smooth surface X. A priori, C is allowed to be singular,
reducible, non-reduced, etc. The arithmetic genus of C is by definition

pa(C) := 1− χ(C,OC).

For a curve C ⊂ X the exact sequence

(1.2) 0 //O(−C) //OX //OC // 0,

shows pa(C) = 1 + χ(X,O(−C)) − χ(X,OX) and the Riemann–Roch formula applied
twice turns this into

(1.3) 2pa(C)− 2 = (C.ωX ⊗O(C)).

If X is a K3 surface, this becomes

(1.4) 2pa(C)− 2 = (C)2.

The arithmetic genus of a smooth and irreducible curve C coincides with its geometric
genus g(C) := h0(C,ωC) and (1.3) confirms the standard adjunction formula

ωC ' (ωX ⊗O(C))|C .
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For an arbitrary reduced curve C the geometric genus is by definition the genus of the
normalization ν : C̃ //C, i.e. g(C) := g(C̃). Thus, pa(C) = g(C) + h0(δ), where δ =

ν∗OC̃/OC is concentrated in the singular points of C.
The arithmetic genus pa(C) of an integral curve C is non-negative by definition. Thus,

for an integral curve C on a K3 surface X the formula (1.3) yields (C)2 ≥ −2.

Definition 1.2. A (−2)-curve on a K3 surface is an irreducible curve C with (C)2 =

−2.

Observe that a (−2)-curve C is in fact integral. Moreover, it has arithmetic and geo-
metric genus zero and it is automatically smooth. For the latter use that g(C) ≤ pa(C)

with equality if and only if C is smooth. As we work over an algebraically closed field,
all this implies that

C ' P1.

In the theory of K3 surfaces, (−2)-curves play a central role and they appear frequently
throughout these notes.

1.4. Let us state a few immediate consequences of the Riemann–Roch theorem for
line bundles on K3 surfaces, see Section 1.2.3 and also the lectures [42, 506] by Beauville
and Reid. Assume L is a line bundle on a K3 surface X.
• If (L)2 ≥ −2, then H0(X,L) 6= 0 or H0(X,L∗) 6= 0. The converse does not hold.
• If (L)2 ≥ 0, then either L ' OX or h0(X,L) ≥ 2 or h0(X,L∗) ≥ 2.
• If h0(X,L) = 1 and D ⊂ X is the effective divisor defined by the unique section of
L, then every curve C ⊂ D satisfies (C)2 ≤ −2 and if C is integral, then C is a
(−2)-curve and so C ' P1.

Corollary 1.3. The fixed part F of any line bundle L on a K3 surface is a linear
combination of smooth rational curves (with multiplicities), i.e. F =

∑
aiCi with ai ≥ 0

and Ci ' P1. �

1.5. Recall that a line bundle L on a complete surface is ample if and only if
(L)2 > 0 and (L.C) > 0 for all closed curves C ⊂ X. This is a special case of the
Nakai–Moishezon–Kleiman criterion (cf. Theorem 8.1.2), see [233, I.Thm. 5.1] or [234,
V.Thm. 1.10]. Using the notion of the positive cone CX ⊂ NS(X)R, see Remark 1.2.2,
this criterion leads for K3 surfaces to the following result.

Proposition 1.4. Let L be a line bundle on a K3 surface X. Then L is ample if and
only if L is contained in the positive cone CX ⊂ NS(X)R and (L.C) > 0 for every smooth
rational curve P1 ' C ⊂ X.

Proof. Only the ‘if’ needs a proof. First note that any curve C ⊂ X with (C)2 ≥ 0

is contained in the closure of CX . For this use that (C.H) > 0 for any ample line bundle
H. Also, if L ∈ CX , then (L.M) > 0 for all M 6= 0 in the closure of CX .
Therefore, the hypothesis L ∈ CX alone suffices to conclude that (L.C) > 0 for any

curve C ⊂ X with (C)2 ≥ 0. However, an integral curve C with (C)2 < 0 is automatically
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smooth and rational and for those we have (L.C) > 0 by assumption. Thus, (L)2 > 0

and (L.C) > 0 for all curves, which by the Nakai–Moishezon–Kleiman criterion implies
that L is ample. �

A line bundle L on an arbitrary complete variety X is called nef if (L.C) ≥ 0 for all
closed curves C ⊂ X.

Corollary 1.5. Consider a line bundle L on a K3 surface satisfying (L)2 ≥ 0 and
(L.C) ≥ 0 for all smooth rational curves C ' P1. Then L is nef unless there exists no
such C in which case L or L∗ is nef.

Proof. Use that L is nef if and only if for a fixed ample line bundle H the line
bundles nL+H are ample for all n > 0. �

Definition 1.6. A line bundle L on a surface is called big and nef if (L)2 > 0 and L
is nef.1

Remark 1.7. Often, results proved for ample line bundles in fact also hold true for
line bundles which are only big and nef.
As an example of this and as an application of the Hodge index theorem, see Section

1.2.2, let us prove that big and nef curves are 1-connected. Suppose C is a big and nef
curve, i.e. (C)2 > 0 and (C.D) ≥ 0 for any other curve D. Then C is 1-connected, i.e. for
any effective decomposition C = C1 + C2 one has (C1.C2) ≥ 1.
Note that C = C1 +C2 can be either read as a decomposition of an effective divisor or

as O(C) ' O(C1)⊗O(C2). Indeed, ‘big and nef’ is a numerical property of C and thus
only depends on the line bundle O(C). Note that in the decomposition C = C1 +C2 the
curves C1 and C2 are allowed to have common components.
For the proof let λ := (C1.C)/(C)2. Since C is nef and hence (Ci.C) ≥ 0, i = 1, 2,

one knows 0 ≤ λ ≤ 1. As (C)2 > 0, we may assume strict inequality on one side, say
0 ≤ λ < 1. If 0 = λ, i.e. (C1.C) = 0, then by Hodge index theorem (C1)2 < 0. But then
0 = (C1.C) = (C1)2 + (C1.C2) proves the assertion. So we can assume 0 < λ < 1, i.e.
(C.Ci) > 0 for i = 1, 2. Then consider α := λC − C1 ∈ NS(X)Q. Then (α.C) = 0 and
hence, by the Hodge index theorem, either α = 0 or (α)2 < 0. In the first case, (α.C2) = 0

and hence (C1.C2) = λ(C.C2) > 0. If (α)2 < 0, then (C1.C2) = (λC −α.(1−λ)C +α) =

λ(1− λ)(C)2 − (α)2 > 0.

The next result, a generalization of the classical Kodaira vanishing theorem (valid in full
generality only in characteristic zero), is another example that an ampleness assumption
can often be weakened to just big and nef. It is at the heart of many geometric results. It
holds true for K3 surfaces in positive characteristic (see Section 3.1 for a proof) and for
smooth projective varieties in higher dimensions (and is there known as the Kawamata–
Viehweg vanishing theorem).

1Warning: This seems to suggest that one should call L big if (L)2 > 0, but this would mean that
with L also its dual L∗ is big, which we do not want. So ‘big’ with this definition should only be used
together with ‘nef’.
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Theorem 1.8 (Kodaira–Ramanujam). Let X be a smooth projective surface over a
field k of characteristic zero. If L is a big and nef line bundle, then

H i(X,L⊗ ωX) = 0

for i > 0.

By Serre duality H1(X,L∗) ' H1(X,ωX ⊗ L)∗ and so the result can be read as a
vanishing for H1(X,L∗) of a line bundle L satisfying a certain positivity condition.

Remark 1.9. i) The usual Kodaira vanishing theorem for ample line bundles fails
in positive characteristic and so does the stronger Kodaira–Ramanujam theorem above.
Pathologies in positive characteristic, i.e. the failure of standard classical facts in charac-
teristic zero, have been studied by Mumford in a series of papers, see [436] and references
therein. In particular he constructs a normal projective surface violating the Kodaira van-
ishing theorem. In [503] Raynaud produces for any algebraically closed field of positive
characteristic a smooth projective surface together with an ample line bundle L such that
H1(X,L⊗ ωX) 6= 0.
ii) A priori there is no reason why the Kodaira vanishing theorem should hold for line

bundles L on K3 surfaces in positive characteristic. But it does and we will see that
rather straightforward geometric arguments suffice to prove it, see Proposition 3.1. What
is really used in the argument is the vanishing H1(X,O) = 0 and the fact that a big and
nef line bundle L on a K3 surface is effective (but not that ωX is trivial).
iii) The deeper reason for the validity of the Kodaira vanishing theorem for K3 surfaces

in positive characteristic is revealed by the approach of Deligne and Illusie [142]. Their
arguments apply whenever the variety lifts to characteristic zero. And indeed, K3 surfaces
do lift to characteristic zero. This is a non-trivial result that relies on work of Rudakov
and Šafarevič and Deligne, see Section 9.5.

2. Smooth curves on K3 surfaces

We shall study the geometry of K3 surfaces X from the point of view of the smooth
curves they contain. The main result is a theorem of Saint-Donat which we prove in this
section assuming the existence of smooth curves, cf. [42, 506].

2.1. The following results give a good first impression of the geometry of K3 surfaces
viewed from the curve perspective.

Lemma 2.1. Let C ⊂ X be a smooth irreducible curve of genus g on a K3 surface X
and L := O(C). Then (L)2 = 2g − 2 and h0(X,L) = g + 1.

Proof. For the first equality use the adjunction formula (1.4). Then by the Riemann–
Roch formula, χ(X,L) = g + 1. Clearly, h2(X,L) = h0(X,L∗) = 0 and, hence,
h0(X,L) ≥ g + 1. Using H0(C,L|C) ' H0(C,ωC) and the exact sequence

0 //H0(X,O) //H0(X,L) //H0(C,L|C)

one deduces h0(X,L) = h0(C,ωC) + 1 = g + 1. �
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Remark 2.2. i) The proof shows that H0(X,L) // //H0(C,L|C) is surjective. This
is an important observation which can also, and in fact more easily, be concluded from
H1(X,O) = 0.
ii) As h0(X,L) = g + 1 = χ(X,L) and H2(X,L) ' H0(X,L∗)∗ = 0, the lemma

immediately yields H1(X,L) = 0. Alternatively, one can use 0 //O //L //L|C // 0,
H1(X,O) = 0, and the observation that the boundary map H1(C,L|C) //H2(X,OX)

is Serre dual to the bijective restriction map H0(X,OX) //H0(C,OC).
iii) A similar argument proves the surjectivity of

(2.1) H0(X,L`) // //H0(C,L`|C)

for all ` > 0. Indeed, on the one hand, the Riemann–Roch formula gives

(`2/2)(L)2 + 2 = χ(X,L`) ≤ h0(X,L`)

and, on the other, the exact sequence 0 //H0(X,L`−1) //H0(X,L`) //H0(C,L`|C)

shows by induction over `

h0(X,L`) ≤ h0(X,L`−1) + h0(C,L`|C)

≤ ((`− 1)2/2)(L)2 + 2 + `deg(L|C) + 1− g(C) = (`2/2)(L)2 + 2.

Hence, equality must hold everywhere, in particular h0(X,L`) = h0(X,L`−1)+h0(C,L`|C),
which implies (2.1).

Lemma 2.3. For a smooth and irreducible curve C ⊂ X of genus g ≥ 1 the line
bundle L = O(C) is base point free and the induced morphism ϕL : X //Pg restricts to
the canonical map C //Pg−1.

Proof. Indeed, the surjectivity of H0(X,L) // //H0(C,L|C) and the adjunction for-
mula ωC = O(C)|C yield an embedding Pg−1 = P(H0(C,ωC)∗) ⊂ P(H0(X,L)∗) = Pg.
Moreover, L has clearly no base points outside C and ωC is base point free for g ≥ 1.
Hence, also L is base point free and ϕL restricts to the canonical map on C. �

Remark 2.4. i) If g = 2, then the curve C is hyperelliptic and hence the morphism
ϕL : X //P2 restricts to a morphism C //P1 of degree two. Since (L)2 = 2 and L =

ϕ∗LO(1), also ϕL is of degree two. Thus, in this case X is generically a double cover of
P2 (ramified over a curve of degree six).
ii) For g ≥ 3 the morphism ϕL can be of degree two or of degree one. More precisely,

ϕL is birational, depending on whether the generic curve in |L| is hyperelliptic or not.
Accordingly, one calls L hyperelliptic or non-hyperelliptic.

Noether’s theorem on the projective normality of non-hyperelliptic curves has a direct
analogue for K3 surfaces.

Corollary 2.5. Suppose C is an irreducible, smooth, non-hyperelliptic curve of genus
g > 2 on a K3 surface X. Then the linear system L = O(C) is projectively normal, i.e.
the pull-back under ϕL defines for all k ≥ 0 a surjective map

H0(Pg,O(k)) // //H0(X,Lk).
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Proof. Consider the short exact sequence (1.2) tensored by Lk+1:

0 //Lk //Lk+1 //ωk+1
C

// 0.

By the Kodaira–Ramanujam vanishing theorem, see Proposition 3.1, or Remark 2.2 the
induced maps H0(X,Lk+1) //H0(C,ωk+1

C ) are surjective. Hence, the composition

H0(Pg,O(k + 1)) ' Sk+1H0(X,L) //H0(X,Lk+1) //H0(C,ωk+1
C )

is surjective by the classical Noether theorem (1.1) for non-hyperelliptic curves.
The kernel of H0(X,Lk+1) //H0(C,ωk+1

C ) is spanned by s · H0(X,Lk), where s is
the section defining C. Now use the induction hypothesis SkH0(X,L) // //H0(X,Lk) to
conclude. �

Lemma 2.6. Let C ⊂ X be a smooth, irreducible curve and L = O(C). Then, for
k ≥ 2, g > 2 or k ≥ 3, g = 2, the morphism ϕ = ϕLk : X //Pk2(g−1)+1 is birational onto
its image.

Proof. As we have recalled earlier, ωkC for a smooth curve C defines an embedding
under the above assumptions on k and g. Since this applies to the generic curve D ∈ |L|
and ϕ−1ϕ(D) = D, we conclude that ϕ is generically an embedding. �

2.2. The following can be seen as the main result of Saint-Donat’s celebrated paper
[515, Thm. 8.3]. In characteristic zero it had been proved earlier by Mayer [399]. It is
very much in the spirit of the analogous classical result for abelian varieties (see [441])
that for an ample line bundle L on an abelian variety A (in arbitrary characteristic) the
line bundle Lk is very ample for k ≥ 3 (independent of the dimension of A).

Theorem 2.7. Let L be an ample line bundle on a K3 surface over a field of charac-
teristic 6= 2. Then Lk is globally generated for k ≥ 2 and very ample for k ≥ 3.

For a version of the result for big and nef line bundles see Remark 3.4.

Proof. We prove the theorem under the simplifying assumption that the linear
systems |Lk| for k = 1 and k = 3 contain smooth irreducible curves. Then in fact Lk is
globally generated for all k ≥ 1. In Section 3 we discuss some of the crucial arguments
that are needed to prove the assertion in general. A posteriori, it turns out that the
existence of smooth irreducible curves is equivalent to the existence of just irreducible
ones, cf. Remark 3.7.
Suppose there exists a smooth curve C ∈ |L|. By Remark 1.7 it is automatically

irreducible. Since L is ample and hence (L)2 > 0, we have g(C) > 1 and thus Lemma
2.3 applies. Hence, L is globally generated and so are all powers of it.
In order to prove the second assertion, it suffices to argue that Lk is very ample for

k = 3. By Lemma 2.6 the line bundles Lk define birational morphisms ϕLk for k ≥ 3. (If
(L)2 > 2, it suffices to assume that k ≥ 2.) Thus,

ϕ := ϕL3 : X // X̄ := ϕ(X) ⊂ P9(g−1)+1
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is a birational morphism with ϕ∗O(1) = L3 ample. If X̄ is normal, then ϕ∗OX ' OX̄ by
Zariski’s Main Theorem (see [234, III.Cor. 11.4]) and hence H0(X̄,O(`)) = H0(X,L3`)

for all `. As L3` is very ample for `� 0, ϕ is an isomorphism.
As proving the normality of X̄ might be tricky, we use instead the existence of a smooth

curve D ∈ |L3| close to 3C. Then, by Lemma 2.3, ϕ is an isomorphism along D, which
thus has to be non-hyperelliptic. By Corollary 2.5, H0(X̄,O(`)) // //H0(X,L3`) is then
surjective. �

Remark 2.8. Saint-Donat’s result can also be seen in the light of Fujita’s conjecture,
which predicts that for an ample line bundle L on a smooth projective variety X (over
C) the line bundle Lk ⊗ ωX is globally generated for k ≥ dim(X) + 1 and very ample for
k ≥ dim(X)+2, see [189, 355]. Fujita’s conjecture is known to hold for surfaces. For K3
surfaces Theorem 2.7 proves a stronger version which does not hold for general surfaces.
Theorem 2.7, which in fact holds true in characteristic two [594], can also be compared

to the very general result of Mumford [439, Thm. 3] which for a K3 surface says: If L is
an ample and base point free line bundle, then Lk is very ample for k ≥ 3.

3. Vanishing and global generation

We give an idea of some of the many of Saint-Donat’s results in [515]. Some of the
proofs below are not presented with all the details and some arguments only work under
simplifying assumptions.

3.1. Let X be a K3 surface over an algebraically closed field. The following is the
Kodaira–Ramanujam vanishing theorem for K3 surfaces, see Theorem 1.8. Recall that
for an irreducible curve C with (C)2 > 0 the associated line bundle L := O(C) is big and
nef.

Proposition 3.1. Let L be a big and nef line bundle on a K3 surface X. Then

H1(X,L) = 0.

Proof. We shall first give the proof under an additional assumption.
i) Let L be the line bundle L = O(C) associated with an integral (or just connected

and reduced) curve C ⊂ X. The vanishing follows, even without assuming big or nef,
from the short exact sequence (1.2), Serre duality H1(X,L⊗ωX) ' H1(X,L∗)∗, and the
trivial observation that the restriction H0(X,OX) //H0(C,OC) is an isomorphism in
this case. The induced injection

H1(X,O(−C)) �
� // H1(X,O) = 0

yields the assertion.
ii) Here now is the general proof. First, since L is big and nef, by the Riemann–Roch

h0(X,L) ≥ 3 formula (see Section 1.2.3). Hence, L = O(C) for some curve C. Pick a
subdivisor C1 ⊂ C for which h0(C1,OC1) = 1, e.g. start with an integral component of C.
We may assume that C1 is maximal with h0(C1,OC1) = 1 and then show that C1 = C

which would prove the assertion. If C1 6= C, then (C1.C − C1) ≥ 1, for C is big and
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nef and hence 1-connected, see Remark 1.7. But then there exists an integral component
C2 of C − C1 for which (C1.C2) ≥ 1 and hence H0(OC2(−C1)) = 0. The short exact
sequence

0 //H0(OC2(−C1)) //H0(OC1+C2) //H0(OC1)

yields a contradiction to the maximality of C1. �

Remark 3.2. Note that the proof only uses that C is 1-connected and H1(X,O) = 0.
Thus, H1(X,O(−C)) = 0 for any 1-connected curve C on an arbitrary surface X with
H1(X,O) = 0. This is Ramanujam’s lemma, which in characteristic zero holds true even
without the assumption H1(X,O) = 0.

Remark 3.3. The vanishing can be used to study linear systems. Let us here give
a glimpse of a standard technique which almost shows base point freeness of an ample
linear system, see also Proposition 3.5.
Suppose L is a big and nef line bundle on a K3 surface X. Let L = M + F be

the decomposition in its mobile part M and its fixed part F (written additively), see
Section 1.1. Then M is effective and since mobile, i.e. without fixed part, also nef. Thus,
(M)2 ≥ 0. Let us assume that the strict inequality (M)2 > 0 holds. So, M is big and
nef. One shows that then L has at most isolated base points. Compare this to Corollary
3.15, where it is shown that L is in fact base point free.
Indeed, by Proposition 3.1 one has H1(X,M) = 0 = H1(X,L). Hence, χ(M) =

h0(M) = h0(L) = χ(L). Thus, from the Riemann–Roch formula one concludes (M)2 =

(L)2 and hence 2(M.F ) + (F )2 = 0. Now, L nef yields (M.F ) + (F )2 = (L.F ) ≥ 0 and,
therefore, (M.F ) = (F )2 = 0. Then the Riemann–Roch formula applied to F 6= 0 leads
to the contradiction 1 = h0(F ) ≥ χ(F ) = 2. Hence, F = 0.

Remark 3.4. Suppose L is a big and nef line bundle. Then by the Base Point Free
Theorem (see e.g. [119, Lect. 9] or [136, Thm. 7.32]) some positive power Ln is globally
generated. (This holds for arbitrary smooth projective varieties in characteristic zero as
long as L⊗ω∗X is big and nef.) Then the induced morphism ϕLn : X //PN is generically
injective and, arguing as in the proof of Theorem 2.7, in fact birational. However, ϕLn
may contract certain curves, say Ci, (not necessarily irreducible) to points xi. Then the
curves Ci are ADE curves and the points xi are ADE singularities of ϕLn(X), see [32,
III, Prop. 2.5] and Section 14.0.3. Note that also for L only big and nef, Lk is globally
generated for k ≥ 2.

3.2. The next result is the analogue of Lemma 2.3, see also Remark 3.3.

Proposition 3.5. Suppose L is a line bundle on a K3 surface X with (L)2 > 0 and
such that |L| contains an irreducible curve C. Then L is base point free.

Proof. A complete proof can be found in the collection [514, VIII.3. Lem. 2] by
Šafarevič et al and in [515, Thm. 3.1] by Saint-Donat. Tannenbaum in [584] gives a
proof relying more on considerations about multiplicities of base points. Here are the
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main steps of Saint-Donat’s proof. One can assume that C is also reduced. Indeed, if
O(C) is base point free, also O(rC) is.
Suppose x ∈ X is a base point of |L| and let Ix be its ideal sheaf. Then the restriction

map H0(X,L) //H0(X, k(x)) is trivial and hence H1(X,L⊗ Ix) 6= 0. The latter coho-
mology can be more easily computed on the blow-up τ : X̃ //X in x ∈ X. Indeed, if
E denotes the exceptional divisor, then H1(X,L⊗ Ix) = H1(X̃, τ∗L(−E)). So in order
to get a contradiction, it is enough to show the vanishing of the latter which by Serre
duality and using ω

X̃
' O(E) is isomorphic to H1(X̃, τ∗L∗(2E)).

Ramanujam’s lemma (see Remark 3.2) shows H1(X̃, τ∗L∗(2E)) = 0 if τ∗L(−2E) is
1-connected. Lemma 3.6 in [515] asserts quite generally that if every curve in |L| is 2-
connected, then every curve in |τ∗L(−2E)| is 1-connected. Thus, it suffices to show that
under our assumptions every curve in |L| is 2-connected, i.e. that for every decomposition
C1 + C2 ∈ |L| one has (C1.C2) ≥ 2.
By the 1-connectedness of |C| (see Remark 1.7) it suffices to exclude (C1.C2) = 1 for

any C1 + C2 ∈ |C|. So suppose (C1.C2) = 1.
If (C.Ci) ≥ 2, i = 1, 2, then (Ci)

2 ≥ 1, i = 1, 2. Since the intersection form is even, in
fact (Ci)

2 ≥ 2. But then (C1)2(C2)2 > (C1.C2)2 violates the Hodge index theorem, see
Remark 1.2.2.
If (C.C1) = 1, or equivalently (C1)2 = 0, then one obtains a contradiction as fol-

lows. By the Riemann–Roch formula h0(X,O(C1)) ≥ 2. Using the short exact sequence
0 //O(−C2) //O(C1) //OC(C1) // 0 and the vanishing of H0(X,O(−C2)), one con-
cludes h0(C,OC(C1)) ≥ 2. This means that on the irreducible curve C the line bundle
OC(C1) of degree one has at least two sections. This implies that C, which is also reduced,
is in fact smooth and rational contradicting (C)2 > 0.
If (C.C1) = 0, then (C1)2 = −1 violating the evenness of the intersection pairing.
If (C.C1) < 0, then C is an irreducible component of C1. However, this is absurd, as

C would then be linearly equivalent to C + D with D = C2 + (C1 − C) effective and
intersecting with an ample divisor would show D = 0 and hence C2 = 0. �

It turns out a posteriori that Lemma 2.3 and Proposition 3.5 deal with the same
situation:

Corollary 3.6. Let C be an irreducible curve on a K3 surface X over k with char(k) 6=
2. If (C)2 > 0, then the generic curve in |C| is smooth and irreducible.

Proof. In characteristic zero one can apply Bertini theorem, see [234, III.Cor. 10.9],
which shows that the generic curve in a base point free complete linear system is smooth.
Thus, since C itself is irreducible, the generic curve in |C| is smooth and irreducible.
In positive characteristic one can argue as follows. Consider L = O(C) and the induced

regular map ϕL : X //Pg. Then one can show that ϕL is of degree ≤ 2, cf. Remark 2.4
and [515, Sec. 5], and that the image ϕL(X) has at most isolated singularities, see [515,
6.5]. By Bertini theorem [234, II.Thm. 8.18] the generic hyperplane section of ϕL(X)

is smooth and using deg(ϕL) ≤ 2 this is true also for its inverse image, see [515, Lem.
5.8.2]. �
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Remark 3.7. i) Thus, the proof of Saint-Donat’s theorem (see Theorem 2.7) given
in the previous section works in characteristic 6= 2 whenever |Lk|, k = 1, 3, is known to
contain an irreducible curve. In [109, Prop. 3.1] one finds comments on the case char = 2.
ii) If L is a line bundle without fixed part (cf. Corollary 3.14) and (L)2 > 0, one can

show that |L| contains an irreducible curve and that, therefore, Proposition 3.5 applies.
The reference for this is [515, Prop. 2.6]. The argument there makes use of a version

of the Bertini theorem due to Zariski [647] (which is a little difficult to read nowadays).
However, it can be replaced by a variant due to Jouanolou [278, Thm. 6.3(4)] which says
that if the image of a morphism ϕ : U //Pn is of dimension ≥ 2 and U is irreducible (we
work over an algebraically closed field), then the pre-image ϕ−1(H) of the generic hyper-
plane is irreducible. In our case we work with U := X \Bs(L). In positive characteristic,
ϕ−1(H) might not be reduced. Then Zariski’s result essentially says that the multiplicity
is a power pe of the characteristic.
From here on, the argument goes roughly as follows. Let us first assume that ϕL(X)

is of dimension > 1, i.e. |L| is not composed with a pencil. Since Bs(L) is empty or
of codimension two, Jouanolou’s Bertini theorem yields the existence of an irreducible
divisor in |L|. Thus, it is enough to deal with the case that |L| is composed with a pencil,
i.e. that the closure D of ϕ(X) is a curve. We may assume that D is smooth. Suppose
L were base point free. Then (Cx)2 = 0 for the fibres Cx of the regular map ϕ : X //D.
On the other hand,

∑
x∈H∩D Cx ∈ |L| for some hyperplane section H which contradicts

(L)2 > 0. Thus, at least one point of X has to be blown-up to extend ϕ to a regular map
ϕ̃ : X̃ //D. The exceptional curve of X̃ //X maps onto D and hence D is rational.
Then H0(P1,O(1)) ∼− // H0(X̃, ϕ̃∗O(1)). However, ϕ̃∗O(1) corresponds to a complete
linear system |L̃| with L̃ a root of L. As (L̃)2 > 0, the Riemann–Roch formula, implying
h0(X, L̃) > 2, then yields the contradiction.

Remark 3.8. The above discussion can be summarized as follows: For an irreducible
curve C on a K3 surface X in characteristic 6= 2 with (C)2 > 0 the linear system |O(C)|
is base point free and its generic member is smooth. One distinguishes the two cases:

• The linear system |O(C)|, i.e. its generic member, is hyperelliptic. Then the morphism
ϕO(C) is of degree two.
• The linear system |O(C)|, i.e. its generic member, is non-hyperelliptic. Then the
morphism ϕO(C) is of degree one, i.e. birational.

Example 3.9. As an application, we prove that any K3 surface X with Pic(X) = Z ·L
and such that (L)2 = 4 can be realized as a quartic X ⊂ P3 with O(±1)|X ' L.
First of all, we may assume that L is ample (after passing to its dual if necessary).2

Then by Riemann–Roch h0(X,L) = 4. Moreover, all curves in |L| are automatically
irreducible, as L generates Pic(X). Thus, Proposition 3.5, Corollary 3.6, and Lemma 2.3
apply. Hence, ϕL : X //P3 is a finite morphism, which could be either of degree one or
two. If ϕL is of degree one, then one argues as in the proof of Theorem 2.7 to show that it

2Note that this even holds for a complex K3 surface, see page 16.
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is an embedding. If its degree is two, its image X ′ := ϕL(X) is a quadric. If X ′ is smooth,
then X ′ ' P1 × P1 and, therefore, Pic(X ′) ' Z×Z which contradicts Pic(X) ' Z. If X ′
is singular, then O(1)|X′ has a square root as a Weil divisor, see [234, II.Exer. 6.5], and
its pull-back to X would yield a square root of L, which is absurd.
Compare the arguments to Le Potier’s more direct proof in [53, Exp. VI].

3.3. For the case of trivial self-intersection one has the following result, see [506,
3.8].

Proposition 3.10. If a non-trivial nef line bundle L on a K3 surface X satisfies
(L)2 = 0, then L is base point free. If char(k) 6= 2, 3, then there exists a smooth irreducible
elliptic curve E such that mE ∈ |L| for some m > 0

Proof. Note that (L)2 = 0 implies h0(X,L) ≥ 2, as h2(X,L) = h0(X,L∗) = 0 for
the non-trivial nef line bundle L (intersect with an ample curve). Let F be the fixed part
of L. Then the mobile part M := L(−F ) has at most isolated fixed points. Note that
|M | is not trivial, because h0(X,L(−F )) = h0(X,L) ≥ 2. Also recall that M is nef, and
so (M.F ) ≥ 0 and (M)2 ≥ 0.
Now L nef and (L)2 = 0 imply (L.M) = (L.F ) = 0. This in turn yields (M)2+(F.M) =

0, hence (M)2 = (F.M) = 0 and thus (F )2 = 0.
If F is non-trivial, then the Riemann–Roch formula gives h0(X,F ) ≥ 2, which contra-

dicts F being the fixed part of L. Hence, F is trivial and L can have at most isolated
fixed points. But the existence of an isolated fixed point would contradict (L)2 = 0.
Thus, L is base point free. Note that in characteristic zero, Bertini theorem shows that

the generic curve in |L| is smooth but possibly disconnected.
Consider ϕL : X //Pm, m := h0(X,L)− 1. Since (L)2 = 0, the image of ϕL is a curve

D ⊂ Pm. For the Stein factorization X // D̃ //D, see [234, III.Cor. 11.5], we may
assume D̃ smooth. Note that the generic fibre of X // D̃ is geometrically integral and
hence also the closed fibres Xt are for t ∈ D̃ in a Zariski open subset, see [27, Chap. 7].
Then by the Leray spectral sequence H1(D̃,O) �

� // H1(X,O) = 0 and therefore D̃ ' P1.
In characteristic zero, Bertini theorem shows that the generic fibre E of ϕ : X // D̃ is

smooth; the fibres form the pencil |ϕ∗O
D̃

(1)|. Since all fibres are connected, the generic
fibre E is also irreducible. As D̃ ' P1, all fibres are linearly equivalent which shows
L ' O(mE) with m = h0(X,L)− 1.
To deal with the case of positive characteristic observe that the generic fibre of the

morphism ϕ : X // D̃ is still a regular curve, but it might not be smooth. In fact, the
geometric generic fibre, which is still integral, is either smooth or a rational curve with
one cusp and the latter can only occur for char(k) = 2 or 3, see Tate’s original article
[587] or the more recent paper by Schröer [530]. However, if the generic fibre is smooth,
then there also exists a smooth elliptic closed fibre, cf. [27, Thm. 7.18]. �

Combined with Corollary 1.5, this shows that, at least in char(k) 6= 2, 3, every line
bundle L with (L)2 = 0 and (L.C) ≥ 0 for all C ' P1 is isomorphic to O(mE) for some
integer m and some smooth elliptic curve E.
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Example 3.11. Consider the Fermat quartic X ⊂ P3, x4
0 + . . .+x4

3 = 0, which contains
many lines, e.g. the line ` ⊂ X given by x1 = ξx0, x3 = ξx2 with ξ a primitive eighth
root of unity. Then the line bundle L := O(1)⊗O(−`), with its complete linear system
consisting of all planes containing `, satisfies (L)2 = 0 and is clearly nef. Now, an elliptic
fibration as predicted by Proposition 3.10 can be described explicitly by projecting X
with center ` onto a disjoint line in P3. The fibres are the residual plane cubics of `
in the hyperplane intersections of X containing `. Rewriting the Fermat equation as
(x2

0 + ξ2x2
1)(x2

0 − ξ2x2
1) + (x2

2 + ξ2x2
3)(x2

2 − ξ2x2
3) = 0 allows one to write down an elliptic

fibration explicitly as

X //P1, [x0 : x1 : x2 : x3] � // [x2
0 + ξ2x1 : x2

2 − ξ2x2
3].

Combining Proposition 3.10 and Theorem 2.7 (see also Remark 3.4) one obtains

Corollary 3.12. If L is a nef line bundle on a K3 surface, then L is semiample, i.e.
Ln is globally generated for some n > 0. �

Since a semiample line bundle is obviously also nef, these two concepts coincide on K3
surfaces.

Remark 3.13. Let us mention a few related results.
o) Assume char(k) 6= 2, 3. Suppose L is a non-trivial nef line bundle with (L)2 = 0.

Then L is linearly equivalent to a divisor
∑
niCi with ni > 0 and Ci (possibly singular)

rational curves.
Indeed, by Proposition 3.10 L is linearly equivalent to mE with E a smooth fibre of

an elliptic fibration X //P1. However, any elliptic fibration of a K3 surface has at least
one singular fibre and all components of a singular fibre are rational. See Section 11.1.4
for more on the fibres of elliptic fibrations.

i) If C is an integral curve of arithmetic genus one, for example a smooth and irreducible
elliptic curve, contained in a K3 surface X, then O(C) is primitive in Pic(X).
Indeed, C then satisfies (C)2 = 0 and hence h0(C,O(C)|C) ≤ 1. The short exact

sequence 0 //O //O(C) //O(C)|C // 0 therefore yields h0(X,O(C)) ≤ 2 and by the
Riemann–Roch formula h0(X,O(C)) ≥ 2. If O(C) ' M `, then (M)2 = 0 and thus
h0(X,M) ≥ 2. Hence, h0(X,M) = h0(X,O(C)) = 2 and for ` > 1 this would show that
any curve in |O(C)| is reducible which is absurd since the integral curve C is given. Thus,
` = 1. Note that the proposition has actually not been used for this.

ii) Suppose X //P1 is an elliptic pencil on a K3 surface X, i.e. the generic curve is
an integral curve of arithmetic genus one. Then no fibre is multiple. Just apply i) to
a generic fibre. See Section 11.1.2 for more on smooth and singular fibres of elliptic
fibrations.

iii) A K3 surface X in char 6= 2, 3 is elliptic if and only if there exists a line bundle L
on X with (L)2 = 0.3

3Warning: This is not saying that L itself comes from an elliptic pencil.
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The idea is that if such an L exists then one also finds an L′ still satisfying (L′)2 = 0 and
in addition the condition of the proposition, i.e. L′ nef, holds. Roughly this is achieved
by passing successively from L to the reflection L + (L.C)C for a (−2)-curve C with
(L.C) < 0. This process stops. See Example 8.2.13 for details.
In char = 2, 3, the assertion is still true unless X is unirational (and in this case

ρ(X) = 22, see Proposition 17.2.7, and X is supersingular, see Section 18.3.5).

3.4. Saint-Donat also observes the following useful fact, see [515, Cor. 3.2].

Corollary 3.14. A complete linear system |L| on a K3 surface X has no base points
outside its fixed part, i.e. Bs|L| = F .

Proof. If O(F ) = L, then there is nothing to show. So assume |L(−F )| is non-
empty. Clearly, this is now a complete linear system which for any curve D ⊂ X contains
one member that intersects D properly. In particular, (L(−F ))2 ≥ 0. If strict inequality
holds, then apply Remark 3.7, ii) and Proposition 3.5 to show that L(−F ) is base point
free. If (L(−F ))2 = 0, then Proposition 3.10 yields the assertion. �

Corollary 3.15. Let L be a big and nef line bundle.

(i) If the mobile part M = L(−F ) is big, then L is base point free. In particular, F is
trivial.

(ii) Assume char(k) 6= 2, 3. If L is not base point free, then L ' O(mE + C) with E
smooth elliptic, C ' P1, and m ≥ 2.4

Proof. The first assertion follows from combining Corollary 3.14 with Remark 3.3.
Now suppose F 6= 0 or, equivalently, (M)2 = 0. Then, by Proposition 3.10, there exists
a smooth elliptic curve E with mE ∈ |M |. Note that m ≥ 2, because by Riemann–Roch
2 < h0(L) = h0(mE) but h0(E) = 2. Since 0 < (L)2 = (M + F )2 = 2(M.F ) + (F )2 and
(F )2 < 0, one has (M.F ) > 0 and hence (E.C) > 0 for at least one integral component
C of F , for which we know C ' P1 by Corollary 1.3. As m ≥ 2, also M + C is big and
nef. Applying the arguments to prove (i) to the decomposition L = (M + C) + F ′, one
finds F ′ = 0, i.e. F = C. �

4. Existence of K3 surfaces

In the course of these notes we see many examples of K3 surfaces of arbitrary degree,
for example by considering Kummer surfaces or explicit equations for elliptic K3 surfaces.
It may nevertheless be useful to state the general existence result at this point already.

Definition 4.1. A polarized K3 surface of degree 2d consists of a projective K3 surface
X together with an ample line bundle L such that L is primitive, i.e. indivisible in Pic(X),
with (L)2 = 2d.

4As recently observed by Ulrike Rieß, in this case one has furthermore (E.C) = 1.
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If ‘ample’ is replaced by the weaker assumption that L is only ‘big and nef’ one obtains
the notion of quasi-polarized (or pseudo-polarized or almost-polarized) K3 surfaces (X,L)

for which L is assumed to be big and nef and primitive.
Note that for any line bundle L the self-intersection (L)2 is even and hence d above is

a positive integer. Often, one writes 2g − 2 for the degree 2d, because the genus of any
smooth curve in |L| is indeed g. One even says that (X,L) is a polarized K3 surface of
genus g in this case.

4.1. K3 surfaces can be produced by classical methods.

Theorem 4.2. Let k be an algebraically closed field. For any g ≥ 3 there exists a K3
surface over k of degree (2g − 2) in Pg.

Proof. The following is taken from Beauville’s book, see [42, Prop. VIII.15], to
which we refer for the complete proof. The primitivity is not addressed there but, at
least for generic choices, easy to check. Just to mention one concrete example: For
g = 3k one can consider a generic quartic X in P3 containing a line ` ⊂ X. The linear
system H − `, for H the hyperplane section, defines an elliptic pencil |E|, cf Example
3.11. Then consider Lk := H + (k − 1)E. It is elementary, e.g. by using [234, II.Rem.
7.8.2], to see that Lk is very ample. For the generic choice of X it is also primitive. (For
this one needs to know a little more.) This yields examples of polarized K3 surfaces of
degree (Lk)

2 = 6k − 2. �

4.2. Alternatively, the existence of polarized K3 surfaces of arbitrary degree can be
proved by deforming Kummer surfaces. We shall explain the argument in the complex
setting. So, let A be a complex abelian surface with a primitive ample line bundle L0

of degree (L0)2 = 4d. Any other line bundle in the same numerical equivalence class is
then of the form L = L0 ⊗M for some M ∈ Â = Pic0(A). Now, L is symmetric, i.e.
L ' ι∗L, if and only if M2 ' ι∗L0 ⊗ L∗0. Such an M always exists, but it is unique
only up to the 16 two-torsion points in Â. Note that a symmetric line bundle L does not
necessarily descend to a line bundle L̄ on the quotient A/ι, as ι might act non-trivially on
the fibre L(x) at one of the fixed point x = ι(x). However, changing L by the appropriate
two-torsion line bundle, this can be achieved. (As we are working with complex abelian
surfaces, one can alternatively argue with the first Chern class in H2(A,Z) ∩H1,1(A).)
Now, pulling back L̄ under π : X //A/ι to the associated Kummer surface X (see

Example 1.1.3), one obtains a line bundle on X, which we again call L, of degree (L)2 =

2d. By construction, L is big and nef, but not ample, as it is trivial along the exceptional
curves Ei ⊂ X contracted by π. Using general deformation theory for the pair (X,L),
which is explained in Section 6.2.4, one obtains a deformation (X ′, L′) on which none of
the exceptional curves Ei survives or, even stronger, for which Pic(X ′) is generated by
L′. Using Proposition 1.4, this shows that L′ is ample.
For other algebraic closed fields, the argument does not a priori work. For example, for

k = F̄p, the Picard number ofX ′ is always even, see Corollary 17.2.9, and in characteristic
zero, e.g. over Q̄, it a priori might happen that the countable many points (Xt, Lt) in
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the deformation space of (X,L) all come with a (−2)-curve Ct ⊂ Xt with (Lt.Ct) = 0

that does not itself deform (but see Proposition 17.2.15). To conclude the argument for
arbitrary algebraically closed field, one works over Q̄ and then reduces modulo primes.
As ampleness is an open property, this proves the assertion at least for almost all primes.

If the field is not algebraically closed, then results of this type become more difficult.
They are related to questions about rational points in the moduli space of K3 surfaces.
In fact, for a fixed finite field k = Fq the degree of polarized K3 surfaces (X,L) defined
over k is bounded, see Proposition 17.3.8.

References and further reading:
In [301] Knutsen and Lopez study the vanishing in Proposition 3.1 in the reverse direction.

The main result describes geometrically all effective line bundles L with (L)2 ≥ 0 for which the
vanishing H1(X,L) = 0 holds true.

Tannenbaum [585] proves a criterion that (in characteristic zero) decides for a reduced and
connected curve C whether |C| contains an irreducible and smooth curve. It is formulated in
terms of the intersection numbers of all possible decompositions of C.

For arbitrary smooth projective surfaces Reider’s method (see e.g. [354, 506] for an account)
not only yields a proof of the Fujita conjecture but explains the failure of ampleness of adjoint
bundles. Even for K3 surfaces these results are interesting. For example, one finds that if an
ample line bundle L on a K3 surface satisfies (L)2 ≥ 5 and (L.C) ≥ 2 (resp. (L)2 ≥ 10 and
(L.C) ≥ 3) for all curves C, then L is globally generated (resp. very ample), see [354, Cor. 2.6].
Also Mumford’s (Kodaira–Ramanujam) vanishing can be approached using Reider’s method. We
recommend Morrison’s lectures [424].

The stronger notion of k-ampleness for line bundles on K3 surfaces has been studied e.g. by
Szemberg et al in [37, 499]. In particular, Theorem 2.7 has been generalized to the statement
that for L ample and n ≥ 2k + 1 the power Ln is k-ample.

Saint-Donat also discusses equations defining K3 surfaces. More precisely, he considers the
natural graded ring homomorphism

S∗H0(X,L) //R(X,L) :=
⊕

H0(X,Ln)

for a linear system |L| containing a smooth irreducible non-hyperelliptic curve with trivial fixed
part. Under further rather weak assumptions, he shows that the kernel is generated by elements
of degree two, see [515, Thm. 7.2].

By a theorem of Zariski, R(X,L) is finitely generated for semiample line bundles on projective
varieties, see [355, I.Ch. 2.7.B]. Since any nef line bundle on a K3 surface is semiample (cf.
Corollary 3.12), this shows that for any nef line bundle L on a K3 surface X the section ring
R(X,L) is finitely generated.

An effective divisor D cannot only be decomposed in its mobile and its fixed part D = M +F ,
but also in its positive and its negative parts. More precisely, any effective divisor D (or any
element in NE(X)∩NS(X), see Section 8.3.1) can be decomposed as D = P +N , where P,N ∈
NS(X)Q with P ∈ Nef(X) (the ‘positive part’) and N =

∑
aiCi effective (ai ∈ Q>0) such

that (P.Ci) = 0 and the intersection matrix ((Ci.Cj)) is negative definite. This is the Zariski
decomposition of D, see [27] or [355] for more references. The section ring R(X,L) of a big line
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bundle L on a smooth surface is finitely generated if and only if its positive part P is semiample,
see [355, I.Cor. 2.3.23]. Hence, R(X,L) is finitely generated for any big line bundle (and in fact
for any) on a K3 surface.

Seshadri constants on K3 surfaces have been studied in low degree. See for example the paper
by Galati and Knutsen [193] where one also finds a survey of known results and further references.

A non-effective version of the Fujita conjecture has been known for a long time. In particular,
there is Matsusaka’s big theorem (see [355, 361, 393, 504]): For every polynomial P (t) there
exists a constant c, depending only on P (t), such that for every smooth projective variety X in
characteristic zero and an ample line bundle L on X with Hilbert polynomial P (t) the line bundle
Lk is very ample for all k ≥ c. Matsusaka’s theorem is also known in positive characteristic for
small dimensions and for varieties with mild singularities. Effective versions of it (in characteristic
zero) have been found by Demailly, Siu and others, see [355].

Related to the question for polarized K3 surfaces of prescribed degree is the question which
degree and genus can be realized by a smooth curve on a quartic. This has been addressed by
Mori in [420].

Questions and open problems:
It is natural to wonder how much of the theory generalizes to higher dimensions. For example,

if L is an ample line bundle on a projective irreducible symplectic variety X, is then L2 globally
generated and L3 very ample? Similarly, is X described by quadratic equations? The first case
to study would be the Hilbert scheme of length two subschemes of a K3 surface.





CHAPTER 3

Hodge structures

For the reader’s convenience we recall the basic definitions and facts concerning (pure)
Hodge structures in Section 1. In Section 2 we specialize to Hodge structures of weight
one and two and state the Global Torelli Theorem for curves and K3 surfaces. The latter
appears again in subsequent chapters. This section also introduces the transcendental
lattice of a Hodge structure of weight two, which we describe explicitly for a few examples.
Which lattices can occur as the transcendental lattice of a K3 surface turns out to be
essentially a question in lattice theory, to which we return in Chapter 14. In the final
Section 3, we study the field of endomorphisms of the transcendental lattice. It turns
out to be totally real in most cases. An elementary proof of this result is included. The
last section also contains a discussion of the Mumford–Tate group and the conjecture
describing it in terms of the algebraic fundamental group.

1. Abstract notions

We are interested in rational and integral Hodge structures. So, in the following V
always stands for either a free Z-module of finite rank or a finite-dimensional vector
space over Q.

1.1. By VR and VC we denote the real and complex vector spaces obtained by
scalar extension. Since V is defined over Z or Q, respectively, both subrings of R, the
complex vector space VC comes with a real structure, i.e. complex conjugation v � // v̄ is
well-defined and defines an R-linear isomorphism VC

∼− // VC.

Definition 1.1. A Hodge structure of weight n ∈ Z on V is given by a direct sum
decomposition of the complex vector space VC

(1.1) VC =
⊕
p+q=n

V p,q

such that V p,q = V q,p.

Often, one tacitly assumes for n > 0 that V p,q = 0 for p < 0, which is the case, for
example, when V is the cohomology of degree n of a projective manifold, see Section 1.2.
One can pass from integral Hodge structures to rational Hodge structures (of the same

weight) by simple base change V � // VQ. Relaxing the obvious notion of isomorphisms
between Hodge structures, one calls two integral Hodge structures V and W isogenous if
the rational Hodge structures VQ and WQ are isomorphic.

39
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For a Hodge structure V (integral or rational) of even weight n = 2k the intersection
V ∩ V k,k is called the space of Hodge classes in V . Here, we use the natural inclusion
V ⊂ VC. Note that in general the inclusion (V ∩ V k,k)C ⊂ V k,k is proper. However,
(VR ∩ V k,k)C = V k,k and, similarly, (VR ∩ (V p,q ⊕ V q,p))C = V p,q ⊕ V q,p (for p 6= q), i.e.
V p,q ⊕ V q,p is defined over R.

Definition 1.2. A sub-Hodge structure of a Hodge structure V of weight n is given
by a Q-linear subspace (resp. submodule) V ′ ⊂ V such that the Hodge structure on V
induces a Hodge structure on V ′, i.e. V ′C =

⊕
(V ′C ∩ V p,q).

A sub-Hodge structure V ′ ⊂ V of an integral Hodge structure V is called primitive if
V/V ′ is torsion free. Any Hodge structure that does not contain any non-trivial proper
and primitive (in the integral case) Hodge structure V ′ ⊂ V is called irreducible.

Note that with this definition, any Hodge class in V spans a one-dimensional sub-Hodge
structure and, similarly, the space of all Hodge classes is a sub-Hodge structure.

Example 1.3. The Tate Hodge structure Z(1) is the Hodge structure of weight −2

given by the free Z-module of rank one (2πi)Z (as a submodule of C) such that Z(1)−1,−1

is one-dimensional. Similarly, one defines the rational Tate Hodge structure Q(1). The
reason that 2πi is put in, instead of just considering the free module Z, is not apparent
here. In fact, for many of the applications the difference between the two is not important.

Most of the standard linear algebra constructions have analogues in Hodge theory. We
shall be brief, as the details are easy to work out.
i) The direct sum V ⊕W of two Hodge structures V and W of the same weight n is
endowed again with a Hodge structure of weight n by setting

(V ⊕W )p,q = V p,q ⊕W p,q.

ii) The tensor product V ⊗W of Hodge structures V and W of weight n and m, respec-
tively, comes naturally with a Hodge structure of weight n+m by putting

(V ⊗W )p,q =
⊕

V p1,q1 ⊗W p2,q2 ,

where the sum is over all pairs of tuples (p1, q1), (p2, q2) with p1 + p2 = p.
iii) For a Hodge structure V of weight n, one defines a Hodge structure of weight −n on
the dual V ∗ := HomZ(V,Z) (or = HomQ(V,Q) if V is rational) by

V ∗−p,−q := HomC(V p,q,C) ⊂ HomC(VC,C) = V ∗C .

Example 1.4. Applied to the Tate Hodge structure, ii) and iii) lead to the Hodge
structure of weight two Z(−1) := Z(1)∗ and the Hodge structures Z(k) := Z(1)⊗k for
k > 0 and Z(k) := Z(−1)⊗−k for k < 0, which are of weight −2k. Note that the
underlying Z-module of Z(k) is (2πi)kZ. By convention, Z = Z(0) is the trivial Hodge
structure of weight zero and rank one. The Hodge structures Q(k), k ∈ Z, are defined
analogously.
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For an arbitrary integral or rational Hodge structure V of weight n one defines the
Hodge structure of weight n− 2k

V (k) := V ⊗ Z(k) or V (k) := V ⊗Q(k),

respectively, for which V (k)p,q = V p+k,q+k.

iv) Let V and W again be Hodge structures of weight n and m. Then a morphism of
weight k from V toW is a Z-(or Q-)linear map f : V //W such that its C-linear extension
satisfies f(V p,q) ⊂W p+k,q+k. Note that for non-trivial f this implies m = n+2k, so that
one could actually drop mentioning the weight k. Equivalently, a morphism f : V //W

of weight k can be thought of as a morphism f : V //W (k) of weight zero. Then for the
space of morphisms of weight k one has Homk(V,W ) = Hom0(V,W (k)). For n = m, one
just writes Hom(V,W ). Note also that

Homk(V,W ) = V ∗ ⊗W ∩ (V ∗ ⊗W )k,k,

which is the space of Hodge classes of the Hodge structure V ∗ ⊗ W of weight 2k. In
particular, Homk(Z, V ) = Hom(Z(−k), V ) = V ∩V k,k is the space of Hodge classes in V .

v) Similar to the tensor product, one also defines the exterior product of Hodge structures.
If V is a Hodge structure of weight n, then

∧k V is the Hodge structure of weight kn with
(
∧k V )p,q being the sum of all

⊗∧ki(V pi,qi) with
∑
ki = k and

∑
kipi = p. The most

interesting case for us is the exterior product
∧2 V of a Hodge structure V of weight one.

Here,

(
∧2

V )2,0 =
∧2

V 1,0, (
∧2

V )1,1 = V 1,0 ⊗ V 0,1, and (
∧2

V )0,2 =
∧2

V 0,1.

vi) If V is a Hodge structure, then its complex conjugate V̄ is a Hodge structure on the
same free Z-module or Q-vector space V but with V̄ p,q := V q,p. For a Hodge structure
of weight one given by VC = V 1,0 ⊕ V 0,1 it amounts to flipping the two summands.

vii) With any Hodge structure of weight n one associates the Hodge filtration

(1.2) 0 ⊂ FnVC ⊂ Fn−1VC ⊂ . . . ⊂ F 0VC ⊂ VC,

where F i :=
⊕

p≥i V
p,q. (For n > 0 one often has Fn+1VC = 0 or, equivalently, F 0VC =

VC.) Then

(1.3) F pVC ⊕ F qVC = VC,

for all p + q = n + 1. Conversely, any filtration (1.2) satisfying (1.3) defines a Hodge
structure (1.1) by

V p,n−p := F pVC ∩ Fn−pVC.
Note that the real structure of VC is needed for this.
Thus, the two notions describe the same mathematical structure. However, the Hodge

filtration is more natural when it comes to deforming Hodge structures, see e.g. Lemma
6.2.1.
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1.2. The most important examples of Hodge structures are provided by the coho-
mology of smooth projective varieties over C or, more generally, compact Kähler mani-
folds. For a compact Kähler manifold X the torsion free part of the singular cohomology
Hn(X,Z) comes with a natural Hodge structure of weight n given by the standard Hodge
decomposition

Hn(X,Z)⊗ C = Hn(X,C) =
⊕
p+q=n

Hp,q(X).

Here, Hp,q(X) could either be viewed as the space of de Rham classes of bidegree (p, q)

or as the Dolbeault cohomology Hq(X,Ωp
X).

The even part
⊕
H2k(X,Q) contains all algebraic classes, i.e. classes obtained as fun-

damental classes [Z] of subvarieties Z ⊂ X. It is not difficult to see that [Z] is an integral
class, i.e. that it comes from an element inH2k(X,Z), and that it is contained inHk,k(X).
The Hodge conjecture asserts that the space spanned by those is determined entirely by
the Hodge structure itself.

Conjecture 1.5 (Hodge conjecture). For a smooth projective variety X over C the
subspace of H2k(X,Q) spanned by all algebraic classes [Z] coincides with the space of
Hodge classes, i.e. H2k(X,Q) ∩Hk,k(X) = 〈[Z] | Z ⊂ X〉Q.

It is often more appropriate to state the Hodge conjecture in terms of the Tate twist
H2k(X,Q)⊗Q(k). It is well known that the Hodge conjecture can fail for Kähler mani-
folds which are not projective [651] and that the analogous version using the integral
Hodge structure does not hold in general [26].
The Hodge conjecture is known for (1, 1)-classes (Lefschetz theorem on (1, 1)-classes)

and for classes of type (d − 1, d − 1) where d = dimX. Thus, the Hodge conjecture is
known to hold for K3 surfaces, but it is open already for self-products X × . . .×X of a
K3 surface X.

1.3. The intersection pairing on the middle primitive cohomology or more gener-
ally the Hodge–Riemann pairing with respect to a (rational or integral) Kähler class is
formalized by the notion of a polarization.
For the following, we shall need the notion of the Weil operator C, which acts on V p,q

by multiplication with ip−q. It clearly preserves the real vector space (V p,q ⊕ V q,p) ∩ VR.

Definition 1.6. A polarization of a rational Hodge structure V of weight n is a mor-
phism of Hodge structures

(1.4) ψ : V ⊗ V //Q(−n)

such that its R-linear extension yields a positive definite symmetric form

(v, w) � //ψ(v, Cw)

on the real part of V p,q⊕V q,p. Then (V, ψ) is called a polarized Hodge structure. A Hodge
structure is called polarizable if it admits a polarization. An isomorphism V1

∼− // V2 of
Hodge structures that is compatible with given polarizations ψ1 resp. ψ2 is called a Hodge
isometry.
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Note that ψ as a morphism of Hodge structures is a bilinear pairing on V whose C-
linear extension has the property that ψ(v1, v2) = 0 for vi ∈ V pi,qi except possibly when
(p1, q1) = (q2, p2) (or, equivalently, p1 + p2 = n and q1 + q2 = n). Integral polarizations
are defined analogously.

Here are a few easy consequences of the definition, see e.g. [201, 251]. Assume ψ is a
polarization of a Hodge structure V of weight n.
i) If n ≡ 1 (2), then ψ is alternating. If n ≡ 0 (2), then ψ is symmetric. Indeed, working
with the C-linear extension, the required symmetry ψ(v, Cw) = ψ(w,Cv) for v ∈ V p,q,
w ∈ V q,p reads iq−pψ(v, w) = ip−qψ(w, v). Then use iq−p = (−1)nip−q.
ii) The restriction of the C-linear extension of ψ yields a non-degenerate pairing V p,q ⊗
V q,p //C.
iii) For even n = 2k, the R-linear extension to VR yields a positive definite symmetric
form (−1)k−qψ on (V p,q ⊕ V q,p) ∩ VR. Indeed, for w ∈ V p.q one computes C(w + w̄) =

(−1)k−q(w + w̄).
iv) A polarization of a rational Hodge structure V of weight n leads to an isomorphism
of Hodge structures V ' V ∗(−n).
v) The restriction of ψ to any sub-Hodge structure V ′ ⊂ V defines a polarization of V ′.
Thus, any sub-Hodge structure of a polarizable Hodge structure is again polarizable.
vi) For a polarized rational Hodge structure V , any sub-Hodge structure V ′ ⊂ V gives
rise to a direct sum decomposition (of Hodge structures) V = V ′⊕V ′⊥, where V ′⊥ is the
orthogonal complement of V ′ with respect to ψ. If the Hodge structures are only integral,
then V ′ ⊕ V ′⊥ ⊂ V is a sub-Hodge structure of finite (and often non-trivial) index.

We come back to the Hodge structure Hn(X,Z) (up to torsion) of a compact complex
Kähler manifold. On the middle cohomology Hd(X,Z), d = dimCX, the intersection
defines a morphism of Hodge structures as in (1.4). On cohomology groups of smaller
degree one can use the Hodge–Riemann pairing, which, however, only for a rational Kähler
class defines a morphism of rational Hodge structures and so X needs to be projective.
But in both cases the morphism of Hodge structures becomes a polarization only after
certain sign changes.
Consider a rational (or integral) Kähler class ω ∈ H2(X,Q) on a smooth projective

manifold X. Then define on Hn(X,Q) with n ≤ d = dimCX the pairing

(1.5) (v, w) � // (−1)n(n−1)/2

∫
X
v ∧ w ∧ ωd−n,

the Hodge–Riemann pairing. One defines the primitive part (depending on ω) by

Hn(X,Q)p := Ker
(
∧ωd−n+1 : Hn(X,Q) //H2d−n+2(X,Q)

)
,

on which the Hodge–Riemann pairing (1.5) then defines a polarization. This is ensured
by the Hodge–Riemann bilinear relation, see e.g. [251, Ch. 3.3]. Strictly speaking one
should twist the integral on the right hand side by (2πi)−n, so that it really takes values
Q(−n) = (2πi)−nQ, but this is often omitted.
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Example 1.7. Let us spell this out for Hodge structures of weight one and two.
i) For degree reasons H1(X,Q)p = H1(X,Q). For any Kähler class ω ∈ H1,1(X) ∩

H2(X,Q) the alternating pairing

(1.6) ψ(v, w) =

∫
X
v ∧ w ∧ ωd−1

is indeed a polarization, as i
∫
v ∧ v̄ ∧ ωd−1 > 0 for all 0 6= v ∈ H1,0(X).

ii) In degree two one has H2(X,Q) = H2(X,Q)p ⊕Q · ω. The symmetric pairing

(1.7) ψ(v, w) = −
∫
X
v ∧ w ∧ ωd−2

is positive definite on H1,1(X) ∩ H2(X,R)p and negative definite on the real part of
(H2,0 ⊕H0,2)(X). In particular, with this definition of the pairing only its restriction to
the primitive part actually defines a polarization. However, changing it by a sign on Q ·ω
one obtains a polarization of the full H2(X,Q). Thus, H2(X,Q) is polarizable. Note that
for d = 2, i.e. the case of a surface, the pairing (1.7) is independent of ω and differs from
the intersection pairing only by a sign. However, the primitive decomposition clearly
depends on ω and so does the modified ψ that gives a polarization on the full H2(X,Q).

1.4. We shall briefly explain how to interpret Hodge structures as representations
of the Deligne torus, see e.g. [201, 251].
Any rational Hodge structure of weight n gives rise to a real representation of C∗,

namely the group homomorphism

ρ : C∗ //GL(VR), z � // ρ(z) : v � // (zpz̄q) · v

for v ∈ V p,q. In order to check that the representation is indeed real, take v ∈ VR
and consider its decomposition v =

∑
vp,q according to (1.1) with vp,q = vq,p. Then

ρ(z)(v) =
∑

(zpz̄q) · vp,q is still real, as (zpz̄q) · vp,q = (zq z̄p) · vq,p. Note that the induced
representation ρ|R∗ is given by ρ(t)(v) = tn · v. The Weil operator C defined earlier is in
this context simply ρ(i).
There is a natural bijection between rational Hodge structures of weight n on a ra-

tional vector space V and algebraic representations ρ : C∗ //GL(VR) with R∗ acting by
ρ(t)(v) = tn · v. To see this, we give an inverse construction that associates with an
algebraic representation ρ : C∗ //GL(VR) a Hodge structure.
Let us denote the C-linear extension of ρ by ρC : C∗ //GL(VC) and let

V p,q := {v ∈ VC | ρC(z)(v) = (zpz̄q) · v for all z ∈ C∗} .

Then ρC splits into a sum of one-dimensional representations λi : C∗ //C∗ and in order
to show that VC =

⊕
V p,q it is enough to show that λi(z) = zpz̄q for some p+ q = n.

At this point the assumption that ρ is algebraic comes in. As an R-linear algebraic
group,

C∗ =

{
z =

(
x −y
y x

)}
⊂ GL(2,R).
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Hence, ρ(z) is a matrix whose entries are polynomials in x, y, and the inverse of the
determinant (x2 + y2)−1. So, λi(z) must be a polynomial in z, z̄, and (zz̄). Therefore, it
is of the form zpz̄q for some p, q with p+ q = n.

Remark 1.8. A better way to say this is in terms of the Deligne torus

S := ResC/RGm,C,

which is the real algebraic group described by S(A) = (A⊗R C)∗ for any R-algebra A, so
in particular S(R) ' C∗. Then for any real vector space V there exists a natural bijection

(1.8) { Hodge structures on V } //oo { ρ : S //GL(VR) },

where on the right hand side one considers morphisms of real algebraic groups. To be
more precise, if on the left hand side a Hodge structure of weight n is picked, then its
image ρ on the right hand side satisfies ρ|Gm,R : t � // tn.

Example 1.9. i) If VC =
⊕
V p,q is a Hodge structure given by ρ : C∗ //GL(VR),

then the dual Hodge structure V ∗ defined earlier corresponds to the dual representation
ρ∗ : C∗ //GL(V ∗R ) which is explicitly given by ρ∗(z)(f) : v � // f(ρ(z)−1v).
ii) A polarization is in this language described by a bilinear map ψ : V ⊗ V //Q with

ψ(ρ(z)v, ρ(z)w) = (zz̄)nψ(v, w)

and such that ψ(v, ρ(i)w) defines a positive definite symmetric form on VR.
iii) The Tate Hodge structure Q(1) corresponds to C∗ //R∗, z � // (zz̄)−1. Thus, if

a Hodge structure on V corresponds to a representation ρV , then the Tate twist V (1)

corresponds to ρV (1) : z � // (zz̄)−1ρV (z).

2. Geometry of Hodge structures of weight one and two

Only Hodge structures of weight one and two are used in these notes, especially those
associated with two-dimensional tori and K3 surfaces. The Kummer construction allows
one to pass from Hodge structures of weight one of a two-dimensional torus to the Hodge
structure of weight two of its associated Kummer surface. The Kuga–Satake construction,
to be discussed in Chapter 4, can be seen as a partial converse of this.

2.1. Hodge structures of weight one are all of geometric origin. We shall recall the
basic features of this classical theory.
There is a natural bijection between the set of isomorphism classes of integral Hodge

structures of weight one and the set of isomorphism classes of complex tori:

(2.1) { complex tori } //oo { integral Hodge structures of weight one },

which is constructed as follows. For an integral Hodge structure V of weight one, V ⊂ VC
can be projected injectively into V 1,0. This yields a lattice V ⊂ V 1,0 and V 1,0/V is a
complex torus. Clearly, if V and V ′ are isomorphic integral Hodge structures of weight
one, then V 1,0/V and V ′1,0/V ′ are isomorphic complex tori.
Conversely, if Cn/Γ is a complex torus, then Cn can be regarded as ΓR endowed with

an almost complex structure. This yields a decomposition (ΓR)C = (ΓR)1,0⊕ (ΓR)0,1 with
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(ΓR)1,0 and (ΓR)0,1 being the eigenspaces on which i ∈ C acts by multiplication by i and
−i, respectively, defining in this way an integral Hodge structure of weight one.
Using the existence of a C-linear isomorphism Cn ' ΓR ' (ΓR)1,0, the two constructions

are seen to be inverse to each other. Finally, one verifies that any isomorphism between
two complex tori Cn/Γ and Cn/Γ′ is (up to translation) induced by a C-linear isomorphism
ϕ : Cn ∼− // Cn with ϕ(Γ) = Γ′.

Remark 2.1. If A = Cn/Γ is a complex torus, then the dual torus is

Pic0(A) ' H1(A,O)/H1(A,Z).

If as above A is written as V 1,0/V for an integral Hodge structure V of weight one, then
the dual torus Pic0(A) is naturally associated with the dual of the complex conjugate
(and not just the dual) Hodge structure, i.e. Pic0(A) ' V 0,1∗/V ∗.

As was mentioned in the context of general Hodge structures, the primitive cohomology
of a smooth complex projective variety is polarizable. This in particular applies to abelian
varieties, i.e. projective tori. Conversely, the complex torus associated with a polarizable
integral Hodge structure of weight one is projective. This yields a bijection

(2.2) { abelian varieties } //oo { polarizable integral Hodge structures of weight one }

and, analogously, a bijection between polarized abelian varieties and polarized integral
Hodge structures.
The two equivalences (2.1) and (2.2) have analogies for rational Hodge structures. On

the geometric side one then considers tori and abelian varieties up to isogeny.
Arguably, the most important application of Hodge structures (of weight one) is the

following classical result, see e.g. [219].

Theorem 2.2 (Global Torelli Theorem). Two smooth compact complex curves C and
C ′ are isomorphic if and only if there exists an isomorphism H1(C,Z) ' H1(C ′,Z) of
integral Hodge structures respecting the intersection pairing (i.e. the polarization).

Using the above equivalence between polarized abelian varieties and polarized Hodge
structures of weight one, the Global Torelli Theorem for curves can be rephrased in terms
of principally polarized Jacobians.

2.2. Let us now turn to Hodge structures of weight two.

Definition 2.3. We call V a Hodge structure of K3 type if V is a (rational or integral)
Hodge structure of weight two with

dimC(V 2,0) = 1 and V p,q = 0 for |p− q| > 2.

The motivation for this definition is, of course, that H2(X,Q) and H2(X,Z) of a
complex K3 surfaces (or a two-dimensional complex torus) X are rational resp. integral
Hodge structures of K3 type.
If X is algebraic, then H2(X,Z) is polarizable. However, as explained above, it is not

the (negative of the) intersection pairing that defines a polarization, but the pairing that
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is obtained from it by changing the sign of the intersection pairing for a rational Kähler
(i.e. an ample) class. In fact, there are non-algebraic K3 surfaces for which H2(X,Q) is
not polarizable, see Example 3.2.1

The importance of the Hodge structure of a K3 surface becomes apparent by the Global
Torelli Theorem for K3 surfaces, which is to be considered in line with the Global Torelli
Theorem 2.2 for curves and the description of tori and abelian varieties in terms of their
Hodge structures of weight one as in (2.1) and (2.2). The Global Torelli Theorem, due to
Pjateckĭı-Šapiro and Šafarevič [490] in the algebraic and to Burns and Rapoport [91] in
the non-algebraic case, is the central result in the theory of (complex) K3 surfaces and
we come back to it later repeatedly, see Chapters 7 and 16.

Theorem 2.4 (Global Torelli Theorem). Two complex K3 surfaces X and X ′ are
isomorphic if and only if there exists an isomorphism H2(X,Z) ' H2(X ′,Z) of integral
Hodge structures respecting the intersection pairing.

Abusively, we also call Hodge isometry an isomorphism H2(X,Z) ' H2(X,Z) of Hodge
structures that is merely compatible with the intersection pairing (and not necessarily
a true polarization), cf. Definition 1.6. Note that a posteriori, one can state the Global
Torelli Theorem for projective K3 surfaces also in terms of polarized Hodge structures
which are polarized in the strict sense. This then becomes a Torelli theorem for polarized
K3 surfaces. Note that the Hodge isometries in Theorems 2.2 and 2.4 are not necessarily
induced by isomorphisms of the varieties themselves.
Any Hodge structure of K3 type contains two natural sub-Hodge structures. Firstly,

the sub-Hodge structure of all Hodge classes V 1,1 ∩ V and, secondly, the transcendental
lattice or transcendental part.

Definition 2.5. For an integral or rational Hodge structure of K3 type V one defines
the transcendental lattice or transcendental part T as the minimal primitive sub-Hodge
structure

T ⊂ V with V 2,0 = T 2,0 ⊂ TC.

The primitivity, i.e. the condition that V/T is torsion free, has to be added for integral
Hodge structures, as otherwise minimality cannot be achieved. Clearly, the transcenden-
tal lattice T is again of K3 type.
If V is the Hodge structure H2(X,Z) of a K3 surface X, then

V 1,1 ∩ V = H1,1(X) ∩H2(X,Z) ' NS(X) ' Pic(X),

see Section 1.3.3, and T is called the transcendental lattice

T (X) ⊂ H2(X,Z)

of the K3 surface X. It is usually considered as an integral Hodge structure.

1In contrast to the situation for complex tori, the existence of a polarization on H2(X,Q) does not
imply that the K3 surfaceX is projective (or, equivalently, the existence of a class ω ∈ H1,1(X)∩H2(X,Q)

with ω2 > 0), cf. Remark 8.1.3.
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Remark 2.6. The transcendental lattice T (X) plays an equally fundamental role in
the theory of K3 surfaces as the full cohomology H2(X,Z). However, there are non-
isomorphic (algebraic as well as non-algebraic) K3 surfaces with isometric transcendental
lattices. In other words, any Hodge isometry H2(X,Z) ' H2(X ′,Z) induces a Hodge
isometry T (X) ' T (X ′), but not vice versa. This is remedied by passing to derived
categories. In Chapter 16 we explain that two complex algebraic K3 surfaces X and
X ′ have Hodge isometric transcendental lattices if and only if their bounded derived
categories of coherent sheaves are equivalent as C-linear triangulated categories. This
result, the derived Global Torelli Theorem, is due to Mukai and Orlov, see Corollary
16.3.7.

Lemma 2.7. The transcendental lattice T of a polarizable Hodge structure V of K3
type is a polarizable irreducible Hodge structure of K3 type.

Proof. Suppose 0 6= T ′ ⊂ T is a sub-Hodge structure. If T ′ is not pure of type
(1, 1), then the one-dimensional V 2,0 is contained in T ′C. The minimality and primitivity
of T implies T ′ = T . If T ′C = T ′1,1, then the orthogonal complement T ′⊥ of T ′ in T (see
Section 1.3) satisfies V 2,0 ⊂ T ′⊥C , contradicting the minimality of T . �

2.3. Consider a torus A = Cn/Γ. Then H1(A,Z) ' Γ∗ and

H2(A,Z) '
∧2

H1(A,Z).

The latter can be read as an isomorphism of Hodge structures of weight two.
For n = 2, the case of interest to us, H1(A,Z) is of rank four and, therefore, H2(A,Z)

is of rank six. Considered with its intersection form one has an isometry

H2(A,Z) ' U⊕3.

Here, U is the hyperbolic plane, see Section 14.0.3. Explicitly, if H1(A,Z) =
⊕
Zvi with∫

A v1 ∧ . . . ∧ v4 = 1, then the three copies of the hyperbolic plane U with the standard
bases (ei, fi), i = 1, 2, 3, are realized by setting e1 := v1 ∧ v2, f1 := v3 ∧ v4, e2 := v1 ∧ v3,
f2 := v4 ∧ v2, and e3 := v1 ∧ v4, f3 := v2 ∧ v3.
The Hodge structure on H1(A,Z) is given by a decomposition into two two-dimensional

spaces H1(A,C) ' H1,0(A)⊕H0,1(A), e.g. H1,0(A) ' H0(A,ΩA) ' T ∗0A ' C2. Hence,

H2,0(A) '
∧2

H1,0(A) ' C

is one-dimensional and, therefore, H2(A,Z) is a Hodge structure of K3 type. Note that
H1,1(A) ' H1,0(A)⊗H0,1(A) ' C4. In particular, the Néron–Severi group

NS(A) ' H1,1(A) ∩H2(A,Z) ⊂ H2(A,Z) ' U⊕3

is of rank 0 ≤ ρ(A) ≤ 4 and the transcendental lattice is of rank at least two. In fact, if
A is an abelian surface, then its transcendental lattice is of rank 6−ρ(A) ≤ 5, cf. Section
3.1.
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2.4. Note that when passing from H1(A,Z) of a two-dimensional complex torus
A ' C2/Γ to H2(A,Z), information is lost. More precisely,

H1(A,Z) � //H2(A,Z) '
∧2

H1(A,Z),

that maps an integral Hodge structure of weight one and rank four to its is second exterior
power, is generically two-to-one. In fact, for two two-dimensional tori A and A′ there
exists a Hodge isometry

H2(A,Z) ' H2(A′,Z)

if and only if
A ' A′ or A′ ' Pic0(A).

In particular, H2(A,Z) does not distinguish between A and its dual. Moreover, H2(A,Z)

of an abelian surface A determines A if and only if A is principally polarized. This was
proved by Shioda in [560], where also the surjectivity of the weight two period map for
tori was observed. More precisely, if σ ∈ U⊕3 ⊗ C satisfies

(2.3) (σ.σ) = 0 and (σ.σ̄) > 0,

then there exist a complex torus A = C2/Γ and an isometry U⊕3 ' H2(A,Z) such that
the image of σ spans H2,0(A). This is proved by the following elementary computation:
If σ =

∑
(αiei + βifi), then the two conditions in (2.3) translate to∑

αiβi = 0 and Re
(∑

αiβ̄i

)
> 0.

After scaling, we may assume α1 = 1. Then let Γ ⊂ C2 be the lattice spanned by the
columns of (

1 0 −β3 β2

0 1 α2 α3

)
.

The surjectivity of the period map for K3 surfaces is considerably harder, see Sections
6.3.3 and 7.4.1.

2.5. Recall from Examples 1.1.3 and 1.3.3 that with any abelian surface A (here
over C) or a complex torus of dimension two one associates the Kummer surface X as
the minimal resolution of the quotient A/ι of A by the natural involution ι : x � // − x:

Ã

π
��

// A

��
X // A/ι.

The cohomology of the blow-up Ã //A is easily determined: In odd degree nothing
changes, but in degree two one finds

(2.4) H2(A,Z)⊕
16⊕
i=1

Z · [Ei] ' H2(Ã,Z).

Here, the P1 ' Ei are the exceptional divisors over the 16 fixed points of the involution
ι and as before we denote by P1 ' Ēi ⊂ X their images.
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As ι∗ acts by −id on H1(A,Z), it acts as the identity on H2(A,Z) '
∧2H1(A,Z). The

same holds for the action of the lifted involution ι̃ on H∗(Ã,Z), i.e. also ι̃∗[Ei] = [Ei].
But then any class α ∈ H2(Ã,Z) is in fact of the form α = π∗β and hence, by projection
formula, π∗π∗α = π∗π∗π

∗β = π∗(2β) = 2α. Use this to compare the intersection forms
on Ã and X:

(2.5) (π∗α.π∗α
′) = 2(α.α′).

For example, for α = [Ei] and [Ēi] = π∗[Ei] this gives back ([Ēi])
2 = −2, as for any

smooth irreducible rational curve on a K3 surface, cf. Section 2.1.3.
Next, observe that π∗H2(A,Z) ⊂ H2(X,Z) is indeed the orthogonal complement of⊕16
i=1 Z · [Ēi] ⊂ H2(X,Z), see [53, Exp. VIII] for a detailed argument. In particular,

π∗H
2(A,Z) ⊂ H2(X,Z) is a primitive sublattice. As H2(A,Z) ' U⊕3, it is abstractly

isomorphic to U(2)⊕3. See Section 14.0.3 for the notation. However, in contrast to (2.4)

(2.6) π∗H
2(A,Z)⊕

16⊕
i=1

Z · [Ēi] ⊂ H2(X,Z)

is a proper sublattice (of finite index). Indeed, as was noted already in Example 1.1.3,
the line bundle O(

∑
Ēi) has a square root and, therefore,

∑
[Ēi] is divisible by two in

H2(X,Z). But the situation is even more complicated. The saturation
16⊕
i=1

Z · [Ēi] ⊂ K ⊂ H2(X,Z),

i.e. the smallest primitive sublattice containing
⊕16

i=1 Z · [Ēi], is an overlattice of index
25. The lattice K, which is unique up to isomorphism, is called the Kummer lattice. It
is an even, negative definite lattice of rank 16 and discriminant 26. Thus (2.6) can be
refined to

π∗H
2(A,Z)⊕K ⊂ H2(X,Z),

with both summands being primitive sublattices. For more information on the lattice
theory of this situation see Section 14.3.3.

Remark 2.8. Is it not difficult to use the surjectivity of the period map for complex
tori mentioned above to deduce a similar statement for Kummer surfaces, cf. the proof of
Theorem 14.3.17. More precisely, any Hodge structure of K3 type on E8(−1)⊕2 ⊕ U⊕3

with its (2, 0)-part contained in U(2)⊕3 (under the above embedding) is Hodge isometric
to the Hodge structure of a Kummer surface.

Also note that for a torus A and its Kummer surface X, there exists an isomorphism
of Hodge structures of K3 type

T (A) ' T (X),

which, however, fails to be a Hodge isometry by the factor two in (2.5). In particular,
there exists a primitive embedding

T (X) �
� // U(2)⊕3
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of the transcendental lattice T (X) of any Kummer surface X. Also,

16 ≤ ρ(X) ≤ 22

and, more precisely, ρ(X) = ρ(A) + 16. See Corollary 14.3.20 for a characterization of
Kummer surfaces in terms of their transcendental lattice.

2.6. The actual computation of the transcendental lattice T (X) of any particular
K3 surface, even such an explicitly described one as the Fermat quartic, can be difficult.
Already determining the Picard rank, or equivalently the rank of T (X), or the quadratic
form on T (X)⊗Q is usually not easy.
For the Fermat quartic X ⊂ P3, x4

0 + . . .+x4
3 = 0, the computation has been done. The

problem is intimately related to the question whether the lines contained in a Fermat
quartic surface generate, rationally or even integrally, NS(X), which turns out to be
equivalent to disc NS(X) = −64. The answer to this question is affirmative and a modern
proof has been given by Schütt, Shioda, and van Luijk in [538], which also contains
historical comments (in particular, that disc NS(X) = −16 or −64 had already been
shown in [490]).
In any case, the final result is that for a Fermat quartic X ⊂ P3 one has

T (X) ' Z(8)⊕ Z(8) and NS(X) ' E8(−1)⊕2 ⊕ U ⊕ Z(−8)⊕ Z(−8).

See Section 14.0.3 for the notation. In particular, the discriminant of NS(X) is −64.2 In
Section 17.1.4 one finds more comments and similar examples.

3. Endomorphism fields and Mumford–Tate groups

For any complex K3 surface, one has the two sublattices

NS(X), T (X) ⊂ H2(X,Z).

As we shall see, they are each other’s orthogonal complement. Thus, there is a natural
inclusion T (X) + NS(X) ⊂ H2(X,Z). However, for non-projective X the sum need not
be direct nor the inclusion of finite index.

3.1. Recall that the transcendental part, integral or rational, of a Hodge structure
of K3 type is the minimal primitive sub-Hodge structure of K3 type, see Definition 2.5.
Alternatively, one has:

Lemma 3.1. The transcendental lattice of a complex K3 surface is the orthogonal
complement of the Néron–Severi group:

T (X) = NS(X)⊥.

If X is projective, then T (X) is a polarizable irreducible Hodge structure, cf. Lemma 2.7.

2In [561] Shioda shows that in characteristic p > 0 one still has disc NS(X) = −64 for p ≡ 1(4) (and
ρ(X) = 20), but disc NS(X) = −p2 for p ≡ 3(4) (and ρ(X) = 22), cf. Sections 17.2.3. Are lines still
generating NS(X)?
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Proof. To shorten the notation, we write T = T (X) and N = N(X).
Any integral class orthogonal to T is in particular orthogonal to H2,0(X) and thus of

type (1, 1). Then, by Lefschetz theorem on (1, 1)-classes (cf. (3.2) in Chapter 1) T⊥ ⊂ N .
As H2,0(X) is orthogonal to N and thus contained in N⊥C , one has T ⊂ N⊥ by minimality
of T . Taking orthogonal complements yields N⊥⊥ ⊂ T⊥. Combined with the obvious
N ⊂ N⊥⊥, this yields

T⊥ ⊂ N ⊂ N⊥⊥ ⊂ T⊥.
Therefore, equality holds everywhere and thus T ⊂ T⊥⊥ = N⊥. It suffices, therefore, to
show T = T⊥⊥. To see this, note that TR always contains the positive plane (T 2,0⊕T 0,2)∩
TR and that T is either non-degenerate, and then clearly T = T⊥⊥, or has exactly one
isotropic direction. In the second case and after diagonalizing the intersection form on
H2(X,R) to (1, 1, 1,−1, . . . ,−1), one may assume that TR = 〈e1, e2, e3 + e4, e5, . . . , en〉.
Then T⊥R = 〈e3+e4, en+1, . . . , e22〉 and TR = T⊥⊥R , which implies that the natural inclusion
T ⊂ T⊥⊥ is an equality.
If X is projective, the intersection form on NS(X) is non-degenerate due to the Hodge

index theorem. The negative of the intersection pairing (1.7) defines a polarization on
the Hodge structure T (X) = NS(X)⊥. For any sub-Hodge structure T ′ ⊂ T (X) either
T ′C or its orthogonal complement contains H2,0(X). Thus, by the minimality of T (X)

either T ′ = 0 or T ′ = T (X). �

Example 3.2. For a non projective K3 surface, T (X) = NS(X)⊥ need not be irre-
ducible or polarizable. Suppose X is a K3 surface with NS(X) spanned by a non-trivial
line bundle L of square zero. In particular, X is not algebraic. The existence of such
a K3 surface is a consequence of the surjectivity of the period map, see Theorem 7.4.1.
In this case NS(X)⊥ is the kernel of (L. ) : H2(X,Z) //Z and contains the non-trivial
sub-Hodge structure spanned by L. Thus, in the non-algebraic case T (X) = NS(X)⊥ is
not necessarily irreducible and the intersection T (X) ∩NS(X) might be non-trivial.
Geometrically, K3 surfaces of this type are provided by elliptic K3 surfaces without

any multisection. For a concrete algebraic example consider V = Q4 with diagonal
intersection form (1, 2, 1,−1). Then let ` = e1 + e4 and V 2,0 be spanned by σ := (e2 +

`) + i(
√

2e3 + `). One easily checks that 〈`〉⊥ in this case is spanned by e2, e3, `. Due to
the
√

2 in the definition of σ, the class ` is indeed the only Hodge class up to scaling.
In a similar fashion, one constructs examples of complex K3 surfaces with Pic(X)

spanned by a line bundle L with (L)2 < 0.

3.2. Let us next note the following elementary but very useful statement.

Lemma 3.3. Let T be a rational (or integral) Hodge structure of K3 type, such that
there is no proper (primitive) sub-Hodge structure 0 6= T ′ ⊂ T of K3 type. If a : T // T

is any endomorphism of the Hodge structure with a = 0 on T 2,0, then a = 0.

Proof. By assumption, T ′ := Ker(a) ⊂ T is a Hodge structure with T ′2,0 6= 0 (and
T/T ′ torsion free). Hence, T ′ = T and so a = 0. �
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The result is usually applied to irreducible Hodge structures, e.g. T (X)Q of a projective
K3 surface, but it also applies to T (X)Q of a non-projective K3 surface. In this case,
T (X)Q may or may not be irreducible, but it still satisfies the assumption of the lemma.
The lemma is often used to deduce from a = id on T 2,0 that a = id, which is of course
equivalent to the above version.
The next result is formulated in the geometric context but it holds for the transcen-

dental lattice of any polarized Hodge structure of K3 type.

Corollary 3.4. Let a : T (X) ∼− // T (X) be a Hodge isometry of the transcendental
lattice of a complex projective K3 surface. Then there exists an integer n > 0 such that
an = id. In fact, the group of all Hodge isometries of T (X) is a finite cyclic group.

Proof. Consider V (X) := T (X)R∩(H2,0⊕H0,2)(X) and its orthogonal complement
V (X)⊥ in T (X)R. Then the intersection form restricted to V (X) is positive definite and
restricted to V (X)⊥ negative definite, for X is assumed projective. The decomposition
T (X)R = V (X) ⊕ V (X)⊥ is preserved by a. Hence, the eigenvalues of a|V (X) and of
a|V (X)⊥ (and thus also of a itself) are all of absolute value one
On the other hand, a is defined on the integral lattice T (X) and, therefore, its eigen-

values are all algebraic integers. Thus, if λ is the algebraic integer that is the eigenvalue of
the action of a on T (X)2,0, then |λi| = 1 for all its conjugates λi. Hence, by Kronecker’s
theorem, λ is a root of unity, say λ = ζn. Then an = id on T (X)2,0 and, therefore,
an = id by Lemma 3.3.
For the second statement, one argues that the group of Hodge isometries T (X) ∼− //

T (X) is discrete and a subgroup of the compact O(V (X)) × O(V (X)⊥) and, therefore,
necessarily finite. On the other hand, any Hodge isometry of T (X) is determined by its
action on H2,0(X). Thus, the group of Hodge isometries of T (X) can be realized as a
finite subgroup of C∗ and is, therefore, cyclic. �

The following has been observed by Oguiso in [467, Lem. 4.1] (see also [384, Lem.
3.7]) and can be used to determine Aut(X) for a general complex projective K3 surface,
see Corollary 15.2.12. It is curious that the same argument comes up when showing that
the Tate conjecture implies that the Picard number of any K3 surface over F̄p is even, cf.
Corollary 17.2.9.

Corollary 3.5. Let X be a complex projective K3 surface of odd Picard number or,
equivalently, with rkT (X) ≡ 1 (2). Then the only Hodge isometries of T (X) are ±id.

Proof. For an isometry a of T (X), λ is an eigenvalue if and only if λ−1 = λ̄ is an
eigenvalue. Hence, the number of those eigenvalues 6= ±1 must be even. Therefore, if
T (X) is of odd rank, then 1 or −1 occurs as a eigenvalue and a corresponding eigenvector
can be chosen in the lattice T (X), i.e. there exists at least one 0 6= α ∈ T (X) with
a(α) = ±α. If now a is a Hodge isometry with a 6= ±id, then a = ζm · id on H2,0(X),
m > 2, as above. Pairing α with H2,0(X) shows that α has to be orthogonal to H2,0(X),
i.e. α ∈ H1,1(X,Z), which contradicts α ∈ T (X) (for T (X) is irreducible). �
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The situation changes when one considers rational Hodge isometries. This is discussed
next.

3.3. For an arbitrary irreducible rational(!) Hodge structure T of K3 type one
considers its endomorphism field K(T ) of all morphisms a : T // T of Hodge structures,
which is a Q-algebra endowed with a Q-algebra homomorphism

ε : K := K(T ) := EndHdg(T ) //C

defined by a|T 2,0 = ε(a)·id. Note that at this stage the endomorphisms a are not assumed
to be compatible with any polarization and, in fact, T need not even admit a polarization.

Corollary 3.6. The map ε is injective and K is a number field.

Proof. The injectivity follows from Lemma 3.3. In particular, K is commutative
and obviously finite-dimensional over Q. To show that K is a field, consider a with
ε(a) 6= 0. Then Ker(a) ⊂ T is a proper sub-Hodge structure, as it does not contain T 2,0.
However, T is irreducible and hence Ker(a) = 0. Therefore, a is an isomorphism and can
thus be inverted. �

What kind of algebraic number fields does one encounter as the endomorphism rings
EndHdg(T ) of irreducible Hodge structures T of K3 type?

Before stating the result, recall that a number field K0 is called totally real if all
embeddings K0

� � // C take image in R ⊂ C. An extension K0 ⊂ K is a purely imaginary
quadratic extension if there exists an element α such that K = K0(

√
α) and ρ(α) ∈ R<0

for all embeddings ρ : K0
� � // C. If K is a purely imaginary quadratic extension of a

totally real field, then K is a CM field.
The following result, for which we provide an elementary proof in Section 3.5, is due to

Zarhin [644, Thm. 1.5.1]. See also Borcea’s [75] for the existence of the Hodge isometry
in the CM case.

Theorem 3.7. Let K = K(T ) be the endomorphism field K(T ) of a polarizable irre-
ducible rational Hodge structure T of K3 type. Then either K is totally real or a CM
field. If K is a CM field, then there exists a Hodge isometry η such that K = Q(η).

Remark 3.8. In [202] van Geemen shows that any totally real field K is realized as
K(T ) of a polarized rational Hodge structure T of K3 type. Moreover, m := dimK T ≥ 3

can be prescribed. If m · [K : Q] ≤ 10, then K is realized as K(T (X)) of the general
member X of an (m− 2)-dimensional family of K3 surfaces.
Pjateckĭı-Šapiro and Šafarevič show in [491] that any CM field K with [K : Q] ≤ 16

can be realized as K(T (X)) of a K3 surfaces which moreover satisfies dimK T = 1 or,
equivalently, dimQ T = [K : Q], see (3.2). The condition on the degree has recently be
weakened by Taelman to [K : Q] ≤ 20, see [579]. Note that dimK T1 implies that K is
a CM field, see Remark 3.14.
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3.4. The endomorphism ring is crucial in determining the Mumford–Tate group.
We shall first recall the definition of the Mumford–Tate group and its characterization in
terms of Hodge classes.
Consider a polarizable Hodge structure on a rational vector space V in terms of the

representation ρ : S //GL(VR), see Remark 1.8. The Hodge group Hdg(V ) and the
Mumford–Tate group MT(V ) of V are defined as the smallest algebraic subgroups of
the linear algebraic group GL(V ) over Q with

ρ(U(R)) ⊂ Hdg(V )(R) and ρ(S(R)) ⊂ MT(V )(R).

Here, U ⊂ S is the kernel of the norm Nm: S //Gm,R, so U(R) = {z | zz̄ = 1} ⊂ S(R).
The two groups can also be related via the surjective and finite morphism

Hdg(V )×Gm // //MT(V ), (g, µ) � // gµ.

By definition, Hodge classes in V are invariant under the action of Hdg(V ). More
generally:
• A subspace W ⊂

⊕
V ⊗ni ⊗ V ∗⊗mi is a sub-Hodge structure if and only if it is

preserved by the natural action of MT(V ).
• In particular, a vector v ∈

⊕
V ⊗ni ⊗ V ∗⊗mi is a Hodge class if and only if it is

invariant up to scaling under the natural action of MT(V ).
In fact, the last property characterizes MT(V ). More precisely, if a subgroup of GL(V )

fixes every Hodge class of weight zero in any
⊕
V ⊗ni⊗V ∗⊗mi⊗Q(n), then it is contained

in MT(V ). This hinges on the fact that MT(V ) is a reductive group for polarizable Hodge
structure, see [143, Ch. I] or [201, 418, 526].
Zarhin also proves in [644] the following:

Theorem 3.9. Let (T, ψ) be an irreducible polarized rational Hodge structure of K3 type
with endomorphism field K = K(T ). Then its Hodge group is the subgroup of K-linear
special isometries:

(3.1) Hdg(T ) = SOK(T ) ⊂ SO(T ).

Equivalently, the Hodge group can be described as

Hdg(T ) =

{
SO(T,Ψ) if K is totally real
U(T,Ψ) if K is a CM field.

Here, the pairing Ψ: T × T //K is defined by the condition that for all a ∈ K one has
ψ(av, w) = TrK/Q(aΨ(v, w)). An elementary computation shows that Ψ is symmetric
if K is totally real and sesquilinear if K is a CM field. (Complex conjugation on K is
described by (3.3) below.)
The inclusion Hdg(T ) ⊂ SOK(T ) follows from the minimality of Hdg(T ) and the ob-

servation that U(R) commutes with the action of K and hence ρ(U(R)) ⊂ Hdg(T )(R) ⊂
SOK(T )(R). Similarly, the inclusion Hdg(T ) ⊂ SO(T,Ψ) (resp. ⊂ U(T,Ψ)) is deduced
from the fact that for all a ∈ K and all z ∈ C∗ with zz̄ = 1 one has

ψ(a(ρ(z)(v)), ρ(z)(w)) = (zz̄) · ψ(av, w) = ψ(av, w),
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where one uses that ψ is a polarization. The other inclusion is deduced from a comparison
of dimensions. For the description of real points of the Hodge group see [202, Sec. 2.7].

Remark 3.10. In [491] Pjateckĭı-Šapiro and Šafarevič define a complex projective
K3 surface to have CM if Hdg(T ) is commutative. This turns out to be equivalent to
dimK T = 1, see [644, Rem. 1.5.3], and implies the weaker property that K is a CM field,
cf. Remark 3.14. Moreover, due to [491, Thm. 4] a K3 surface that has CM in the sense
of [491] is defined over a number field.
Also note that any complex K3 surface of maximal Picard number ρ(X) = 20 has

CM. Indeed, in this case Hdg(X) as a subgroup of SO(2) is commutative. Alternatively,

observe that
(

1 b/a

−b/c 1− b2/ac

)
defines an orthogonal transformation of the rank two

lattice with intersection form
(

2a b

b 2c

)
given by T (X), which automatically preserves the

Hodge structure, cf. the discussion in Section 14.3.4. So, K 6= Q and hence dimK T = 1.

For completeness sake, we mention at this point the Mumford–Tate conjecture which
conjecturally relates Hodge theory and Galois theory via a comparison of Mumford–Tate
groups and algebraic monodromy groups. Compare the discussion here with the one of
the Tate conjecture in Section 17.3. Here and there, we restrict to degree two. For a
geometric version of the following discussion see Section 6.4.3.
Let X be a smooth projective variety over a finitely generated field k of characteristic

zero with the natural Galois action

ρ` : Gal(k̄/k) //GL(H2
ét(X,Q`(1))).

Consider the Zariski closure of Im(ρ`) ⊂ Im(ρ`) ⊂ GL(H2
ét(X,Q`(1))), which often is

called the `-adic algebraic monodromy group.
On the other hand, any embedding k �

� // C yields a complex variety XC whose singular
cohomology H2(XC,Q) is endowed with the action of the Mumford–Tate group. The
Mumford–Tate conjecture then predicts that under the usual comparison isomorphism
H2
ét(X,Q`(1)) ' H2(XC,Q) ⊗ Q`(1) the identity component Im(ρ`)

o
coincides with the

Mumford–Tate group, cf. [545]. The conjecture has been proved for K3 surfaces over
number fields by Tankeev [582, 583] and André [7].

Theorem 3.11. Let X be a K3 surface over a finitely generated field k ⊂ C. Then for
all `

Im(ρ`)
o

= MT(H2(XC,Q(1)))×Q Q`.

At least morally, the Mumford–Tate conjecture follows from the conjunction of the
Hodge conjecture and the Tate conjecture. The Hodge conjecture for H2(XC,Z), which
is nothing but the Lefschetz theorem on (1, 1)-classes (see (3.2) in Section 1.3.3), implies
that NS(XC) ⊗ Q` ' H2(XC,Q`(1))MT and the Tate conjecture for finitely generated
fields of characteristic zero, which is proved via the Kuga–Satake construction (see Section
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17.3.2), shows NS(X)⊗Q` ' H2
ét(X,Q`(1))Gal(k̄/k). So, at least after finite base change:

H2(XC,Q`(1))MT = H2
ét(X,Q`(1))Im(ρ`).

For the geometric analogue of the Mumford–Tate conjecture see Section 6.4.3.

3.5. Here is a completely elementary proof of Theorem 3.7. Let us consider the
embeddings K �

� // C. We denote by

ρ1, . . . , ρr : K �
� // R ⊂ C and σ1, σ̄1, . . . , σs, σ̄s : K �

� // C

the real and complex embeddings. In particular, [K : Q] = r+2s. Then TrK/Q of any a ∈
K can be written as TrK/Q(a) =

∑
ρi(a)+

∑
σj(a)+

∑
σ̄j(a) =

∑
ρi(a)+2

∑
Re(σj(a))

and considering T as a vector space over K yields

(3.2) dimQ T = dimK T · [K : Q] and TrT/Q(a) = dimK T · TrK/Q(a).

In a first step, we identify a totally real field K0 ⊂ K and then show that either
K0 = K or that K0 ⊂ K is purely imaginary quadratic. In order to define K0, we use
the polarization ψ and let 〈 , 〉 := −ψ( , ). This is a non-degenerate symmetric bilinear
form on T of signature (2,m) such that its R-linear extension is positive definite on
(T 2,0⊕T 0,2)∩TR and such that the decomposition TR = (T 1,1∩TR)⊕ ((T 2,0⊕T 0,2)∩TR)

is orthogonal with respect to 〈 , 〉. In particular, the R-linear extension of 〈 , 〉 is negative
definite on (T 1,1 ∩ TR).
Then one defines an involution K //K, a � // a′ by the condition

(3.3) 〈av, w〉 = 〈v, a′w〉

for all v, w ∈ T . In other words, a′ is the formal adjoint of a with respect to 〈 , 〉.

Lemma 3.12. If a ∈ K, then a′ ∈ K, i.e. with a also a′ preserves the Hodge structure.

Proof. Suppose w ∈ T 1,1. Then 〈av, w〉 = 0 for all v ∈ T 2,0 ⊕ T 0,2, because av is
again of type (2, 0) + (0, 2). Hence a′(w) is orthogonal to T 2,0 ⊕ T 0,2 and thus again of
type (1, 1). The proof that a′ preserves T 2,0 and T 0,2 is similar. �

Clearly, (ab)′ = a′b′, i.e. a � // a′ is an automorphism of K. Also observe that for a ∈ K
and all v, w ∈ T one has 〈av, aw〉 = 〈v, a′aw〉. Hence, a′a = 1 if and only if a is an
isometry.
Denote by K0 ⊂ K the subfield of all a ∈ K with a′ = a. Since a � // a′ is an automor-

phism of K of order two, its fixed field K0 satisfies [K : K0] ≤ 2.
To study K0, it is more convenient to work with a positive definite symmetric bilinear

form, which however is only defined over R. One defines ( , ) on TR by setting

( , ) = 〈 , 〉 on (T 2,0 ⊕ T 0,2) ∩ TR and ( , ) = −〈 , 〉 on T 1,1 ∩ TR.

As it turns out, for any a ∈ K, the formal adjoint a′ with respect to 〈 , 〉 is also the
formal adjoint of the R-linear extension of a with respect to ( , ).
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For any 0 6= a ∈ K let

ξa := a′a = aa′ ∈ K,

which satisfies:

(i)) (ξav, w) = (v, ξaw) for all v, w ∈ TR, i.e. ξa is self-adjoint.
(ii)) (ξav, v) = (av, av) > 0 for all 0 6= v ∈ TR.
(iii)) ξa = a2 for a ∈ K0.

In particular, all eigenvalues of ξa are positive and, therefore, TrT/Q(ξa) > 0 and also
TrK/Q(ξa) > 0.

Lemma 3.13. Any number field L satisfying TrL/Q(a2) > 0 for all 0 6= a ∈ L is totally
real. In particular, K0 is totally real.

Proof. Suppose s > 0, i.e. there exists at least one embedding σs : L �
� // C which is

not real. Using L⊗Q R ' Rr ⊕ Cs, one finds an a ∈ L such that ρi(a) and σj(a) are all
close to zero for all i and all j < s, and σs(a) close to

√
−1.

By assumption 0 < TrL/Q(a2) =
∑

i ρi(a
2) + 2

∑
j<s Re(σj(a

2)) + 2Re(σs(a
2)). On the

other hand, by construction, ρi(a2) = ρi(a)2 and σj(a2) = σj(a)2 for j < s are all close to
zero, whereas σs(a2) is close to −1. This yields the contradiction 0 < TrL/Q(a2) < 0. �

We can now prove the first part of Theorem 3.7.

Proof. We have to show that either K0 = K or, if not, then K/K0 is a purely
imaginary quadratic extension. As observed earlier, if K0 6= K, then [K : K0] = 2 and,
therefore, we can write K = K0(

√
α) for some α ∈ K0.

Fix one real embeddingK0 ⊂ R and suppose α ∈ R>0. The natural inclusionK0(
√
α) ⊂

R yields one real embedding ρ1 : K //R and we set ρ2 := ρ1 ◦ ( )′, which is the identity
on K0 and sends

√
α to −

√
α.

Let us denote the remaining embeddings of K by ρ3, . . . , ρd (which may be real or
complex).
Similar to the argument used in the proof of Lemma 3.13 we choose a ∈ K such that

ρ1(a) ∼ −1, ρ2(a) ∼ 1 and ρi(a) ∼ 0 for i ≥ 3. Then, 0 < TrK/Q(ξa) = TrK/Q(aa′)

is contradicted by TrK/Q(aa′) = ρ1(aa′) + ρ2(aa′) +
∑

i≥3 ρi(aa
′) ∼ ρ1(aa′) + ρ2(aa′) =

ρ1(a)ρ1(a′) + ρ2(a)ρ2(a′) = 2ρ1(a)ρ2(a) ∼ −2. �

Remark 3.14. i) In the case of complex multiplication, the involution a � // a′ is given
by complex conjugation for all complex embeddings.
ii) If dimQ T is odd, then K0 = K, i.e. K is totally real. Indeed, by (3.2) [K : Q]

divides dimQ T and [K : Q] is even for a CM field.
iii) If dimK T = 1, i.e. [K : Q] = dimQ T , then K is a CM field. To prove this, consider

T ⊗Q C =
⊕
Tρ, where the sum runs over all ρ : K �

� // C and Tρ is the C-subspace on
which the elements α ∈ K act by multiplication with ρ(α). Clearly dimC T ⊗Q C =

dimQ T = dimQK = [K : Q] and hence dimC Tρ = 1. Suppose K were totally real.
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Then K = Q(α) with ε(α) ∈ R. Hence T 2,0 and T 0,2 are both contained in Tε, which
contradicts dimC Tε = 1.3

As mentioned above, a ∈ K is an isometry if and only if ξa = a′a = 1. For a ∈ K0, this
is only possible if a = ±1. Thus, in the case of real multiplication, there exist very few
Hodge isometries of T . For the CM case, the situation is completely different, as asserted
by the second part of Theorem 3.7. This is proved as follows.

Proof. WriteK = K0(
√
−D) withD ∈ K0 positive under each embeddingK0

� � // R
and fix a primitive element β ∈ K0, i.e. K0 = Q(β).
We start out by showing that Q(D(β + γ)) = K0 for most γ ∈ Q. To see this, let

Q ⊂ Mγ := Q(D(β + γ)) ⊂ K0. If Mγ′ ⊂ Mγ for γ′ 6= γ in Q, then Mγ = K0. Indeed,
the inclusion implies D(β + γ) −D(β + γ′) ∈ Mγ and hence D ∈ Mγ . The latter yields
β ∈Mγ , i.e. Mγ = K0. Since K0 only has finitely many subfields, Mγ/2 = K0 for all but
finitely many γ ∈ Q.
Similarly, one defines for γ ∈ Q the subfield Lγ := Q(D(β + γ)2) ⊂ K0. For an infinite

set S ⊂ Q the field Lγ is the same for all γ ∈ S. Among the infinitely many sums
γ + γ′ with γ, γ′ ∈ S pick one for which M(γ+γ′)/2 = K0. Then use D(2β + γ + γ′)(γ −
γ′) = D(β + γ)2 − D(β + γ′)2 to deduce that K0 = M(γ+γ′)/2 = Q(D(2β + γ + γ′)) =

Q(D(2β + γ + γ′)(γ − γ′)) ⊂ Q(D(β + γ)2, D(β + γ′)2) = Q(D(β + γ)2) ⊂ K0. Hence,
Q(D(β + γ)2) = K0.
From the above discussion we only need that there exists a primitive element of the

form D/ξ2, i.e. K0 = Q(D/ξ2), with ξ ∈ K0.
Then let η := (D−ξ2)/(D+ξ2)+2ξ

√
−D/(D+ξ2) ∈ K and check that ηη′ = ηη̄ = 1, i.e.

η is a Hodge isometry, and η+ η̄ = 2(1− 2(D/ξ2 + 1)−1). The latter shows D/ξ2 ∈ Q(η).
Since also

√
−D ∈ Q(η), this suffices to conclude K = Q(η). �

References and further reading:
For the theory of Hodge structures see e.g. [143, 165, 201, 219, 251, 617]. Abelian varieties

and complex tori are studied in depth in [63, 64, 137, 441]. In [7, Thm. 1.6.1] André generalizes
the results of Zarhin and Tankeev to higher dimensions. Explicit examples of K3 surfaces with
real multiplication have been studied by van Geemen in [202] as double planes ramified over the
union of six lines. For examples defined over Q see the work [169] of Elsenhans and Jahnel, cf.
Section 17.2.6.

3Thanks to Uli Schlickewei for his help with the argument.





CHAPTER 4

Kuga–Satake construction

The Kuga–Satake construction associates with any Hodge structure of weight two a
Hodge structure of weight one. Geometrically, this allows one to pass from K3 surfaces
to complex tori. This chapter introduces the basic ingredients of the construction and
collects examples that describe the Kuga–Satake variety for special K3 surfaces explicitly.
The Kuga–Satake construction can be performed in families, which is of importance for
arithmetic considerations, see Section 6.4.4 for more details. The appendix contains a
brief discussion of Deligne’s proof of the Weil conjectures for K3 surfaces which relies on
the Kuga–Satake construction.

1. Clifford algebra and Spin-group

We begin by recalling some basic facts on Clifford algebras. For background and more
information on the subject see [15, 82, 86, 497].

1.1. Let K be a commutative ring. In all the examples we have in mind, K is either
Z or a subfield of C like Q or R. In any case, we shall assume that 2 is not a zero divisor
in K.
Consider a free K-module V of finite rank, so a finite-dimensional vector space when

K is a field, and a quadratic form q on V . The associated bilinear form is given by
q(v, w) := (1/2)(q(v+w)−q(v)−q(w)) which takes values in K[1/2]. The tensor algebra

T (V ) :=
⊕
i≥0

V ⊗i

with V ⊗0 := K is a graded non-commutative K-algebra. It can also be considered as a
K-superalgebra by defining the even part and the odd part of T (V ) as

T+(V ) :=
⊕
i≥0

V ⊗2i and T−(V ) :=
⊕
i≥0

V ⊗2i+1.

Let I := I(q) ⊂ T (V ) be the two-sided ideal generated by the even elements v⊗v−q(v),
v ∈ V . Here, q(v) ∈ K is considered as an element of K = V ⊗0 ⊂ T (V ). The Clifford
algebra is the quotient K-algebra

Cl(V ) := Cl(V, q) := T (V )/I(q).

The Clifford algebra has no longer a natural Z-grading. However, since I(q) is generated
by even elements, it still has a natural Z/2Z-grading and we write:

Cl(V ) = Cl+(V )⊕ Cl−(V ).

61
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Note that the even part Cl+(V ), the even Clifford algebra, is indeed a K-subalgebra,
whereas Cl−(V ) is only a two-sided Cl+(V )-submodule of Cl(V ). Also note that Cl−(V )

naturally contains V as a K-submodule via the projection V ⊂ T (V ) //Cl(V ).
The multiplication in Cl(V ) shall be written as v · w for v, w ∈ Cl(V ). Then by

construction, v · v = q(v) and v · w + w · v = 2q(v, w) in Cl(V ) for all v, w ∈ V . For the
latter simply spell out the equality (v +w) · (v +w) = q(v +w). Note that in particular
v · w = −w · v if v, w ∈ V are orthogonal.
If q = 0, then Cl(V ) '

∧∗ V and for an arbitrary quadratic form q over a field K any
choice of an orthogonal basis v1, . . . , vn of V leads to an isomorphism of K-vector spaces

Cl(V ) ∼− //
∧∗

V

mapping vi1 · . . . · vik ∈ Cl(V ) to vi1 ∧ . . . ∧ vik ∈
∧k V . Moreover, the isomorphism

is independent of the choice of the orthogonal basis. Thus, using an orthogonal basis
v1, . . . , vn of V one can write down a basis of Cl(V )

Cl(V ) =
⊕

ai∈{0,1}

K · va1
1 · . . . · v

an
n ,

which for a K-vector space of dimension n implies

dim Cl(V ) = 2n.

1.2. If Cl(V )∗ denotes the group of units of the Clifford algebra Cl(V ), then

CSpin(V ) := {v ∈ Cl(V )∗ | vV v−1 ⊂ V }

is called the Clifford group. Here, as before, we consider V as a submodule of Cl(V ) and
define for any v ∈ Cl(V )∗ the map V //Cl(V ), w � // v · w · v−1, the image of which is
denoted vV v−1. The even Clifford group CSpin+(V ) is defined similarly as the set of
units in Cl+(V ) mapping V to itself under conjugation.
To study the Clifford group one considers the map v � // (w � // v ·w ·v−1), which defines

an orthogonal representation

(1.1) τ : CSpin(V ) //O(V ).

It is orthogonal, as for any w ∈ V one has q(w) = w · w and thus q(v · w · v−1) =

(v · w · v−1) · (v · w · v−1) = v · (w · w) · v−1 = q(w)(v · v−1) = q(w) for v ∈ CSpin(V ).
Assume now that K is a field. Then, for v ∈ V with q(v) 6= 0 the reflection sv ∈ O(V )

is defined as

sv(w) := w − 2q(v, w)

q(v)
v

and characterized by the two properties sv(v) = −v and sv(w) = w for any w ∈ V

orthogonal to v. It is straightforward to check that τ(v)(v) = v and τ(v)(w) = −w for
all w ∈ v⊥ ⊂ V . Thus, τ(v) = −sv. Since for a non-degenerate q over a field K the
orthogonal group O(V ) is generated by reflections (Cartan–Dieudonné theorem, see e.g.
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[15, III. Thm. 3.20] or [497, Sec. 5.3.9]), one finds that in this case SO(V ) is contained
in τ(CSpin+(V )). More precisely, there exists a short exact sequence

(1.2) 0 //K∗ //CSpin+(V ) // SO(V ) // 0.

The Spin group is the subgroup of the even Clifford group defined by

(1.3) Spin(V ) := {v ∈ CSpin+(V ) | v · v∗ = 1}.

Here, v � // v∗ is the anti-automorphism of Cl(V ) defined by v = v1 · . . . · vk � // vk · . . . · v1,
where vi ∈ V . In other words, Spin(V ) is defined by the short exact sequence

(1.4) 0 // Spin(V ) //CSpin+(V ) //K∗ // 0.

Note that v � // v∗ does descend from T (V ) to Cl(V ), as it preserves the ideal I(q), and
clearly satisfies (v · w)∗ = w∗ · v∗. The exactness of (1.2) and the fact that the Clifford
norm v � // v · v∗ really takes image in K∗ involve the same type of computations.
For q non-degenerate and K an algebraically closed field (the existence of

√
q(v) ∈ K

for all v suffices) one has
τ(Spin(V )) = SO(V ).

The kernel of the surjection τ : Spin(V ) // SO(V ) consists of ±1 and the composition
K∗ //CSpin+(V ) //K∗ of the maps in (1.2) and (1.4) is λ � // λ2.

More conceptually, one defines Spin(V ) as a linear algebraic group defined over K
and the above construction describes the group of K-rational points of it. Moreover,
the constructions are all natural. For example, for a base change L/K one has natural
isomorphisms Cl(VL) ' Cl(V )L, Spin(VL) ' Spin(V )L, etc., i.e. the set of L-rational
points of the algebraic group Spin(V ) defined over K coincides with the group Spin(VL)

as defined above. Also, the Clifford algebra behaves well under direct sums, i.e. there
exists a natural isomorphism of Z/2Z-graded algebras

Cl(V1 ⊕ V2) ' Cl(V1)⊗ Cl(V2),

where the tensor product is Z/2Z-graded, i.e. (v ·v′)⊗(w ·w′) = (−1)|v
′||w|(v⊗w)·(v′⊗w′)

for v, v′ ∈ Cl(V1) and w,w′ ∈ Cl(V2) with v′ and w homogeneous.

Remark 1.1. The tensor construction V � //Cl±(V ) can be upgraded to a functor on
the category of polarized Hodge structures of weight zero. If V is of type (1,−1)+(0, 0)+

(−1, 1) with dimV 1,−1 = 1, then also Cl±(V ) is of type (1,−1) + (0, 0) + (−1, 1). This is
later applied to H2(X,Z(1)) of a K3 surface X.

2. From weight two to weight one

We start with a Hodge structure V of K3 type, see Definition 3.2.3, and assume that
V is endowed with a polarization −q. The first step is to construct a natural complex
structure on the real vector space Cl+(VR) which can be interpreted as a Hodge structure
of weight one. The second step consists of constructing a polarization for this new Hodge
structure of weight one.
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2.1. The Hodge structure of V induces a decomposition of the real vector space

VR =
(
V 1,1 ∩ VR

)
⊕
(
(V 2,0 ⊕ V 0,2) ∩ VR

)
.

The C-linear hull of the second summand is V 2,0 ⊕ V 0,2 which by assumption is two-
dimensional. Thus, with respect to q the real space (V 2,0⊕V 0,2)∩VR is a positive plane,
see Section 3.1.3.
Pick a generator σ = e1 + ie2 of V 2,0 with e1, e2 ∈ VR and q(e1) = 1. Then q(σ) = 0

implies q(e1, e2) = 0 and q(e2) = 1, i.e. e1, e2 is an orthonormal basis of (V 2,0⊕V 0,2)∩VR.
Hence, e1 · e2 = −e2 · e1 in Cl(VR), which shows (see also (2.6)) that left multiplication
with

J := e1 · e2 ∈ CSpin+(VR) ⊂ Cl(VR)

induces a complex structure on the real vector space Cl(VR), i.e. J2 ≡ −id. Obviously, J
preserves Cl+(VR) and Cl−(VR).
Let us check that the complex structure J is independent of the choice of the orthonor-

mal basis e1, e2. Suppose σ′ = e′1 + ie′2 is another generator of V 2,0 with q(e′1) = 1.
Then σ = λσ′ for some λ ∈ C∗. Writing λ = a + ib, this yields e1 = ae′1 − be′2 and
e2 = ae′2 + be′1. A simple calculation in Cl(V ) then reveals that e1 · e2 = (a2 + b2)(e′1 · e′2).
But q(e1) = q(e′1) = 1 implies a2 + b2 = 1.
Now one defines the Kuga–Satake Hodge structure as the Hodge structure of weight

one on Cl+(V ) given by

(2.1) ρ : C∗ //GL(Cl+(V )R), x+ yi � // x+ yJ.

Note that by the same procedure one obtains a Hodge structure of weight one on the full
Clifford algebra Cl(V ) and on its odd part Cl−(V ).

Remark 2.1. i) If the Hodge structure on V is, as in Remark 3.1.8, interpreted in terms
of the morphism of real algebraic groups ρ : S //GL(VR), then the above construction
can be viewed more abstractly as a lift

S
ρ(1)

//

ρ̃ &&

SO(VR(1)) ⊂ GL(VR)

CSpin+(VR),

τ
OOOO

which becomes unique by requiring ρ̃|Gm,R : t � // t. Letting CSpin+(VR) act by multi-
plication from the left on Cl+(VR) yields the Hodge structure ρ̃ : S //GL(Cl+(VR)) de-
scribed by (2.1). Note that the Tate twists ρ(1) and VR(1), which turn V into a Hodge
structure of weight zero, are necessary for the commutativity of the diagram. See also
Remark 2.8 and the explicit computation in the proof of Proposition 2.6.
ii) For g̃ ∈ Spin(V ) let g := τ(g̃) ∈ SO(V ) be its image under τ : Spin(V ) // // SO(V ).

Consider a Hodge structure of K3 type on V given by σ = e1 + ie2 and its image under
g given by g(σ) = g(e1) + ig(e2). Denote the two Kuga–Satake Hodge structures on
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Cl+(V ) by ρ and ρ′, respectively. Then left multiplication with g̃ defines an isomorphism
of Hodge structures

(2.2) (Cl+(V ), ρ) ∼− // (Cl+(V ), ρ′), w � // g̃ · w.

Indeed, g̃ · (e1 · e2 · w) = g(e1) · g(e2) · (g̃ · w) by definition of τ . Note that there is also
another isomorphism of Hodge structures

(2.3) (Cl+(V ), ρ) ∼− // (Cl+(V ), ρ′), w � // g̃ · w · g̃∗,

which is the natural one induced by T (g) : T (V ) ∼− // T (V ).
The distinction between the two isomorphisms plays a role in the family version of the

construction to be discussed in Section 6.4.4. It turns out that (2.2) behaves better with
respect to the pairing in Section 2.2.

If the Hodge structure V was defined over Z, then the Kuga–Satake structure is an
integral Hodge structure of weight one which is equivalent to giving a complex torus.
More precisely, Cl+(V ) ⊂ Cl+(VR) is a lattice and the above defines the structure of a
complex torus on its quotient.

Definition 2.2. The Kuga–Satake variety associated with the integral Hodge structure
V of weight two is the complex torus.

KS(V ) := Cl+(VR)/Cl+(V ).

If the Hodge structure V was only defined over Q, then one obtains an isogeny class
of complex tori which for many purposes is already very useful. In fact, in most of the
examples below we content ourselves with the description of the Kuga–Satake variety up
to isogeny.

Remark 2.3. The Kuga–Satake construction works for any Hodge structure of K3
type with a quadratic form q that is positive definite on the real part of V 2,0 ⊕ V 0,2

and satisfies q(σ) = 0 for σ ∈ V 2,0. This allows one to define the Kuga–Satake variety
associated with H2(X,Z) for an arbitrary (possibly non-projective) K3 surface X and
without restricting to the primitive part first.

The dimension of KS(V ) is usually quite high. More precisely, as for n = dimC VC the
real dimension of Cl+(VR) is 2n−1, the complex dimension of KS(V ) is

dim KS(V ) = 2n−2.

This makes it in general very difficult to describe examples explicitly.
Note that the Hodge structures of weight one Cl+(V ) and Cl−(V ) are isogenous, al-

though not canonically. Indeed, choosing an orthogonal basis v1, . . . , vn of VQ one obtains
an isomorphism of complex (with respect to J) vector spaces

Cl+(VR) ∼− // Cl−(VR), v � // v · vn
which is defined over Q. This leads to an isogeny of KS(V ) with the analogous torus
defined in terms of Cl−(V ). Since an orthogonal basis of an integral Hodge structure
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usually does not exist (over Z), an isogeny is the best thing we can hope for even when
the given Hodge structure V is integral.

Example 2.4. Consider the case that V can be written as the direct sum of two Hodge
structures V = V1 ⊕ V2. As dim(V 2,0) = 1, one of the two, say V2, is pure of type (1, 1),
i.e. V 2,0

2 = 0. Then Cl+(V ) as a Hodge structure of weight one is isomorphic to the
product of 2n2−1 copies of Cl+(V1) × Cl−(V1), where n2 = dim(V2). Thus, KS(V1 ⊕ V2)

is isogenous to the product of 2n2 copies of KS(V1), which we shall write as

KS(V1 ⊕ V2) ∼ KS(V1)2n2
.

2.2. The next step in the Kuga–Satake construction is the definition of a polari-
zation, which makes the complex torus defined above an abelian variety. In order to
define a polarization on KS(V ), choose two orthogonal vectors f1, f2 ∈ V with q(fi) > 0.
Then define a pairing (ignoring the factor 2πi as usual)

(2.4) Q : Cl+(V )× Cl+(V ) //Q(−1), (v, w) � // ± tr(f1 · f2 · v∗ · w).

Here, tr denotes the trace of the endomorphism of Cl(V ) defined by left multiplication.
Since multiplication with fi interchanges Cl+(V ) and Cl−(V ), one has tr(fi) = 0. Using
tr(v ·w) = tr(w ·v), one also finds tr(v) = tr(v∗). Observe that Q is preserved under (2.2),
but not necessarily under (2.3). The sign in the definition of Q is not given explicitly,
but is determined in the course of the proof of the following

Proposition 2.5. Assume V is a Hodge structure of K3 type with a polarization −q.
Then, with the appropriate sign in (2.4), the pairing Q defines a polarization for the
Hodge structure of weight one on Cl+(V ).

Proof. Let us check that Q is a morphism of Hodge structures. We suppress the
sign, as it is of no importance at this point. For z = x+ iy ∈ C∗ one computes

Q(ρ(z)v, ρ(z)w) = tr(f1 · f2 · (ρ(z) · v)∗ · ρ(z) · w)

= tr(f1 · f2 · v∗ · (ρ(z)∗ · ρ(z)) · w) = (zz̄)Q(v, w),

using J∗ = −J and hence ρ(z)∗ · ρ(z) = x2 + y2.
It is obvious that Q is non-degenerate. Let us show that Q(v, ρ(i)w) is symmetric.

Q(v, ρ(i)w) = tr(f1 · f2 · v∗ · J · w) = tr((f1 · f2 · v∗ · J · w)∗)

= −tr(w∗ · J · v · (f1 · f2)∗) = tr(w∗ · J · v · (f1 · f2))

= tr(f1 · f2 · w∗ · J · v) = Q(w, ρ(i)v).

Here, one uses (f1 · f2)∗ = −f1 · f2 and that tr is symmetric.
It is in the last step, when showing that Q(v, ρ(i)w) is positive definite, that the sign

has to be chosen correctly and where one uses that −q is a polarization. If e1, e2 happen
to be rational, which in general they are not, then one can take fi = ei and a direct
computation yields the result. For the general case one uses that the space of all Hodge
structures of K3 type on V has two connected components (see Remark 6.1.6) and that
the property of being positive definite stays constant under deformations of the Hodge
structure in one of the two components. Passing from one connected component to the
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other, to eventually reach the point where one can take fi = ei, one may have to change
the sign. For details we refer to van Geemen [201, Prop. 5.9 ] or to Satake’s original
paper [521]. �

2.3. For a rational Hodge structure V of weight two of K3 type (see Definition
3.2.3) we have defined a Hodge structure Cl+(V ) of weight one. The tensor product
Cl+(V )⊗ Cl+(V ) carries a natural Hodge structure of weight two, see Section 3.1.1.

Proposition 2.6. Assume V is a Hodge structure of K3 type with a polarization −q.
Then there exists an inclusion of Hodge structures of weight two

V �
� // Cl+(V )⊗ Cl+(V ).

Dualizing and using the isogeny between V and V ∗, the above construction yields a
rational class of type (2, 2) in V ⊗Cl+(V )⊗Cl+(V ) with its natural Hodge structure of
weight four. The class is discussed below in the geometric situation.

Proof. Choose an element v0 ∈ V which is invertible in Cl(V ), i.e. q(v0) 6= 0. Then
consider the embedding (ignoring 2πi)

(2.5) V (1) = V ⊗Q(1) �
� // End(Cl+(V )), v � // fv : w � // v · w · v0.

It is injective, since fv(v1 · v0) = q(v0)(v · v1) for all v1 ∈ V .
We claim that this is a morphism of Hodge structures (of weight zero), which can be

checked by the following straightforward computation, but see [201, Prop. 6.3] for a more
conceptual proof.
Denote by ρV , ρV (1), and ρ the representations of C∗ corresponding to V , V (1), and

Cl(V ), respectively. Then we have to show that fρV (1)(z)v(w) = ρ(z)fv(ρ(z)−1w) for all
w ∈ VR, where

fρV (1)(z)v(w) = (ρV (1)(z)v) · w · v0 and ρ(z)fv(ρ(z)−1w) = ρ(z)(v · ρ(z)−1w · v0).

Thus, it suffices to prove

(2.6) ρV (1)(z)v = ρ(z) · v · ρ(z)−1,

where on the right hand side ρ(z) for z = x + iy is viewed as the element x + yJ =

x+ y(e1 · e2) and similarly ρ(z)−1 = (x2 + y2)−1(x− y(e1 · e2)). Therefore, the assertion
reduces to

ρV (1)(z)v = (x2 + y2)−1(x+ y(e1 · e2)) · v · (x− y(e1 · e2)).

We can treat the cases v ∈ V 1,1
R and v ∈ (V 2,0⊕V 0,2)∩VR separately. In the first case,

the assertion follows from ρV (1)(z)v = (zz̄)−1ρV (z)v = v (see Example 3.1.9) and

(x+ y(e1 · e2)) · v · (x− y(e1 · e2)) = (x+ y(e1 · e2)) · (x− y(e1 · e2)) · v = (x2 + y2)v

(use that v is orthogonal to e1, e2). For v = e1 one computes ρV (z)v = Re(z2)e1−Im(z2)e2

and

(x+ y(e1 · e2)) · v · (x− y(e1 · e2)) = (x+ y(e1 · e2)) · (xe1 − ye2)

= x2e1 − 2xye2 − y2e1 = (x2 − y2)e1 − 2xye2.
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The computation for v = e2 is similar.
The polarization of Cl+(V ) can be interpreted as an isomorphism Cl+(V )∗ ' Cl+(V )⊗

Q(1) and thus yields End(Cl+(V )) ' Cl+(V )∗⊗Cl+(V ) ' Cl+(V )⊗Cl+(V )⊗Q(1). �

Remark 2.7. Note that the embedding constructed above depends on the choice of
the vector v0. However, for another choice of v0, say v′0, the two embeddings differ by an
automorphism of the Hodge structure of weight one on Cl+(V ) given by w � // (1/q(v0))w ·
v0 · v′0. If one wants to avoid the choice of v0 altogether, then the construction described
above naturally yields an injection of Hodge structures

V �
� // Hom(Cl+(V ),Cl−(V )).

Remark 2.8. By definition, ρ(z) on Cl(V )R acts by left multiplication with an element
in Cl+(V )R. Equation (2.6) proves that this element is contained in CSpin(V ), cf. Remark
2.1, and also shows that for the orthogonal representation (1.1)

τ : CSpin(V ) //O(V )

one has τ(ρ(z)) = ρV (1)(z). Thus, the Hodge structure of weight zero on V (1), and hence
on V , can be recovered from the Hodge structure of weight one on KS(V ) by means of
the orthogonal representation CSpin(V ) //O(V ).
Thus, the Kuga–Satake construction

(2.7) KS: { Hodge structures of K3 type } �
� // { Hodge structures of weight one }

is injective.
Lets quickly check that the injectivity also holds on the infinitesimal level. For this,

we disturb the (2, 0)-form σ = e1 + ie2 ∈ V 2,0 by some α = α1 + iα2 ∈ V 1,1, so σ + εα

defines a first order deformation of the (2, 0)-part. The induced first order deformation
of J = e1 · e2 is then Jε = e1 · e2 + ε(α1 · e2 + e1 · α2).
The map

V 1,1 //Hom(Cl+(V )1,0,Cl+(V )0,1), α � // hα : w � // (α1 · e2 + e1 · α2) · w

is the differential dKS of (2.7), cf. Proposition ??.2.4. This proves that dKS is injective
and also that it is C-linear. Indeed, hiα = ihα, which for w ∈ Cl+(V )1,0 follows from
ihα(w) = −(e1 ·e2)·hα(w) = −(e1 ·e2)·(α1 ·e2−α2 ·e1)·w = (−α1 ·e1−α2 ·e2)·w = hiα(w).
The latter observation is interpreted as saying that KS is holomorphic, see Section 6.4.4.

2.4. We next explain a version of the above construction which turns out to be
important for arithmetic applications. Similarly to (2.5), one constructs a morphism of
Hodge structures

(2.8) Cl+(V (1)) �
� // End(Cl+(V )), v � // fv : w � // v · w,

which is injective as v = fv(1). Note that on the left hand side, Cl+(V (1)) is viewed as a
Hodge structure of weight zero (see Remark 1.1), whereas on the right hand side Cl+(V )

is the Kuga–Satake Hodge structure of weight one.
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Let now C be the opposite algebra of Cl+(V ) (without Hodge structure) which acts on
Cl+(V ) by right multiplication which respects the Hodge structure.
Furthermore, (2.8) is compatible with this action. So, Cl+(V (1)) �

� // EndC(Cl+(V )),
which is in fact an isomorphism of algebras (and also of Hodge structures)

(2.9) Cl+(V (1)) ' EndC(Cl+(V )).

The surjectivity is deduced from computing the dimension of the right hand side (after
passing to a finite extension of Q), see [201, Lem. 6.5]. Moreover, (2.9) is compatible
with the action of CSpin(V ) defined by conjugation w � // v · w · v−1 on Cl+(V (1)) and
by f � // (w � // v · f(v−1 · w)) on EndC(Cl+(V )) and, in fact, (2.9) is the only algebra
isomorphism of Spin(V )-representations, see [139, Prop. 3.5].
Note that (2.9) also holds for the case that V is an integral Hodge structure. Indeed,

(2.8) is certainly well-defined and becomes the isomorphism (2.9) after tensoring with Q.
Then use that the obvious inverse f � // f(1) is defined over Z.

2.5. Let us apply the abstract Kuga–Satake construction to Hodge structures as-
sociated with compact complex surfaces X with h2,0(X) = 1, e.g. K3 surfaces or two-
dimensional complex tori. The quadratic form q is in this case given by the standard
intersection pairing which is positive definite on (H2,0 ⊕H0,2)(X) ∩H2(X,R).

Definition 2.9. The Kuga–Satake variety KS(X) of X, for now just a complex torus,
is defined as the Kuga–Satake variety associated with H2(X,Z):

KS(X) := KS(H2(X,Z)).

There are variants of this construction. The Kuga–Satake construction can also be
applied to the transcendental lattice T (X), see Definition 3.2.5. This yields another
complex torus KS(T (X)) naturally associated with H2(X,Z). Note that KS(T (X)) is a
complex torus of (complex) dimension 2rkT (X)−2. For example, if X is a K3 surface of
maximal Picard number ρ(X) = 20, then KS(T (X)) is an elliptic curve.
Replacing T (X) by any other lattice T (X) ⊂ T (X)′ yields a complex torus KS(T (X)′).

If T (X)Q is a direct summand of T (X)′Q, for example when T (X)′ is polarizable, then
KS(T (X)′) is isogenous to KS(T (X))2d with d = rk(T (X)′/T (X)), see Example 2.4. In
particular, if H2(X,Z) is polarizable, then

KS(X) ∼ KS(T (X))2ρ

with ρ = ρ(X) is the Picard number of X. If X is projective and ` ∈ H2(X,Z) is an
ample class, one could also consider T (X)′ := `⊥ = H2(X,Z)p, the primitive cohomology
of (X, `). Then

KS(X, `) := KS(`⊥)

is a complex torus naturally associated with the polarized surface (X, `). Note that the
intersection form really is a polarization of `⊥ = H2(X,Z)p (up to sign) and, therefore,
KS(X, `) is an abelian variety. Moreover, there are natural isogenies

KS(X) ∼ KS(X, `)2 ∼ KS(T (X))2ρ .
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The relation between the various Kuga–Satake varieties up to isomorphism is more com-
plicated, for in general H2(X,Z) contains T (X) ⊕ NS(X) as a proper finite index sub-
group. However, the description up to isogeny suffices to show for example that KS(X) is
in fact an abelian variety. Note that for a very general (and in particular non-projective)
K3 surface or a very general two-dimensional torus, one has T (X) = H2(X,Z) and the
intersection form is not a polarization as it has three positive eigenvalues.

Remark 2.10. The Kuga–Satake construction is of a highly transcendental nature.
Essentially, only the transcendental lattice, which encodes algebraic information of X in
a very indirect way, really matters for KS(X). In particular, questions concerning the field
of definition of KS(X), e.g. when X is defined over a number field, are subtle. However,
one can show, for example, that the Kuga–Satake variety of a Kummer surface with
ρ = 20 is defined over some number field. Indeed, X is CM (i.e. K = EndHdg(T (X))

is a CM field and dimK T (X) = 1, cf. Remark 3.3.10), and using the Kuga–Satake
correspondence also KS(X) is shown to be CM [491, Lem. 4].

2.6. Let us revisit Proposition 2.6 in the geometric setting of H2(X,Q) for X a
complex K3 surface or a two-dimensional complex torus (or one of the other natural
Hodge structures of weight two considered above). First note that by Künneth formula
there exists an embedding of Hodge structures

H1(KS(X),Q)⊗H1(KS(X),Q) �
� // H2(KS(X)×KS(X),Q),

which composed with the inclusion constructed in Proposition 2.6 yields

H2(X,Q) ⊂ H2(KS(X)×KS(X),Q)

and thus corresponds to an element

κX ∈ H4(X ×KS(X)×KS(X),Q)

of type (2, 2), the Kuga–Satake class. By construction, the embedding and, therefore, the
Kuga–Satake class depend on the choice of a non-isotropic vector v0 ∈ H2(X,Q) which
we suppress. See the comment after the proof of Proposition 2.6. Of course, if the K3
surface is given together with a polarization, then v0 could be chosen naturally to be the
corresponding class.
As a special case of the Hodge conjecture one has

Conjecture 2.11 (Kuga–Satake–Hodge conjecture). Suppose X is a smooth complex
projective surface with h2,0(X) = 1. Then the class κX is algebraic.

The conjecture applies to K3 surfaces as well as to abelian surfaces. Clearly, the above
form is equivalent to the analogous one for the transcendental lattices.
The transcendental nature of the Kuga–Satake construction makes it difficult to ap-

proach the Kuga–Satake–Hodge conjecture. It is known in a few cases when the Kuga–
Satake variety can be described explicitly, see below. Also κX is known to be absolute
Hodge, cf. Remark 4.6.
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3. Kuga–Satake varieties of special surfaces

We outline the description of the Kuga–Satake variety for Kummer surfaces and special
double planes.

3.1. Let A be a two-dimensional complex torus. Via the Kuga–Satake construction
one associates with A another torus KS(A) = KS(H2(A,Z)) which is of dimension 16.
Working with the transcendental lattice or the primitive cohomology yields factors of the
latter but they tend to be of rather high dimension as well. What is the (geometric)
relation between the tori A and KS(A)? Since a torus is determined by its integral
Hodge structure of weight one, this amounts to ask for the relation between the two
Hodge structures of weight one H1(A,Z) and H1(KS(A),Z).
We have seen earlier thatH2(A,Z) is indeed isomorphic, as an integral Hodge structure,

to
∧2H1(A,Z), cf. Section 3.2.3. This is crucial for the proof of the next result which is

due to Morrison [423, Thm. 4.3]. We denote by Â the complex torus dual to A.

Proposition 3.1. Let A be a complex torus of dimension two. Then there exists an
isogeny

KS(A) ∼ (A× Â)4.

Proof. Here is an outline of the proof, leaving out most of the straightforward but
tedious verifications. Compare the arguments below to the more conceptual ones in [111].
To simplify notations, let us denote the Hodge structure of weight one H1(A,Q) by V .

Observe that the Q-vector space
∧2 V ' H2(A,Q) can be identified with the subspace

of Hom(V ∗, V ) consisting of all alternating morphisms. Similarly, we view
∧2 V ∗ as a

subspace of Hom(V, V ∗).
Consider ∧2

V //End(V ⊕ V ∗), u � //Au :=

(
0 u

−u∗ 0

)
,

where u∗ ∈
∧2 V ∗ is defined by u∗(u′) = q(u, u′) with respect to the intersection form q on∧2 V . Morally, one would like to use Clifford multiplication on the left hand side and the

algebra structure on the right to obtain an algebra morphism Cl(
∧2V ) //End(V ⊕V ∗).

This can be carried out and using that Au ·Au′ is diagonal, one obtains

(3.1) Cl+(
∧2

V ) //End(V )⊕ End(V ∗).

As dimQ V = 4, both sides are of the same dimension 25 and one can indeed check that
the morphism is bijective.
Now define a Hodge structure of weight one on End(V ) ⊕ End(V ∗) by (ρ(z)f)(v) =

ρ(z)(f(v)), i.e. only the Hodge structure on the target is used. Clearly, with this Hodge
structure End(V )⊕ End(V ∗) is isomorphic to (V ⊕ V ∗)4. It remains to show that (3.1)
is an isomorphism of Hodge structures.
For this let α = α1 + iα2, β = β1 + iβ2 ∈ V 1,0 be a basis such that e1 + ie2 =

α ∧ β satisfies q(e1) = 1. Thus, the complex structure on the left hand side of (3.1) is
given by multiplication with e1 · e2 which on the right hand side corresponds to matrix
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multiplication with−
(
e1 ◦ e∗2 0

0 e∗1 ◦ e2

)
. Using that e1 = α1∧β1−α2∧β2, etc., one checks

that, for example, −(e1 ◦ e∗2)(α) = iα. This shows that the morphism (3.1) preserves the
given Hodge structures of weight one on the two sides. �

Since an abelian surface A is isogenous to its dual Â, the result of Proposition 3.1 also
shows that for abelian surfaces

(3.2) KS(A) ∼ A8.

For a polarized abelian surface (A, `) the result yields an isogeny KS(A, `) ∼ A4.

Remark 3.2. The Kuga–Satake–Hodge Conjecture 2.11 is known for abelian surfaces.
Indeed, by work of Moonen and Zarhin [419, Thm. 0.1] the Hodge conjecture is known
to hold for arbitrary products An of any abelian surface A.

3.2. Let us now turn to K3 surfaces. Only in very few cases the Kuga–Satake
variety of a K3 surface has been described and in even fewer cases the Kuga–Satake–
Hodge Conjecture 2.11 has been verified. The latter might not be too surprising as even
for the self product X ×X of a K3 surface X the Hodge conjecture has not been proved
in general, see Remark 16.3.11.
Since the Kuga–Satake variety of a two-dimensional complex torus can be described as

explained above, it is tempting to attack the case of Kummer surfaces first. The results
here are again due to Morrison [423, Cor. 4.6] and Skorobogatov [569]. The case of
Kummer surfaces of maximal Picard rank 20 was already discussed by Kuga and Satake
in [329].

Proposition 3.3. Let X be the Kummer surface associated with the complex torus A.
Then there exists an isogeny

KS(X) ∼ (A× Â)218
.

For X or, equivalently, A algebraic, one has

KS(X) ∼ A219
.

Proof. We have seen earlier that the rational Hodge structure H2(X,Q) is isomor-
phic to the direct sum of H2(A,Q) and 16 copies of the pure Hodge structure Q(−1),
cf. Section 3.2.5. In particular, there is an isomorphism of Hodge structures of weight
two given by the transcendental lattice T (X)Q ' T (A)Q. Note, however, that the polar-
izations differ by a factor two, i.e. qX(α) = 2qA(α). Thus, any orthogonal basis {vi} of
T (A)Q can also be considered as an orthogonal basis of T (X)Q. This leads to an isogeny

KS(T (A)) ∼ KS(T (X))

and hence
KS(X) ∼ KS(T (X))2ρ(X) ∼ KS(T (A))2ρ(X) ∼ KS(A)216

.

Then use Proposition 3.1 or (3.2). �
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The result can be generalized to K3 surfaces that are isogenous to an abelian surface,
i.e. such that there exists an isomorphism of Hodge structures T (X)Q ' T (A)Q that
is compatible with the intersection forms up to a factor. In this case one finds again
KS(X) ∼ A219 .

Example 3.4. The latter applies in particular to K3 surfaces with ρ(X) = 19 or 20. In
fact, as was shown by Shioda and Inose [565] and Morrison [422], see also Remark 15.4.1,
any K3 surface with ρ(X) = 19 or 20 is the double cover of a surface that is birational
to a Kummer surface. Moreover, for ρ(X) = 20 the Kummer surface is associated with
the product of two isogenous elliptic curves E ∼ E′ and in this case one finds

KS(X) ∼ E220
.

Here, the elliptic curves E ∼ E′ have complex multiplication and their rational period
can be read off directly from the lattice of rank two T (X).1 See Section 14.3.4 for more
details.

Again, for Kummer surfaces the Kuga–Satake–Hodge Conjecture 2.11 is known to hold.
Indeed, the correspondence T (X)Q ' T (A)Q is clearly algebraic and then use again the
Hodge conjecture for powers of abelian surfaces, see Remark 3.2.

3.3. Let us now turn to K3 surfaces, that are given as (resolutions of) double covers
X //P2 ramified over six lines, see Example 1.1.3. Already the description of the tran-
scendental lattice is highly non-trivial in this case, see [392]. Paranjape proves in [483]
the following result. The arguments are geometrically more involved.

Proposition 3.5. Let X be as above. Then

KS(T (X)) ∼ B218

for a certain abelian fourfold B which can be described as the Prym variety of a curve C
of genus five constructed as a 4 : 1 cover of an elliptic curve.

This explicit description, which actually starts with C, allows Paranjape to also prove
the Kuga–Satake–Hodge conjecture in this case. For the case that the six lines are tangent
to a conic the abelian fourfold B can be replaced by the square of the Jacobian of the
natural double cover of the conic.

4. Appendix: Weil conjectures

The Weil conjectures occupy a very special place in the history of algebraic geometry.
They have motivated large parts of modern algebraic geometry. For a short survey with
a historical account see [234, App. C] or [293].
The rationality of the Zeta function and its functional equation had been proved by

Dwork by 1960. The analogue of the Riemann hypothesis was eventually proved by
Deligne in 1974, who had verified it for K3 surfaces a few years earlier [139]. The argu-
ments in the case of K3 surfaces, in particular the use of the Kuga–Satake construction,

1I am grateful to Matthias Schütt for clarifying comments regarding this point.
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have turned out to be powerful for later developments in the theory of K3 surfaces. An
independent proof of the Weil conjectures for K3 surfaces also relying on the Kuga–Satake
construction is due to Pjateckĭı-Šapiro and Šafarevič [491].
This appendix gives a rough sketch of the main arguments of Deligne’s proof. The

techniques he introduced are important for a number of other arithmetic results. In our
discussion, we freely use results that are explained only in later chapters and often refer
to the original sources for technical details.

4.1. Let us first briefly sketch what the Weil conjectures have to say for K3 surfaces.
So, consider a K3 surface X over a finite field k = Fq, q = pn. Let X̄ := X ×k k̄ and let
F : X //X be the absolute Frobenius acting as the identity on points and by a � // ap on
OX . Then Fn : X //X is a morphism of k-varieties and its base change to k̄/k yields
the k̄-morphism

f := Fn × id : X ×k k̄ //X ×k k̄ = X̄,

which in coordinates can alternatively be described by (ai)
� // (aqi ). A point x ∈ X̄ has

coordinates in Fqr if and only if it is a fixed point of f r, i.e. f r(x) = x. If Nr denotes the
number of Fqr -points, then the Zeta function of X is defined as

Z(X, t) := exp

( ∞∑
r=1

Nr
tr

r

)
.

The number of fixed points of f r can alternatively be expressed by a Lefschetz fixed point
formula. For ` 6= p, consider the Q`-linear pull-back map2

f r∗ : H∗ét(X̄,Q`) //H∗ét(X̄,Q`).

Then Nr =
∑

i(−1)itr(f r∗ | H i
ét(X̄,Q`)) and hence

(4.1) Z(X, t) =
∏
i

exp

(∑
r

tr
(
f r∗ | H i

ét(X̄,Q`)
) tr
r

)(−1)i

.

For a K3 surface, H i
ét(X̄,Q`) = 0 for i = 1, 3 and H i

ét(X̄,Q`) ' Q` for i = 0, 4. Moreover,
f∗r = id on H0

ét(X̄,Q`) and f r∗ = q2r · id on H4
ét(X̄,Q`), as Fn is a finite morphism of

degree q2. The elementary identity exp(
∑∞

r=0 t
r/r) = 1/(1 − t), turns (4.1) for a K3

surface into

(4.2) Z(X, t)−1 = (1− t) · det
(
1− f∗t | H2

ét(X̄,Q`)
)
· (1− q2t).

Eventually, one uses the natural non-degenerate symmetric pairing

H2
ét(X̄,Q`)×H2

ét(X̄,Q`) //H4
ét(X̄,Q`),

2Note that for Fnk̄ : k̄ // k̄, a � // aq, the morphism f ◦(id×Fnk̄ ) = Fn×Fnk̄ is the absolute Frobenius
on X̄ which acts trivially on H∗ét(X̄,Q`). Thus, instead of considering the action f∗ one could work with
the pull-back under (id× Fnk̄ )−1, the geometric Frobenius, as in [139]. See [283] for a discussion of the
geometric nature of the geometric Frobenius.
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which satisfies 〈f∗v, f∗w〉 = q2〈v, w〉. An easy linear algebra argument then shows
det(f∗) det(t− f∗) = det(tf∗ − q2) and hence the set of eigenvalues of f∗ on H2

ét(X̄,Q`)
satisfies (with multiplicities)

{α1, . . . , α22} = {q2/α1, . . . , q
2/α22}.

Theorem 4.1 (Weil conjectures for K3 surfaces). The polynomial

P2(t) := det
(
1− f∗t | H2

ét(X̄,Q`)
)

=
22∏
i=1

(1− αit)

has integer coefficients, independent of `, and its zeroes αi ∈ Q̄ satisfy |αi| = q. Moreover,
one may assume αi = ±q for i = 1, . . . , 2k and αi>2k 6= ±q with α2j−1 · α2j = q2, j > k.

After passing to a finite extension, one can in fact assume that an even number of the
eigenvalues are just αi = q and that for all others αi/q is of absolute value one but not a
root of unity.
Note that the statement subsumes the rationality of Z(X, t), its functional equation

Z(X, 1/(q2t)) = (qt)24 ·Z(X, t), as well as the analogue of the Riemann hypothesis (saying
that the zeroes of P2(q−s) satisfy Re(s) = 1).

Remark 4.2. The proof of the theorem also reveals that f∗ is semi-simple, which is
not at all obvious from the above and which in fact is only known for very few varieties,
like abelian varieties and K3 surfaces. Explicitly this is stated as [141, Cor. 1.10]. It can
also be seen as a consequence of the Tate conjecture, see the proof of Proposition 17.3.5.

4.2. The following result is the central step in Deligne’s proof. It relies heavily on
results that are presented in Section 6.4.

Proposition 4.3. Let X be a polarized K3 surface over a field K of characteristic zero.
Then there exists an abelian variety A defined over a finite extension L/K together with
an isomorphism of algebras

(4.3) Cl+(H2
ét(XL̄,Z`(1))p) ' EndC(H1

ét(AL̄,Z`)),

which is invariant under the natural action of Gal(L̄/L).

Proof. One can assume that K is finitely generated. We choose an embedding
K ⊂ C and consider the Kuga–Satake variety KS(XC) associated with the complex K3
surface XC := X ×K C. Ideally, the abelian variety A is obtained by descending KS(XC)

to a finite extension of K. The arguments below are not quite showing this, but see
Remark 4.4.
Here, one uses the primitive cohomology V := H2(XC,Z)p to define KS(XC). The

Kuga–Satake variety KS(XC) comes with the action C �
� // End(KS(XC)) of the (con-

stant) algebra C = Cl+(V )op, see Section 2.4. Moreover, there exists an isomorphism of
algebras, see (2.9),

(4.4) Cl+(H2(XC,Z)p(1)) ' EndC(H1(KS(XC),Z)),
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which in fact is also an isomorphism of Hodge structures (of type (1,−1)+(0, 0)+(−1, 1)).
It is compatible with the action of Spin(V ) on both sides and it is unique with this
property.
The abelian variety KS(XC) together with the action of C is defined over some finitely

generated field extension K ⊂ L ⊂ C, i.e. KS(XC) ' A ×L C for some abelian variety
A over L. Then, H1

ét(AL̄,Z`) ' H1
ét(KS(XC),Z`) ' H1(KS(XC),Z) ⊗ Z` and tensoring

(4.4) with Z` this yields an isomorphism of algebras

(4.5) ψ0 : Cl+(H2
ét(XL̄,Z`(1))p) ∼− // EndC(H1

ét(AL̄,Z`)).

Next, if L/K is not already finite, one views L as a function field of a finite typeK-scheme
and ‘spreads’ A with its C action over T . This yields a smooth abelian scheme b : B // T

with an action of the constant algebra C. Its generic fibre gives back (A,C). Now,
there exists a finite extension K ′/K with T (K ′) 6= ∅ and specializing (4.5) to b ∈ T (K ′)

yields ψ0b : Cl+(H2
ét(XK̄′ ,Z`(1))p) ∼− // EndC(H1

ét(BbK̄′ ,Z`)). As it turns out, the family
B // T is in fact isotrivial, i.e. after passing to a finite extension of L (corresponding
geometrically to a finite covering of T ) the family becomes trivial and so (A,C) itself is
defined over a finite extension of K, i.e. Bb ×K ' A. However, at this point this is not
clear, see Remark 4.4.
Next, consider the natural action of the Galois group Gal(L̄/L) on both side of (4.5). In

order to show that the isomorphism is compatible with it, which then yields the assertion,
one uses that K3 surfaces have ‘big monodromy’.3

As shown by Corollary 6.4.7, the complex K3 surface XC sits in a family of polarized
complex K3 surfaces with a big monodromy group. The proof of the result reveals
that the family is actually defined over K. So, there exists a family of polarized K3
surfaces f : (X , L) //S over K with special fibre X0 ' X and such that the image of the
monodromy representation π1(SC, 0) //O(H2(XC,Z)p) is of finite index and, therefore,
Zariski dense in SO(H2(XC,Z)p). By Proposition 6.4.10 and after passing to a finite
cover of S, which we suppress, there exists an abelian scheme a : A //SC with an action
of the constant algebra C and an isomorphism of VHS

(4.6) ψ : Cl+(P 2fC∗Z(1)) ∼− // EndC(R1a∗Z),

which is the global version of (4.5). (Here, P 2f∗ ⊂ R2f∗ denotes the local system that
fibrewise corresponds to the primitive cohomology.)
Clearly, the abelian scheme a : A //SC is defined over some finitely generated field

extension K ⊂ L ⊂ C, i.e. a is obtained by base change from some aL : AL //SL. As
above, if L/K is not finite already, one spreads the family over some finite type K-scheme
T and specializes to a point b ∈ T (K ′) for some finite extension K ′/L. So, we can assume
that L is actually finite. Moreover, (4.6) descends to

(4.7) ψL̄ : Cl+(P 2fL̄∗Z`(1)) ∼− // EndC(R1aL̄∗Z`),

3By construction, there exists a natural isomorphism H1
ét(AL̄,Z`) ' Cl+(H2

ét(XL̄,Z`(1))p), which,
however, might not be compatible with the natural Galois actions.
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giving back ψ0 in (4.5) (twisted by Z`) over the distinguished point 0 ∈ S. As the
local systems in (4.7) are pulled back from SL, conjugating ψL̄ to ψσ

L̄
by an element

σ ∈ Gal(L̄/L) defines an isomorphism between the same local systems. Now, the exis-
tence of ψ is equivalent to saying that ψ0 is invariant under the monodromy action and
similarly the fact that ψσ

L̄
is an isomorphism between the local systems in (4.7) implies

that the conjugate ψσ0 is still invariant under the monodromy action. However, as by
construction the monodromy group is Zariski dense in SO(H2(XC,Z)p), the conjugate
ψσ0 is in fact invariant under the Spin(V )-action. But ψ0 is the unique such isomorphism
and, therefore, ψσ0 = ψ0. Hence, ψ0 is Galois invariant. �

Remark 4.4. As André in [7, Sec. 1.7] stresses, the above arguments do not directly
prove that the abelian variety A over the finite extension L/K in the proposition actually
yields the Kuga–Satake variety KS(XC) when base changed via K ⊂ C. For this, one
needs to verify the isotriviality of B // T in the above proof. This is achieved by observing
that the monodromy action of the family induces the trivial action on End(H1(Bt,Z)).
Following [7, Lem. 5.5.1], one argues that End(R1bC∗Z) is isomorphic to the constant sys-
tem associated with Cl+(H2(XC,Z)p) (so, roughly, that the specialization ψ0b is canon-
ical), for which one again uses the fact that K3 surfaces have big monodromy. Thus,
π1(TC) acts by scalars and, as B // T is a polarized family, necessarily via a finite group.
André also shows that A is independent of the embedding K ⊂ C and explains how to

control the finite extension L/K.

We can now outline the rest of Deligne’s argument to prove the Weil conjectures. First,
one needs to lift any given K3 surface Y0 over the finite field Fq to characteristic zero.
According to Section 9.5, there exists a polarized family Y // Spec(R) of K3 surfaces
over a complete DVR R of mixed characteristic with residue field a finite extension k/Fq
such that the closed fibre is Y0 × k. Let K denote the fraction field of R.
Thus, the generic fibre X of Y // Spec(R) is a K3 surface over the field K of char-

acteristic zero to which one can apply Proposition 4.3. Hence, after passing to a finite
extension of K, which we suppress, there exist an abelian variety A over K with an
action of the algebra C and a Galois invariant isomorphism (4.3). The inertia subgroup
IK ⊂ Gal(K̄/K), i.e. the kernel of the natural surjection Gal(K̄/K) // //Gal(k̄/k), acts
trivially on H2

ét(XK̄ ,Z`(1))p, as the polarized surface X reduces to the smooth Y0 × k.
Thus, IK acts trivially on the left hand side of (4.3) and hence on the right hand side as
well. The latter implies that, after finite base change, IK acts trivially on H1

ét(AK̄ ,Z`),
for the details of the argument see [139].
Now, specialization yields H2

ét(Y0 × k̄,Z`(1))p ' H2
ét(XK̄ ,Z`(1))p (see [403, VI.Cor.

4.2]) and by Néron–Ogg–Šafarevič theory (see [547]), the inertia group acts trivially on
H1
ét(AK̄ ,Z`) if and only if A reduces to a smooth abelian variety A0 over k for which

there then exists an isomorphism

(4.8) Cl+(H2
ét(Y0 × k̄,Z`(1))p) ' EndC(H1

ét(A0 × k̄,Z`))

of Gal(k̄/k)-modules, i.e. compatible with the action of the Frobenius.
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The Weil conjectures for abelian varieties had been proved by Weil himself already
in [629] and so all eigenvalues of the Frobenius action on H1

ét(A0 × k̄,Q`) have absolute
value √q and, therefore, absolute value one on the right hand side of (4.8). Using a Galois
invariant embedding

∧2H2
ét(Y0×k̄,Q`(1))p ⊂ Cl+(H2

ét(Y0×k̄,Q`(1))p) ' EndC(H1
ét(A0×

k̄,Q`)), one concludes that the eigenvalues of the Frobenius action on H2
ét(Y0× k̄,Q`(1))p

have all absolute value one. Note that at this point one uses that b2(Y0 × k̄) ≥ 3.

Remark 4.5. Proposition 4.3 holds as well for the Kuga–Satake variety associated with
the full cohomology and so Cl+(H2

ét(XL̄,Q`(1))) ' EndC(H1
ét(AL̄,Q`)) for some abelian

variety A, which is isogenous to a power of the original one. Now, the polarization ofXL̄ is
Galois invariant and, therefore, right multiplication by its class defines a Galois invariant
embedding H2

ét(XL̄,Q`(1)) �
� // Cl+(H2

ét(XL̄,Q`(1))), see Proposition 2.6. Therefore, for
any K3 surface X over a field K of characteristic zero there exists a Galois invariant
embedding

(4.9) H2
ét(XL̄,Q`(1)) �

� // H1
ét(AL̄,Q`)⊗H1

ét(AL̄,Q`),

where A is an abelian variety defined over a finite extension L/K. This is an essential
ingredient for the proof of the Tate conjecture in characteristic zero, see Section 17.3.2,
and the analogous statement holds in positive characteristic (but there not implying the
Tate conjecture).

Remark 4.6. Recall that (4.9) is conjectured to be algebraic and that this has been
verified for Kummer surface, see Conjecture 2.11 and Remark 3.2. In particular, it is
known to be ‘absolute’ for Kummer surfaces, cf. [111, 143] for the notion of absolute
classes. If one now puts an arbitrary K3 surface in a family connecting it to a Kummer
surface, then Deligne’s Principle B, see [143], applied to the family version of the Kuga–
Satake construction, see Proposition 6.4.10, implies that the Kuga–Satake construction
is absolute for all K3 surfaces. See the lectures of Charles and Schnell [111] for more
details.

Remark 4.7. As Deligne explains in the introduction to [139], the motivic nature of
the Kuga–Satake construction served as a guiding principle in his proof of the Weil con-
jectures for K3 surfaces. Its motivic nature was discussed further by André in [7, 8], who
moreover showed that the Kuga–Satake construction is ‘motivated’. As a consequence,
one concludes that the motive of any K3 surface, as an object in André’s category of
motives, is contained in the Tannaka subcategory generated by abelian varieties.

References and further reading:
The Kuga–Satake construction is also used for the study of projective hyperkähler (or irre-

ducible holomorphic symplectic) manifolds (see Section 10.3.4), which are higher-dimensional
analogues of K3 surfaces for which the second cohomology is also a Hodge structure of K3 type.
See, for example, [7, 109].
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The Kuga–Satake variety of a K3 surface with real multiplication, i.e. such that the ring
EndHdg(T (X)) is a totally real field, has been studied by van Geemen [202] and Schlickewei
[525].

In [194, 375] one finds a detailed discussion of the Kuga–Satake variety associated with a
sub-Hodge structure of weight two of certain abelian fourfolds. Double covers of P1 × P1 and
their Kuga–Satake varieties have been studied in [309].

In [618] Voisin observed that one can gain some flexibility in the above construction by split-
ting it into two steps. One can first define a Hodge structure of weight two on Cl(V ) by setting
Cl(V )2,0 := V 2,0⊗

⊕
k

∧k−1
(V 1,1) which is in a certain sense compatible with the algebra struc-

ture, cf. Remark 1.1. Then one associates with any Hodge structure of weight two on Cl(V )

compatible with the algebra structure a Hodge structure of weight one.
The polynomial P2(t) for a K3 surface over a finite field splits into an algebraic part and a

transcendental part P2(t) = P2(t)alg · P2(t)tr according to whether αi/q is a root of unity or not.
The transcendental part enjoys remarkable properties. For example, it has a unique irreducible
factor. For a review of some of the properties of P2(t)tr, see Taelman’s recent [579] in which he
also proves that any polynomial satisfying these properties can actually be realized.

Questions and open problems:
Clearly, the main open problem here is Conjecture 2.11. It is known that the Kuga–Satake class

is an absolute Hodge class, cf. Remark 4.6. This had been implicitly proved already by Deligne
[139], which predates the notion of absolute Hodge classes, and explicitly by André [7] and
Charles and Schnell [111]. It would be very interesting to find other examples of K3 surfaces for
which the Kuga–Satake–Hodge conjecture can be proved and detect any general pattern behind
those.

Is there a more explicit proof of the algebraicity of the Kuga–Satake correspondence for abelian
surfaces than the one that uses the full Hodge conjecture for self-products of abelian surfaces,
see Remark 3.2?

At this point it seems unlikely that the transcendental construction of the Kuga–Satake variety
can be replaced by an algebro-geometric one.

Grothendieck at some point wondered whether maybe every variety is dominated by a product
of curves (DPC). If that were true, one could prove the Weil conjectures (in fact also the Tate
conjecture, see Remark 17.3.3) by reducing to the case of curves. In a letter to Grothendieck
in 1964, Serre produced a counterexample in dimension two [125]. His surface is realized as a
subvariety of an abelian variety and is in particular not a K3 surface. In fact, it is not known
whether there exist K3 surfaces that are not DPC. More example of varieties that are not DPC
were constructed by Schoen in [528].





CHAPTER 5

Moduli spaces of polarized K3 surfaces

It is often preferable not to study individual K3 surfaces, but to consider all (of a
certain degree or with a certain projective embedding, etc.) simultaneously. This leads
to the concept of moduli spaces of K3 surfaces and this chapter is devoted to the various
existence results for moduli spaces of polarized K3 surfaces as quasi-projective varieties,
algebraic spaces, or Deligne–Mumford stacks.
In Section 1 the moduli functor is introduced and three existence results are stated.

They are discussed in greater detail in Sections 2 and 4. In Section 3 we study the local
structure of the moduli spaces and prove finiteness results for automorphism groups of
polarized K3 surfaces.
Moduli spaces of polarized complex K3 surfaces of different degrees are all contained

in the larger, but badly behaved, moduli space of complex (not necessarily algebraic) K3
surfaces, for which we refer to Chapter 6.

1. Moduli functor

We shall work over a Noetherian base S. The cases we are most interested in are
S = Spec(C), S = Spec(Q̄), S = Spec(K) for a number field K, S = Spec(Fq), and
S = Spec(O) with O the ring of integers in a number field, e.g. O = Z.
For a given positive integer d one considers the moduli functor

(1.1) Md : (Sch/S)o // (Sets), T � // {(f : X // T, L)},

that sends a scheme T of finite type over S to the set Md(T ) of equivalence classes of
pairs (f, L) with f : X // T a smooth proper morphism and L ∈ PicX/T (T )1 such that
for all geometric points Spec(k) // T , i.e. k an algebraically closed field, the base change
yields a K3 surface Xk with a primitive ample line bundle LXk such that (LXk)2 = 2d,
i.e. (Xk, Lk) is a polarized K3 surface of degree 2d, cf. Definition 2.4.1.2

By definition, (f, L) ∼ (f ′, L′) if there exists a T -isomorphism ψ : X ∼− // X ′ and a line
bundle L0 on T such that ψ∗L′ ' L⊗ f∗L0. For an S-morphism g : T ′ // T one defines

1Note that by definition PicX/T (T ) = H0(T,R1f∗Gm), which is obtained by étale sheafification of
the functor T ′ � // Pic(XT ′)/Pic(T ). We often (over)simplify by thinking of L as an actual line bundle
L modulo line bundles coming from T , although it possibly only exists after passing to an étale cover.

2By our definition, a K3 surface is a surface over a field that is a K3 surface over the algebraic
closure. So in fact, for any point Spec(k) // T the fibre is a K3 surface. However, in principle an ample
line bundle could acquire a root after base field extension. So we have to require L to be primitive,
i.e. not the power of any other line bundle, over the algebraic closure. See Chapter 17 for more on the
behavior of the Picard group under base change.

81
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Md(T ) //Md(T
′) as the pull-back (f : X // T, L) � // (fT ′ : X×T T ′ // T ′, g∗XL). Here,

gX : X ×T T ′ //X is the base change of g.
Recall that a (fine) moduli space forMd is an S-scheme Md together with an isomor-

phism of functors
Md 'Md := hMd

(the functor of points associated with the scheme M), i.e. Md representsMd.
Due to the existence of automorphisms, a fine moduli space does not exist, so one can

only hope for a coarse moduli space. A coarse moduli space is by definition an S-scheme
M together with a functor transformation

Ψ: Md
//Md

with the following two properties:
(i) For any algebraically closed field k the induced mapMd(Spec(k)) //Md(Spec(k))

is bijective. (By definition, Md(Spec(k)) coincides with the set Md(k) of k-rational
points of Md.)

(ii) For any S-scheme N and any natural transformation Φ: Md
//N there exists a

unique S-morphism π : M //N such that Φ = π ◦Ψ.

1.1. The following result is due to Pjateckĭı-Šapiro and Šafarevič [490]. Their proof
relies on the Global Torelli Theorem and the quasi-projectivity of arithmetic quotients of
the period domain due to Baily and Borel [28]. We come back to this later, see Corollary
6.4.3.
An alternative proof was given by Viehweg in [611]. His arguments rely on Geometric

Invariant Theory (GIT), but without actually proving that points in the appropriate
Hilbert scheme corresponding to K3 surfaces are stable. In [425] Ian Morrison proves
that the generic K3 surface defines a GIT stable point if d ≥ 6.

Theorem 1.1. For S = Spec(C) the moduli functor Md can be coarsely represented
by a quasi-projective variety Md.3

See Section 2.3 for more details and comments on the case of positive characteristic.

1.2. The existence of a quasi-projective coarse moduli space is far from being trivial,
using periods or GIT. However, the existence of the coarse moduli space as an algebraic
space is much easier and follows from very general existence results for group quotients
in the category of algebraic spaces.

Theorem 1.2. The moduli functor Md can be coarsely represented by a separated
algebraic space Md which is locally of finite type over S.

3From this and Theorem 1.2 one can conclude that Md admits a quasi-projective coarse moduli
space over any field of characteristic zero. The only thing that needs checking is that the algebraic space
coarsely representing Md over k can be completed to a complete algebraic space. This is provided by
the Nagata compactification theorem, see [127]. Then use that a complete algebraic space that becomes
projective after base field extension is itself projective.
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The existence of the coarse moduli space as an algebraic space was intensively studied
by Popp for S = Spec(C), see [493, 494, 495]. His construction relies on the existence
of certain group quotients in the category of analytic spaces which he then endows with
an algebraic structure. For the existence of the coarse moduli space as an algebraic space
over other fields see Viehweg’s book [612, Ch. 9]. The existence of the coarse moduli
space as an algebraic space in much broader generality can be deduced from a more recent
result by Keel and Mori [287], we also recommend Lieblich’s [362] for an account of their
result. See also the related result by Kollár in [311] and Section 2.3 for more details.

1.3. Instead of consideringMd as a contravariant functor (Sch/S)o // (Sets) one
can view it as a groupoid over (Sch/S). More precisely, one can consider the category
Md of all (f : X // T, L) as before. The projection (f : X // T, L) � // T then defines a
functorMd

// (Sch/S). A morphism inMd is defined to be a fibre product diagram

X ′

��

g̃ // X

��
T ′

g
// T

with g̃∗L ' L′. The isomorphism is not part of the datum.
In fact, in shifting the point of view like this one takes into account automorphisms of

K3 surfaces, which are responsible for the non-existence of a fine moduli space as well as
for singularities of the coarse moduli space. Indeed, the fibre ofMd

// (Sch/S) over an
S-scheme T , which consists of all (f : X // T, L) as before, is not merely a set but in fact
a groupoid, i.e. a category in which all morphisms are isomorphisms and in particular
the endomorphisms of (f : X // T, L) are precisely the automorphisms of the polarized
K3 surface (X,L) (over T ).
Instead of representing the functor Md by a quasi-projective scheme or an algebraic

space, one now studies it in the realm of stacks. This approach goes back to Deligne and
Mumford in [144], where it was successfully applied to the moduli functor of curves. In
analogy to their result, one has the following result, see [507] and Section 4.

Theorem 1.3. The groupoid Md
// (Sch/S) is a separated Deligne–Mumford stack

of finite type.

The result of Keel and Mori [287] in fact shows that any separated Deligne–Mumford
stack of finite type has a coarse moduli space in the category of algebraic spaces. This
gives back Theorem 1.2 (however, relying on essentially the same techniques).
As explained by Rizov in [507], taking into account automorphisms of polarized K3

surfaces resolves the singularities of the moduli stack. More precisely, one can show
thatMd is a smooth Deligne–Mumford stack over Spec(Z[1/(2d)]), cf. Corollary 3.6 and
Remark 3.2.

1.4. To conclude the introduction to this chapter, we mention the possibility of
partially compactifying the moduli space by adding quasi-polarized K3 surfaces. Recall
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that a quasi-polarized (or pseudo-polarized) K3 surface (X,L) of degree 2d consists of
a smooth K3 surface X together with a primitive big and nef line bundle L such that
(L)2 = 2d.
The corresponding moduli functor M′d can be defined analogously to Md in (1.1).

Many of the arguments and constructions that are explained below work in this more
general context. However, the moduli functor defined in this way has a disadvantage over
Md, it is not separated. More precisely, there exist families

(1.2) (X,L), (Y,M) // Spec(R)

of quasi-polarized K3 surfaces over a DVR R such that the generic fibres are isomorphic,
(Xη, Lη) ' (Yη,Mη), but the isomorphism does not extend over the closed fibres to an
isomorphism of the families (although the special fibres themselves are again isomorphic
to each other), cf. the remarks in Section 2.3, the proof of Proposition 7.5.5, and [126]
for an explicit algebraic example.
The way out, is to add not quasi-polarized K3 surfaces (X,L) but polarized ‘singular

K3 surfaces’ (X̄, L̄). For any big and nef line bundle L on a K3 surface, L3 is base point
free and the induced morphism ϕL3 : X // // X̄ contractes only ADE curves and so X̄

has only rational double points, cf. Remark 2.3.4 and Section 11.2.2. Applied to (1.2),
one obtains isomorphic polarized families (X̄, L̄) ' (Ȳ , L̄) // Spec(R) with a singular
central fibre. So, if the moduli functor M̄d is defined accordingly, it is a smooth Deligne–
Mumford stack with a quasi-projective coarse moduli space M̄d. As the moduli space
Md, also M̄d admits a description via periods in characteristic zero, see Section 6.4.1.

2. Via Hilbert schemes

In all approaches to the moduli space of polarized K3 surfaces the Hilbert scheme
plays the central role. Due to general results of Grothendieck [223], the Hilbert scheme
is always represented by a projective scheme and the part of it that parametrizes K3
surfaces defines a quasi-projective subscheme. The quotient by the action of a certain
PGL, identifying the various projective embeddings, yields the desired moduli space. So,
the question whetherMd has a coarse moduli space becomes a question about the nature
of this quotient. For the shortest outline of the construction (for the more general class
of symplectic varieties) see André [7, Sec. 2.3] and for a detailed discussion of the general
theory the monographs [442, 612]. We shall discuss the various steps in this process
in the case of S = Spec(k) and shall often, for simplicity, assume that k is algebraically
closed. The result, however, is used for general Noetherian base S, e.g. when proving
thatMd is a Deligne–Mumford stack, see Proposition 4.10.

2.1. Consider the Hilbert polynomial P of a polarized K3 surface (X,L) of degree
2d = (L)2. By the Riemann–Roch theorem P (t) = dt2 + 2, see Section 1.2.3. Let
N := P (3) − 1. This choice is prompted by the theorem of Saint-Donat saying that for
any ample L the line bundle L3 is very ample, see Theorem 2.2.7. Hence, any (X,L)

with L ample and (L)2 = 2d can be embedded into PN such that O(1)|X ' L3. Finally,
the Hilbert polynomial of X ⊂ Pn with respect to O(1) is P (3t).
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Consider the Hilbert scheme
Hilb := Hilb

P (3t)

PN

of all closed subscheme Z ⊂ PN with Hilbert polynomial P (3t). Then Hilb is a projective
scheme representing the Hilbert functor

Hilb: (Sch/k)o // (Sets),

mapping a k-scheme T to the set of T -flat closed subschemes Z ⊂ T × PN such that
all geometric fibres Zs ⊂ PNk(s) have Hilbert polynomial P (3t). In particular, the Hilbert
scheme comes with a universal family Z ⊂ Hilb× PN with flat projection Z //Hilb.

Proposition 2.1. There exists a subscheme H ⊂ Hilb with the following universal
property: A morphism T //Hilb factors through H ⊂ Hilb if and only if the pull-back

f : ZT // T

of the universal family Z //Hilb satisfies:

(i) The morphism f : ZT // T is a smooth family with all fibres being K3 surfaces.
(ii) If p : ZT //PN is the natural projection, then

p∗O(1) ' L3 ⊗ f∗L0

for some L ∈ Pic(ZT ) and L0 ∈ Pic(T ).
(iii) The line bundle L in (ii) is primitive on each geometric fibre.
(iv) For all fibres Zs of f : ZT // T , restriction yields isomorphisms

H0(PNk(s),O(1)) ∼− // H0(Zs, L3
s).

Proof. The subscheme H is in fact an open subscheme of Hilb, but it is slightly
easier to prove its existence as a locally closed subscheme.
Smoothness, irreducibility, and vanishing of H1(O) are all open properties and, there-

fore, define an open subset of the Hilbert scheme. Since triviality of a line bundle is a
closed condition, ω ' O is a priori a closed condition, but, in fact, it is also open. Indeed,
if one fibre is a K3 surface, then χ(O) = 2 and hence h0(ω) = h2(O) ≥ 1 for all fibres in
an open neighbourhood. Also, h0(ω2) ≤ 1 and h1(ω∗) = 0 are open conditions. Since by
Riemann–Roch and Serre duality h0(ω∗) = 2+h1(ω∗)−h0(ω2), one finds that h0(ω∗) 6= 0

for all fibres in an open neighbourhood. However, h0(ω) 6= 0 6= h0(ω∗) if and only if ω is
trivial.
Thus, (i) describes an open subscheme of Hilb. It is straightforward to see that iv) is

also an open condition. Thus, (i) and (iv) together define an open subscheme H ′ to which
we restrict. Next, one shows that there exists a universal subscheme H ⊂ H ′ defined by
(ii) and (iii).
The relative Picard scheme PicZ′/H′ //H ′ of the restriction Z ′ //H ′ of the universal

family is a disjoint union of H ′-projective schemes Pic
Q(t)
Z′/H′

//H ′ parametrized by the
possible Hilbert polynomials Q(t), see [80, 174]. Clearly, there are only finitely many
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possibilities to write P (3t) = Q(nt) with Q(t) the Hilbert polynomial of an actual line
bundle on a K3 surface (i.e. with integral coefficients). Since the map

Pic
Q(t)
Z′/H′

//Pic
Q(nt)
Z′/H′ , M

� //Mn

is an H ′-morphism and all schemes are projective over H ′, its image is closed. In fact, as
can easily be seen, the morphism is a closed embedding. This yields a universal locally
closed subscheme Y ⊂ Pic

P (3t)
Z′/H′ parametrizing line bundles M which can fibrewiese be

written as M ' L3 for some primitive L.
The line bundle O(1) can be viewed as a section of Pic

P (3t)
Z′/H′

//H ′ and one defines H

as the pre-image of Y ⊂ Pic
P (3t)
Z′/H′ under this section.

4 Note that under our assumptions,
there exists a Poincaré bundle on PicZH/H ×H ZH so that L and L0 as in (ii) exist for
ZH //H.
For later use note that (ii) and (iv) in particular show f∗(L

3) ' L∗0 ⊗O
N+1
T . �

Thus, H together with the restriction of the universal family X := ZH //H represents
the functor:

H : (Sch/k)o // (Sets),

that maps T to the set of all T -flat closed subschemes Z ⊂ T × PN satisfying (i)-(iv).
Clearly, mapping Z ⊂ T ×PN to (f = p1 : Z // T, L) with L as in (ii) defines a functor

transform H //Md. The only thing that needs checking at this point is whether L
is uniquely determined (up to pull-back of line bundles on T ). This is due to the fact
mentioned in the proof above that L � //L3 defines a closed embedding PicP (t) //PicP (3t).
The injectivity on the level of sets is implied by the torsion freeness of the Picard group
of any K3 surface, see Remark 1.2.5.

2.2. The Hilbert scheme Hilb = Hilb
P (3t)

PN comes with a natural PGL := PGL(N+1)-
action. It can functorially be defined as the functor transformation

PGL×Hilb
P (3t)

PN
//Hilb

P (3t)

PN

that sends (A ∈ PGL(T ), Z ⊂ T × PN ) to (ϕA(Z) ⊂ T × PN ). Here, the isomorphism
ϕA : T × PN ∼− // T × PN is obtained by viewing A as a family of automorphisms of PN
varying over T .
Clearly, the conditions (i)-(iv) above are invariant under the PGL-action. Hence, H is

preserved and we obtain an action

PGL×H //H.

Moreover, the natural transformation H //Md, which just forgets the projective em-
bedding, is equivariant and hence yields a functor

Θ: H/PGL //Md.

4In fact, H ⊂ H ′ is also open, but this needs some deformation theory. Indeed, the obstruction to
deform a line bundle L in a given family sideways lies in H2(X,OX). IfM ' L3, then the two obstruction
classes differ by a factor 3 and so L deforms whenever M does (at least if char(k) 6= 3).
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Proposition 2.2. The natural transformation Θ: H/PGL //Md is injective and lo-
cally surjective.

Proof. Local surjectivity means that for any (f : X // T, L) there exists a étale
open covering T :=

⋃
Ti such that the restrictions (fi : XTi

// Ti, L|XTi ) are in the image
of Θ(Ti) : (H/PGL)(Ti) //Md(Ti). This is shown as follows: The direct image f∗(L3)

is locally free of rank N + 1 and the higher direct images are trivial, cf. Proposition
2.3.1. After passing to an open cover of T , we may assume that f∗(L3) is in fact free, i.e.
f∗(L

3) ' ON+1
T . Moreover, since L3 is fibrewise very ample, the surjection ON+1

X
// //L3

obtained by pull-back defines a closed embedding X �
� // T × PN . Then (i)-(iv) are

satisfied by construction.5

For the injectivity we have to show that two Z,Z ′ ⊂ T ×PN in H(T ) are isomorphic as
polarized families if and only if their projective embeddings differ by an automorphism of
PN . If (f : Z // T, L) and (f ′ : Z ′ // T, L′) define the same element in Md, then there
exists an isomorphism ψ : Z ∼− // Z ′ with ψ∗L′ ' L ⊗ f∗L0 for some L0 ∈ Pic(T ). The
given embeddings induce trivializations of f ′∗(L′3) and f∗(L3). The induced isomorphism

ON+1
T ' f ′∗(L′3) ' f∗(L3)⊗ L3

0 ' ON+1
T ⊗ L3

0

corresponds to an A ∈ PGL(T ) and the closed embeddings Z,Z ′ ⊂ T × PN differ by the
automorphism ϕA of T × PN . �

Note that Θ in particular induces a bijection [H/PGL](k) ∼− // Md(k).6 By the follow-
ing result the question whetherMd has a coarse moduli space is reduced to the existence
of a categorical quotient of the action PGL×H //H.

Proposition 2.3. Suppose there exists a categorical quotient π : H //Q = H/PGL

whose k-rational points parametrize the orbits of the action. Then Q is a coarse moduli
space forMd.

Proof. Recall that by definition a categorical quotient is a morphism π : H //Q

such that the two morphisms PGL×H //H, obtained by projection and group action,
composed with π coincide and such that any other π′ : H //Q′ with this property factors
uniquely through π:

H

π′ !!

π // Q

q
��
Q′.

Here is a sketch of the argument: To construct Md
//Q use the local surjectivity of

H/PGL //Md. Then any (f, L) ∈Md(T ) can locally over the open sets of some covering
T =

⋃
Ti first be lifted to H(Ti) and then mapped to Q(Ti). Due to the PGL-invariance

5It looks as if the Ti could be chosen Zariski open. Remember, however, that L itself may only exist
on an étale cover.

6Under our assumption that k is algebraically closed, the set of k-rational points of the quotient
stack (see Examples 4.4 and 4.5) [H/PGL] is indeed just H(k)/PGL(k).



88 5. MODULI SPACES OF POLARIZED K3 SURFACES

of π : H //Q and the injectivity of H/PGL //Md, the image does not depend on the
lift to H(Ti). Since Q is a sheaf (in the Zariski topology), the images in Q of the lifts to
the H(Ti) glue. Eventually, this yields the functorialMd

//Q. Since Q(k) parametrizes
the orbits of the PGL-action by assumption and since by Proposition 2.2 the same holds
forMd(k), one hasMd(k) ∼− // Q(k).
It remains to prove the minimality of Md

//Q, which is proved similarly. Any
Md

//N can be composed with H //Md which yields an invariant H //N . The
latter corresponds to an invariant H //N which by the universality property of the
categorical quotient π : H //Q factors uniquely through a morphism Q //N . It is not
difficult to see thatMd

//Q //N is the original transformation. �

On purpose, we were vague about the geometric nature of the quotient and in fact the
proof is so general that it works in many settings. The best possible case is that Q is a
quasi-projective scheme. This can in fact be achieved for k = C, a result due to Viehweg
[611], and yields Theorem 1.1 which we state again as

Theorem 2.4. For k = C, there exists a categorical quotient π : H //Q with Q a
quasi-projective scheme. Its k-rational points parametrize the orbits of the action, i.e.
[H/PGL](k) ∼− // Q(k). So, Md := Q is a quasi-projective coarse moduli space forMd.

Usually a quasi-projective quotient would be constructed by GIT methods, i.e. by
showing that a smooth K3 surface yields a point in H that is stable with respect to the
action of PGL and an appropriate linearization, see Mumford’s original [442] for the
foundations of GIT. However, this direct approach only works in low dimensions, e.g. for
curves. Viehweg’s techniques avoid a direct check of GIT stability. They do not seem
to generalize to positive characteristic and, therefore, the existence of quasi-projective
coarse moduli spaces in positive characteristic had been an open problem for a long time.
Recently, the quasi-projectivity has been proved by Maulik [396] for p ≥ 5 and p - d and
by Madapusi Pera [385] for any p > 2.

Example 2.5. There is, however, one case where the standard GIT techniques do work
and really yield the moduli space as a quasi-projective variety. This is the classical case
of hypersurfaces in projective spaces. For K3 surfaces one is looking at quartics X ⊂ P3.
In particular, in this case we do not have to pass from the ample line bundle L := O(1)

to its power L3, as L itself is already very ample.
Let H ⊂ |O(4)| be the open subscheme parametrizing smooth quartics. Thus, if x ∈

H(k) corresponds to the hypersurface X ⊂ P3, then X is a K3 surface. Clearly, H is
invariant under the natural action of PGL := PGL(4) and the quotient H(k)/PGL(k)

parametrizes all polarized K3 surfaces which are isomorphic to a quartic in P3.
Now, GIT shows that the quotient H/PGL exists as a categorical quotient such that

its k-rational points correspond to the orbits of the PGL(k)-action on H(k) if every point
in H(k) is stable. Recall that a point x ∈ H(k) is GIT-stable if the stabilizer of x is a
finite subgroup of PGL(k) and there exists an invariant section s ∈ H0(H,Ln) for some
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n > 0 satisfying: i) s(x) 6= 0, ii) Hs := H \ Z(s) is affine, and iii) the action of PGL on
Hs is closed. Here, L is an SL-linearized ample line bundle on H.
It is now a classical fact that smooth hypersurfaces of degree d ≥ 3 in Pn do correspond

to stable points. The line bundle L is in this case O(1) on the projective space |O(d)|. An
invariant polynomial not vanishing in a point x corresponding to a hypersurface X ⊂ Pn
is provided by the discriminant. See the textbooks by Mumford et al [442, Ch. 4] or
Mukai [432, Ch. 5.2] for details.
For results dealing with the stability of complete intersection K3 surface see the more

recent article by Li and Tian [359].

2.3. The existence of a coarse moduli space as an algebraic space is much easier or
at least can be deduced from very general principles. According to a result of Keel and
Mori [287] one has7

Theorem 2.6. If G is a linear algebraic group acting properly on a scheme of finite
type H (over, say, a Noetherian base), then a categorical quotient π : H //Q = H/G

exists as a separated algebraic space. Moreover, for any algebraically closed field k it
induces a bijection H(k)/G(k) ∼− // Q(k).

In order to deduce Theorem 1.2 from this, it remains to show that PGL ×H //H is
a proper action, i.e. that the graph morphism PGL × H //H × H, (g, x) � // (gx, x) is
proper. Working over an algebraically closed field and with a linear algebraic group, this
is equivalent to the following two statements:

(i) The orbit PGL · x of any x = (X ⊂ PNk ) ∈ H(k) is closed in H.
(ii) The stabilizer Stab(x), i.e. the fibre of PGL //PGL · x, is finite.
There are various approaches to the properness. One uses a famous theorem of Mat-

susaka and Mumford [394] and proves the properness, i.e. (i) and (ii), in one go.8 The
argument applies to geometrically non-ruled varieties and, therefore, in particular to K3
surfaces (in arbitrary characteristic!). The Matsusaka–Mumford theorem for those is the
following statement: Suppose (f : X // Spec(R), L) and (f ′ : X ′ // Spec(R), L′) are two
smooth projective families of polarized varieties over a discrete valuation ring R. Then
any polarized isomorphism (Xη, Lη) ' (X ′η, L

′
η) over the generic point Spec(η) can be ex-

tended to a polarized isomorphism (X,L) ' (X ′, L′) over R. This proves that the moduli
functor is separated, which together with the valuative criterion for proper morphisms
then proves the properness of the group action, see [612, Lem. 7.6] for the complete
argument.9

7This can be compared to a result of Artin [17, Cor. 6.3] saying that the quotient of an algebraic
space by a flat equivalence relation is again an algebraic space. It is not applicable to our situation, as
the equivalence relation induced by a group action is often not flat.

8I am grateful to Max Lieblich for a discussion of this point.
9In particular, the argument shows that the group of automorphisms of a polarized geometrically

non-ruled smooth projective variety (X,L) is finite. Note that Matsusaka–Mumford theorem really works
over Z.
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A direct proof for the finiteness of stabilizers can be given rather easily, see Proposition
3.3. Moreover, for complex K3 surfaces Aut(X,L) //Aut(H2(X,Z)) is injective (cf.
Proposition 15.2.1), which allows one to pass to an étale cover of H on which the action
becomes free, see Section 6.4.2.10 This second approach is closer to the construction of
the moduli space via periods.

Remark 2.7. Suppose (X,L) //S is a family of polarized K3 surfaces. The Matsusaka–
Mumford result can also be used to show that the automorphism groups Aut(Xt, Lt) of
the fibres (Xt, Lt) form a proper and in fact a finite S-scheme Aut(X,L) //S. In par-
ticular, {t ∈ S | Aut(Xt, Lt) 6= {id}} is a proper closed subscheme of S.

Remark 2.8. Moduli spaces of polarized projective varieties have been intensively
studied, e.g. by Viehweg in [612]. As shown by Kollár in [312], moduli spaces need not
always be quasi-projective even when they can be represented by algebraic spaces.

3. Local structure

We continue to denote by H ⊂ Hilb = Hilb
P (3t)

PN the open subscheme parametrizing K3
surfaces as in Proposition 2.1. Recall that P (t) = dt2 + 2 and N = P (3)− 1.

3.1. As it turns out, the Hilbert scheme parametrizing K3 surfaces is smooth which
later leads to the fact that the moduli space of polarized K3 surfaces is nearly smooth.

Proposition 3.1. Suppose that the characteristic of k is prime to 6d. Then the scheme
H is smooth of dimension 19 +N2 + 2N = 18 + (9d+ 2)2.

Proof. Consider a point x ∈ H corresponding to an embedded K3 surface X ⊂ PNk .
As H is an open subscheme of Hilb, the tangent space TxH of H at x is naturally
isomorphic to Hom(IX ,OX) and the obstruction space is Ext1(IX ,OX). Since X is
smooth, the tangent and obstruction spaces can therefore be computed as H0(X,N )

and H1(X,N ), where N := NX/PN is the normal bundle of X ⊂ PNk . See the books
by Hartshorne, Kollár, and Sernesi [235, 310, 541] for general accounts of deformation
theory.
Both spaces can be computed by means of the normal bundle sequence

0 // TX // TPN |X //N // 0,

which combined with H0(X, TX) = H2(X, TX) = 0 (see Section 1.2.4) leads to

0 //H0(X, TPN |X) //H0(X,N ) //H1(X, TX) //H1(X, TPN |X) //H1(X,N ) // 0.

From the Euler sequence restricted toX and the vanishing ofH i(X,O(1)|X) for i = 1, 2,
cf. Proposition 2.3.1, and of H1(X,OX) one then deduces

H1(X, TPN |X) ' H2(X,OX) ' k

10The faithfulness in finite characteristic goes back to Ogus [475, Cor. 2.5], see [507, Prop. 3.4.2].
More precisely, Ogus shows faithfulness of the action on crystalline cohomology and Rizov uses this to
prove faithfulness of the action on étale cohomology H2

ét(X,Z`) for ` 6= p 6= 2, cf. Remark 15.2.2
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and a short exact sequence

0 // k //H0(X,O(1)|X)N+1 //H0(X, TPN |X) // 0.

Thus, if

(3.1) H1(X, TX) //H1(X, TPN |X)

is non-trivial, then the obstruction space H1(X,N ) is trivial and the dimension of the
tangent space is obtained by a straightforward computation. To check the non-triviality
of (3.1), consider its Serre dual

H1(X,ΩPN |X) //H1(X,ΩX).

The first Chern class c1(O(1)) ∈ H1(PN ,ΩPN ) restricts to the first Chern class c1(L3) ∈
H1(X,ΩX) which is shown to be non-trivial as follows. The image of the intersection
number 18d = (L3)2 ∈ Z under Z // k can be computed as the residue of c2

1(L3) ∈
H2(X,Ω2

X). Hence, if 6d or, equivalently, (L3)2 is prime to the characteristic of k, then
c2

1(L3) 6= 0 and, hence, c1(L3) 6= 0. �

Remark 3.2. The above arguments are valid in broad generality and even for the
universal construction over Z. One obtains a smooth Hilbert scheme over Z[1/(6d)],
see [7, 507]. This result in particular implies the smoothness of the moduli space as
Deligne–Mumford stack, see Remark 4.11. However, by a more direct argument avoiding
the Hilbert scheme, smoothness can be shown over Z[1/(2d)].

3.2. The finiteness of the automorphism group of polarized K3 surfaces, to be proven
next, is subsequently used to show that the moduli space is étale locally the quotient of
a smooth scheme by the action of a finite group.

Proposition 3.3. Let X be a K3 surface over a field k and L an ample line bundle on
X. Then the group of automorphisms f : X ∼− // X (over k) with f∗L ' L is finite.

Proof. We freely use that H0(X, TX) = 0 which is easy for k = C and substantially
more difficult for a field of positive characteristic, see Sections 1.2.4 and 9.5.
Let (L)2 = 2d and P (t) := dt2 + 2. The graph of an automorphism f : X ∼− // X is a

closed subscheme Γf ⊂ X ×X and thus corresponds to a k-rational point of the Hilbert
scheme HilbX×X of closed subschemes of X × X. Clearly, f is uniquely determined by
its graph.
If f∗L ' L, then the Hilbert polynomial of Γf with respect to the ample line bundle

L� L on X ×X is given by P (2t). Indeed,

χ(Γf , (L� L)n|Γf ) = χ(X, (L⊗ f∗L)n) = χ(X,L2n) = P (2n).

Thus, the graph of f defines a k-rational point of Hilb
P (2t)
X×X,L�L, which by general results

due to Grothendieck is a projective scheme, cf. [223, 174].
The tangent space of a k-rational point of HilbX×X corresponding to a closed subscheme

Z ⊂ X×X is naturally isomorphic to the k-vector space Hom(IZ ,OZ). If Z is a smooth
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subscheme, then Hom(IZ ,OZ) ' H0(Z,N ), where N := NZ/X×X denotes the normal
bundle of Z in X ×X. Use the normal bundle sequence

0 // TZ // TX×X |Z //N // 0

to see that N ' TX for a graph Z = Γf . Indeed, identifying X with the graph of f
via (id, f) : X ∼− // Γf ⊂ X × X and writing TX×X |Γf ' TX ⊕ f∗TX ' TX ⊕ TX . The
embedding TZ // TX×X |Z is given by v � // v⊕df(v) which can be splitted by (v, w) � // v.
Hence, the tangent space of HilbX×X at the point [Γf ] is naturally isomorphic to

H0(X, TX), which is trivial. Thus, the k-rational points of HilbX×X corresponding to the
graph of automorphisms of (X,L) are (reduced) isolated points of Hilb

P (2t)
X×X,L�L. Since

a projective scheme can only have finitely many irreducible components, the set of those
k-rational points that correspond to [Γf ] of automorphisms with f∗L ' L is finite. �

Remark 3.4. For later use note that the proof in fact shows that Isom((X,L), (X ′, L′))

for two polarized K3 surfaces over a field k is a finite set of reduced points. Both properties
are needed to show that the moduli space of polarized K3 surfaces is a Deligne–Mumford
stack, see Proposition 4.10.

Corollary 3.5. Any automorphism f : X ∼− // X of a K3 surface X with f∗L ' L for
some ample line bundle is of finite order. �

3.3. The local description of the Hilbert scheme and the finiteness of the group of
automorphisms leads to the following result on the local structure of the coarse moduli
space. As it turns out, Md is no longer smooth but not far from it either. For simplicity,
we state the result for the case of a quasi-projective moduli space over C, for which it
can also be deduced from the period description explained in Section 6.4.1.

Corollary 3.6. Let Md be the coarse moduli space of polarized complex K3 surfaces of
degree 2d. Then étale locally Md is the quotient of a smooth scheme by a finite group.

Proof. This is an immediate consequence of Luna’s étale slice theorem which more
generally asserts the following: If a reductive group G acts on a variety Y over k such
that a good quotient Y // Y/G exists, then through any point x ∈ Y with closed orbit
G · x there exists a locally closed Stab(x)-invariant subscheme S (the slice through x)
such that S ×Stab(x) G // Y and S/Stab(x) // Y/G are étale. Moreover, if Y is smooth,
then S can be chosen smooth as well. See [326] or [442].
In our case, Y = H and G = PGL. The quotient exists by Theorem 2.4 and all orbits

are closed due to the properness of the action, see Section 2.3. The stabilizer Stab(x) of
a point x ∈ H corresponding to some polarized K3 surface X ⊂ PN , L3 ' O(1)|X , is
isomorphic to Aut(X,L), which is finite by Proposition 3.3. �

A version of Luna’s étale slice theorem valid in positive characteristic has been proved
in [31] and in fact the corollary remains valid in positive characteristic. This is the
statement that the moduli functorMd is a smooth Deligne–Mumford stack, which shall
be explained next.
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4. As Deligne–Mumford stack

For many purposes it is enough to know that the moduli space of polarized K3 surfaces
exists as a Deligne–Mumford stack. In fact, it is even preferable to view the moduli
space as a stack, as the stack keeps track of the automorphism groups of the K3 surfaces.
Hence, for example, the moduli stack is smooth but the coarse moduli space is not.

4.1. In the introduction we have exhibitMd also as a groupoid over (Sch/S), more
precisely as a category over (Sch/S) fibred in groupoids (CFG over S). For the definition
of a CFG, see the introduction by Deligne and Mumford in [144, Sec. 4] or [1, Tag 04SE].
The conditions are easily verified in our situation.
Recall that a CFG N over (Sch/S) is representable if there exists an S-scheme U such

that U ' N . Here, U is the CFG with the set MorS(T,U) as the groupoid over T .

Let (X1
// T, L1), (X2

// T, L2) ∈Md and define

IsomT ((X1, L1), (X2, L2)) : (Sch/T )o // (Sets)

as the functor that maps T ′ // T to the set of isomorphisms ψ : X1T ′
∼− // X2T ′ over T ′

with ψ∗L2T ′ ' L1T ′ up to tensoring with the pull-back of a line bundle on T ′. (The
isomorphism between the line bundles is not part of the datum.)

Proposition 4.1. The functor

IsomT ((X1, L1), (X2, L2)) : (Sch/T )o // (Sets)

is a sheaf in the étale topology.

Proof. In fact, and this is what is needed later, the functor is representable and
thus in particular a sheaf. This follows from the representability of the Hilbert scheme
by embedding IsomT (X1, X2) into HilbX1×TX2 as an open subscheme. Considering only
isomorphisms that respect the polarizations ensures that the image is contained in the
part of the Hilbert scheme for which the Hilbert polynomial with respect to the product
ample line bundle L1 � L2 equals χ(L2n

1 ) = 4dn2 + 2. More precisely, using proper-
ness of the relative Picard scheme of the universal family Z over Hilb, one finds that
Isom((X1, L1), (X2, L2)) is a locally closed subscheme of Isom(X1, X2), cf. the proof of
Proposition 2.1. �

Proposition 4.2. Every descent datum inMd is effective.

Proof. We have to show the following. Suppose T ′ // T is an étale (or just fpqc)
covering in (Sch/S). Denote the natural projections by

pi : T
′′ := T ′ ×T T ′ // T ′ and pij : T ′ ×T T ′ ×T T ′ // T ′′.

If for (f ′ : X ′ // T ′, L′) ∈ Md(T
′) an isomorphism ϕ : p∗1(X ′, L′) ∼− // p∗2(X ′, L′) satisfies

the cocycle condition p∗23ϕ ◦ p∗12ϕ = p∗13ϕ, then there exist (X,L) ∈ Md(T ) and an
isomorphism λ : (X,L)T ′

∼− // (X ′, L′) inducing ϕ. Moreover, (X,L) and λ are unique up
to canonical isomorphism.
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The idea of the proof is to use effective descent for quasi-coherent sheaves and mor-
phisms of quasi-coherent sheaves. Indeed, by assumption X ′ is isomorphic to the relative
Proj(S ′), where S ′ is the quasi-coherent graded sheaf of algebras

⊕
f ′∗(L

′k). The descent
datum given by ϕ translates immediately into a descent datum for S ′. Note that the
algebra structure is encoded by morphisms between quasi-coherent sheaves. Effective
descent for quasi-coherent sheaves then yields a quasi-coherent graded sheaf of algebras
S on T and X is defined as its relative Proj. The argument does not use any particular
properties of K3 surfaces and so the result holds true in broad generality. See e.g. [54]
for details on descent theory.11 �

Corollary 4.3. The groupoidMd of primitively polarized K3 surfaces is a stack.

Proof. By definition, a CFGM is a stack if Propositions 4.1 and 4.2 hold. �

Example 4.4. Clearly, the CFG U associated with an S-scheme U is a stack. The
other source for examples is group quotients. If H is a scheme with a group scheme G
acting on H (everything over S), then [H/G] is the CFG with sections over T consisting
of all principal G-bundles P over T together with a G-equivariant morphism P //H.
Morphisms in [H/G] are pull-back diagrams. Then [H/G] is a stack.

Example 4.5. The most important example of a quotient stack in the present context
is the one given by the action of PGL on the open subscheme H of the Hilbert scheme
Hilb studied in the previous sections. There exists a natural isomorphism of stacks

[H/PGL] ∼− // Md.

All the main ideas for the construction of this isomorphism have been explained already.
Consider a section of [H/PGL] over T given by a principal PGL-bundle P // T and a
G-equivariant morphism P //H. The latter is given by a polarized K3 surface X //P

together with an embedding X ⊂ PNP . The PGL-action produces a descent datum and
effective descent forMd (see Proposition 4.2) yields a section ofMd over T .
To show that this yields an isomorphism of stacks start with (f : X // T, L) inMd(T )

and consider the locally free sheaf f∗(L3) on T . Each choice of a basis in the fibre
of f∗(L3) yields an embedding of the fibre of X into PN . Thus, the associated PGL-
bundle (of frames in the fibres of f∗(L3)) comes with a natural morphism P //H. The
verification that the functor is fully faithful is straighforward.

4.2. It turns out thatMd is much more than just a stack, it is a Deligne–Mumford
stack. We shall need to find an étale or at least a smooth atlas for it.

Remark 4.6. Recall that a morphism of CFG M //N is representable if for any
U //N the fibre product U ×N M is representable. By [144, Prop. 4.4] (see also [54])
the diagonal morphism

∆: M //M×(Sch/S)M

11As before, in the proof we have assumed L′ to be an actual line bundle, although it may exist only
étale locally. This has no effect on the descent of Proj(S ′), but S and L may exist only étale locally.
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of a stackM is representable if and only if for all T //M oo T ′ the fibre product T×MT ′
is representable. In fact, it is enough to consider the case T = T ′.
Thus, the diagonal of the stackMd is representable if for all (X1, L1), (X2, L2) ∈Md(T )

the sheaf IsomT ((X1, L1), (X2, L2)) is representable. This we have noted already in the
proof of Proposition 4.1. Hence, in our situation the diagonal is representable.
As usual, a morphism of CFG M //N is said to have a certain scheme theoretic

property (e.g. quasi-compact, separated, étale, etc.) if it is representable and if for every
U //N the morphism of schemes representing U ×N M //U has this property.

Definition 4.7. A stack M over (Sch/S) is called a Deligne–Mumford stack if in
addition the following two conditions are satisfied:

(i) The stackM is quasi-separated, i.e. diagonal morphism ∆: M //M×(Sch/S)M
is representable, quasi-compact, and separated.12

(ii) There exists a scheme U and an étale surjective morphism U //M (over S).

Remark 4.8. In our geometric situation and, in particular, for the construction of the
moduli space of K3 surfaces, one could try to rigidify the situation by introducing addi-
tional structures (level structures), e.g. one would consider every K3 surface together with
all isomorphisms H2(X,Z/`Z) ' Λ/`Λ. This produces a finite étale covering H̃ //H

with Galois group say Γ and such that the PGL-action on H lifts naturally to a free
action on H̃. Then the existence of H̃/PGL as a scheme is easier and this quotient can
be used as an étale cover ofMd as required in (ii). Another advantage of H̃/PGL over
H/PGL is the existence of a universal family. See Section 6.4.2 for more details on this
approach (in the complex setting).

However, as an alternative to the approach sketched in the last remark one can use the
following result, see [144, Thm. 4.21] and also [160] or [54, Ch. 5].

Theorem 4.9. Let M be a quasi-separated stack over a Noetherian scheme S. Then
M is a Deligne–Mumford stack if
(iii) The diagonal ∆: M //M×(Sch/S)M is unramified and
(iv) There exists a scheme U of finite type over S and a smooth surjective morphism

U //M (over S).13

This can be used to prove Theorem 1.3, which we state again as

Proposition 4.10. The stack Md of primitively polarized K3 surfaces of degree 2d

over a Noetherian base S is a Deligne–Mumford stack.

12Often, the separatedness of the diagonal is added as an additional condition and not seen as part
of the definition.

13In a certain sense, the existence of U in (iv) is an analogue (less precise) of Luna’s étale slice
theorem mentioned in the proof of Corollary 3.6. The existence of U as in (iv) suggests to take étale
sections to produce the étale covering in (ii). Note however, that in general one cannot find an étale
slice through every point of a smooth atlas U //M , see [54, Ex. 5.7]. Also note that if U in (iv) is
smooth, then also the étale atlas in (ii) can be chosen smooth.
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Proof. (i) By Remark 4.6, the diagonal of Md is representable. We show that it
is actually finite and hence quasi-compact and separated. Consider two polarized K3
surfaces (X1, L1), (X2, L2) ∈Md(Spec(R)) over a discrete valuation ring R. Then by the
theorem of Matsusaka–Mumford, see Section 2.3, any isomorphism over the generic point
of Spec(R) extends uniquely to an isomorphism over R. Thus, by the valuative criterion
IsomT ((X1, L1), (X2, L2)) is proper over T . Together with the finiteness of Aut(X,L) of
a polarized K3 surface over a field, see Proposition 3.3, this proves the finiteness of the
diagonal.
(iii) Recall that a morphism, locally of finite type, is unramified if all geometric fibres

are discrete and reduced, see [224, Ch. 17]. Thus, it suffices to show that for two families
(X,L) // T oo (X ′, L′) the fibres of IsomT ((X,L), (X ′, L′)) // T over geometric points
consist of reduced isolated points. However, the fibre over a geometric point t ∈ T is
Isomk(t)((Xt, Lt), (X

′
t, L
′
t)) which has this property, see Remark 3.4.

(iv) We use the PGL-action on the (open) subscheme H ⊂ Hilb. As was mentioned in
Example 4.5, [H/PGL] ∼− // Md. Thus, one has to show thatH // [H/PGL] is (formally)
smooth. So, consider (X,L) ∈Md(Spec(A)) and an ideal I ⊂ A with I2 = 0. Let A0 :=

A/I and suppose that (X,L) lifts toH over Spec(A0). Thus, there exists a principal PGL-
bundle P // Spec(A) together with an equivariant morphism P //H. The restriction
to Spec(A0) ⊂ Spec(A) yields a principal bundle P0

// Spec(A0). The existence of the
lift over Spec(A0) to H implies the existence of a morphism Spec(A0) //H which via
pull-back yields P0

// Spec(A0). In particular, the latter is a trivial PGL-bundle. In
other words, one has Spec(A0) //P0 ⊂ P //H. In order to show that the projection
H // [H/PGL] is formally smooth, one needs to extend the composition Spec(A0) //H

to a morphism Spec(A) //H. But this can be obtained by simply passing to the closure
of Spec(A0) in P and by composing with P //H. Equivalently, if P0

// Spec(A0) is
trivial, then so is P // Spec(A).
Underlying the above arguments is the following general observation: If a smooth group

scheme (over S) acts on H (of finite type over S) with finite and reduced stabilizers, then
the quotient H/G is a Deligne–Mumford stack.14 �

Remark 4.11. Using Section 3, one finds that Md over Z is smooth over Z[1/(2d)]

(see [507] or the footnote to Theorem 4.9). In particular, over a field of characteristic
zero allMd are smooth Deligne–Mumford stacks. Note however that the coarse moduli
spaceMd is singular, due to the existence of K3 surfaces with non-trivial automorphisms.

References and further reading:

14The properness, e.g. in Theorem 2.6, is needed to ensure that the geometric points of the quotient
parametrize orbits. A priori this is not an issue for the stack, but it becomes one when one wants to
pass to its coarse moduli space. In fact, in [287] Keel and Mori also show that any separated Deligne–
Mumford stack of finite type has a coarse moduli space in the category of algebraic spaces. So, a fortiori,
the assumption that the stabilizers are finite and reduced implies the properness of the action.
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As pointed out to me by Chenyang Xu, the construction of the moduli space of polarized
complex K3 surfaces (X,L) can also be based on Donaldson’s result in [156], which states that
for sufficiently high n the pair (X,Ln) defines a Chow stable point. Details of this construction
and in particular a comparison of the various ample line bundles on the moduli space have not
been addressed in the literature.

For questions related to compactification of the moduli space of K3 surfaces see the papers by
Friedman [181], Olsson [478], and Scattone [523].

The geometry of the moduli spaces of K3 surfaces, for example their Kodaira dimensions, has
recently been studied intensively, see the original article of Gritsenko et al [221] or Voisin’s survey
[619]. For high degree they tend to be of general type. In contrast, moduli spaces of K3 surfaces
of small degree may be unirational (more concretely for d ≤ 12 and d = 17, 19), see Mukai’s
papers, e.g. [433], or [619]. Ultimately, this is related to the fact that general K3 surfaces of
small degree can be described as complete intersections in Fano varieties, cf. Section 1.4.3. In
Kirwan’s article [292] one finds among other things a computation of the intersection cohomology
of the moduli space of stable quartics.

In [204] van der Geer and Katsura show that the maximal dimension of a complete subvariety
of the 19-dimensional moduli space Md in characteristic zero is at most 17 (it equals 17 in the
moduli space M̄d of quasi-polarized K3 surfaces). The paper also proves some cycle class relations.
See also [152], [199], [203], [434] for other recent topics related to moduli spaces of K3 surfaces.

Instead of fixing a polarization, which can be thought of as a primitive sublattice of the Picard
group generated by an ample line bundle, it is interesting to study moduli spaces of K3 surfaces
with a fixed lattice of higher rank primitively contained in the Picard group. Moduli spaces of
lattice polarized K3 surfaces have been introduced by Dolgachev in [148] in the context of mirror
symmetry and using period domains as in Chapter 6. For a brief discussion of the algebraic
approach see Beauville [47].

Most Deligne–Mumford stacks are in fact quotient stacks, see Kresch’s article [328] for the
precise statement and further references.

Questions and open problems:
As mentioned in the text, it is more difficult to prove the quasi-projectivity of the coarse moduli

space of polarized K3 surfaces in positive (or mixed) characteristic. This has been achieved by
Maulik and Madapusi Pera in [385, 396], see also Benoist’s Bourbaki survey [57]. Later we
shall see that in characteristic zero the moduli space of polarized K3 surfaces of fixed degree is
connected and in fact irreducible. Again, this is much harder in positive characteristic, but has
been proved recently in [385] for the case that p2 - d. It would be interesting to have proofs of
both statements that do not rely on the Kuga–Satake construction.





CHAPTER 6

Periods

Hodge structures (of complex K3 surfaces) are parametrized by period domains. The
first section recalls three descriptions of the period domain of Hodge structures of K3 type:
as an open subset of a smooth quadric, in terms of positive oriented planes, and as a tube
domain. In Section 2 we review the basic deformation theory relevant for our purposes
and introduce the local period map associated with any local family of K3 surfaces. The
Local Torelli Theorem 2.8, a key result for K3 surfaces but valid for a much broader class
of varieties, is explained. In Section 3 we state two cornerstone results in the theory of
complex K3 surfaces: The surjectivity of the period map, Theorem 3.1, and the Global
Torelli Theorem 3.4. Their proofs, however, are postponed to Chapter 7. The last section
shows how these results can be used to give an alternative construction of the moduli
space of polarized complex K3 surfaces which allows one to derive global information.
The appendix summarizes results concerning Kulikov models for degenerations of K3
surfaces.

1. Period domains

In the following, Λ is a non-degenerate lattice with its bilinear form ( . ). For its
signature (n+, n−) we assume n+ ≥ 2. In fact, only the three cases n+ = 2, 3, 4 are of
importance for us and often Λ will be the K3 lattice E8(−1)⊕2 ⊕ U⊕3 or the orthogonal
complement Λd := `⊥ of a primitive vector ` ∈ E8(−1)⊕2 ⊕ U⊕3 of positive square
(`)2 = 2d. Note that Λd ' E8(−1)⊕2⊕U⊕2⊕Z(−2d), see Example 14.1.11. An example
with n+ = 4 is provided by the full cohomology H∗(X,Z) of a complex K3 surface X.
For the necessary lattice theory, in particular all the notations, we refer to Chapter 14.

1.1. Consider the associated complex vector space ΛC := Λ⊗Z C endowed with the
C-linear extension of ( . ) which corresponds to a homogenous quadratic polynomial. Its
zero locus in P(ΛC) is a quadric which is smooth due to the assumption that ( . ) is
non-degenerate. Consider the open (in the classical topology) subset of this quadric

D := {x ∈ P(ΛC) | (x)2 = 0, (x.x̄) > 0} ⊂ P(ΛC),

to which we refer as the period domain associated with Λ and which is considered as
a complex manifold. Note that the second condition really is well posed, as (λx.λx) =

(λλ̄)(x.x̄) and λλ̄ ∈ R>0 for all λ ∈ C∗. Also note that D itself only depends on the real
vector space ΛR together with the real linear extension of ( . ).

99
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Remark 1.1. Denote by `x ⊂ ΛC the line corresponding to a point x ∈ D. Then for
the tangent space of D at x there exists a natural isomorphism

TxD ' Hom(`x, `
⊥
x /`x).

Indeed, TxP(ΛC) ' Hom(`x,ΛC/`x) and writing out the infinitesimal version of (x)2 = 0

shows that TxD ⊂ TxP(ΛC) consists of all linear maps `x //ΛC/`x with image orthogonal
to `x.

Proposition 1.2. There exists a natural bijection between D and the set of Hodge
structures of K3 type on Λ such that for all non-zero (2, 0)-classes σ:
(i) (σ)2 = 0,
(ii) (σ.σ̄) > 0,
(iii) Λ1.1 ⊥ σ.

Proof. The (2, 0)-part of any Hodge structure of K3 type on Λ defines a line in ΛC.
If the Hodge structure satisfies (i) and (ii), then the line defines a point in D. Conversely,
if a point x in D is given, then there exists a Hodge structure with `x as its (2, 0)-
part satisfying (i) and (ii). Adding condition (iii) makes it unique. Indeed, Λ1,1 is the
complexification of the real vector subspace of ΛR defined as the orthogonal complement
of the plane spanned by Re(σ) and Im(σ). (The plane is non-degenerate and in fact
positive definite, see below for a related discussion.) �

Note that in the above proposition, ( . ) does not necessarily polarize the Hodge struc-
ture (see Definition 3.1.6) as we do not assume that it is definite on Λ1,1 ∩ ΛR.

Example 1.3. i) If X is a complex K3 surface, then the natural Hodge structure on
Λ = H2(X,Z) is of the above type.
ii) Suppose n+ > 2 and fix ` ∈ Λ with (`)2 > 0. Then `⊥ ⊂ Λ induces a linear

embedding P(`⊥C ) ⊂ P(ΛC) and the period domain associated with `⊥ is obtained as the
intersection of the period domain D ⊂ P(ΛC) with the hyperplane P(`⊥C ).
iii) As a special case of ii), consider the K3 lattice Λ = E8(−1)⊕2 ⊕ U⊕3 and let

` = e1 + df1, where e1, f1 is the standard basis of the first copy of U . Let Λd := `⊥ and

Dd ⊂ P(ΛdC) ⊂ P(ΛC)

be the associated period domain. In fact, any primitive ` ∈ Λ with (`)2 = 2d is of this
form after applying a suitable orthogonal transformation of Λ, see Corollary 14.1.10.

Remark 1.4. The period domain introduced above is a special case of Griffiths’s period
domains parametrizing (polarized) Hodge structures of arbitrary weight. See [218, 101,
165, 617].

1.2. The period domain D associated with a lattice Λ as above has two other
realizations, as a Grassmannian and as a tube domain, see e.g. [522, App. Sec. 6].
Let us first consider the real vector space ΛR with the R-linear extension of ( . ). The

Grassmannian Gr(2,ΛR) of planes in ΛR is a real manifold of dimension 2(dim ΛR− 2) =

2(n+ + n− − 2). Let Grp(2,ΛR) ⊂ Gr(2,ΛR) be the open set of all planes P ⊂ ΛR for
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which the restriction ( . )|P is positive definite and let Grpo(2,ΛR) be the manifold of all
such positive planes together with the choice of an orientation. Thus, Grpo(2,ΛR) can be
realized as a natural covering of degree two

(1.1) Grpo(2,ΛR) // //Grp(2,ΛR).

Proposition 1.5. There exist diffeomorphisms

D ∼− // Grpo(2,ΛR) ∼− // O(n+, n−)/SO(2)×O(n+ − 2, n−).

Proof. Here, O(n+, n−) denotes the orthogonal group of Rn++n− endowed with the
diagonal quadratic form diag(1, . . . , 1,−1, . . . ,−1) of signature (n+, n−). By choosing an
identification of ΛR with Rn++n− , one obtains a natural transitive action of O(n+, n−) on
Grpo(2,ΛR). The stabilizer of the plane spanned by the first two unit vectors (with the
natural orientation) v1, v2 is the subgroup SO(2)×O(〈v1, v2〉⊥) ' SO(2)×O(n+−2, n−).
For the first diffeomorphism consider the map

D //Grpo(2,ΛR), x � //R · Re(x)⊕ R · Im(x).

Note that (x)2 = 0 and (x.x̄) > 0 imply that e1 := Re(x) and e2 := Im(x) are orthogonal
to each other and (e1)2 = (e2)2 > 0. The map is well-defined as λx with λ ∈ C∗ defines
the same oriented plane. Conversely, an oriented positive plane P with a chosen oriented
orthonormal basis e1, e2 can be mapped to x = e1 + ie2. �

Remark 1.6. Using the description of D in terms of positive planes, it is not difficult
to see that D is connected for n+ > 2 and that it has two connected components for
n+ = 2. In the second case, the orientation of two positive planes can be compared via
orthogonal projections. In the description of D as a subset of P(ΛC) the two components
in the decomposition

D = D+ tD−

can be interchanged by complex conjugation x � // x̄. Equivalently, for n+ = 2 the covering
(1.1) is trivial, i.e. in this case Grpo(2,ΛR) consists of two disjoint copies of the target.

For the tube domain realization choose an orthogonal decomposition ΛR = UR ⊕W
for which we have to assume n− > 0. (Shortly we also assume n+ = 2.) Consider the
coordinates on UR corresponding to the standard basis e, f with (e)2 = (f)2 = 0 and
(e.f) = 1. A point x ∈ P(ΛC) corresponding to αe+ βf + z ∈ UC ⊕WC shall be denoted
[α : β : z] and the associated tube domain is defined as

H := {z ∈WC | (Im(z))2 > 0}

and comes with the structure of a complex manifold in the obvious way.

Proposition 1.7. Assume n+ = 2. Then the map z � // [1 : −(z)2 :
√

2z] defines a
biholomorphic map

H ∼− // D.
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Proof. Let us verify that the map takes values in D. For x = (1,−(z)2,
√

2z) one
finds (x)2 = (e− (z)2f.e− (z)2f) + 2(z)2 = 0 and (x.x̄) = (e− (z)2f.e− (z)

2
f) + 2(z.z̄) =

−2Re(z)2 + 2(z.z̄) = 4(Im(z))2 > 0 for z ∈ H.
For the inverse map consider x = [α : β : γ] ∈ D. Suppose α = 0. Then (β, γ)

corresponds to a positive plane in R ·f⊕W , but the latter has only one positive direction.
Hence, α 6= 0 and we may thus assume α = 1. But then the quadratic equation for D
implies 2β + (γ)2 = 0 and the inequality (x.x̄) > 0 yields (Im(γ))2 > 0. �

Example 1.8. For n+ = 2 and n− = 1 one finds the following familiar picture. In this
case we may assume WC = C with the standard quadratic form and then

H = H t (−H).

The above biholomorphic map is then simply H ∼− // D+, z � // [1 : −z2 :
√

2z].
The isomorphism becomes more interesting when the two sides are considered with

their natural actions of SL(2,Z) and O(Λ), respectively, see below.
Recall that H is biholomorphic to the unit disk in C. In the same vein, the period

domain D+ for n+ = 2 is always a bounded symmetric domain (of type IV).

1.3. The period domain D associated with the lattice Λ comes with a natural action
of the discrete group O(Λ). The action is only well behaved for n+ = 2. More precisely,
the group O(Λ) is not expected to act properly discontinuously on D for n+ > 2. In
particular, the quotient O(Λ)\D is not expected to be Hausdorff for n+ > 2.

Example 1.9. For a geometric inspired example for this phenomenon consider a com-
plex K3 surface X with an infinite automorphism group Aut(X). (An example can be
constructed by considering an elliptic K3 surface with a non-torsion section, see Section
15.4.2.) Then the infinite subgroup Aut(X) ⊂ O(H2(X,Z)) (see Proposition 15.2.1) is
contained in the stabilizer of the point x ∈ D ⊂ P(H2(X,C)) corresponding to the Hodge
structure of X. See also the proof of Proposition 7.1.3 to see how bad the action can
really be.

Remark 1.10. The action of O(Λ) on D for n+ = 2 is properly discontinuous. This
can be seen as a consequence of the following general result: If K ⊂ G is a compact
subgroup of a locally compact topological group which is Hausdorff, then the action of a
subgroup H ⊂ G on G/K is properly discontinuous if and only if H is discrete in G, see
e.g. [634, Lem. 3.1.1] for the elementary proof. The example applies to our case, as for
n+ = 2 the group SO(2)×O(n+ − 2, n−) ' SO(2)×O(n−) is compact (use Proposition
1.5).

Thus, for the rest of this section we shall restrict to the case n+ = 2 and will consider,
slightly more generally, the action of subgroups Γ ⊂ O(Λ) of finite index, so of arithmetic
subgroups. Recall that two subgroups Γ1,Γ2 ⊂ H are commensurable if their intersection
Γ1 ∩ Γ2 has finite index in Γ1 and Γ2. For an algebraic group G ⊂ GL(n,Q) a subgroup
Γ ⊂ G(Q) is arithmetic if it is commensurable with G(Q) ∩GL(n,Z).
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We use without proof the following classical results, due to Borel respectively Baily
and Borel. See [78, Prop. 17.4], Milne’s lecture notes [406, Sec. 3] for a short review, or
Satake’s book [522, IV. Lem. 4.2].

Proposition 1.11. Let Γ ⊂ G(Q) be an arithmetic subgroup. Then there exists a
(normal) subgroup of finite index Γ′ ⊂ Γ which is torsion free.

The subgroup Γ′ can be given by a congruence condition, i.e. Γ′ := {g ∈ Γ | g ≡ id (`)}
for some large `. A typical example of a torsion free arithmetic group is the congruence
subgroup Γ(p) ⊂ SL(2,Z), p ≥ 3, of matrices A ≡ id (p).
The proposition can be applied to G = O(ΛQ) and any Γ ⊂ O(Λ) of finite index.

Proposition 1.12. If Γ ⊂ O(Λ) is a torsion free subgroup of finite index, then the
natural action of Γ on the period domain D is free and the quotient Γ\D is a complex
manifold.

Proof. We use that Γ acts properly discontinuous, see Remark 1.10. Therefore, the
stabilizer of any point is finite and thus trivial if Γ is torsion free. Hence, the action
is free. The open neighbourhoods U of a point x ∈ D for which gU ∩ U = ∅ for all
id 6= g ∈ Γ can be used as holomorphic charts for the image of x in the quotient. See e.g.
[406, Prop. 3.1] for a detailed proof. �

The main result in this context is however the following theorem of Baily–Borel for
which the original paper [28] seems to be the only source. We apply the theorem to the
period domain D associated with a lattice Λ of signature (2, n−). It is, however, valid for
arithmetic groups acting on arbitrary bounded symmetric domains.

Theorem 1.13 (Baily–Borel). If Γ ⊂ O(Λ) is torsion free, then Γ\D is a smooth
quasi-projective variety.

For a subgroup Γ ⊂ O(Λ) which is not torsion free the quotient Γ\D still exists as a
quasi-projective variety, but it is only normal in general. Indeed, passing to a finite index
torsion free subgroup Γ′ ⊂ Γ first (cf. Proposition 1.11), one can construct the smooth
quasi-projective quotient Γ′\D. Then view Γ\D as a finite quotient of the smooth Γ′\D.

2. Local period map and Noether–Lefschetz locus

Small deformations of K3 surfaces are faithfully measured by the induced deformations
of their associated Hodge structures. This is the content of the Local Torelli Theorem
which can be phrased by saying that the local period map identifies the universal defor-
mation Def(X) of a K3 surface with an open subset of the period domain D introduced
above. (The existence of the universal deformation is a completely general fact, which is
only stated.) We shall introduce the local period map and explain why it is holomorphic.
The locus, in Def(X) or D, of those deformations that have non-trivial Picard group, the
so-called Noether–Lefschetz locus, consists of countably many smooth codimension one
subsets and we prove that it is dense. We come back to more algebraic aspects of the
Noether–Lefschetz locus in Section 17.2.
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2.1. Let f : X //S be a smooth proper family of complex K3 surfaces Xt := f−1(t).
For simplicity we shall mainly consider the case that S is a complex manifold (and then
X is). Usually we also assume that S (and hence X) is connected and we shall fix a
distinguished point 0 ∈ S. Such a family is called non-isotrivial if the fibres Xt are not
all isomorphic.
The locally constant system R2f∗Z with fibre H2(Xt,Z) at t ∈ S corresponds to a

representation of π1(S) on H2(X0,Z). In particular, if S is simply connected, e.g. S a
disk in Cn, then R2f∗Z is canonically isomorphic to the constant system H2(X0,Z). The
same arguments apply to R2f∗Q and R2f∗C. Clearly, R2f∗Z⊗Z C ' R2f∗C.
These local systems induce a flat holomorphic vector bundle R2f∗Z⊗ZOS ' R2f∗C⊗C
OS . Its fibre at a point t ∈ S is naturally isomorphic to H2(Xt,C) and thus contains the
line H2,0(Xt). These lines glue to a holomorphic sub-line bundle due to the following

Lemma 2.1. There is a natural injection f∗Ω
2
X/S ⊂ R2f∗C ⊗C OS of holomorphic

bundles which in each fibre yields the natural inclusion H2,0(Xt) ⊂ H2(Xt,C).

Proof. This can be proved by an explicit computation (see e.g. [53, Exp. V]) or by
a more conceptual argument as follows (see e.g. [59, Ch. 3]).
First recall that on a complex K3 surface X the constant sheaf C has a resolution

C //OX //Ω1
X

//Ω2
X .

In other words, C is quasi-isomorphic to the holomorphic de Rham complex

Ω•X : OX //Ω1
X

//Ω2
X .

Thus, singular cohomology H i(X,C) can also be computed as the hypercohomology
H i(X,Ω•X) of the de Rham complex Ω•X . (Note that although the sheaves Ωi

X are coher-
ent, the de Rham complex is not a complex of coherent sheaves, the differential is only
C-linear, but not OX -linear.)
The natural Ω2

X [−2] //Ω•X (the shift simply puts Ω2
X in degree two) is a morphism of

complexes. The induced map H0(X,Ω2
X) ' H2(X,Ω2

X [−2]) //H2(X,C) is the inclusion
given by the Hodge decomposition.
Similarly, in the relative context of a smooth proper family of K3 surfaces f : X //S

the relative de Rham complex Ω•X/S : OX //Ω1
X/S

//Ω2
X/S is f−1OS-linear and quasi-

isomorphic to f−1OS . Thus, using projection formula,

Rif∗C⊗C OS ' Rif∗(f−1OS) ' Rif∗(Ω•X/S).

Again, the natural Ω2
X/S [−2] //Ω•X/S is a morphism of complexes of f−1OS-sheaves and

the induced f∗Ω
2
X/S ' R2f∗(Ω

2
X/S [−2]) //R2f∗Ω

•
X/S ' R2f∗C ⊗C OS is the desired

inclusion of coherent sheaves. �

Remark 2.2. i) The above remarks apply more generally to smooth proper families
of complex surfaces or compact Kähler manifolds. This leads to the notion of variations
of Hodge structures (VHS) of arbitrary weight. The case of Hodge structures of K3 type
and of Hodge structures of weight one are the only cases of interest to us.
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ii) Note that the lines H0,2(Xt) ⊂ H2(Xt,C) also glue to a subbundle of R2f∗C ⊗C
OS of rank one. However, this inclusion does not define a holomorphic subbundle. In
fact, it is rather the quotients H2(Xt,C) // //H0,2(Xt), or more globally the natural
Ω•X/S

//OX , that should be considered. They yield a holomorphic quotient bundle
R2f∗C⊗C OS // //R2f∗OX .

It is possible to replace the smooth S by an arbitrary complex space, the arguments
showing that f∗Ω2

X/S ⊂ R2f∗C ⊗C O forms a holomorphic subbundle (or, equivalently,
a coherent locally free subsheaf with locally free cokernel) can be modified to cover this
case.

2.2. Let us step back and consider the more general situation of a holomorphic
subbundle E ⊂ ON+1

S or rank r. The universality property of the Grassmannian says
that a subbundle of this type is obtained as the pull-back of the universal subbundle
on Gr(r,N + 1) under a uniquely determined holomorphic map S //Gr(r,N + 1). For
r = 1, the classifying map is a morphism S //PN and the universal subbundle on PN is
O(−1) ⊂ ON+1 (the dual of the evaluation map). Explicitly, the image of t ∈ S in PN is
the line given by the fibre E(t) ⊂ ON+1(t) ' CN+1.
In our situation of a family of K3 surfaces X //S, the holomorphic map S //PN be-

comes the period map. For this we have to assume that S is simply connected. To simplify
notations, we also fix amarking ofX0, i.e. an isomorphism of lattices ϕ : H2(X0,Z) ∼− // Λ

with the K3 lattice Λ := E8(−1)⊕2 ⊕ U⊕3. Using that S is simply connected, this yields
canonical markings for all fibres H2(Xt,Z) ' H2(X0,Z) ' Λ.

Proposition 2.3. The period map defined by

P : S //P(ΛC), t � // [ϕ(H2,0(Xt))]

is a holomorphic map that takes values in the period domain D ⊂ P(ΛC). It depends on
the distinguished point 0 ∈ S and the marking ϕ.

Proof. After the discussion above, one only needs to verify that P(t) ∈ D. But this
follows from

∫
σ ∧ σ = 0 and

∫
σ ∧ σ̄ > 0 for any 0 6= σ ∈ H2,0(Xt), as was observed

already in Example 1.3. �

The differential of the period map can be described cohomologically. It is, however,
geometrically more instructive to state the result without appealing to the chosen marking
ϕ : H2(X0,Z) ∼− // Λ.

Proposition 2.4 (Griffiths transversality). Under the above assumptions, the differ-
ential

dP0 : T0S // TP(0)D
∼− // Hom(H2,0(X0), H2,0(X0)⊥/H2,0(X0))

can be described as the composition of the Kodaira–Spencer map T0S //H1(X0, TX0)

and the natural map H1(X0, TX0) ∼− // H1(X0,ΩX0) given by contraction with a chosen
0 6= σ ∈ H2,0(X0).
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Proof. For the description of TP(0)D, use Remark 1.1. The inclusionH1(X0,ΩX0) ⊂
H2(X0,C), given by the Hodge decomposition, yields a natural identification

H1(X0,ΩX0) ∼− // H2,0(X0)⊥/H2,0(X0)

implicitily used in the statement.
Recall that the Kodaira–Spencer map is the boundary map of the obvious short exact

sequence 0 // TX0
// TX |X0

// f∗TS |X0
// 0, which is the restriction of the dual of

(2.1) 0 // f∗ΩS
//ΩX

//ΩX/S
// 0,

where one uses f∗TS |X0 ' T0S ⊗C OX0 .
The result is a special case of Griffiths transversality (cf. [617, Ch. 12] or [59]) describing

the differential of arbitrary variations of Hodge structures. If R2f∗C⊗COS is viewed with
its natural flat (Gauss–Manin) connection∇, then Griffiths transversality is the statement
that∇(F p) ⊂ F p−1⊗ΩS , which we apply to p = 2 and so∇(f∗Ω

2
X/S) ⊂ F 1f∗(Ω

•
X/S)⊗ΩS .

The proof in this case using spectral sequences relies on the exact sequence

(2.2) 0 // f∗Ω1
S ⊗ Ω•X/S [−1] //Ω•X/(f

∗Ω2
S ⊗ Ω•X) //Ω•X/S

// 0,

which is a version of (2.1) for complexes. �

2.3. Next we need to recall a few general concepts from deformation theory. Let
X //S be a smooth proper family and X0 the fibre over a distinguished point 0 ∈ S.
For the general theory we have to allow singular and even non-reduced base S. In the
following only the germ of the family in 0 ∈ S plays a role and all statements have to be
read in this sense.
If S′ //S is a holomorphic map sending a distinguished point 0′ ∈ S′ to 0 ∈ S, then

the pull-back family is obtained as the fibre product

X ′ := X ×S S′

��

// X

��
S′ // S.

The family X //S is complete (for the distinguished fibre X0) if any other family
X ′ //S′ with X ′0 ' X0 is isomorphic to the pull-back under some S′ //S. If, moreover,
the map S′ //S is unique, then X //S is called the universal deformation. Clearly, the
universal deformation is unique up to unique isomorphism.
The ultimate aim of deformation theory for a manifold X0 is to produce a universal

deformationX //S with special fibreX0. But this cannot always be achieved. IfX //S

is complete, but only the tangent of the map S′ //S is unique, then X //S is called
versal. Note that a (uni)versal family X //S might not be (uni)versal for the nearby
fibres Xt. The (uni)versal deformation of a manifold X0, if it exists, shall be denoted

X //Def(X0).

The main results concerning deformation of compact complex manifolds are summa-
rized by the following results, mostly due to Kuranishi and Kodaira, see [308].
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Theorem 2.5. Every compact complex manifold X0 has a versal deformation. More-
over, there exists an isomorphism T0Def(X0) ' H1(X0, TX0).

(i) If H2(X0, TX0) = 0, then a smooth(!) versal deformation exists.
(ii) If H0(X0, TX0) = 0, then a universal deformation exists.1

(iii) The versal deformation X //S of X0 is versal and complete for any of its fibres Xt

if h1(Xt, TXt) ≡ const.

Remark 2.6. Note that the isomorphism of the given manifold X0 with the distin-
guished fibre of X //S is part of the datum. In particular, even when H0(X0, TX0) = 0,
so a universal deformation exists, the group Aut(X0) acts on the base of the universal
deformation Def(X0). In particular, if X0 admits non-trivial automorphisms, then there
might exist different fibres Xt, Xt′ which are isomorphic to each other.

It is not difficult to see (cf. proof of Proposition 5.2.1) that the nearby fibres Xt in a
deformation of a K3 surface X0 are again K3 surfaces.

Corollary 2.7. Let X0 be a complex K3 surface. Then X0 admits a smooth universal
deformation X //Def(X0) with Def(X0) smooth of dimension 20.

Proof. This follows immediately from the vanishing H0(X0, TX0) = H2(X0, TX0) =

0 and h1(X0, TX0) = 20, see Section 1.2.4. �

The following marks the beginning of the theory of complex K3 surfaces.2

Proposition 2.8 (Local Torelli Theorem). Let X //S := Def(X0) be the universal
deformation of a complex K3 surface X0. Then the period map

P : S //D ⊂ P(H2(X0,C))

is a local isomorphism.

Proof. Implicitly in the statement, the base S of the universal deformation X0 is
thought of as a small open disk in C20. In particular, S is contractible and thus simply
connected. So the period map is indeed well-defined.
Since h1(Xt, TXt) ≡ 20, the deformation is universal for all fibres Xt. Moreover, af-

ter identifying H2(Xt,Z) ' H2(X0,Z) the period map P (with respect to X0) can
also be considered as the period map for the nearby fibres. As D and S are smooth
of dimension 20, it thus suffices to show that dP0 is bijective. By Proposition 2.4,
dP0 : T0S ' H1(X0, TX0) //H1(X0,ΩX0) is given by contraction with σ : TX0

∼− // ΩX0

and hence indeed bijective. �

1The conditions in i) and ii) are sufficient but not necessary. For example, a Calabi–Yau manifold
can have H2(X, TX) 6= 0 but still the versal deformation is smooth, due to a result of Tian and Todorov.

2Grauert in [213] for Kummer surfaces and later Kodaira in [306] attribute this result to Andreotti
and Weil, see also Weil’s report [630], and Pjateckĭı-Šapiro and Šafarevič in [490] refer to [514, Ch. IX]
and attribute it to Tjurina.
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2.4. A deformation theory for polarized manifolds, i.e. manifolds together with an
ample line bundle, exists and yields results similar to Theorem 2.5, cf. [235, 541]. For
our purpose a more ad hoc approach is sufficient. Suppose X //S is the universal
deformation of a K3 surface X0 and L0 is a non-trivial line bundle on X0. Let ` be its
cohomology class in H2(X0,Z). Clearly, ` is a (1, 1)-class on X0 and thus orthogonal to
the period H2,0(X0) of X0. In other words, P(0) ∈ D ∩P(`⊥C ). In fact, an arbitrary class
0 6= ` ∈ H2(X0,Z) is a (1, 1)-class (and hence corresponds to a unique line bundle L0 on
X0) if and only if P(0) ∈ D ∩ P(`⊥C ).
If for S a small open disk as before natural identifications H2(Xt,Z) ' H2(X0,Z) are

chosen, then the same reasoning applies to all fibres Xt: The class ` ∈ H2(Xt,Z) is a
(1, 1)-class on Xt (and hence corresponds to a unique line bundle Lt on Xt) if and only if
P(t) ∈ D ∩ P(`⊥C ). Using the Local Torelli Theorem (see Proposition 2.8), one finds that
the set of points t ∈ S in which ` is of type (1, 1) is a smooth hypersurface3

S` ⊂ S.

Over S` the class ` can be viewed as a section of R2f∗Z|S` that vanishes under the
projection R2f∗Z|S` //R2f∗OX |S` .
Observe that for S as above, there are natural isomorphisms H2(X,Z) ' Γ(S,R2f∗Z),

H2(X,OX) ' Γ(S,R2f∗OX), and similarly for the restricted family X|S` //S`. Using
the exponential sequence onX|S` , one finds that over S` the class ` gives rise to a uniquely
determined line bundle L on X. Below the discussion is applied to K3 surfaces with a
polarization.

2.5. Let f : X //S be a smooth proper family of complex K3 surfaces over a con-
nected base and let ρ0 := min{ρ(Xt) | t ∈ S}. The Noether–Lefschetz locus of the family
is the set

NL(X/S) := {t ∈ S | ρ(Xt) > ρ0}.

The following result is usually attributed to Green, see [617, Prop. 17.20], and Oguiso
[468].

Proposition 2.9. If f : X //S is a non-isotrivial smooth proper family of K3 surfaces
over a connected base, then NL(X/S) ⊂ S is dense.

Proof. It is clearly enough to consider the case that S is a one-dimensional disk.
Furthermore, we may assume that the Picard number of the special fibre is minimal, i.e.
ρ(X0) = ρ0. The assumption that the family is non-isotrivial is saying that the period map
P : S //P(H2(X0,C)) is non-constant. The assertion is now equivalent to the density
of P(S) ∩

⋃
`⊥ in P(S), where the union runs over all classes ` ∈ H2(X0,Z) \ NS(X0).

Note that P(S) ⊂ `⊥ for all ` ∈ NS(X0), i.e. P(S) ⊂ D ∩ NS(X0)⊥. It is not difficult to
see that indeed (D ∩ NS(X0)⊥) ∩

⋃
`⊥ is dense in D ∩ NS(X0)⊥, see Proposition 7.1.3.

3For (`)2 = 0 the quadric in P(`⊥C ) is singular, but S` is nevertheless smooth.
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However, the assertion here is slightly stronger. For this consider the total space of the
Hodge bundle

H1,1 := {(α, t) | α ∈ H1,1(Xt)} ⊂ H2(X0,C)× S
and the projection p : H1,1 //H2(X0,C). As P is non-constant, the holomorphic map
p is open. Hence, the image of H1,1

R := H1,1 ∩ (H2(X0,R)× S) contains an open subset
of H2(X0,R) as a dense subset. Eventually, use the density of H2(X0,Q) ⊂ H2(X0,R)

(or rather of the complements of NS(X0)Q and NS(X0)R) to conclude that the locus of
points (α, t) ∈ H1,1 with α ∈ H1,1(Xt,Q) \NS(X0)Q is dense in H1,1. Therefore, also its
image in S, which is nothing but NL(X/S), is dense in S. For technical details see [617,
Sec. 17.3.4]. �

Remark 2.10. In the algebraic setting the result is often stated as follows: If f : X //S

is a smooth proper family of complex K3 surfaces over a quasi-projective base S with
constant Picard number ρ(Xt), then the family is isotrivial. A weaker version, assuming
the base to be projective, was proved by means of automorphic forms in [77].
In scheme-theoretic terms the result asserts that the natural specialization map

sp: NS(Xη̄)
� � // NS(Xt)

which is injective for all t ∈ S (see Proposition 17.2.10) fails to be surjective (even after
tensoring with Q) for a dense set of closed points t ∈ S. Here, η ∈ S is the generic point of
S. Note that in positive characteristic the result does not hold, there exist non-isotrivial
families of supersingular K3 surfaces, see Section 18.3.4.

The Noether–Lefschetz locus is further discussed in Section 17.1.3.

3. Global period map

The approach of the previous section can be globalized, in particular allowing non-
simply connected base S. This leads to a global version of the above Local Torelli The-
orem, to be discussed in Chapter 7, and eventually to an alternative construction of the
moduli space of polarized complex K3 surfaces.

3.1. Consider a smooth proper family f : X //S of K3 surfaces over an arbitrary
base S. The locally constant system R2f∗Z on S has fibres (non-canonically) isomorphic
to Λ := E8(−1)⊕2 ⊕ U⊕3. Consider the infinite étale covering

S̃ := Isom(R2f∗Z,Λ) //S

with fibres being the set of isometries H2(Xt,Z) ∼− // Λ. In other words, S̃ //S is the
natural O(Λ)-principal bundle associated with R2f∗Z. In particular, S̃ comes with a
natural action of O(Λ), the quotient of which gives back S.
The pull-back of f : X //S under S̃ //S yields a smooth proper family f̃ : X̃ // S̃

of K3 surfaces for which R2f̃∗Z is a constant local system. Indeed, in (t, ϕ) ∈ S̃ with
t ∈ S and ϕ : H2(Xt,Z) ∼− // Λ the fibre of R2f̃∗Z is canonically isomorphic to Λ. These
identifications glue to an isomorphism R2f̃∗Z ∼− // Λ.
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The period map for f̃ : X̃ // S̃ is thus well-defined and yields a holomorphic map

P : S̃ //D ⊂ P(ΛC).

Clearly, the period map is equivariant with respect to the natural actions of O(Λ) on the
two sides. This yields a commutative diagram

S̃

��

P // D

��
S //P̄ // O(Λ)\D.

As was explained in Example 1.9, the action of O(Λ) on the period domainD associated
with a lattice of signature (n+, n−) with n+ > 2 is not properly discontinuous and hence
the quotient O(Λ)\D not Hausdorff. For this reason, the resulting map P̄ : S //O(Λ)\D
is difficult to use in practice. Working with polarizations improves the situation, this
shall be explained next.

3.2. Consider a smooth proper family f : X //S of K3 surfaces and assume there
exists a relatively ample line bundle L on X. Eventually, we work with algebraic families,
i.e. X and S are schemes of finite type over C and f is regular, but the following construc-
tion works equally well in the setting of complex spaces. Via its first Chern class, the line
bundle L induces a global section ` ∈ Γ(S,R2f∗Z). Consider the locally constant system
`⊥ ⊂ R2f∗Z, the orthogonal complement of ` with respect to the fibrewise intersection
product. Then the fibres of `⊥ are lattices of signature (2, 19) and if in addition L is (fi-
brewise) primitive, then as abstract lattices they are isomorphic to Λd where 2d ≡ (Lt)

2,
see Example 1.3, iii). For simplicity we add this assumption.
Similar to the construction above, one passes from S to the étale cover S̃′ //S para-

metrizing isometries `⊥t ' Λd that extend to H2(Xt,Z) ' Λ. Thus, S̃′ //S is a principal
Õ(Λd)-bundle, where

Õ(Λd) := {g|Λd | g ∈ O(Λ), g(e1 + df1) = e1 + df1}.4

Extending `⊥t ' Λd to H2(Xt,Z) ' Λ by sending L to e1 + df1 defines an embedding
S̃′ �
� // S̃. The composition Pd with the period map P : S̃ //D takes values in Dd =

D ∩ P(ΛdC), so

Pd : S̃′ //Dd ⊂ P(ΛdC).

4Equivalently, Õ(Λd) is the subgroup of O(Λd) of all isometries acting trivially on the discriminant,
see Section 14.2.2
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Moreover, Pd is equivariant with respect to the action of Õ(Λd) and thus yields the
commutative diagram

(3.1) S̃′

��

Pd // Dd

��

� � // D

��
S

P̄d // Õ(Λd)\Dd
// O(Λ)\D.

Now, Õ(Λd) is an arithmetic subgroup of O(Λd) and by Baily–Borel (see Theorem 1.13)
the quotient Õ(Λd)\Dd is a normal quasi-projective variety.

3.3. Two of the main results in the theory of K3 surfaces, the surjectivity of the
period map and the Global Torelli Theorem (cf. Theorems 3.2.4, 7.5.3), can be formulated
in terms of the period maps discussed above. We shall here only state these results and
come back to their proofs in Chapter 7. Both results can be best phrased in terms of
moduli spaces of marked (polarized) K3 surfaces which shall be introduced first.
The moduli space of marked K3 surfaces N can be constructed in a rather ad hoc

manner. Maybe the most surprising aspect of the following construction, apart from its
simplicity, is that the moduli space of marked K3 surfaces turns out to be a fine(!) moduli
space, cf. Section 7.2.1.
As a set, N consists of all isomorphism classes of pairs (X,ϕ) with X a K3 surface

and ϕ : H2(X,Z) ∼− // Λ a marking (i.e. an isomorphism of lattices). To introduce the
structure of a complex manifold on N , one glues the universal deformation spaces of the
various K3 surfaces as follows. For any K3 surface X0 consider its universal deformation
X //Def(X0). A given marking ϕ : H2(X0,Z) ∼− // Λ induces canonically markings of
all fibres. Note that by the Local Torelli Theorem (see Proposition 2.8), the induced map

Def(X0) �
� // D

is injective. Since X //Def(X0) is universal for each of the fibres, the pairs (Def(X0), ϕ)

can be glued along the intersections Def(X0) ∩ Def(Y0) in D. Thus, the complex struc-
tures of the universal deformation spaces Def(X0) for all K3 surfaces (together with
a marking) define a global complex structure on N . Moreover, since the natural map
Aut(X) //O(H2(X,Z)) is injective for K3 surfaces (see Proposition 15.2.1), the univer-
sal families X //Def(X0) glue to a global universal family

f : X //N

together with a marking R2f∗Z ∼− // Λ. For more details see [53, Exp. XIII].5

Warning: The moduli space N of marked K3 surface exists as a (20-dimensional) complex
manifold, but it is not Hausdorff.

5As in the algebraic context, N represents a moduli functor, namely N : (Compl)o // (Sets), S � //

{(f : X // S, ϕ)}/∼. Here, (Compl) is the category of complex spaces and f : X // S is a smooth and
proper family of K3 surfaces with marking ϕ : R2f∗Z ∼− // Λ (as usual, compatible with the intersection
pairing). One defines (f : X // S, ϕ) ∼ (f ′ : X ′ // S, ϕ′) if there exists an isomorphism g : X ∼− // X ′

with f ′ ◦ g = f and ϕ′ = ϕ ◦ g∗.
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Using the universal marking ϕ : R2f∗Z ∼− // Λ of the universal family f : X //N one
obtains a global period map

P : N //D ⊂ P(ΛC),

which due to the Local Torelli Theorem is a local isomorphism. The following theorem
relies on the existence of (hyper)kähler metrics on K3 surfaces (cf. Section 7.3.2), which
is discussed in Theorem 7.4.1.

Theorem 3.1 (Surjectivity of the period map). The global period map

P : N // //D

is surjective.

Remark 3.2. In this general form, the surjectivity of the period map is due to Todorov
[598]. His argument relies on the proof of Calabi’s conjecture by Yau and previous work
of Kulikov [333] and Persson and Pinkham [489] for algebraic K3 surfaces. An alternative
argument, still using the existence of hyperkähler metrics on K3 surfaces (of Kähler type),
was later given by Looijenga [376]. A slightly shorter proof of the surjectivity using a
less precise description of the Kähler cone (that generalizes to higher dimensions) can be
found in [248]. See Chapter 7 for more details.

Remark 3.3. In concrete terms, the surjectivity of the period map asserts that for
any Hodge structure of K3 type on the lattice Λ = E8(−1)⊕2⊕U⊕3, which is signed (i.e.
such that the pairing is positive definite on (Λ2,0 ⊕ Λ0,2)R), there exists a K3 surface X
together with a Hodge isometry H2(X,Z) ' Λ, i.e. if the Hodge structure is given by
x ∈ ΛC, then there exists a K3 surface X and an isometry ϕ : H2(X,Z) ∼− // Λ such that
ϕ−1(x) spans H2,0(X).
Note that for Hodge structures of K3 type on the lattice U⊕3 ' H2(C2/Γ,Z) this is

much easier to achieve. Indeed, any signed Hodge structure of K3 type on the lattice
U⊕3 is realized by a Hodge structure on H2(T,Z) for some two-dimensional complex
torus T = C2/Γ which is in fact unique up to taking its dual. This was studied by Shioda
in [560], cf. Section 3.2.4.

3.4. Similarly to the above, one can construct the moduli space Nd of primitively
polarized marked K3 surfaces of degree 2d. Points of Nd parametrize triples (X,L, ϕ)

with L an ample line bundle on the complex K3 surface X and ϕ : H2(X,Z) ∼− // Λ an
isometry mapping L to the distinguished class e1 + df1 (which, in particular, makes L a
primitive line bundle).6

The arguments to construct Nd use in addition that for the universal deformation
f : X //S := Def(X0) the restriction X|S` //S` for the class ` induced by some ample
line bundle L0 on X0 form the universal deformation of the pair (X0, L0), cf. Section 2.4.

6More formally, one may consider the functorNd : (Compl)o // (Sets), S � // {(f : X // S,L, ϕ)}/∼
with f : X // S a smooth, proper family of K3 surfaces, L ∈ Pic(X) ample on all fibres, and the
marking ϕ : R2f∗Z ∼− // Λ mapping the section ` corresponding to L to the distinguished constant
section e1 + df1 of Λ. The equivalence relation ∼ is induced by the natural notion of isomorphisms of
such triples.
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The fine moduli space Nd obtained in this way is a complex manifold which turns
out to be Hausdorff, see Section 5.2.3. Any g ∈ Õ(Λd) induces a natural orthogonal
transformation of Λ by mapping ` to itself. This defines an action

Õ(Λd)×Nd
//Nd, (g, (X,ϕ)) � // (X, g ◦ ϕ).

Clearly, the quotient Õ(Λd)\Nd parametrizes all primitively polarized K3 surfaces (X,L)

of degree 2d. The relation with the algebraic moduli spaces Md is discussed in Section
4.1 below.
The global period map

Pd : Nd
//Dd ⊂ P(ΛdC)

is a local isomorphism which is compatible with the action of Õ(Λd). Thus, one also has
a holomorphic map P̄d : Õ(Λd)\Nd

// Õ(Λd)\Dd of complex spaces. Due to a result of
Pjateckĭı-Šapiro and Šafarevič [490], one has:

Theorem 3.4 (Global Torelli Theorem). The period maps

Pd : Nd
� � // Dd and P̄d : Õ(Λd)\Nd

� � // Õ(Λd)\Dd

are injective.

More explicitly, the Global Torelli Theorem can be rephrased as follows.

Corollary 3.5. Let (X,L) and (X ′, L′) be two polarized complex K3 surfaces. Then
(X,L) ' (X ′, L′) if and only if there exists a Hodge isometry H2(X,Z) ' H2(X ′,Z)

mapping ` to `′.

As before, ` is the cohomology class of L and similarly for `′.

Remark 3.6. i) The rough idea of the proof of the Global Torelli Theorem is as follows:
Using the Local Torelli Theorem one easily shows that Pd is locally an open embedding.
In order to show that it is injective, it suffices to show that all fibres over points of a
dense subset of the image consist of a single point. In other words, it suffices to prove the
corollary for a dense set of K3 surfaces. In the original [490] and in later work, Kummer
surfaces were used to provide this set.
ii) An alternative proof was later given by Friedman [181]. He deduces the Global

Torelli Theorem for Nd from the properness of the period map and the Global Torelli
Theorem for Nd−1. Eventually he proves it for d = 1, i.e. for double planes, which had
also been studied in [242, 548, 597].
iii) Burns and Rapoport generalized in [91] the Global Torelli Theorem from polarized

K3 surfaces to arbitrary complex K3 surfaces (of Kähler type). It turns out that although
P : N //D is no longer injective, due to the non-Hausdorffness of N , the period map
between the quotients is indeed a bijection

(3.2) P̄ : O(Λ)\N ∼− // O(Λ)\D.

We emphasize again that the quotient on the right hand side of (3.2) (and hence on the
left hand side as well) is badly behaved. In some sense, by passing to the quotient by
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the action of O(Λ) one gets rid of the non-Hausdorffness of N but creates it anew on the
quotient of D.
More in the spirit of Corollary 3.5, the Global Torelli Theorem for unpolarized K3

surfaces can also be stated as follows. Two complex K3 surfaces X and X ′ are isomorphic
if and only if there exists a Hodge isometry H2(X,Z) ' H2(X ′,Z). The proof of this
will be discussed Section 7.5.5.

Warning: The period map P : N //D is surjective but not injective (it is injective only
over general points) and the polarized period map Pd : Nd

//Dd is injective but not
surjective. For the quotients one has

P̄ : O(Λ)\N ∼ // O(Λ)\D

but
P̄d : Õ(Λd)\Nd

� � // Õ(Λd)\Dd

is still only an immersion.

Remark 3.7. The complement (Õ(Λd)\Dd) \ Im(P̄d) of the image can be described
explicitly as the union of all hyperplane sections

⋃
δ⊥, where δ ∈ Λd with (δ)2 = −2:

(Õ(Λd)\Dd) \ Im(P̄d) =
⋃

δ∈∆(Λd)

δ⊥

Indeed, for x = P(X,ϕ) ∈ Dd, the class ϕ−1(e1 + df1) corresponds to a primitive line
bundle L on X with (L)2 = 2d. By Corollary 8.2.9, there exist (−2)-curves C1, . . . , Cn ⊂
X such that `′ := ±(s[C1] ◦ . . . ◦ s[Cn])(`) is nef. In fact, it is ample unless there exists
a (−2)-class δ′ ∈ NS(X) with (`′.δ′) = 0. The latter is equivalent to (`.δ) = 0 for
δ := (s[Cn] ◦ . . . ◦ s[C1])(δ

′). As x = P(X,ϕ) = P(X,ϕ ◦ s[C1] ◦ . . . ◦ s[Cn]) this shows that
any class x ∈ Dd not contained in

⋃
δ⊥ is contained in the image of Pd. Conversely, if the

period x ∈ Dd of a polarized marked K3 surface (X,ϕ,L) were contained in δ⊥ ⊂ Dd for
some (−2)-class δ ∈ Λd, then the line bundle L would be orthogonal to the class ϕ−1(δ).
However, by the Riemann–Roch formula ϕ−1(δ) is of the form ±[C] for an effective curve
C ⊂ X, contradicting the ampleness of L. For the notations s[Ci], etc., we refer to
Chapter 8.

4. Moduli spaces of K3 surfaces via periods and applications

Let us return to the construction of the moduli space of polarized K3 surfaces. For the
definition of the moduli functorMd and its moduli space Md see Section 5.1. We work
over C. A construction of the moduli space using the Global Torelli Theorem and the
period map has been initiated by Pjateckĭı-Šapiro and Šafarevič in [490, 491].7 The idea
in this setting is to construct Md as an open subvariety of the quasi-projective variety
Õ(Λd)\Dd. Let us explain this approach briefly.

7However, as far as I can see, the result is not actually stated as such in either of these two papers.
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4.1. We use the notation of Section 5.2.1 P (t) := dt2 + 2 and N := P (3) − 1

and consider the corresponding Hilbert scheme Hilb := Hilb
P (3t)

PN . The universal (open)
subscheme H ⊂ Hilb (see Proposition 5.2.1) parametrizes polarized K3 surfaces (X,L)

with X �
� // PN and L3 ' O(1)|X . The coarse moduli space Md of interest would be a

categorical quotient of H by the natural action of PGL := PGL(N + 1) such that the
closed points parametrize the orbits.
Consider the universal family f : X //H and apply the construction of Section 3.2 to

the underlying complex manifolds. Thus, we obtain a complex manifold H̃ with an étale
map H̃ //H which is the principal Õ(Λd)-bundle associated with `⊥ ⊂ R2f∗Z. Here, `
is the global section of R2f∗Z induced by the first Chern class of the global L on X //H.
The pull-back family f̃ : X̃ // H̃ comes with a natural marking R2f̃∗Z ' Λ that maps `
to the constant section e1 + df1. Similarly to (3.1), one obtains a commutative diagram

H̃

��

Pd // Dd

��

H
P̄d // Õ(Λd)\Dd.

Clearly, the period map P̄d : H // Õ(Λd)\Dd is PGL-equivariant and due to the Global
Torelli Theorem 3.4 the set of orbits H/PGL, which is nothing but Õ(Λd)\Nd, injects
into Õ(Λd)\Dd. Due to the Local Torelli Theorem (cf. Proposition 2.8), this describes
the set of orbits H/PGL as an open (in the classical topology) subset of the algebraic
variety Õ(Λd)\Dd (cf. Theorem 1.13). In order to give H/PGL itself the structure of an
algebraic variety one needs the following result due to Borel [?].8

Theorem 4.1 (Borel). If Y is a non-singular complex variety and ϕ : Y // Õ(Λd)\Dd

is a holomorphic map, then ϕ is algebraic.

Remark 4.2. Usually the theorem is stated with Õ(Λd) replaced by a finite index
torsion free subgroup Γ ⊂ Õ(Λd) such that the quotient Γ\Dd is smooth, see Propositions
1.11 and 1.12. Replacing H // Õ(Λd)\Dd by H ′ = Γ\H̃ //Γ\Dd, one can easily reduce
to this case.

Corollary 4.3. The orbit space H/PGL exists as quasi-projective variety Md which is
a coarse moduli space for the moduli functorMd on (Sch/C)o of primitively polarized K3
surfaces of degree 2d. Moreover, Md can be realized as a Zariski open subscheme of the
quasi-projective variety M̄d := Õ(Λd)\Dd.

Proof. Since ϕ : H // M̄d = Õ(Λd)\Dd is algebraic, its image is constructible. On
the other hand, it is analytically open by the Local Torelli Theorem. Hence, it is open in
the Zariski topology. Thus, Md := ϕ(H) has a natural algebraic structure and its closed
points parametrize effectively all primitively polarized K3 surfaces of degree 2d.

8In [491] Pjateckĭı-Šapiro and Šafarevič attribute the result also to Kobayashi but I could not trace
the reference.
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In order to prove that Md with this definition is a coarse moduli space for Md (see
Section 5.1), one needs to construct a naturalMd

//Md inducing the above bijection of
Md(C) with (the closed points) ofMd. If (X,L) //S is an algebraic family of primitively
polarized K3 surfaces, first pass to the induced family of complex spaces and then use
S // Õ(Λd) \Dd as constructed in (3.1), which takes image in Md. This provides a
holomorphic map S //Md which, again by Theorem 4.1, is algebraic. �

The description of Md as an open subset of the arithmetic quotient Õ(Λd)\Dd allows
one to derive global information about the moduli space Md. For example, Md can be
proved to be irreducible by observing that the two connected components D±d ⊂ Dd are
interchanged by Õ(Λd). More precisely, if Λd is written as E8(−1)⊕2 ⊕ U⊕2 ⊕ Z(−2d),
then the isometry that interchanges the two summands of U⊕2 has the required effect.

Corollary 4.4. For each d > 0 the moduli space Md of polarized complex K3 surfaces
of degree 2d is an irreducible quasi-projective variety of dimension 19. �

The moduli space Md is not smooth, but as a consequence of the above discussion,
it can be viewed as a smooth orbifold. In the algebraic terminology, Md is the coarse
moduli space of a smooth Deligne–Mumford stack, see Remark 5.4.11.

Remark 4.5. At least point wise, it is easy to see that the quotient M̄d = Õ(Λd)\Dd

can also be viewed as a coarse moduli space, namely as the moduli space of quasi-polarized
(also called, pseudo-polarized) K3 surfaces (X,L), i.e. L in this case is only big and nef.
To see this, just repeat the discussion in Remark 3.7, which can be rephrased as

Md = M̄d \
⋃
δ⊥.

As explained in Section 5.1.4, the corresponding moduli functor is not separated and,
for this reason, it is preferable to regard M̄d as the moduli space of polarized ‘singular
K3 surfaces’ (surfaces with rational double point singularities whose minimal resolution
are K3 surfaces, see Section 14.0.3). And then indeed, the quasi-projective variety M̄d =

Õ(Λd)\Dd coarsely represents the corresponding moduli functor M̄d.

4.2. As mentioned earlier, the moduli space Md of polarized complex K3 surfaces,
either constructed algebraically as described in Section 5.2.2 or as a Zariski open subset
of the quotient Õ(Λd)\Dd as above, is a coarse moduli space only, i.e. it comes without
a universal family
In Remark 5.4.8 it was alluded to already that one can, however, find a finite cover

π : M lev
d

// //Md

over which a ‘universal family’ exists. In other words, there exists a quasi-projective
variety M lev

d and a polarized family

(X,L) //M lev
d

of K3 surfaces of degree 2d such that the classifying morphism π : M lev
d

//Md is finite
and surjective. Note that M lev

d is not unique but depends on the choice of a level, which
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is usually given in form of an integer ` � 0. Moreover, M lev
d can be constructed as a

smooth(!) quasi-projective variety. Recall that Md itself is not smooth, see Section 5.3.3.

The construction can be performed in the algebraic setting, but is most easily explained
in the complex setting using periods. First recall that in Theorem 1.13 one had to choose
a torsion free subgroup Γ ⊂ Õ(Λd) to get a smooth quasi-projective variety Γ\Dd. The
choice of Γ can be made explicit as follows. Let

Γ` := {g ∈ Õ(Λd) | g ≡ id (`)}

and then indeed for `� 0, the group Γ` is torsion free and, therefore, acts freely on Dd.
Next, the restriction of the universal family of marked K3 surfaces (X,ϕ) //N (see

Section 3.3) to the moduli space of marked polarized K3 surfaces Nd (see Section 3.4)
yields a universal family of marked polarized K3 surfaces (X,L, ϕ) //Nd. By Theorem
3.4 the period map Nd

� � // Dd is an open embedding. Clearly, Nd is preserved by the
action of Õ(Λd), but, more importantly, this action can be lifted to an action of Õ(Λd) on
the universal family (X,L, ϕ). For this one has to use another part of the Global Torelli
Theorem, see Section 7.5.2, saying that any Hodge isometry H2(X,Z) ∼− // H2(X ′,Z)

mapping a polarization to a polarization can be lifted uniquely to an isomorphism X ∼− //

X ′. Restricting the action of Õ(Λd) to the subgroup Γ` ⊂ Õ(Λd) yields a free action

Γ` × (X,L) // (X,L)

on the universal family (X,L, ϕ) //Nd that lifts the action of Γ` on Nd. The action
is free, simply because it is free on Nd already. Taking the quotient, yields a universal
family over the quasi-projective variety

M lev
d := Γ`\Nd.

Unravelling the construction shows thatM lev
d parametrizes polarized K3 surfaces (X,L)

together with an isomorphism H2(X,Z/`Z) ∼− // Λ ⊗ Z/`Z compatible with the pairing
and mapping L to the class of the distinguished class e1 + df1 or, equivalently, with an
isometry of the primitive cohomology H2(X,Z/`Z)p ' Λd⊗Z/`Z. So,M lev

d is the moduli
space of polarized K3 surfaces of degree 2d with a Λ/`Λ-level structure.

Remark 4.6. By the discussion in Section 5.4.2, it is natural to viewMd as a smooth
Deligne–Mumford stack with its coarse moduli space given by Md. Now, viewing Md as
the quotient of M lev

d by the action of the finite group G := Õ(Λd)/Γ` makes Md into the
coarse moduli space of another smooth Deligne–Mumford stack [M lev

d /G]. The two stacks
are in fact isomorphic. Indeed, a point in [M lev

d /G] is principal G-bundle P // T with a
G-equivariant morphism P //M lev

d . The universal family over M lev
d can be pulled back

to yield a family XP
//P . The G-action on P can be lifted to an action on XP and its

quotient yields a family over T . This defines a morphism [M lev
d /G] //Md which turns

out to be an isomorphism. Compare also the comments in Example 5.4.5 and Remark
5.4.8.
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4.3. Consider a family of polarized K3 surfaces f : X //S over a smooth connected
algebraic variety S and the induced variation of polarized Hodge structures R2f∗Z. The
image Im(ρ) of the monodromy representation

ρ : π1(S, t) //O(H2(Xt,Q))

is the monodromy group, see as well the discussion in Section 7.5.3, and its Zariski closure

Im(ρ) ⊂ O(H2(Xt,Q))

is called the algebraic monodromy group.
As a consequence of the discussion in the previous section, we mention

Corollary 4.7. Any polarized complex K3 surface (X0, L0) of degree 2d sits in a smooth
family of polarized K3 surfaces (X,L) //S over a smooth, connected, complex algebraic
variety S such that Im(ρ) ⊂ O(H2(X0,Z)) is a finite index subgroup of the subgroup
O(H2(X0,Z)) fixing L0 (which is isomorphic to Õ(Λd)).

Proof. Indeed, take the universal family (X,L) //S := M lev
d as above and consider

the induced period map M lev
d

//Γ`\Dd which is algebraic due to Theorem 4.1. Now use
the general fact that for any dominant morphism between smooth, connected, complex
varieties the induced map between their fundamental groups has finite cokernel. In our
situation it shows that the image of π1(M lev

d ) // π1(Γ`\Dd) has finite index. As π1(Γ`\
Dd) ' Γ`, which is of finite index in Õ(Λd), this proves the claim. �

Remark 4.8. The assertion can be improved. Indeed, as shown by Pjateckĭı-Šapiro
and Šafarevič in [491, Cor. 2], there exists a family (X,L) //S for which Im(ρ) equals
Õ(Λd) ⊂ O(H2(X0,Z)). The family is realized by the standard Hilbert scheme construc-
tion outlined in Section 5.2.1, so S ⊂ Hilb is an open set. The assertion then follows
from the observation that the natural Õ(Λd)-bundle associated with R2f∗Z is connected.

Due to Deligne’s theorem, see [617, Ch. 15], the invariant part H2(Xt,Q)Im(ρ) is
the image of H2(X̄,Q) //H2(Xt,Q), where X ⊂ X̄ is an arbitrary smooth projective
compactification. The arithmetic analogue of the algebraic monodromy group is the group
Im(ρ`). See Section 3.3.4 for its relation to the Mumford–Tate group MT(H2(Xt,Q)).
The following result, a special case of a completely general fact due to Deligne [139, Prop.
7.5] (see also André [6]), relates the Mumford–Tate group to the algebraic fundamental
group.

Theorem 4.9. For any family of polarized K3 surfaces X //S, there exists a countable
union of proper closed subvarieties S′ ⊂ S such that for t ∈ S \ S′ the Mumford–Tate
group MT(H2(Xt,Q)) is constant and contains a finite index subgroup of the algebraic
monodromy group Im(ρ) and, in particular, its identity component.

Proof. Here is a sketch of the argument. As mentioned in Section 3.3.4, the
Mumford–Tate group is the subgroup of GL(H2(Xt,Q)) that fixes all Hodge classes in
H2(Xt,Q)⊗m, for all m > 0. Thus, it stays constant for points t ∈ S for which the space
of Hodge classes on all powers Xm

t is minimal. Due to the result of Cattani, Deligne,



4. MODULI SPACES OF K3 SURFACES VIA PERIODS AND APPLICATIONS 119

and Kaplan [106] this is the complement of a countable union S′ ⊂ S of proper, closed,
algebraic subvarieties. For t ∈ S \ S′ the space of Hodge classes in H2(Xt,Q)⊗m comes
with a polarization that is preserved by the discrete monodromy group. Thus, for each
fixed m the induced action of π1(S, t) on the space of Hodge classes factors over a finite
group. Equivalently, a finite index subgroup of π1(S, t) acts trivially on the space of Hodge
classes in H2(Xt,Q)⊗m and its image under ρ is therefore contained in MT(H2(Xt,Q)).
Applying this to the finite number of m needed to determine the Mumford–Tate group
proves that there exists a finite index subgroup of π1(S, t) such that its image under ρ is
contained in MT(H2(Xt,Q)). �

The result confirms Zarhin’s description (see Theorem 3.3.9) of the Mumford–Tate
group of the very general polarized K3 surface as MT(H2(X,Q)) ' O(T (X)⊗Q).

4.4. We shall now explain relative versions of the Kuga–Satake construction of
Chapter 4. To start out, consider a variation of Hodge structures (VHS) of K3 type V
over S, e.g. V = R2f∗Z for f : X //S a smooth family of K3 surfaces. Applying fibrewise
the Kuga–Satake construction yields a family of Hodge structures Cl+(Vt) of weight one
parametrized by points t ∈ S. The first order computation in Remark 4.2.8 shows that
this indeed yields a VHS of weight one, which is denoted Cl+(V ). Associated with it,
there is a family of complex tori. Note however that this construction is transcendental
and so even for a family of polarized K3 surfaces (X,L) //S and V := `⊥ ⊂ R2f∗Z the
VHS Cl+(V ) is in general not algebraic. One reason is that the fibrewise polarization Q
in Section 4.2.2 depends on the choice of positive orthogonal vectors f1, f2 which might
not exist globally.

Consider now the universal family f : (X,L) //Nd of polarized marked K3 surfaces of
degree 2d over the open set Nd ⊂ Dd of the period domain Dd ⊂ P(ΛdC), see Theorem
3.4. It gives rise to the constant systems R2f∗Z ' Λ and `⊥ ' Λd, which come with
natural VHS of weight two given by

f∗Ω
2
X/Nd

⊂ `⊥ ⊗ONd ⊂ R
2f∗Z⊗ONd .

The action of any torsion free subgroup Γ ⊂ Õ(Λd) on Nd naturally lifts to an action
on `⊥. Passing to the quotient defines a locally constant system also called V on Γ\Nd

which still carries a VHS. As explained before, the action of Γ lifts naturally to an action
on the total space of the family f : X //Nd. Hence, there exists also a universal family
over Γ\Nd inducing V . In any case, with V over Γ\Nd one associates the VHS of weight
one Cl+(V ) as above. Alternatively, one can obtain Cl+(V ) as the quotient of the VHS
Cl+(Λd) on Nd by the natural action of Γ. If instead of V one uses the VHS V (1) of
weight zero, one obtains a VHS of weight zero Cl+(V (1)).
However, if we now assume that there exists a torsion free subgroup Γ̃ ⊂ Spin(ΛdQ) ∩

Cl+(Λd) with τ : Γ̃ ∼− // Γ under τ : Spin(V ) // // SO(V ) (see Remark 4.2.1), then there
exists another VHS of weight one on Γ\Nd that is algebraic. Indeed, instead of taking
the quotient of Cl+(Λd) by Γ one takes its quotient by Γ̃ acting by left multiplication. As
the polarization Q (depending on the choice of positive orthogonal vectors f1, f2 ∈ Λd) is
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preserved under left multiplication, the quotient by this action defines a polarized VHS of
weight one on Γ̃\Nd = Γ\Nd which corresponds to a family of polarized abelian varieties

(4.1) a : A //Γ\Nd,

i.e. R1a∗Z ' Γ̃\Cl+(Λd). Note that this family of polarized abelian varieties is not only
holomorphic, but due to Theorem 4.1 (or rather the analogous version for the moduli
space of abelian varieties) in fact algebraic.
Observe that the two VHS R1a∗Z and Cl+(V ) are fibrewise (non-canonically) isomor-

phic. Note also, that the right action of C := Cl+(Λd)
op, see Section 4.2.4, commutes

with the left action of Γ̃ and, therefore, descends to an action of the (constant) Z-algebra
C on the VHS R1a∗Z or, equivalently, on the abelian scheme (4.1).
The second reason for using the lift Γ̃ to define a is that only with this definition one

obtains the family version of (2.9) in Section 4.2.4:

(4.2) Cl+(V (1)) ' EndC(R1a∗Z),

which should be read as an isomorphism of VHS of weight zero and in particular of the
underlying locally constant systems.
Let us, for a moment, think of the local systems in (4.2) as representations of π1(Γ\Nd)

9

on the fibres Cl+(H2(Xt,Z(1))p) and EndC(Cl+(H2(Xt,Z)p)) for some fixed t ∈ N . Then
the observation in Section 4.2.4 that (2.9) there is compatible with the action of CSpin

and the fact that by construction the monodromy action factorizes over CSpin imply
that (2.9) is indeed invariant under the monodromy action. It therefore corresponds to
an isomorphism of the local systems in (4.2) as claimed.

Proposition 4.10. Let V be a polarized VHS of K3 type over a smooth complex variety
S, e.g. V = `⊥ ⊂ R2f∗Z for a polarized family of K3 surfaces (X,L) //S.
Then there exist a finite étale cover S′ //S, an abelian scheme a : A //S′, and an

isomorphism of VHS of weight zero over S′

Cl+(VS′(1)) ' EndC(R1a∗Z),

where C is the constant Z-algebra Cl+(Vt)
op.

Proof. We shall give the proof in the geometric situation, so that we can use the
notation introduced before, and follow the approach in Section 4.2.
We have to choose a finite index subgroup Γ of Γ` := {g ∈ Õ(Λd) | g ≡ id (`)}. Such

a Γ is torsion free for ` � 0 and we can consider the finite étale cover S′ //S obtained
as the quotient by Γ of the étale cover of S that over t ∈ S parametrizes all isometries
H2(Xt,Z)p ' Λd. Then the classifying morphism S′ //Γ\Nd is well-defined and algebraic
due to Borel’s Theorem 4.1.
Now let Γ̃ ⊂ Spin(ΛdQ) ∩ Cl+(Λd) be the subgroup of all g̃ with g̃ ≡ id (`). Then

τ : Γ̃ ∼− // Γ and so we can pull-back (4.1) and the isomorphism (4.2). �

9which factors via Γ, as the construction could have been performed over Dd.
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In general, we cannot expect A to exist over S, passing to the finite étale cover S′ //S

really is necessary. Also note that the abelian scheme a : A //S′ is very special as it
comes with complex multiplication provided by the action of C.

5. Appendix: Kulikov models

The moduli space of polarized (or just quasi-polarized) K3 surfaces is not proper and
it is an important and interesting problem to compactify it naturally, for example by
allowing singular degenerations of K3 surfaces. The easiest case are one-dimensional
degenerations. This leads to the notion of Kulikov models. In this appendix we survey
the theory of Kulikov models and mention a few additional results.

5.1. Consider a one-dimensional degeneration of K3 surfaces. More precisely, let

X //∆ ⊂ C

be a proper, flat, surjective morphism from a smooth threefold X to a one-dimensional
disk ∆ such that all fibres Xt, t 6= 0, are K3 surfaces, and so in particular are smooth.
The central fibre X0 can be arbitrarily singular, reducible, and even non-reduced.
A modification of X //∆ is a family of the same type X ′ //∆ (so in particular X ′

is smooth), such that there exists a birational morphism X // X ′, which is compat-
ible with the projections to ∆ and an isomorphism over ∆∗. The degeneration is called
semistable if the special fibre X0 is reduced with local normal crossings.
After base change ∆ //∆, z � // zm, every degeneration X //∆ admits a modification

that is semistable. This is a consequence of a general result for degenerations of smooth
varieties due to Mumford [288, Ch. II]. Most of it follows from Hironaka’s resolution
of singularities, the hard part is to get the central fibre reduced. Note that Mumford’s
result actually yields a semistable degeneration such that the irreducible components of
X0 =

⋃
Yi are smooth, i.e. X0 has strict normal crossing. However, this property may

not survive the next step.
If X //∆ is already semistable and we assume in addition that the irreducible compo-

nents Yi of the central fibre X0 =
⋃
Yi are algebraic or, at least, Kähler, then, according

to Kulikov [335] and Persson–Pinkham [489], the situation can be improved further.

Theorem 5.1. Any semistable degeneration X //∆ of K3 surfaces admits a modifi-
cation f ′ : X ′ //∆ with trivial canonical bundle ωX′.

The new family X ′ //∆ is called a Kulikov model of the original degeneration and one
would like to describe its central fibre.

5.2. The special fibre of a Kulikov model can be classified according to the following
result due to Kulikov [333], Persson [487], and Friedman–Morrison [185].

Theorem 5.2. Let X //∆ be a Kulikov degeneration. Then the central fibre X0 is of
one of the following three types:

I X0 is a smooth K3 surface,
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II X0 is a chain of elliptic ruled surfaces Yi with rational surfaces on either end and
such that the curves Dij := Yi ∩ Yj, i 6= j, are (at worse nodal) elliptic, or

III X0 is a union of rational surfaces Yi such that for fixed i the curves Dij := Yi∩Yj ⊂
Yi, j 6= i, form a cycle of (at most nodal) rational curves on Yi and such that the
dual graph of X0 =

⋃
Yi is a triangulation of S2.

Without the assumption that the components are Kähler, other types of surfaces can
occur as irreducible components of the central fibre X0, see [455]. Also note that already
for type I the Kulikov model need not be unique. For example, any (−2)-curve in the
smooth central fibre X0 with normal bundle O(−1)⊕2 in X can be flopped (Atiyah flop),
which results in a non-isomorphic Kulikov model. The same phenomenon may cause the
Kulikov model to be non-algebraic, cf. [229] for another example. See the article by
Miranda and Morrison [413] for more on normal forms of the special fibre for type II and
III.
Type I and II are viewed as the easy cases, see [185], so attention has focused on type III

degenerations. For example in [180, 186], Friedman, together with Scattone, addresses
the question whether any X0 as in type III with additional combinatorial requirements
on the self-intersections (Dij)

2
Ỹi

can be smoothened to a degeneration of K3 surfaces. See
also [349].

5.3. Each degeneration X //∆ induces a monodromy representation

ρ : Z ' π1(∆∗, t) //O(H2(Xt,Z)),

see Section 4.3. It is described by the action of a simple loop around the origin

T : H2(Xt,Z) ∼− // H2(Xt,Z),

the monodromy operator, which is known to be quasi-unipotent [217, Thm. 3.1], i.e.

(Tm − id)n = 0

for some m,n > 0, which are chosen minimal. For example, for the family X //∆

obtained by smoothening an A1-singularity (see the proof of Proposition 7.5.5), the mono-
dromy T is the reflection sδ with δ the cohomology class corresponding to the exceptional
(−2)-curve over the singularity. In this case, m = 2 and n = 1. In general, if the
degeneration is semistable, then m = 1, i.e. T is unipotent.
Observe that, if T is the monodromy operator for a family X //∆, then Tm is the

monodromy operator for the family obtained by base change ∆ //∆, z � // zm. Hence,
after base change, the monodromy becomes unipotent.
The next result determines the type of the Kulikov model in terms of the integers m

and n, cf. [240, 336]. We let X //∆ be a one-dimensional degeneration of K3 surfaces
with monodromy satisfying (Tm − id)n = 0 such that m,n > 0 are minimal.

Theorem 5.3. There exists a modification which is a Kulikov model if and only if the
monodromy is unipotent, i.e. m = 1. For a Kulikov model X //∆, so m = 1, the central
fibre X0 is of type I if n = 1, of type II if n = 2, and of type III if n = 3.
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Note that it is not true in general that degenerations with trivial monodromy can
be filled in smoothly, see [179] for a counterexample using quintics in P3. So, from
this perspective, already the first assertion is not trivial. In fact, the historically first
approach, due to Kulikov [334], to prove the surjectivity of the period map (cf. Theorem
7.4.1) was based on degenerations and relied on this fact. Roughly, it is enough to show
that any smooth family of K3 surfaces X∗ //∆∗ with trivial monodromy can be filled
in smoothly. The approach via twistor lines presented in Chapter 7, although using the
deep fact that K3 surfaces admit Ricci flat Kähler metrics, seems conceptually cleaner.

5.4. For the compactification of the moduli space of polarized K3 surfaces, however,
a version of the above is needed that takes polarizations of the smooth fibres Xt, t ∈ ∆∗,
into account. This was initiated by Shepherd-Barron [550] (see also [350, Thm. 2.8 &
2.11]) who showed that a Kulikov model X //∆ with a line bundle L on X that induces
a quasi-polarization Lt on all Xt6=0 can be modified to yield a family X ′ //∆ together
with a line bundle L′ that is also nef on the special fibre. However, the new family may
not be a Kulkov model any longer. The singularities of the special fibre X ′0 have been
studied in [313] for arbitrary surfaces. In the language of the minimal model program
one strives for the relative log canonical model of the pair (X,L) and so the central fibre
will have semi log canonical surface singularities.
For low degree this has been investigated further in [181, 350, 523, 548, 549, 575,

596]. Global aspects leading to partial compactifications of the moduli space of polarized
K3 surfaces by log smooth K3 surfaces have been studied by Olsson [478]. The compari-
son between the various compactifications using GIT, periods, etc., is very intricate even
in low degrees.
The semistable MMP in positive characteristic plays a crucial role in Maulik’s proof

of the Tate conjecture [396]. The paper by Liedtke and Matsumoto [372] studies the
situation in mixed characteristic, in particular proving an arithmetic analogue of Theorem
5.3 detecting whether a K3 surface has good reduction.

References and further reading:
O’Grady in [462] proves that the rank of the Picard group (or more precisely the rank of its

image inH2) of M̄d := Õ(Λd)\Dd, of which one should think as the moduli space of quasi-polarized
K3 surfaces (see Remark 4.5), can be arbitrarily large. The more recent article of Maulik and
Pandharipande [397] investigates so called Noether–Lefschetz loci which produce explicit divisors.
Li and Tian in [359] and, more generally, Bergeron et al in [58] prove that Pic(M̄d) ' H2(M̄d,Q)

for all d and that the Noether–Lefschetz divisors generate the cohomology.
Dolgachev in [148] gives a description of the moduli space of lattice polarized K3 surfaces as

an arithmetic quotient of an appropriate period domain. We also highly recommend the lectures
by Dolgachev and Kondō [152].





CHAPTER 7

Surjectivity of the period map and Global Torelli

We present a proof of the Global Torelli Theorem that is not quite standard. It is
inspired by the approach used in higher dimensions, see the Bourbaki talk [257] on
Verbitsky’s paper [609]. On the way, we prove the surjectivity of the period map, also
deviating slightly from the classical arguments.
Starting with Section 3, we use that every complex K3 surface is Kähler, a deep result

due to Siu and Todorov. The reader may also simply add this as a condition to the
definition of a K3 surface. More importantly, we make use of the existence of Ricci-flat
metrics on K3 surfaces (see Theorem 3.6 and also Theorem 9.4.11), which is a consequence
of the Calabi conjecture proved by Yau.

1. Deformation equivalence of K3 surfaces

Using the Local Torelli Theorem (see Proposition 6.2.8), one proves that all complex
K3 surfaces are deformation equivalent, and hence diffeomorphic, to each other.

1.1. Two compact complex manifolds X1 and X2 are deformation equivalent if there
exists a smooth proper holomorphic morphism X //B such that:

(i) The (possibly singular) base B is connected.
(ii) There exist points t1, t2 ∈ B and isomorphisms Xt1 ' X1 and Xt2 ' X2.

By the theorem of Ehresmann, any two fibres of X //B are diffeomorphic. Thus,
deformation equivalent complex manifolds are in particular diffeomorphic. The converse
is in general not true, i.e. there exist diffeomorphic compact complex manifolds which are
not deformation equivalent. However, producing explicit examples is not easy.1

For K3 surfaces, all topological invariants like Betti numbers and intersection form are
independent of the particular K3 surface. In fact, even the Hodge numbers hp,q(X) do
not depend on X. This may be seen as evidence for the following theorem of Kodaira
[306, Thm. 13], which in particular shows that all complex K3 surfaces can be realized
by some complex structure I on a fixed differentiable manifold M of dimension four, for
example the differentiable manifold underlying a smooth quartic in P3.

Theorem 1.1. Any two complex K3 surfaces are deformation equivalent.

1In fact, two diffeomorphic algebraic surfaces which are not of general type are deformation equiva-
lent, see [184]. However, this does not hold any longer for surfaces of general type. For simply connected
counterexamples see [105].

125



126 7. SURJECTIVITY OF THE PERIOD MAP AND GLOBAL TORELLI

The theorem can also be seen as a consequence of the much harder Global Torelli
Theorem, see Remark 6.3.6. Moreover, the description of the moduli space of polarized K3
surfaces as in Corollary 6.4.3 shows that any two polarized K3 surfaces (X1, L1), (X2, L2)

are deformation equivalent in the sense that they are isomorphic to fibres of a polarized
smooth family over a connected base.

Remark 1.2. Note that the theorem does not immediately yield the analogous result
for algebraic K3 surfaces in positive characteristic, because smooth families might acquire
singularities under reduction modulo p. It is known, however, that the moduli space of
polarized K3 surfaces of fixed degree 2d is irreducible for p2 - d, due to work of Madapusi
Pera [385]. In order to connect K3 surfaces of different degrees, one would need to prove
the existence of K3 surfaces (over a fixed algebraically closed field) admitting polarizations
L1, L2 with given 2d1 = (L1)2 and 2d2 = (L2)2.

1.2. Before presenting a proof of Theorem 1.1, we need a general density result
which is useful in many other situations as well. It is closely related to the density of the
Noether–Lefschetz locus, see Proposition 6.2.9.
In the following, Λ denotes the K3 lattice Λ := E8(−1)⊕2⊕U⊕3 and D ⊂ P(ΛC) is the

period domain as introduced in Section 6.1.1.

Proposition 1.3. Let 0 6= α ∈ Λ. Then the set⋃
g∈O(Λ)

g(α⊥ ∩D) =
⋃

g∈O(Λ)

g(α)⊥ ∩D

is dense in D.

Proof. We use the following observation: Let Λ = Λ′ ⊕ U be any orthogonal de-
composition and let (e, f) be a standard basis of the hyperbolic plane U . For B ∈ Λ′

with (B)2 6= 0 we define the ‘B-field shift’ ϕB ∈ O(Λ) by ϕB(f) = f , ϕB(e) =

e + B − ((B)2/2) · f , and ϕB(x) = x − (B.x)f for x ∈ Λ′. It is easy to see that in-
deed with this definition ϕB ∈ O(Λ). This corresponds to multiplication by exp(B) as
introduced in Section 14.2.3.
Observe that for any y ∈ ΛR one has

lim
k //∞

ϕkB[y] = [f ] ∈ P(ΛR)

whenever the Λ′-component y′ of y is either trivial or satisfies (B.y′) 6= 0. Hence, the
closure O of the orbit O(Λ) · [α] ⊂ P(ΛR) contains an isotropic vector. In other words,
for the closed set Z ⊂ P(ΛR) of all isotropic vectors up to scaling, one has O ∩ Z 6= ∅.
It is enough to show that for any point in D corresponding to a positive plane P ⊂ ΛR

there exists an automorphism g ∈ O(Λ) such that g(α) is arbitrarily close to P⊥. Indeed,
in this case there exists a subspace W ⊂ ΛR of codimension two and signature (1, 19),
which is close to P⊥ and contains g(α) and, therefore, the point in D corresponding to
W⊥ is contained in g(α)⊥ and close to the point corresponding to P .
Since P⊥ contains some isotropic vector v ∈ P⊥, so [v] ∈ Z, it suffices to show that Z

not only intersects the closure O of the orbit O(Λ) · [α], but that in fact Z ⊂ O and so in
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particular [v] ∈ O. However, O ∩ Z is closed and O(Λ)-invariant. It therefore is enough
to prove that for any (one would be enough) [y] ∈ Z the O(Λ)-orbit Oy := O(Λ) · [y] is
dense in Z. This is proved in two steps.
i) The closure Oy contains the subset {[x] ∈ Z | x ∈ Λ}. Indeed, for any primitive

x ∈ Λ with x2 = 0 one finds an orthogonal decomposition Λ = Λ′ ⊕ U with x = f ,
where (e, f) is a standard basis of the hyperbolic plane U , cf. Corollary 14.1.14. As we
have observed above, limϕkB[y] = [f ] = [x] if B ∈ Λ′ is chosen such that (B)2 6= 0 and
(B.y′) 6= 0. Hence, [x] ∈ Oy.
ii) The set {[x] ∈ Z | x ∈ Λ} is dense in Z. Indeed, if we write Λ = Λ′ ⊕ U as before,

then the dense open subset V ⊂ Z of points of the form [x′+λe+f ] with λ ∈ R, x′ ∈ Λ′R
can be identified with the affine quadric {(x′, λ) | 2λ+ (x′)2 = 0} ⊂ ΛR × R and thus is
given as the graph of the rational polynomial map Λ′R

//R, x′ � // − (x′)2/2. Therefore,
the rational points are dense in V .
Combining both steps yields the assertion. �

1.3. We are now ready to give the proof of the theorem.

Proof of Theorem 1.1. We follow the arguments given by Le Potier in [53, Exp.
VI]. The first step consists of showing that a K3 surface X with Pic(X) generated by a
line bundle L of square (L)2 = 4 is a quartic surface, see Example 2.3.9.
Next, one shows that for any K3 surface X0 one of the fibres of its universal deformation

X //Def(X0) has a Picard group of the above form. Since the base Def(X0) is by
definition only the germ of a complex manifold, this result actually says more, namely
that any K3 surface is arbitrarily close to a smooth quartic in P3.
Fix an isometry H2(X0,Z) ' Λ. Then, by the Local Torelli Theorem, Proposition

6.2.8, the period map P : Def(X0) //D ⊂ P(ΛC) is a local isomorphism. Now apply
Proposition 1.3 to a primitive α ∈ Λ with (α)2 = 4 to conclude that there exists a
primitive class ` ∈ Λ with (`)2 = 4 and such that P(Def(X0))∩`⊥ 6= ∅. As P(Def(X0)) ⊂
D is open, the Picard group of the fibreXt over the very general point t ∈ P(Def(X0))∩`⊥
is generated by ` (using the natural isometry H2(Xt,Z) ' H2(X0,Z) ' Λ). Hence, Xt

is a quartic.
To conclude the proof, it suffices to observe that any two smooth quartics in P3 are

deformation equivalent, as smooth quartics are all parametrized by an open and hence
connected subset of |OP3(4)|. �
As explained in Remark 1.3.6, it is easy to show that the profinite completion of π1(X)

of a complex K3 surface (or the algebraic fundamental group of an algebraic K3 surface
over a separably closed field) is trivial. This is strengthened by

Corollary 1.4. Every complex K3 surface is simply connected.

Proof. This is a consequence of standard Lefschetz theory. Morse theory can be
used to show that the relative homotopy groups πi(M,X) are trivial for i < dim(M),
when M is a compact complex manifold and X ⊂ M is the zero set of a regular section
of an ample line bundle on M , see e.g. Le Potier’s talk [53, Exp. VI]. This can then be
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applied to the case of a quartic X ⊂ P3 to obtain π2(P3, X) = 0. The latter implies
the injectivity of the natural map π1(X) �

� // π1(P3). Since P3 is simply connected, this
proves the result. �

2. Moduli space of marked K3 surfaces

We first recall notions from the previous chapter, most importantly the notion of the
moduli space of marked K3 surfaces. This space is not Hausdorff and we discuss its
‘Hausdorff reduction’ in Section 2.2.

2.1. By definition, see Section 6.3.3, the moduli spaces of marked K3 surfaces

N = {(X,ϕ)}/∼

parametrizes marked K3 surfaces (X,ϕ) up to equivalence. A marking ϕ : H2(X,Z) ∼− //

Λ is an isometry between H2(X,Z) with its intersection form and the K3 lattice Λ =

E8(−1)⊕2 ⊕ U⊕3. Two marked K3 surfaces (X,ϕ) and (X ′, ϕ′) are equivalent, (X,ϕ) ∼
(X ′, ϕ′), if there exists a biholomorphic map g : X ∼− // X ′ such that ϕ ◦ g∗ = ϕ′.
The moduli space N has the structure of a 20-dimensional complex manifold, obtained

by gluing the bases of the universal deformations X //Def(X0) for all K3 surfaces X0.
In particular, the Def(X0) form a basis of open sets in N .
Also recall that the local period maps glue to the global period map

P : N //D ⊂ P(ΛC),

where D = {x ∈ P(ΛC) | (x)2 = 0, (x.x̄) > 0} is the period domain. The period map is a
local isomorphism, which turns out to be surjective on each connected component of N .

Two words of warning. Firstly, N is a complex manifold but it is not Hausdorff. Sec-
ondly, it is a priori not clear that the universal families X //Def(X0) and Y //Def(Y0)

glue over the intersection Def(X0) ∩ Def(Y0) in N . Of course, one would like to have
a universal family (X,ϕ) //N and it does exist, but in order to glue the local families
one uses that non-trivial automorphisms of K3 surfaces always act non-trivially on the
cohomology, cf. Section 6.3.3 and Proposition 15.2.1.

2.2. Using the period map, the moduli space N can be ‘made Hausdorff’. This
slightly technical procedure was introduced by Verbitsky in the context of general compact
hyperkähler manifolds. The result can be phrased as follows.

Proposition 2.1. The period map P : N //D ⊂ P(ΛC) factorizes uniquely over a
Hausdorff space N̄ , i.e. there exists a complex Hausdorff manifold N̄ and locally biholo-
morphic maps factorizing the period map:

P : N // // N̄ //D,

such that (X,ϕ), (X ′, ϕ′) ∈ N map to the same point in N̄ if and only if they are insepa-
rable points of N .
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A complete and elementary proof can be found in the Bourbaki talk [257]. Note
however that the general notion of a ‘Hausdorff reduction’ of a non-Hausdorff manifold is
not well-defined. In fact, Proposition 2.1 relies on a result that describes the consequence
of (X,ϕ), (X ′, ϕ′) being non-separated geometrically.

Proposition 2.2. Suppose (X,ϕ), (X ′, ϕ′) ∈ N are distinct inseparable points. Then
X ' X ′ and P(X,ϕ) = P(X ′, ϕ′) is contained in α⊥ for some 0 6= α ∈ Λ.

Proof. The second assertion is equivalent to ρ(X) = ρ(X ′) ≥ 1, see Remark 3.8.
The composition ψ := ϕ−1 ◦ϕ′ : H2(X ′,Z) ∼− // H2(X,Z) is a Hodge isometry that is not
induced by an isomorphism X ′ ∼− // X, as otherwise (X,ϕ) = (X ′, ϕ′) as points in N .
Moreover, ψ preserves the positive cone, i.e. ψ(CX′) = CX , as the only other possibility
ψ(CX′) = −CX contradicts the assumption that the two points are inseparable, see the
arguments below. For the definition of the positive cone see Remark 1.2.2 and Section
8.1.1.

If one had proved already that any Hodge isometry that preserves the Kähler cone, i.e.
ψ(KX′) = KX , is induced by an isomorphism (see Theorem 5.3), then one could conclude
that KX is strictly smaller than CX . By Theorem 8.5.2 this would imply the existence of
a (smooth rational) curve C ⊂ X and, therefore, ρ(X) ≥ 1. Alternatively, one could use
Proposition 3.7.

However, the description of isomorphisms between X and X ′ in terms of Hodge isome-
tries preserving the Kähler cone is better seen as a part of the Global Torelli Theorem
we want to prove here.
So, in order not to turn in circles, one rather proves the assertion directly by a degene-

ration argument that was first used by Burns and Rapoport in [91]. The following sketch
is copied from [248, Thm. 4.3] and [257, Prop. 4.7]. One first constructs a bimeromor-
phic correspondence between X and X ′ roughly as follows. By assumption, there exists
sequence ti ∈ N converging simultaneously to (X,ϕ) and to (X ′, ϕ′). For the universal
deformations of X and X ′ this corresponds to isomorphisms gi : Xti

//X ′ti compatible
with the induced markings of Xti and X ′ti . The graphs Γgi converge to a cycle

Γ∞ = Z +
∑

Yi ⊂ X ×X ′

of which the component Z defines a bimeromorphic correspondence and the components
Yi do not dominate X or X ′. As X and X ′ are minimal surfaces of non-negative Kodaira
dimension, the bimeromorphic correspondence Z is in fact the graph of an isomorphism
X ' X ′. Now, either the Yi do not occur, and then (X,ϕ) ' (X ′, ϕ′) via Z, or their
images in X and X ′ yield non-trivial curves and hence ρ(X) = ρ(X ′) ≥ 1. �

3. Twistor lines

We start with a discussion of twistor lines in the period domain D and show later how
they can be lifted to curves in the moduli space N .
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3.1. For the following, Λ can be any lattice of signature (3, b− 3).
A subspace W ⊂ ΛR of dimension three is called a positive three-space if the restriction

of ( . ) to W is positive definite. To such a W one associates its twistor line

TW := D ∩ P(WC),

which is a smooth quadric in P(WC) ' P2. Hence, as a complex manifold TW ' P1.
Two distinct points x, y ∈ D are contained in one twistor line if and only if their

associated positive planes P (x) and P (y) span a positive three-space 〈P (x), P (y)〉 ⊂ ΛR.
Here we use the interpretation of D as the Grassmannian of oriented positive planes, see
Proposition 6.1.5.
A twistor line TW is called generic if W⊥ ∩ Λ = 0 or, equivalently, if there exists a

vector w ∈W with w⊥ ∩ Λ = 0 or, still equivalently, if there exists a point x ∈ TW with
x⊥ ∩ Λ = 0. In fact, if W is generic, then x⊥ ∩ Λ = 0 for all except countably many
points x ∈ TW .

Definition 3.1. Two points x, y ∈ D are called equivalent if there exists a chain of
generic twistor lines TW1 , . . . , TWk

and points x = x1, . . . , xk+1 = y with xi, xi+1 ∈ TWi .

The following rather easy observation suffices to prove the global surjectivity of the
period map, see Section 4.1.

Proposition 3.2. Any two points x, y ∈ D are equivalent.

Proof. We follow Beauville’s account in [53]. Since D is connected, it suffices to
show that every equivalence class is open.
Consider x ∈ D and choose an oriented basis a, b for the corresponding positive plane,

i.e. P (x) = 〈a, b〉. Pick c such that 〈a, b, c〉 is a positive three-space. Then for any
(a′, b′) in an open neighbourhood of (a, b) the spaces 〈a, b′, c〉 and 〈a′, b′, c〉 are still
positive three-spaces. Let T1, T2, and T3 be the twistor lines associated with 〈a, b, c〉,
〈a, b′, c〉 and 〈a′, b′, c〉, respectively. Then P (x) = 〈a, b〉, 〈a, c〉 ∈ T1, 〈a, c〉, 〈b′, c〉 ∈ T2, and
〈b′, c〉, 〈a′, b′〉 ∈ T3. Thus, x and 〈a′, b′〉 are connected via the chain of the three twistor
lines T1, T2, and T3.
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If we choose in the above argument c such that c⊥ ∩ Λ = 0, then the twistor lines
associated with the positive three-spaces 〈a, b, c〉, 〈a, b′, c〉, and 〈a′, b′, c〉 are all generic.
Hence, x and the period corresponding to 〈a′, b′〉 are equivalent. �
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In order to prove that the period map is a covering map, which eventually leads to the
Global Torelli Theorem, one also needs a local version of the surjectivity (cf. Section 4.2)
which in turn relies on a local version of Proposition 3.2.
In the following, we consider balls in D and write B ⊂ B̄ ⊂ D when B̄ is a closed ball

in a differentiable chart in D. In particular, B is the open set of interior points in B̄.

Definition 3.3. Two points x, y ∈ B ⊂ B̄ ⊂ D are called equivalent as points in B if
there exist a chain of generic twistor lines TW1 , . . . , TWk

and points x = x1, . . . , xk+1 =

y ∈ B such that xi, xi+1 are contained in the same connected component of TWi ∩B.

The proof of Proposition 3.2 can be adapted to prove the following local version. Only
this time nearby points are connected by a chain of four twistor line. We refer to [257,
Prop. 3.10] for details.

Proposition 3.4. For a given ball B ⊂ B̄ ⊂ D any two points x, y ∈ B are equivalent
as points in B.

A much easier and intuitively rather obvious result is the following [257, Lem. 3.11].

Lemma 3.5. Consider a ball B ⊂ B̄ ⊂ D. Then, for any point x ∈ ∂B := B̄ \ B
there exists a generic twistor line x ∈ TW ⊂ D with x ∈ ∂(B ∩ TW ). In other words, the
boundary of B can be connected to its interior by means of generic twistor lines.

3.2. To use twistor lines geometrically, the existence of hyperkähler metrics is cru-
cial. The next result is a consequence of Yau’s solution to the Calabi conjecture (cf.
Theorem 9.4.11) for which no easier or more direct proof for the case of K3 surfaces is
known. There are however various proofs available for the fact that K3 surfaces are al-
ways Kähler. The gaps in the original proof of Todorov [598] were filled by Siu in [568].
The result completed the proof of a conjecture by Kodaira that any compact complex
surface with even Betti number is Kähler. A more direct proof of Kodaira’s conjecture,
not relying on the Kodaira classification of surfaces, was later given by Buchdahl [88]
and independently by Lamari [344] both relying on results of Demailly on smoothing
of currents. Since b1(X) = 0 for complex K3 surfaces (see Section 1.3.2), their result
provides a new proof for the fact that K3 surfaces are Kähler.
For the following it is useful to think of a K3 surface X as a differentiable manifold M

endowed with a complex structure I ∈ End(TM).

Theorem 3.6. For any Kähler class α ∈ H2(X,R) there exists a Kähler metric g and
complex structures J and K such that:
(i) The metric g is Kähler with respect to the three complex structures I, J , and K.
(ii) The Kähler form ωI := g(I , ) represents α, i.e. [ωI ] = α.
(iii) The complex structures I, J , and K satisfy the usual relations K = I ◦ J = −J ◦ I.

In fact for each (a, b, c) ∈ S2 also λ = aI + bJ + cK is a complex structure on M with
respect to which g is Kähler. The corresponding Kähler form is ωλ := g(λ , ) and there
exists a natural non-degenerate holomorphic two-form σλ on (M,λ), e.g. σJ = ωK + iωI .
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Thus, one obtains a family of K3 surfaces (M,λ) parametrized by points (a, b, c) ∈ S2 '
P1. This can indeed be put together to form a holomorphic family as follows. Let I be
the endomorphism of the tangent bundle of M × P1 defined by

I : TmM ⊕ TλP1 // TmM ⊕ TλP1, (v, w) � // (λ(v), IP1(w)).

Then I is an almost complex structure which can be shown to be integrable, see [241].
The complex threefold obtained in this way is denoted X (α). The second projection
defines a smooth holomorphic map

X (α) // T (α) := P1,

which is called the twistor space associated with the Kähler class α. By construction, the
fibre over λ is the K3 surface described by (M,λ).
Since X (α) as a differentiable manifold is simplyM×P1, any marking ϕ : H2(X,Z) ∼− //

Λ ofX = (M, I) extends naturally to a marking of all fibres (M,λ). Thus, the period map
defines a holomorphic map P : T (α) //D ⊂ P(ΛC). In fact, the period map identifies
T (α) = P1 with the twistor line TWα ⊂ D associated with the positive three-space
Wα := ϕ〈[ωI ], [Re(σI)], [Im(σI)]〉 = ϕ(R · α⊕ (H2,0(X)⊕H0,2(X))R), i.e.

P : P1 ' T (α) ∼− // TWα ⊂ D.

We shall need a converse to this observation, i.e. a result that describes twistor lines
in D that can be realized in this way. In particular, one wants to know which classes in
H2(X,R) are Kähler. A complete answer to this question is known and is discussed in
Chapter 8, but for our purposes here the following result is sufficient.
Suppose X is a K3 surface which we assume to be Kähler. Then the Kähler cone
KX ⊂ H1,1(X,R) of all Kähler class is contained in the positive cone CX :

KX ⊂ CX ⊂ H1,1(X,R),

which is the distinguished component of the set {α ∈ H1,1(X,R) | (α)2 > 0} that contains
one Kähler class (and hence in fact all), cf. Section 8.5.1. The algebraic analogue of the
positive cone was defined in Remark 1.2.2. The Kähler cone plays the role of the ample
cone in our setting.

Proposition 3.7. If Pic(X) = 0, then any class α in the positive cone CX is Kähler:

ρ(X) = 0 ⇒ KX = CX .

Proof. This can be seen as a consequence of a deep theorem due to Demailly and
Paun [145]: For any compact Kähler manifold X the Kähler cone KX ⊂ H1,1(X,R) is
a connected component of the cone of classes α ∈ H1,1(X,R) defined by the condition∫
Z α

d > 0 for all subvarieties Z ⊂ X of dimension d > 0.
Clearly, if X is a K3 surfaces, only curves and X itself have to be tested. However,

for Pic(X) = 0, there are no curves in X and only the integral for Z = X has to be
computed. But this condition reads (α)2 > 0, i.e. ±α ∈ CX . �
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There are more direct approaches to the above due to Buchdahl [88] and Lamari [344]
as well as more complete results describing the Kähler cone for any K3 surface, see
Theorem 8.5.2.

Remark 3.8. If the period of a K3 surface X is known, then it is easy to decide
whether Pic(X) = 0. In fact, if x = P(X,ϕ), then Pic(X) 6= 0 if and only if there
exists a class 0 6= α ∈ Λ with x ∈ α⊥. Indeed, ϕ−1(α) ∈ H2(X,Z) is a (1, 1)-class (or,
equivalently, is contained in NS(X) = H1,1(X)∩H2(X,Z)) if and only if it is orthogonal
to H2,0(X). But by definition of the period map, x spans ϕ(H2,0(X)).

Proposition 3.9. Consider a marked K3 surface (X,ϕ) ∈ N and assume that its
period P(X,ϕ) is contained in a generic twistor line TW ⊂ D. Then there exists a unique
lift of TW to a curve in N̄ through (X,ϕ), i.e. there exists a commutative diagram

N̄
P // D

TW
?�
i

OO

ĩ

cc

with (X,ϕ) in the image of ĩ.

Proof. Since P : N̄ //D is locally biholomorphic, the inclusion i : ∆ ⊂ TW
� � // D

of a small open one-dimensional disk containing 0 = P(X,ϕ) ∈ ∆ can be lifted to
ĩ : ∆ �

� // N̄ , t � // (Xt, ϕt) with ĩ(0) = (X,ϕ). By construction, the space N̄ is Hausdorff
(see Proposition 2.1) and hence ĩ : ∆ �

� // N̄ is unique.
As TW is a generic twistor line, the set TW ∩

⋃
06=α∈Λ α

⊥ is countable and thus for
general t ∈ ∆ one has Pic(Xt) = 0, see Remark 3.8. Let us fix such a general t and
denote by σt a generator of H2,0(Xt).
The natural marking of Xt induced by ϕ shall be denoted ϕt : H

2(Xt,Z) ∼− // Λ and
so, by construction, ϕt(σt) ∈ WC. Therefore, there exists a class αt ∈ H2(Xt,R) such
that ϕt(αt) is orthogonal to ϕt〈Re(σt), Im(σt)〉 ⊂ W and contained in W . Hence, αt is
of type (1, 1) on Xt and ±αt ∈ CXt , as W is a positive three-space. Due to Proposition
3.7 and using Pic(Xt) = 0 for our fixed generic t, this implies ±αt ∈ KXt .
Now consider the twistor space X (αt) // T (αt) for Xt endowed with the Kähler class
±αt. Since ϕt〈αt,Re(σt), Im(σt)〉 = W , the period map yields a natural identification
P : T (αt)

∼− // TW .
Both, T (αt) and ĩ(∆), contain the point t and map locally isomorphically to TW .

Again by the uniqueness of lifts for a local homeomorphism between Hausdorff spaces,
this proves 0 ∈ T (αt) which yields the assertion. �

4. Local and global surjectivity of the period map

The surjectivity of the period map is a direct consequence of the description of the
Kähler cone of a general K3 surface as provided by Proposition 3.9. Section 4.2 presents
a local version of it, which is crucial for the proof of the Global Torelli Theorem given in
Section 5.
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4.1. The surjectivity of the period map was first proved by Todorov [598]. The
algebraic case had earlier been studied by Kulikov [333]. The proof given here is closer
to Siu’s [567] as presented by Beauville in [53]. However, our approach differs in one
crucial step. Whereas classically the period map is shown to be surjective by using the
Nakai criterion for ampleness on a projective K3 surface (see Proposition 2.1.4), we here
use that by Proposition 3.7 all classes in the positive cone of a K3 surface of Picard number
zero are Kähler. This is again inspired by the higher-dimensional theory in [248]. The
following is a slightly refined version of Theorem 6.3.1.

Theorem 4.1 (Surjectivity of the period map). Let No be a connected component of
the moduli space N of marked K3 surfaces. Then the restriction of the period map

P : No // //D ⊂ P(ΛC)

is surjective.

Proof. Since by Proposition 3.2 any two points x, y ∈ D are equivalent, it is enough
to show that x ∈ P(No) if and only if y ∈ P(No) for any two points x, y ∈ TW ⊂ D

contained in a generic twistor line TW . This is an immediate consequence of Proposition
3.9 which shows that the generic twistor line TW can be lifted through any given pre-image
(X,ϕ) of x. Indeed, then y is also contained in the image of the lift of TW . �

4.2. Recall that a continuous map π : T //D is a covering space if every point in
D admits an open neighbourhood U ⊂ D such that π−1(U) is the disjoint union

∐
Ui of

open subsets Ui ⊂ T such that the maps π : Ui
∼− // U are homeomorphisms.

The local version of the surjectivity relies on the following technical but intuitively
quite obvious criterion for a local homeomorphism to have the covering property. A
proof relying on arguments due to Markman in [609] can be found in [257, Prop. 5.6].

Lemma 4.2. Suppose a continuous map π : T //D between topological Hausdorff
manifolds is a local homeomorphism. Then π : T //D is a covering space if for any
ball B ⊂ B̄ ⊂ D and any connected component C of the closed subset π−1(B̄) one has
π(C) = B̄.

The surjectivity of P : N //D is implied by the covering property. Thus, the next
assertion can be seen as a local and stronger version of Theorem 4.1, very much like
Proposition 3.4 is a local and stronger version of Proposition 3.2.

Proposition 4.3. The period map induces a covering space P : N̄ //D.

Proof. In order to apply Lemma 4.2, one first adapts the arguments of the proof of
Theorem 4.1 to show B ⊂ P(C). Clearly, P(C) contains at least one point of B, because
P is a local homeomorphism.
Next, due to Proposition 3.4, any two points x, y ∈ B are equivalent as points in B.

Thus, it suffices to show that x ∈ P(C) if and only if y ∈ P(C) for any two points
x, y ∈ B contained in the same connected component of the intersection TW ∩ B with
TW a generic twistor line. If x = P(X,ϕ) with (X,ϕ) ∈ C, choose a local lift of the
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inclusion x ∈ ∆ ⊂ TW according to Proposition 3.9 and then argue literally as in the
proof of Theorem 4.1. The assumption that x, y are contained in the same connected
component of TW ∩ B ensures that the twistor deformation T (αt) constructed in the
proof of Proposition 3.9 connects (X,ϕ) to a point over y that is indeed still contained
in C.
It remains to prove that also the boundary B̄ \B is contained in P(C). For this apply

Lemma 3.5 to any point x ∈ B̄ \ B and lift the generic twistor line connecting x with a
point in B to a twistor deformation as before. �

5. Global Torelli Theorem

We deviate from the traditional approach and discuss how the global properties of the
period map established above can be used to prove the Global Torelli Theorem. In the
end, it is reduced to a statement about monodromy groups.

5.1. An immediate consequence of the fact that the period map on the Hausdorff
reduction N̄ of N is a covering map is the following.

Corollary 5.1. The period map P : N //D is generically injective on each connected
component No of N .

Proof. Here, ‘generically injective’ means injective on the complement of a countable
union of proper analytically closed subsets.
If No is a connected component, then its Hausdorff reduction N̄o, which is a connected

component of N̄ , is a covering space of the period domain D. However, D is simply
connected, which can be deduced from the description D ' O(3, 19)/SO(2) × O(1, 19)

given in Proposition 6.1.5, cf. [250, Sec. 4.7]. As any connected covering space of a simply
connected target must be a homeomorphism, this proves

P : N̄o ∼− // D.

Hence, by Propositions 2.1, 2.2 and 3.7, No // N̄o ∼− // D is generically injective. �

Remark 5.2. If (X,ϕ), (X ′, ϕ′) ∈ N are contained in the same connected component
with P(X,ϕ) = P(X ′, ϕ′), then they coincide as points in N , and hence X ' X ′, or are
at least inseparable. In the second case, one argues as in the proof of Proposition 2.2 to
see that X and X ′ are bimeromorphic. Hence, also in this case, X ' X ′

5.2. Let us now relate the above result to the classical formulation of the Global
Torelli Theorem which for convenience we recall from Section 6.3.4.

Theorem 5.3 (Global Torelli Theorem). Two complex K3 surfaces X and X ′ are
isomorphic if and only if there exists a Hodge isometry H2(X,Z) ' H2(X ′,Z).
Moreover, for any Hodge isometry ψ : H2(X,Z) ∼− // H2(X ′,Z) with ψ(KX) ∩KX′ 6= ∅

there exists a (unique) isomorphism f : X ′ ∼− // X with f∗ = ψ.
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The ‘only if’ direction is obvious, as any biholomorphic map induces a Hodge isometry.
So, let us assume a Hodge isometry ψ : H2(X,Z) ∼− // H2(X ′,Z) is given. Pick any
marking ϕ : H2(X,Z) ∼− // Λ and let ϕ′ := ϕ ◦ ψ−1 : H2(X ′,Z) ∼− // Λ be the induced
marking of X ′. Then P(X,ϕ) = P(X ′, ϕ′). Thus, if one knew already that (X,ϕ) and
(X ′, ϕ′) are contained in the same connected component No of N , then X ' X ′ by
Corollary 5.1 and Remark 5.2.
The remaining question now is whether (X,ϕ) and (X ′, ϕ′) are always in the same

connected component. First of all, we may change the sign of ϕ′ without affecting
P(X,ϕ) = P(X ′, ϕ′), for −id ∈ O(Λ) acts trivially on the period domain D. In fact,
Corollary 5.1 shows that −id does indeed not(!) preserve connected components.

5.3. Before really going into the proof of the Global Torelli Theorem in Section 5.5,
we need to discuss the monodromy group. By Theorem 1.1 any two complex K3 surfaces
are deformation equivalent. Thus, if X and X ′ are K3 surfaces, then they admit markings
ϕ and ϕ′, respectively, such that (X,ϕ) and (X ′, ϕ′) are contained in the same connected
component No of N . In fact, we may even pick an arbitrary ϕ and choose ϕ′ accordingly.
Therefore, in order to show that N has at most two connected components (interchanged
by (X,ϕ) � // (X,−ϕ)), it suffices to show that for one (possibly very special) K3 surface
X and two arbitrary markings ϕ1, ϕ2 of X the marked K3 surfaces (X,ϕ1) and (X,±ϕ2)

are contained in same connected component.
This can be phrased in terms of the monodromy of K3 surfaces. To state the result,

fix a K3 surface X of which we think as (M, I), i.e. a differentiable manifold M with a
complex structure I. If X //S is a smooth proper morphism over a connected (possibly
singular) base S with X = Xt for some fixed point t ∈ S, then the monodromy of this
family is the image of the monodromy representation (see also Section 6.4.3)

π1(S, t) //O(H2(X,Z)).

By Mon(X) we denote the subgroup of O(H2(X,Z)) generated by the monodromies
of all possible families X //S with central fibre X ' Xt. By the construction of the
monodromy representation, which relies on the theorem of Ehresmann, Mon(X) is a
subgroup of the image of the natural action Diff(X) //O(H2(X,Z)). Note that the
action on H2(X,Z) induced by any automorphism of X is contained in Mon(X), e.g. by
gluing the trivial deformation X ×C via the automorphism viewed as an isomorphism of
two fibres Xt1 , Xt2 to a family over the singular base S := C/(t1 = t2).

Proposition 5.4. If O(H2(X,Z))/Mon(X) is generated by −id, then the moduli space
N has at most two connected components and P : N //D is generically injective on each
of them.

Proof. Write X = (M, I) and identify H2(X,Z) = H2(M,Z). Clearly, any two
markings ϕ1 and ϕ2 differ by an orthogonal transformation. Thus, under the assumption
of the proposition, we can choose ψ in Mon(X) such that ψ = ±ϕ−1

1 ◦ ϕ2.
To conclude, we only have to show that for ψ ∈ Mon(X) the marked K3 surfaces

(X,ϕ1) and (X,ϕ1 ◦ ψ) are in the same connected component of N . For this, write
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ψ = ψ1 ◦ . . . ◦ ψn with ψi ∈ Im(π1(Si, ti) //O(H2(X,Z))). Here Xi //Si are smooth
proper connected families with fibre over ti ∈ Si identified with X. Clearly, it suffices to
show the assertion for ψ = ψi. The local system R2π∗Z on S can be trivialized locally,
i.e. identified with H2(X,Z). The monodromy ψ is then obtained by following these
trivialization along a close path in S beginning in t ∈ S. The classifiying maps to N
necessarily stay in the same connected component.
The injectivity follows from Corollary 5.1. �

Note that due to the deformation equivalence of any two K3 surfaces the assumption
on the monodromy group in the proposition is independent of the specific K3 surface and,
as we see next, it can be proved using some standard lattice theory.

5.4. Let, as before, Λ be the K3 lattice E8(−1)⊕2 ⊕ U⊕3, which is unimodular of
signature (3, 19). The spinor norm of an orthogonal transformation g ∈ O(ΛR) of the
underlying real vector space is defined as follows. For a reflection

sδ : v � // v − 2
(v.δ)

(δ)2
δ,

where δ ∈ ΛR with (δ)2 6= 0, the spinor norm is +1 if (δ)2 < 0 and −1 otherwise. This is
extended multiplicatively to O(ΛR) by writing any g as a composition of reflections sδ,
which is possible due to the Cartan–Dieudonné theorem, see e.g. [15, 497]. We let

O+(Λ) ⊂ O(Λ)

be the index two subgroup of orthogonal transformations of spinor norm +1 or, equiv-
alently, the subgroup of all orthogonal transformations preserving any given orientation
of the three positive directions in ΛR. A classical result essentially due to Wall and later
improved by Ebeling and Kneser (see Theorem 14.2.2) asserts that any g ∈ O+(Λ) can
be written as a product

∏
sδi with δi ∈ Λ such that (δi)

2 = −2.
As a consequence of this abstract result for orthogonal transformations of Λ, one obtains

a description of the monodromy group.

Proposition 5.5. The monodromy group Mon(X) ⊂ O(H2(X,Z)) of a K3 surface X
coincides with the index two subgroup O+(H2(X,Z)) of all transformations with trivial
spinor norm. In particular, O(H2(X,Z))/Mon(X) = {±1}.

Proof. It suffices to show that any reflection sδ associated with a (−2)-class δ ∈ Λ

can be realized by a monodromy transformation.2 The argument goes roughly as follows:
Fix M and a class δ ∈ H2(M,Z) with (δ)2 = −2. We use the surjectivity of the period
map (see Theorem 4.1) to show that there exists a complex structure I on M such
that for X = (M, I) one has H1,1(X,Z) = Zδ. Under these conditions there exists a
unique smooth rational curve P1 ' C ⊂ X with [C] = ±δ. Indeed, the Riemann–Roch
formula for the line bundle L corresponding to δ shows χ(L) = 1 and so H0(X,L) 6= 0

2This is a folklore result, see e.g. [182] or [395], where the argument is presumably explained in
detail.
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or H0(X,L∗) 6= 0. But any curve C ∈ |L| is necessarily integral and satisfies (C)2 = −2

and hence C ' P1, see Section 2.1.3.
Then by the Grauert–Mumford contraction theorem (see e.g. [32, Thm. III.2.1]) there

exists a contraction X // X̄ of C to a singular point 0 ∈ X̄ with X \ C = X̄ \ {0}. The
surface X̄ is compact but singular and locally described as the zero set of x2 +y2 +z2 = 0

(a rational normal double point or A1-singularity, cf. Section 14.0.3).
The surface X̄ can be smoothened, i.e. there exists a proper flat family X //∆ over a

one-dimensional disk ∆ such that X0 = X̄ and the restriction X ∗ //∆∗ to the punctured
disk is smooth, see [92]. Locally this is given by the equation x2 + y2 + z2 = t. Consider
the base change ∆ //∆, u � // u2, and the pull-back X ×∆∗∆∗ which can be completed to
a smooth proper family Y //∆ with a natural identification Y0 = X.3 The fibres of the
two families Y∗,X ∗ //∆∗ are all diffeomorphic to M by parallel transport. Eventually,
one observes that the monodromy of the family X ∗ //∆∗ on H2(Xt6=0,Z) under this
identification is nothing but sδ (Picard–Lefschetz formula), cf. e.g. [617, Ch. 15].
This proves O+(H2(X,Z)) ⊂ Mon(X). Since −id is not contained in Mon(X) (cf.

Corollary 5.1 and the discussion in Section 5.2), equality holds. �

5.5. Proof of the Global Torelli Theorem 5.3. As explained already, to
prove the first part of the assertion, it suffices to combine Propositions 5.4 and 5.5 with
Remark 5.2.
To prove the second part, i.e. that any Hodge isometry with ψ(KX) ∩ KX′ 6= ∅ is

induced by a unique isomorphism, use again the arguments in the proof of Proposition
2.2 showing that there exists a correspondence Γ∞ = Z +

∑
Yi with [Γ∞]∗ = ψ such

that Z is the graph of an isomorphism f : X ∼− // X ′ and the components Yi project onto
curves Ci ⊂ X and C ′i ⊂ X ′.
Now, for α ∈ KX let α′ := f∗α ∈ KX′ and β := ψ∗α = α′ +

∑
(Ci.α)[C ′i] = α′ + [D].

Note that D is an effective curve, for α as a Kähler class is positive on all curves Ci.
If D = 0, then f lifts ψ, which proves the claim. If not, use that ψ is an isometry to
deduce (α)2 = (β)2 = (α′)2 + 2(α′.D) + (D)2. However, as also (α)2 = (α′)2, this implies
2(α′.D) + (D)2 = 0. Now, since α′ is Kähler as well, 0 ≤ (α′.D) and hence

(β.D) = (α′.D) + (D)2 ≤ 2(α′.D) + (D)2 = 0,

excluding β from being contained in KX′ .
For later use in the proof of Theorem 8.5.2 we remark that it is enough to know that

(α′.D) ≥ 0 for all P1 ' D ⊂ X ′. Indeed, all other integral curves would have (D)2 ≥ 0

and (α′.D) ≥ 0 would follow from α′ ∈ CX′ .
The uniqueness of f follows from Proposition 15.2.1. �

3In fact, there are two ways to do this, which gives rise to the ‘Atiyah flop’, but this is not essential
at this point.
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Remark 5.6. i) Conversely, our discussion in Section 5.3 shows that the Global Torelli
Theorem can be used to prove the assertion on the monodromy. This was remarked by
Borcea in [74].4

ii) Similarly, in [491] Pjateckĭı-Šapiro and Šafarevič explain how to use the Global
Torelli Theorem to construct for any d > 0 a family of polarized K3 surfaces X //S of
degree 2d over a smooth connected algebraic variety S such that the image of the mon-
odromy presentation π1(S, t) //O(H2(Xt,Z)) is the subgroup Õ(Λd) of all orthogonal
transformations of H2(Xt,Z) fixing the polarization, cf. Section 6.3.2, Corollary 6.4.7,
and Remark 6.4.8.

5.6. Maybe this is a good point to say a few words about the diffeomorphism group
of K3 surfaces. This is not relevant for the Global Torelli Theorem, but clearly linked to
the monodromy group and very interesting in itself.
Obviously, Mon(X) ⊂ ρ(Diff(X)), where ρ : Diff(X) //O(H2(X,Z)) is the natural

action. But in fact equality holds, see [155].

Theorem 5.7 (Donaldson). For any K3 surface X one has

Mon(X) = ρ(Diff(X)) = O+(H2(X,Z)),

which is an index two subgroup of O(H2(X,Z)).

Writing H2(X,Z) = E8(−1)⊕2⊕U⊕3, it suffices to show that idE8(−1)⊕2⊕U⊕2 ⊕ (−idU )

is not contained in the image of ρ or, equivalently, that all diffeomorphisms respect any
given orientation of three positive directions in Λ. Donaldson’s proof relies on SU(2)

gauge theory, but it seems likely that the easier Seiberg–Witten invariants could also be
used.
Once ρ(Diff(X)) is described completely, one turns to the kernel of ρ.

Question 5.8. Is the kernel of ρ : Diff(X) //O(H2(X,Z)) connected? In other words,
is any diffeomorphism of a K3 surface that acts trivially on cohomology isotopic to the
identity?

Work of Ruberman seems to suggest that the answer to this question might be negative,
see [207, Rem. 4.1]. The question is also linked to the following stronger version of the
Global Torelli Theorem conjectured by Weil [630] which has in fact been addressed
recently by Buchdahl in [89].

Question 5.9. Suppose two complex structures I, I ′ on M define K3 surfaces X =

(M, I) and X = (M, I ′) with H2,0(X) = H2,0(X ′) as subspaces inside the fixed H2(M,C).
Does there exist a diffeomorphism g isotopic to the identity such that g∗I = I ′?

If the Kähler cones of X and X ′ coincide (or at least intersect), then the Global Torelli
Theorem does indeed show that there exists g ∈ Ker(ρ) with g∗I = I ′. Since, however, it

4Thanks to Robert Friedman and Kieran O’Grady for insisting that the description of the mono-
dromy group of a K3 surface should rather be derived directly and independently from the Global Torelli
Theorem.
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seems doubtful that Ker(ρ) consists of isotopies only, this does not quite answer Weil’s
original question (in the above modified form).

Remark 5.10. In fact, an affirmative answer to Question 5.9 would also imply an
affirmative answer to Question 5.8.5 Indeed, fix an arbitrary complex structure I on M
and consider for g ∈ Ker(ρ) the induced complex structure I ′ := g∗I. Then H2,0(X) =

H2,0(X ′). Hence, there exists a diffeomorphism h isotopic to the identity such that
h∗I = I ′. But then (g ◦ h−1)∗I = I and so g ◦ h−1 is an automorphism of X = (M, I)

acting trivially on H∗(X,Z). Therefore, by Proposition 15.2.1, g = h and, in particular,
g is isotopic to the identity, too.

To conclude the interlude on the diffeomorphism group, let us mention the following
result which is called the Nielsen realization problem for K3 surfaces, see [207].

Proposition 5.11. The natural projection Diff(X) // // ρ(Diff(X)) has no section (as
a group homomorphism).

The analogous statement holds for Diff(X) // // π0(Diff(X)), though at this point we
cannot exclude that in fact π0(Diff(X)) ∼− // ρ(Diff(X)).
In Section 16.3.3 we study a rather similar looking picture:

Aut(Db(X)) //Aut(H̃(X,Z)), Φ � //ΦH ,

which is the ‘mirror dual’ of the above, as was explained by Szendrői in [578]

6. Other approaches

Compare the following comments with the discussion in Remark 6.3.6.

6.1. Originally, the Global Torelli Theorem was proved by Pjateckĭı-Šapiro and Ša-
farevič [490] for algebraic K3 surfaces and by Burns and Rapoport [91] for K3 surfaces
of Kähler type (but, as shown later by Todorov and Siu, every K3 surface is Kähler).
In both proofs the Global Torelli Theorem is firstly and rather directly shown for Kum-
mer surfaces. The idea is that a complex torus A = C2/Γ is determined by its Hodge
structure of weight one H1(A,Z) and when passing to the Hodge structure of weight two
H2(A,Z) =

∧2H1(A,Z) not much of the information is lost (in fact, only A and its dual
torus have isomorphic Hodge structures of weight two, see Section 3.2.4). The associated
Kummer surface contains H2(A,Z) as the orthogonal complement of the additional 16

(−2)-classes (see Section 3.2.5) and one needs to control those in order to conclude. The
difficult part is to pass from Kummer surfaces, which are dense in the moduli space (see
Remark 14.3.24), to arbitrary K3 surfaces. We refrain from presenting the classical proof,
as several very detailed account of it exist in the literature, see e.g. Looijenga’s article
[376] or the expositions in [32, 53].

5. . . as was pointed out to me by Andrey Soldatenkov.
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6.2. In principle one could try to replace in the classical approach Kummer surfaces
by any other class of K3 surfaces which are dense in the moduli space and for which a
direct proof of the Global Torelli Theorem is available. Elliptic K3 surfaces, quartics, or
double covers of P2 come to mind, but unfortunately direct proofs are difficult to come
by even for these special classes of K3 surfaces.
Note that instead of determining the monodromy group Mon(X) completely as done in

Section 5.4, one could have concluded the proof of the Global Torelli Theorem in Section
5.2 by proving it for one single(!) K3 surface. More precisely, if there exists a marked K3
surface (X,ϕ) ∈ N such that P−1(P(X,ϕ)) = {(X,ϕ), (X,−ϕ)} (up to non-Hausdorff
issues), then N has only two connected components and thus Theorem 5.3 follows.
Is there any K3 surface for which a proof of the Global Torelli Theorem can be given

directly (and more easily than for general Kummer surfaces)? A good candidate would
be a K3 surface with ρ(X) = 20 and T (X) ' T (2). Then X is a very special Kummer
surface associated with E1 × E2. Here Ei are elliptic curves isogenous to the elliptic
curve determined by H0,2(X)/H2(X,Z), which is determined by the period P(X,ϕ).
See Remark 14.3.24.

6.3. There are other approaches towards the Global Torelli Theorem that also rely
on global information. Notably, Friedman’s proof [181] for algebraic K3 surfaces uses
partial compactifications of the moduli space of polarized K3 surfaces. The properness of
the extended period map allows him to reduce by induction to the degree two case, i.e.
to double covers of P2, which is then dealt with by global arguments (and not directly).
The paper also contains a proof of the surjectivity of the period map, which in degree
two had also been proved by Shah in [548].

6.4. Let us also mention Buchdahl’s article [89] again which not only starts with
a clear account of the history of this part of the theory of K3 surfaces, but also gives
easier and more streamlined proofs of the main results: deformation equivalence, Global
Torelli Theorem, and surjectivity of the period map. His approach does not use the fact
that the period map is a covering (after passing to the Hausdorff reduction), but instead
relies on more analytical methods originated by Demailly. Of course, also in our approach
ultimately complex analysis is used (for example in the description of the Kähler cone
and for the existence of Kähler metrics on K3 surfaces).

References and further reading:
There are very interesting aspects of Section 1 for real K3 surfaces, see [53, Exp. XIV] or the

more recent survey [291] by Kharlamov.
The presentation given here is very much inspired by the approach to higher-dimensional

generalizations of K3 surfaces. For a survey of the basic aspects of compact hyperkähler manifolds
see [249].

Questions and open problems:
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In [217, Sec. 7] Griffiths suggested to prove a Global Torelli Theorem for K3 surfaces by
directly reconstructing the function field of an algebraic K3 surface X from its period P(X,ϕ).
Unfortunately, nothing along this line has ever been worked out.

Concerning the differential topology of K3 surfaces, the two main open problems are the de-
scription of the kernel of Diff(X) //O(H2(X,Z)) (see Question 5.8) and the description of the
group of symplectomorphisms (up to isotopy) of a K3 surface X viewed as a manifold with a
real symplectic structure given by a Kähler form, cf. Seidel’s article [540]. The latter is related
to the group of autoequivalences of the derived category Db(Coh(X)) via mirror symmetry, see
Chapter 16.



CHAPTER 8

Ample cone and Kähler cone

Here we shall discuss the structure of the various cones, ample, nef, effective, that
are important for the study of K3 surfaces. We concentrate on the case of algebraic
K3 surfaces and their cones in the Néron–Severi lattice, but include in Section 5 a brief
discussion of the Kähler cone of complex K3 surfaces.

0.5. To fix conventions, let us recall some basic notions concerning cones. By def-
inition, a subset C ⊂ V of a real vector space V is a cone if R>0 · C = C. It is convex if
in addition for x, y ∈ C also x + y ∈ C. A ray R>0 · x ⊂ C of a closed cone C is called
extremal if for all y, z ∈ C with y + z ∈ R>0 · x also y, z ∈ R>0 · x.
A closed cone is polyhedral if C is the convex hull of finitely(!) many x1, . . . , xk ∈ V ,

i.e. C =
∑k

i=1R≥0 · xi. If V = ΓR := Γ ⊗Z R for some free Z-module Γ, the cone is
rational polyhedral if in addition the xi can be chosen such that xi ∈ ΓQ (or, equivalently,
xi ∈ Γ). A closed cone C is locally polyhedral at x ∈ C if there exists a neighbourhood of
x in C which is polyhedral. A cone C is circular at x ∈ ∂C if there exists an open subset
x ∈ U ⊂ ∂C of the boundary such that the closure C is not locally polyhedral at any
point of U .
A fundamental domain for the action of a discrete group G acting continuously on a

topological manifold M is (usually) defined as the closure U of an open subset U ⊂ M

such that M can be covered by gU , g ∈ G, and such that for g 6= h ∈ G the intersection
gU ∩ hU does not contain interior points of gU or hU .

1. Ample and nef cone

We shall start with a few general facts on ample and nef classes on projective surfaces.
Then, we explain how they can be made more precise for K3 surfaces. This section should
also serve as a motivation for the more abstract discussion in Section 2.

1.1. Most of the following results hold for arbitrary smooth projective varieties, but
for simplicity we shall restrict to the two-dimensional case. For an account of the general
theory we recommend Lazarsfeld’s comprehensive monograph [355].
First of all, recall the Hodge index theorem (see Proposition 1.2.4): If H ∈ NS(X)

is ample (or, weaker, if (H)2 > 0), then the intersection form is negative definite on its
orthogonal complement H⊥ ⊂ NS(X).

Definition 1.1. The positive cone

CX ⊂ NS(X)R

143
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is the connected component of the set {α ∈ NS(X) | (α)2 > 0} that contains one ample
class (or, equivalently, all of them).
The ample cone

Amp(X) ⊂ NS(X)R

is the set of all finite sums
∑
aiLi with Li ∈ NS(X) ample and ai ∈ R>0. The nef cone

Nef(X) ⊂ NS(X)R

is the set of all classes α ∈ NS(X)R with (α.C) ≥ 0 for all curves C ⊂ X.

Note that, CX , Amp(X), and Nef(X) are all convex cones. The ample cone Amp(X)

is by definition the convex cone spanned (over R) by ample line bundles, but the nef
cone Nef(X) is in general not spanned by nef line bundles. Indeed, the effective nef cone
Nefe(X) (see Section 4.1), i.e. the set of all finite sums

∑
aiLi with Li ∈ NS(X) nef and

ai ∈ R≥0, can be strictly smaller than Nef(X) (its closure, however, always gives back
Nef(X)). A famous example for this phenomenon, a particular ruled surface, goes back
to Mumford and Ramanujam, see [233, I.10], [355, I.1.5], and also Section 3.2, i) and
v).
In order to understand the relation between Amp(X) and Nef(X) one needs the fol-

lowing classical result, see [233, I.Thm. 5.1] or [234, V.Thm. 1.10].

Theorem 1.2 (Nakai–Moishezon–Kleiman). A line bundle L on a smooth projective
surface X over an arbitrary field k is ample if and only if

(1.1) (L)2 > 0 and (L.C) > 0

for all curves C ⊂ X.

Remark 1.3. i) Due to Grauert’s ampleness criterion, see [32, Thm. 6.1], the theorem
still holds for complex (a priori not necessarily projective) surfaces. Another consequence
of Grauert’s criterion is that a smooth compact complex surface is projective if and only
if there exists a line bundle L with (L)2 > 0, cf. page 16.
ii) Note that the weaker inequality (α.C) ≥ 0 for all curves C already implies (α)2 ≥ 0,

i.e.

(1.2) Nef(X) ⊂ CX .

Indeed, otherwise by the Hodge index theorem α⊥ would cut CX into two parts, in one
of which one would find a line bundle L ∈ CX , so in particular (L)2 > 0, and such that
(L.α) < 0. The first inequality (together with the Riemann–Roch theorem) implies that
some positive multiple of L is effective, whereas the latter would then contradict the
nefness of α.
iii) The two inequalities (α)2 > 0 and (α.C) > 0 in (1.1) also describe the ample

cone Amp(X) and not only the integral classes in Amp(X). Every class α ∈ Amp(X)

satisfies these inequalities, but the converse is not obvious. Any class α satisfying (1.1) is
contained in a polyhedral cone spanned by rational classes α′ arbitrarily close to α. We
may assume that they all satisfy (α′)2 > 0. However, a priori there could be a sequence
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of curves Ci with (α.Ci) // 0, which leaves open the possibility that (α′.Ci) < 0 for one
of the α′. This does not happen for α contained in the interior of Nef(X) or, equivalently,
if all (α.C) can be bounded by some ε0 > 0. For K3 surfaces X the following discussion
excludes this scenario.
If a sequence of such curves Ci existed, then they could be assumed integral and, since

C⊥i approaches α, such that (Ci)
2 < 0. But then (Ci)

2 = −2, cf. Section 2.1.3. However,
as is explained below (see Section 2.2 or Lemma 3.5), hyperplanes of the form δ⊥ with
(δ)2 = −2 do not accumulate in the interior of CX .
The proof that the ample cone of an arbitrary projective surface is indeed described by

the two inequalities is more involved.
iv) As a consequence of ii) and iii), one can deduce the ampleness of every class α+εH

with α ∈ Nef(X), H ample, and ε > 0. Indeed, (α + εH.C) ≥ ε(H.C) ≥ ε > 0 and
(α+ εH)2 = (α)2 + 2ε(α.H) + ε2(H)2 > 0.

Corollary 1.4. Let X be a smooth projective surface over an arbitrary field. Then the
ample cone Amp(X) is the interior of the nef cone Nef(X). The latter is the closure of
the former:

Amp(X) = Int Nef(X) ⊂ Nef(X) = Amp(X).

Proof. The nef cone is closed by definition. If H ∈ NS(X) is ample and L1, . . . , Lρ
form a basis of NS(X), then for |ε1|, . . . , |ερ| � 1 the class Hε := H+

∑
εjLj still satisfies

(Hε)
2 > 0 and (Hε.C) > 0 for all curves C (use that for an integral class H actually

(H.C) ≥ 1). Hence, for all small εj ∈ Q the class Hε is ample (rational) and, therefore, a
small open neighbourhood of H is still contained in Amp(X). If H is replaced by a (real)
class α ∈ Amp(X), then write α =

∑
aiMi with Mi ample and ai ∈ R>0. The above

argument goes through, by choosing the εj small enough for all of the finitely many Mi.
Hence, Amp(X) is open.
The inclusion Amp(X) ⊂ Nef(X) is obvious and hence Amp(X) ⊂ Int Nef(X). On

the other hand, if α ∈ Int Nef(X), then for any ample H and |ε| � 1 the class α− εH is
still nef. Then write α = (α− εH) + εH, which is a sum of a nef and an ample class and
hence itself ample. (Note that here one only uses iii) and iv) in Remark 1.3 in the easier
case that the nef class is contained in the interior of the nef cone.) �

Corollary 1.5. For every class α in the boundary ∂Nef(X) of the nef cone one has
(α)2 = 0 or there exists a curve C with (α.C) = 0.

Proof. Suppose there is no curve C with (α.C) = 0 and (α)2 > 0. Then α would be
ample and hence contained in the interior of Nef(X). (Note that here we use the stronger
version of iii) in Remark 1.3.) �

1.2. Let now X be a projective K3 surface over an algebraically closed field k.1 The
following more precise version of Theorem 1.2 for K3 surfaces was stated in a slightly

1The only reason why k has to be assumed algebraically closed here is that otherwise smooth curves
of genus zero may not be isomorphic to P1. Note that the characteristic can be arbitrary.
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different form already as Proposition 2.1.4. Use that if an integral curve C is not isomor-
phic to P1, then (C)2 ≥ 0 (cf. Section 2.1.3) and that then (α.C) > 0 holds automatically
for any α ∈ CX .

Corollary 1.6. A line bundle L on a projective K3 surface X is ample if and only if
(i) (L)2 > 0,
(ii) (L.C) > 0 for every smooth rational curve P1 ' C ⊂ X, and
(iii) (L.H) > 0 for one ample divisor H (or, equivalently, for all of them). �

An (almost) equivalent reformulation is (use Remark 1.3, iii))

Corollary 1.7. Let X be a projective K3 surface. Then

Amp(X) = {α ∈ CX | (α.C) > 0 for all P1 ' C ⊂ X}. �

Note that if X does not contain any smooth rational curve at all, then being ample is
a purely numerical property, i.e. it can be read off from just the lattice NS(X) with its
intersection form and one ample (or just effective) divisor H ∈ NS(X). The latter is only
needed to single out the positive cone as one of the two connected components of the set
of all classes α with (α)2 > 0. Corollary 1.5 for K3 surfaces now reads

Corollary 1.8. Let α ∈ ∂Nef(X). Then (α)2 = 0 or there exists a smooth rational
curve P1 ' C ⊂ X with (α.C) = 0. �

2. Chambers and walls

We recall some standard facts concerning hyperbolic reflection groups that are used to
describe the ample and the Kähler cone of a K3 surface. The subject itself is vast, the
classical references are [81, 613]. The Weyl group of a K3 surface is a special case of a
Coxeter group, although usually an infinite one and most of the literature only deals with
finite ones. The arguments given below are deliberately ad hoc and the reader familiar
with the general theory of Coxeter groups should rather use it to conclude.2

2.1. Consider a real vector space V of dimension n + 1 endowed with a non-
degenerate quadratic form ( . ) of signature (1, n). Thus, abstractly (V, ( . )) is isomorphic
to Rn+1 with the quadratic form x2

0 − x2
1 − . . .− x2

n.
The set {x ∈ V | (x)2 > 0} has two connected components which are interchanged by

x � // − x. We usually distinguish one of the two connected components, say C ⊂ V , and
call it the positive cone. Thus,

{x ∈ V | (x)2 > 0} = C t (−C).

Note that x, y with (x)2 > 0 and (y)2 > 0 are in the same connected component if and
only if (x.y) > 0.

2See also Ogus’s complete and detailed account in [476, Prop. 1.10]. The standard sources focus
on complex K3 surface and he checks that all the arguments are indeed valid for K3 surfaces in positive
characteristic and in particular for supersingular K3 surfaces.
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The subset C(1) of all x ∈ C with (x)2 = 1 is isometric to the hyperbolic n-space
Hn := {x ∈ Rn+1 | x2

0 − x2
1 − . . .− x2

n = 1, x0 > 0}. By writing

C ' C(1)× R>0 ' Hn × R>0,

questions concerning the geometry of C can be reduced to analogous ones for Hn.
We write O(V ) for the orthogonal group O(V ; ( . )), which is abstractly isomorphic

to O(1, n). By O+(V ) ⊂ O(V ) we denote the index two subgroup of transformations
preserving the positive cone C. The induced action O+(V ) × C(1) // C(1) is transitive
and the stabilizer of x ∈ C(1) is the orthogonal group O(x⊥) of the negative definite space
x⊥ ⊂ V . Thus,

C(1) ' O+(V )/O(x⊥) ' O+(1, n)/O(n).

Remark 2.1. Any discrete subgroupH ⊂ O(V ) acts properly discontinuously from the
left on C(1) ' O+(V )/O(x⊥), i.e. for every x ∈ C(1) there exists an open neighbourhood
x ∈ U ⊂ C(1) such that g(U) ∩ U = ∅ for all g ∈ H except for the finitely many ones
in Stab(x). See Remark 6.1.10 for the general statement and [634, Lem. 3.1.1] for an
elementary proof.

2.2. Let now Γ be a lattice of signature (1, n) (think of NS(X) of an algebraic K3
surface X) and consider V := ΓR with the induced quadratic form. Then Remark 2.1
applies to the discrete subgroup O+(Γ) := O(Γ) ∩ O+(V ), which leads to the following
observation.

Remark 2.2. For any subset I ⊂ O+(Γ) the set

FixI :=
⋃
g∈I

Fix(g) ⊂ C

is closed and so is FixI ∩ C(1).
To see this, let x ∈ C(1) \ FixI . Then Stab(x) ∩ I = ∅. Since the action of O+(Γ) on
C(1) is properly discontinuous, there exists an open neighbourhood x ∈ U ⊂ C(1) with
g(U) ∩ U = ∅ for all g ∈ I. Hence, U ∩ FixI = ∅, i.e. U is an open neighbourhood of x
contained in C(1) \ FixI .

Next consider the set of roots

∆ := {δ ∈ Γ | (δ)2 = −2}.

It is often convenient to distinguish a subset of positive roots ∆+ ⊂ ∆, i.e. a subset with
the property that ∆ = ∆+ t (−∆+).3

With any δ ∈ ∆ one associates the reflection sδ ∈ O+(Γ) ⊂ O+(ΓR) defined by

sδ : x � // x+ (x.δ)δ.

3In the geometric situation, when the δ correspond to divisor classes on a K3 surface X, a natural
choice is given by the effective divisors. Indeed, if a (−2)-class δ ∈ NS(X) corresponds to a line bundle
L, then by the Riemann–Roch theorem either L or L∗ is effective.
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Thus, sδ(δ) = −δ and sδ = id on δ⊥. To see that sδ really preserves C use (sδ(x).x) =

(x)2+(x.δ)2 > 0 for x ∈ C. Frequently we use the observation that for arbitrary g ∈ O(ΓR)

(2.1) g ◦ sδ = sg(δ) ◦ g.

We call Fix(sδ) = C ∩ δ⊥ the wall associated with δ ∈ ∆. Although, walls could and
often do accumulate towards the boundary ∂C ⊂ {x | (x)2 = 0}, Remark 2.2 applied to
I = {sδ | δ ∈ ∆} ⊂ O+(Γ) shows that the union of all walls⋃

δ∈∆

δ⊥ ⊂ C

is closed and hence locally finite in C.

Remark 2.3. Here is a more ad hoc argument for the same fact, taken from Ogus’s
[476]. Pick a class h ∈ C ∩Γ and complete h/

√
(h)2 to an orthogonal basis of ΓR ' Rn+1

such that ( . ) on ΓR is given by x2
0 − x2

1 − . . .− x2
n. We write accordingly any x ∈ ΓR as

x = x0 + x′ with x′ ∈ h⊥R .
Now let 〈 , 〉 be the inner product −( . ) on h⊥R and let ‖ ‖ be the associated norm.

Then for δ ∈ ∆ one has |δ0|2 − ‖δ′‖2 = −2 and hence ‖δ′‖ ≤ |δ0| + 2. For x ∈ δ⊥ one
finds x0 · δ0 = 〈x′, δ′〉 and, by Cauchy–Schwarz, |x0 · δ0| ≤ ‖δ′‖ · ‖x′‖ ≤ (|δ0| + 2) · ‖x′‖
and, therefore, |δ0| · (|x0| − ‖x′‖) ≤ 2‖x′‖.
Now, when x approaches h, then ‖x′‖ // 0 and x0

//
√

(h)2. But then also |δ0| // 0

and hence ‖δ′‖ is bounded. Since ∆ is discrete, this suffices to conclude that a small open
neighbourhood U of h is met by only finitely many walls, i.e. δ⊥ ∩ U 6= ∅.
See also the proof of Lemma 3.5 where the argument is repeated in a slightly different

form.

The connected components of the open complement C \
⋃
δ∈∆ δ

⊥ are called chambers
and shall be denoted

C0, C1, . . . ⊂ C.
The discussion above leads to the following

Proposition 2.4. The chamber structure of C induced by the roots ∆ is locally poly-
hedral in the interior of C, i.e. for every chamber Ci ⊂ C the cone Ci is locally polyhedral
in the interior of C. �

2.3. Two elements x, y ∈ C are in the same chamber if and only if (x.δ) · (y.δ) > 0

for all δ ∈ ∆. Moreover, a chamber C0 ⊂ C is uniquely determined by the sequence of
signs of (δ.C0), δ ∈ ∆. Equivalently, the choice of a chamber C0 ⊂ C is determined by
the choice of a set of positive roots ∆+ := {δ | (δ. )|C0 > 0} ⊂ ∆. One also defines the
smaller subset ∆C0 ⊂ ∆+ of all δ such that δ⊥ defines a wall of C0 of codimension one,
i.e. δ⊥ intersects the closure of C0 in codimension one.
The Weyl group W is the subgroup of O+(Γ) generated by all sδ, i.e.

W := 〈sδ | δ ∈ ∆〉 ⊂ O+(Γ),

which due to (2.1) is a normal subgroup of O+(Γ).
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Note that for δ, δ′ ∈ ∆ and x ∈ δ⊥ one has (sδ′(x).sδ′(δ)) = (x.δ) = 0, i.e. sδ′(x) ∈
sδ′(δ)

⊥. Hence, W preserves the union of walls
⋃
δ∈∆ δ

⊥ and, thus, acts on the set of
chambers.

Remark 2.5. Suppose C0 ⊂ C is a chamber and let ∆C0 ⊂ ∆+ ⊂ ∆ be as above.
i) Then

WC0 := 〈sδ | δ ∈ ∆C0〉
acts transitively on the set of chambers. Indeed, one can connect C0 with any other
chamber by a path γ : [0, 1] // C that passes through just one wall of codimension one
at the time. Using compactness, this yields a finite sequence of chambers C0, . . . , Cn such
that Ci and Ci+1 are separated by one wall δ⊥i with δi ∈ ∆Ci ∩ (−∆Ci+1). So, in particular
sδi(Ci) = Ci+1. For simplicity we assume n = 2 and leave the general case as an exercise.
Use sδ(∆C0) = ∆sδ(C0), which is straightforward to check, to show that δ1 = sδ0(δ′1) for

some δ′1 ∈ ∆C0 . Then, (sδ1 ◦ sδ0)(C0) = sδ1(C1) = C2, but by (2.1)

sδ1 ◦ sδ0 = ssδ0 (δ′1) ◦ sδ0 = sδ0 ◦ sδ′1 ∈WC0 .

Hence, there exists an element in WC0 that maps C0 to Cn.
ii) We claim that the transitivity of the action of WC0 implies that

(2.2) WC0 = W.

For this it suffices to show that sδ ∈WC0 for all δ ∈ ∆. By the local finiteness of walls, δ⊥

defines a wall of codimension one of some chamber C1. Then by i) there exists g ∈ WC0
with g(C0) = C1 and, therefore, a δ′ ∈ ∆C0 with g(δ′) = δ. Now use (2.1) to conclude
that sδ = sg(δ′) = g ◦ sδ′ ◦ g−1, which is containd in WC0 .

Proposition 2.6. The Weyl group W acts simply transitively on the set of chambers.

Proof. It remains to exclude that the existence of some id 6= g ∈W leaving invariant
a chamber C0 ⊂ C, i.e. g(C0) = C0. Let ∆C0 ⊂ ∆+ ⊂ ∆ be as before. Then by (2.2) one
can write g = sδ0 ◦ . . . ◦ sδ` with δi ∈ ∆C0 . Choose ` minimal. Use the δi to define a
generic closed path γ as in Remark 2.5, i) with γ(0), γ(1) ∈ C0. The walls that are crossed
by γ are (sδ0 ◦ . . . ◦ sδi)(δ⊥i+1). Since γ is closed, all hyperplanes crossed by γ occur twice.
So, for example, δ⊥0 = (sδ0 ◦ . . . ◦ sδi)(δ⊥i+1) for some i and hence, using (2.1) again, one
finds for g′ := sδ0 ◦ . . . ◦ sδi that

g′ ◦ sδi+1
= sg′(δi+1) ◦ g′ = sδ0 ◦ g′ = sδ1 ◦ . . . ◦ sδi .

This contradicts the minimality of `. �

Remark 2.7. The above can be used for the description of the ample cone. However,
for the description of the Kähler cone one needs to modify the setting slightly. Instead of
a lattice Γ of signature (1, n) one starts with a lattice Λ of signature (3, n) (think of the
K3 lattice). Then for any positive plane P ⊂ ΛR the orthogonal complement V := P⊥

has signature (1, n). The set of (−2)-classes to be considered in this situation is

∆P := {δ ∈ Λ | (δ)2 = −2, δ ∈ P⊥},
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which depends on P . The associated reflections generate the Weyl group

WP := 〈sδ | δ ∈ ∆P 〉,

which is a discrete subgroup of {g ∈ O(ΛR) | g|P = id} ' O(P⊥).
Note that often Λ ∩ P⊥ does not span P⊥ (it is actually trivial most of the time) and

that the natural mapWP
//O(Λ∩P⊥) is not necessarily injective. Nevertheless, Remark

2.5, Propositions 2.4 and 2.6 still hold true and are proved by the same arguments.

2.4. Let us now assume that Γ is indeed NS(X) of a projective K3 surface X over an
algebraically closed field. Then ∆ ⊂ NS(X) is the set of line bundles L with (L)2 = −2.
By the Riemann–Roch theorem, such a line bundle L or its dual L∗ is effective, cf. Section
1.2.3. If (L)2 = −2 and L is effective, then the fixed part of |L| contains a (−2)-curve.
For example, the union C = C1 +C2 of two (−2)-curves intersecting transversally in one
point also satisfies (C)2 = −2. Or, if C1 ⊂ X is an integral curve with (C1)2 = 6 not
intersecting a (−2)-curve C2, then (C1 + 2C2)2 = −2 with Bs |C1 + 2C2| = 2C2.
By Corollary 1.7, the ample cone Amp(X) ⊂ CX is one of the chambers defined by ∆.

Moreover, to verify whether a class α ∈ CX is in fact contained in Amp(X) it suffices
to check (α.C) > 0 for all P1 ' C ⊂ X. Thus, by Remark 2.5, the Weyl group W is
generated by reflections s[C] for all (−2)-curves C, i.e.

W = 〈s[C] | P1 ' C ⊂ X〉.

Remark 2.8. Every P1 ' C ⊂ X defines a codimension one wall of Amp(X), in
particular no (−2)-class is superfluous for cutting out Amp(X). Indeed, for any ample
H the class x := H+ (1/2)(H.C)[C] is contained in [C]⊥, but for any other P1 ' C ′ ⊂ X
one has (x.C ′) ≥ (H.C ′) > 0, because (C.C ′) ≥ 0. The argument is taken from Sterk’s
article [574].

Corollary 2.9. For any α ∈ CX there exist smooth rational integral curves C1, . . . , Cn ⊂
X such that (s[C1] ◦ . . . ◦ s[Cn])(α) is nef. If, moreover, (α.δ) 6= 0 for all δ ∈ NS(X) with
(δ)2 = −2, then

(s[C1] ◦ . . . ◦ s[Cn])(α) ∈ Amp(X). �

Remark 2.10. The result can be rephrased as follows: Under the stated assumptions
on α, there exist finitely many smooth rational curves P1 ' Ci ⊂ X such that for the
cycle Γ := ∆ +

∑
Ci×Ci on X ×X viewed as a correspondence the image [Γ]∗(α) under

the induced map [Γ]∗ : H2(X,Z) ∼− // H2(X,Z) is a Kähler (or at least nef) class. This
version is more natural in the context of Fourier–Mukai transforms, see Section 16.3.1,
and higher-dimensional generalizations.

The discussion above is summarized by the following.

Corollary 2.11. For a projective K3 surface X, the cone Nef(X)∩CX is a fundamental
domain for the action of the Weyl group W ⊂ O+(NS(X)) on the positive cone CX .
Moreover, W is generated by reflections s[C] with P1 ' C ⊂ X and Nef(X) is locally
polyhedral in the interior CX . �
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Note that in general Nef(X) ∩ ∂CX might consists of a single ray which for ρ(X) ≥ 3

could not be a fundamental domain for the action of W on ∂CX . Whether one wants to
consider Nef(X) as a fundamental domain for the action of W on CX is largely a matter
of convention.
Also note that, although Nef(X) ⊂ CX is cut out by the inequalities (C. ) ≥ 0 for all

P1 ' C ⊂ X, it need not be (locally) polyhedral in the closed cone CX , as extremal rays
of Nef(X) may accumulate towards ∂CX . However, the failure of Nef(X) being (locally)
polyhedral is essentially due to the action of Aut(X) only, see Theorem 4.2.
For later reference, let us state also the easy consequence

Corollary 2.12. If NS(X) contains a class α with (α)2 = 2d > 0, then X admits a
quasi-polarization L, i.e. a big and nef line bundle, with (L)2 = 2d. �

Remark 2.13. We come back to Remark 2.3.13, iii): A K3 surface X in characteristic
zero (in fact, char 6= 2, 3 suffices) is elliptic if and only if there exists a non-trivial line
bundle L with (L)2 = 0.
Using Proposition 2.3.10, it suffices to show that there exists a nef line bundle L′ with

(L′)2 = 0. Passing to its dual if necessary, we may assume L ∈ CX and therefore, by
Riemann–Roch, L is effective. If L is not nef, then there exists a (−2)-curve C with
(L.C) < 0. Clearly, s[C](L) is still in CX and hence effective. Moreover,

0 < (s[C](L).H) = (L.H) + (L.C)(C.H) < (L.H)

for a fixed ample classH. If the new s[C](L) is still not nef, continue. Since the degree with
respect to the fixed H has to be positive but decreases at every step, this process stops.
Thus, one finds a sequence of (−2)-curves C1, C2, . . . , Ck such that (s[Ck] ◦ . . . ◦ s[C1])(L)

is nef.4 This has the surprising consequence that as soon as ∂CX ∩ NS(X) 6= {0}, there
also exists a nef class in ∂CX . See also Remark 3.7.

3. Effective cone

The cone of curves is by definition dual to the nef cone. It might a priori have a round
part and a locally polyhedral part generated by smooth rational curves. However, due to
a result by Kovács, to be explained in this section, in most cases the closure of the cone
of curves is either completely round or locally polyhedral everywhere. We start with a
general discussion of the cone of curves. Then in Section 3.2 we motivate Kovács’s result
by explaining a number of particular cases by drawing pictures and finally state his result
saying that these special cases exhaust all possibilities. The proof is given in Section 3.3.

3.1. Dually to the nef cone one defines the effective cone, which plays a fundamental
role in the minimal model program for higher-dimensional algebraic varieties. In dimen-
sion two, curves and divisor are the same thing, so the duality between them has a little
different flavor compared to the higher-dimensional case.

4The argument follows Barth et al [32, VIII.Lem. 17.4]. Ideally one would like to argue with the
chamber structure directly and say that there must exist an element g ∈ W with g(L) being contained
in the nef cone. However, a priori the chambers might accumulate towards the boundary ∂CX .
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Definition 3.1. Let X be a smooth projective surface. The effective cone

NE(X) ⊂ NS(X)R,

also called the cone of curves, is the set of all finite sums β =
∑
ai[Ci] with Ci ⊂ X

irreducible (or integral) curves and ai ∈ R≥0.

As we shall see, NE(X) is in general neither open nor closed. Its closure NE(X) is
called the Mori cone. The following is a special case of the duality between effective
curves and nef divisors on arbitrary smooth projective varieties, see e.g. [355, I.Prop.
1.4.28].

Theorem 3.2. On a smooth projective surface X the Mori cone and the nef cone are
dual to each other, i.e.

NE(X) = {β | (α.β) ≥ 0 for all α ∈ Nef(X)}

and
Nef(X) = {α | (α.β) ≥ 0 for all β ∈ NE(X)}.

Proof. The right hand sides are by definition the dual cones Nef(X)∗ and NE(X)∗,
respectively. Since Nef(X)∗∗ = Nef(X) and NE(X)∗∗ = NE(X), it suffices to prove one
of the two assertions. But the second is just the definition of the nef cone. For general
facts on duality between cones see [508]. �

As by Corollary 1.4 Amp(X) is the interior of Nef(X), one obtains the following de-
scription of the ample cone, which, again, is a general fact, see [355, I.Thm. 1.4.29] or,
in the case of surfaces, [32, Prop. 7.5].

Corollary 3.3. For the ample cone one has

Amp(X) = {α ∈ NS(X)R | (α.β) > 0 for all β ∈ NE(X) \ {0}}.

Some of the following remarks are already more specific to K3 surfaces. So from now
on we shall assume that X is a projective K3 surface over an algebraically closed field.

Remark 3.4. i) One knows that

(3.1) NE(X) ⊂ CX +
∑

R≥0 · [C],

where the curves C are smooth, integral, and rational, see Section 2.1.3. On the other
hand, by the Riemann–Roch theorem every integral class in CX is effective. Hence

(3.2) NE(X) = CX +
∑
C'P1

R≥0 · [C].

ii) Also,
Nef(X) ⊂ NE(X),

for Nef(X) is the closure of Amp(X) and the latter is clearly contained in NE(X). Or
use (3.2) combined with Nef(X) ⊂ CX , see (1.2).
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iii) If C ⊂ X is an integral curve with (C)2 ≤ 0, then NE(X) is spanned by [C] and all
β ∈ NE(X) with (β.C) ≥ 0. Indeed, any curve C ′ not containing C satisfies (C ′.C) ≥ 0.
Note that in particular [C] ∈ ∂NE(X).
iv) The class [C] of any P1 ' C ⊂ X defines an extremal ray of NE(X). Indeed, if

[C] = β + β′ with β, β′ ∈ NE(X), then using iii) one finds that in fact β, β′ ∈ R≥0 · [C].

Lemma 3.5. Let H be an ample divisor on a K3 surface X. Then for any N there
are at most finitely many curves P1 ' C ⊂ X with (C.H) ≤ N . The same holds for H
replaced by any real ample class α ∈ Amp(X).

Proof. This is in fact an abstract result that has nothing to do with K3 surfaces.
It has essentially been proved already in Section 2.2, see Remark 2.3. Nevertheless, we
prove it again, and, moreover, in two different ways.
i) Since (C)2 = −2 for any P1 ' C ⊂ X, fixing (C.H) is equivalent to fixing the Hilbert

polynomial of C ⊂ X. Now, the Hilbert scheme of all subvarieties of X with fixed Hilbert
polynomial is a projective scheme. As smooth integral rational curves do not deform, they
correspond to connected components of the projective Hilbert scheme, of which there
exist only finitely many ones. Hence, there are only finitely many P1 ' C ⊂ X with fixed
(C.H).
ii) Alternatively, one could use the following purely numerical argument. The given

ample class H can be completed to an orthogonal basis of NS(X)R ' Rρ such that the
quadratic form is (H)2x2

1 − x2
2 − . . .− x2

ρ. For fixed (C.H) = N the classes [C] are all in
the compact set {(N/(H)2, x2, . . . , xρ) | x2

2 + . . . + x2
ρ = 2 + N2/(H)2} which intersects

the discrete NS(X) in only finitely many points.
iii) Finally, if only a real class α ∈ Amp(X) is fixed, then the argument in ii) shows

that there are at most finitely many P1 ' C ⊂ X with (C.α) fixed. To exclude that
(C.α) gets arbitrarily small use the arguments in Section 2.2. �

The next immediate consequence, at least its second part, has also been proved ab-
stractly already in Proposition 2.4.

Corollary 3.6. Outside CX the cone NE(X) is locally polyhedral. Dually, the cone
Nef(X) ∩ CX is locally polyhedral in the open cone CX .

Proof. Indeed, the intersection of the closed cone NE(X) with the cone {x | (H.x)2 ≤
k|(x)2|} is polyhedral for all k > 0. Clearly, any x ∈ NE(X) \ CX is contained in such an
intersection for k large enough. �

Kawamata proves in [285, Thm. 1.9] a more general statement covering in particular
all surfaces with trivial canonical bundle.

3.2. The structure of the effective cone of a K3 surface can be intricate. There
is one result however that shows that not everything that in principle is possible also
occurs. This result is due to Kovács [325]. We prepare the ground by first looking at
some pictures.
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Since for ρ(X) = 1 effective and ample cone coincide and form just one ray spanned
by an ample class, the first instructive examples can be found for ρ(X) = 2. There are
four cases that can occur:

i)

Amp = C
∂C ∩NS = 0

ii)

Amp = C
∂C = 〈[E1]〉 ∪ 〈[E2]〉

E2
•

E1
•

iii)

Amp  C
∂C ∩ ∂Amp = 〈[E]〉

E
•

C⊥

C •

iv)

Amp  C
∂C ∩ ∂Amp = 0

C⊥1

C⊥2

C1•

C2
•

i) Amp(X) = CX and ∂CX ∩NS(X) = {0}. Then by Theorem 3.25

NE(X) = Amp(X).

ii) Amp(X) = CX and there exist two smooth elliptic curves E1 and E2 such that
∂CX = R≥0 · [E1] t R≥0 · [E2]. Then

NE(X) = R≥0 · [E1] + R≥0 · [E2].

iii) Amp(X)  CX and there exist smooth integral curves E and C of genus one and
zero, respectively, such that the two boundaries of Nef(X) = Amp(X) are R≥0 · [E] and
the ray orthogonal to [C]. Then

NE(X) = R≥0 · [E] + R≥0 · [C].

iv) Amp(X)  CX and there exist smooth integral rational curves C1 and C2 such that
the boundaries of Amp(X) are the two rays orthogonal to [C1] and [C2]. In particular,
∂Amp(X) is contained in the interior of CX and

NE(X) = R≥0 · [C1] + R≥0 · [C2].

Note that in i) Nef(X) = CX is polyhedral but not rational polyhedral. In the remain-
ing cases Nef(X) and NE(X) are in fact both rational polyhedral.

Remark 3.7. For purely numerical reasons the case that only one of the two rays of
∂Amp(X) is spanned by a class in NS(X) cannot occur. For example, if Amp(X) = CX
and E is smooth elliptic (and thus spans one ray of ∂Amp(X)) and H is ample, then
2(H.E)H − (H)2E spans the other ray, cf. Lemma 3.13.
Also, as a consequence of Remark 2.13 or by a purely numerical argument, one finds

that in the case iv) none of the two boundaries ∂CX is rational.

5This is an example where the cone of curves NE(X) is not closed and the nef cone Nef(X) is not
spanned by nef line bundles.
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Remark 3.8. Here are a few more comments concerning elliptic and rational curves.
In case i) there exist neither smooth rational nor smooth elliptic curves. In case ii) no
smooth rational curve can exist, as its orthogonal complement would cut CX and hence
Amp(X) could not be maximal.
All smooth elliptic curves E1, E2, and E in ii) and iii) can be replaced by integral

rational (but singular) curves. Indeed, any nef line bundle L with (L)2 = 0 defines an
elliptic fibration π : X //P1, see Proposition 2.3.10. The elliptic curves are smooth fibres
of the corresponding fibration. Then take a singular and hence rational fibre of π, which
has to be irreducible due to ρ(X) = 2, cf. Remark 2.3.13 and Corollary 11.1.7.

Let us now look at the case ρ(X) > 2. We shall try to visualize this by assuming
ρ(X) = 3 and by taking a cut with (H. ) = 1, for a fixed ample class H.

Amp = C
v) ∂C ∩NS = 0

vi) ∂C ∩NS ⊂ ∂C dense

vii)

C⊥1
C⊥2

C⊥3

C⊥1
C⊥2

C⊥3

v) As in i), Amp(X) = CX and ∂CX ∩NS(X) = {0}. Then

NE(X) = Amp(X).

vi) As in ii), Amp(X) = CX and its closure Nef(X) = Amp(X) = CX is the closure of
the cone spanned by all classes [E] of smooth elliptic curves E:

CX = Amp(X) ( NE(X) ( NE(X) = CX .

vii) As in iv), Amp(X)  CX and NE(X) is the closure of the cone spanned by all classes
[C] of smooth rational curves C:

NE(X) =
∑

R≥0 · [Ci],

where the Ci are (−2)-curves.

Note that we have not drawn the analogue of iii) for ρ(X) > 2. Clearly, in v) and vi)
the nef cone is not polyhedral, not even locally. In vii) it is at least locally polyhedral.

Remark 3.9. As in Remark 3.8, instead of the smooth elliptic curves E in vi) one
could use singular rational curves. As Amp(X) is maximal in this case, the singular fibres
of the elliptic fibration associated with E are irreducible (of type I1 or II), for no smooth
rational curve can exist, see Section 11.1.4.
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The last picture in vii) is realized e.g. by an elliptic K3 surface with a section C3 and
a reducible fibre C1 + C2 (type I2 or III). In this case, one can assume (C3.C1) = 1 and
(C3.C2) = 0. By Hodge index theorem and an easy computation, C⊥3 meets C⊥1 and C⊥2
in the interior of CX .

Remark 3.10. If X does not admit any (−2)-class, then any ray R>0 · L ⊂ ∂CX is
spanned by a smooth elliptic curve (assuming char(k) 6= 2, 3, see Proposition 2.3.10).

The following is the main result of Kovács’s [325].

Theorem 3.11. Let X be a projective K3 surface of Picard number ρ(X) ≥ 2. Then
Amp(X) and NE(X) are as in one of the cases i)–vii). Moreover, ρ(X) ≤ 4 in v) and
ρ(X) ≤ 11 in vi).

The main steps of the proof are sketched below. This theorem has a series of important
and actually quite surprising consequences and we begin with those.

Corollary 3.12. Let X be a projective K3 surface.

(i) If ρ(X) = 2, then NE(X) (or Nef(X) = Amp(X)) is rational(!) polyhedral if and
only if X contains a smooth elliptic or a smooth rational curve.

(ii) For ρ(X) ≥ 3, either X does not contain any smooth rational curves at all or NE(X)

is the closure of the cone spanned by all smooth rational curves C ⊂ X.
(iii) Either NE(X) is completely circular or has no circular parts at all. For ρ(X) ≥ 3

the former case is equivalent to NE(X) = Amp(X) = CX .

Proof. The first assertion follows from an inspection of the cases i)-iv).
If X does not contain any (−2)-curve at all, then Amp(X) = CX by Corollary 1.7

and NE(X) = Nef(X) = CX by Theorem 3.2. Hence, NE(X) is completely circular for
ρ(X) ≥ 3.
If X contains a (−2)-curve, then iii), iv) (for ρ(X) = 2), or vii) describe NE(X). In

particular, for ρ(X) ≥ 3 it is the closure of the cone spanned by smooth integral rational
curves. As this cone is locally polyhedral outside ∂CX by Corollary 3.6, NE(X) has no
circular parts at all. �

As Kovács explains in detail in [325], all cases allowed by the theorem do in fact occur.

3.3. The proof of Theorem 3.11 starts with the following elementary observation.
We follow the original [325] quite closely. Suppose α, β ∈ NS(X) with α ∈ CX and
0 6= β ∈ ∂CX . Then γ := 2(α.β)α− (α)2β ∈ R · α⊕R · β is also contained in ∂CX and β
and γ are on ‘opposite sides’ of R>0 · α (i.e. α is contained in the convex cone spanned
by β and γ), cf. Remark 3.7.
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α

γ

β

By varying α ∈ CX ∩NS(X)Q, this immediately yields

Lemma 3.13. If ∂CX ∩NS(X) 6= {0}, then ∂CX ∩NS(X)Q is dense in ∂CX . �

Corollary 3.14. Assume that X does not contain any (−2)-curve and that ρ(X) ≥ 5.
Then Amp(X) is described as in vi).

Proof. Indeed, Amp(X) = CX by Corollary 1.7 and ∂CX ∩NS(X) 6= {0} by Hasse–
Minkowski, cf. [544, IV.3.2]. Now combine Lemma 3.13 and Remark 3.10 to show that
indeed vi) describes CX as the closure of the cone spanned by smooth elliptic curves. �

Remark 3.15. Similar arguments show the following. If α ∈ CX ∩ NS(X) and β ∈
NE(X) with (β)2 = −2, then there exists an effective class γ ∈ (R · α ⊕ R · β) ∩ NS(X)

with either (γ)2 = 0 or = −2 and again β and γ on opposite sides of R>0 · α.
Moreover, (γ)2 = 0 can be achieved if and only if 2(α)2 + (α.β)2 is a square in Q.

Indeed, then x2(2(α)2 + (α.β)2)− y2 = 0 has a positive integral solution and one can set

(3.3) γ := 2xα− (y − (α.β)x)β

(and use y > (α.β)x, due to (α)2 > 0, to see that γ is effective). If 2(α)2 +(α.β)2 is not a
square in Q, then the (infinitely many) solutions to Pell’s equation x2(2(α)2 + (α.β)2)−
y2 = −1 yield γ defined by (3.3) with (γ)2 = −2. Also, one can arrange things such that
γ is effective and on the opposite side of R · α.

α
•

γ
•

β • β⊥

α
•

γ•

β • β⊥

γ⊥

Proof of Theorem 3.11. Note that by purely lattice theoretic considerations (cf.
Corollary 14.3.8) any X with ρ(X) ≥ 12 in fact contains a (−2)-curve and then Corollary
3.14 does not apply.
On the other hand, if X does not contain any (−2)-curve but ρ(X) < 5, then either

∂CX ∩NS(X) = {0}, and we are in case v) (which is i) for ρ(X) = 2), or ∂CX ∩NS(X) 6=
{0}, and then we are again in case vi) (which is ii) for ρ(X) = 2).
It remains to deal with the case that X contains a (−2)-curve C ⊂ X. For ρ(X) = 2,

Remark 3.15 shows that iii) or iv) must hold, i.e. if ∂Amp(X) contains one of the rays
of ∂CX , then this ray is spanned by an integral class.
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It remains to show that vii) holds if X contains a (−2)-curve C and satisfies ρ(X) ≥ 3.
More precisely, we have to show that in this case NE(X) is the closure of the cone spanned
by (−2)-curves or, equivalently, that ∂NE(X) has no circular part, see the argument in
the proof of Corollary 3.12.
Suppose ∂NE(X) has a circular part. By Corollary 3.6, this can only happen when

there exists an open subset U ⊂ ∂CX that is at the same time contained in ∂NE(X).
We can assume that U = R>0 · U . Now choose an integral class α ∈ CX arbitrarily close
to U . By Remark 3.15 one finds an effective class γ ∈ (R · α ⊕ R · [C]) ∩ NS(X) with
(γ)2 = 0 or = −2 such that γ and [C] are on opposite sides of R>0 · α. As α approaches
U ⊂ ∂NE(X), only (γ)2 = 0 is possible and, moreover, γ ∈ U . In other words, such a
U ⊂ ∂CX always contains an integral effective class γ ∈ U ∩NS(X).
Consider γε := (1− ε)γ + ε[C], which is an effective rational class for sufficiently small

ε ∈ Q>0. Then (γ.C) > 0, as otherwise (γε)
2 = −2ε2((γ.C) + 1) + 2ε(γ.C) < 0, which

would contradict γ ∈ ∂NE(X) ∩ ∂CX . Since ρ(X) ≥ 3, there exists an integral class
γ′ ∈ (R · γ ⊕ R · [C])⊥ with (γ′)2 < 0. Then define

γn := −2n2(γ′)2(γ.C)3γ − 2n(γ.C)2γ′ + [C]

and check (γn)2 = −2. Moreover, R>0 · γn converges to R>0 · γ. By Riemann–Roch
and using (γ.H) > 0 and hence (γn.H) > 0 for n � 0 and a fixed ample class H, one
concludes that the classes γn are effective. Hence, γ is contained in the closure of the
cone spanned by (−2)-curves contradicting the assumption that NE(X) is circular in γ.
This concludes the proof of Theorem 3.11. �

The last step in the proof illustrates the phenomenon that NE(X) is locally polyhedral
outside CX but not necessarily in points of the boundary ∂CX .

4. Cone conjecture

As explained in Section 2.4, the action of the Weyl group W on the positive cone CX
admits a fundamental domain of the form Nef(X) ∩ CX . Moreover, Nef(X) ⊂ CX is
locally polyhedral in the interior of CX , but not necessarily at points in ∂CX . However,
the only reason for not being locally polyhedral in ∂CX and for not being polyhedral
(and not only locally) altogether is the possibly infinite automorphism group Aut(X).
To make this precise, we have to replace the nef cone by the effective nef cone Nefe(X).
The main result Theorem 4.2 of this section, due to Sterk (following suggestions by

Looijenga) [574], is a particular case of the Kawamata–Morrison cone conjecture. To-
taro’s survey [601] is highly recommended, see also his paper [600] for the technical
details and Lazić’s [356, Sec. 6] for a discussion of the conjecture for general Calabi–Yau
varieties as part of the minimal model program.

4.1. In order to phrase the cone theorem properly, one needs to introduce

Nefe(X) ⊂ Nef(X)
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as the real convex hull of Nef(X) ∩ NS(X). Note that Nefe(X) need not be closed, e.g.
in the cases i) and v) in Section 3.2 the nef cone is maximal Nef(X) = CX , but Nefe(X)

is the open cone CX . Or in case vi), again Nef(X) = CX , but of course only the rational
rays in ∂CX can be contained in Nefe(X). In any case, the closure Nef

e
(X) always gives

back Nef(X).
Note that Nefe(X) is rational polyhedral if and only if Nef(X) is. Of course, in this

case the two cones coincide, but they might coincide without being rational polyhedral.
Recall that a convex cone that is rationally polyhedron is by definition spanned by finitely
many rational rays.

Example 4.1. i) Neither of the two cones Nef(X) or Nefe(X) is in general locally
polyhedral. Again case vi) is an example, in which case Nefe(X) ∩ ∂CX is dense in
∂CX . Every open neighbourhood of an arbitrary point in ∂CX , rational or not, intersects
infinitely many walls of Nefe(X).
ii) In [601, Sec. 4] Totaro describes an example of a K3 surface X with ρ(X) = 3

for which Nef(X) = Nefe(X) intersect ∂CX in only one ray (corresponding to the fibre
class of an elliptic fibration), but along this ray the cones are not locally polyhedral, i.e.
infinitely many walls corresponding to infinitely many sections of the elliptic fibration
accumulate towards this ray.6 See also Example 4.3.

x21
x22

4.2. Recall that a rational polyhedral fundamental domain for the action of a group
G on a cone C0 (often not closed) is a rational polyhedral (and hence automatically closed)
cone Π ⊂ C0 such that C0 =

⋃
g∈G g(Π) and g(Π) ∩ h(Π) does not contain interior points

for g 6= h.

Theorem 4.2. Let X be a projective K3 surface over an algebraically closed field k of
characteristic 6= 2. The action of Aut(X) on the effective nef cone Nefe(X) ⊂ NS(X)R
admits a rational polyhedral fundamental domain Π.

Proof. Here is an outline of the argument for complex K3 surfaces following Kawa-
mata [285]. We shall use that Aut(X) acts faithfully on H2(X,Z), see Proposition
15.2.1.
The first thing to note is that the subgroup Auts(X) ⊂ Aut(X) of symplectic auto-

morphisms (i.e. those that act trivially on T (X), see Section 15.1) and the Weyl group

6The dark region in the picture represents a fundamental domain for the action of Aut(X) on
Nefe(X), as shall be explained shortly.
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W can both be seen as subgroups of O+(NS(X)). In fact,

(4.1) Auts(X)nW ⊂ O+(NS(X))

is a finite index subgroup. This is also stated as Theorem 15.2.6 and here is the proof.
One first remarks that the kernel of the natural map O(NS(X)) //O(NS(X)∗/NS(X))

is clearly of finite index. Next, by Corollary 2.11 any g0 ∈ O+(NS(X)) can be modified
by an element of h ∈ W ⊂ O+(NS(X)) such that the new element g := h ◦ g0 pre-
serves the chamber Amp(X) ⊂ CX . If in addition, g = id on the discriminant lattice
NS(X)∗/NS(X), then g can be extended by id on the transcendental lattice T (X) to
a Hodge isometry of H2(X,Z), see Proposition 14.2.6. Moreover, this Hodge isometry
respects the ample cone and, by the Global Torelli Theorem 7.5.3, is therefore induced
by an automorphism f ∈ Auts(X).
Eventually one uses that the action of O+(NS(X)) on CX admits a rational polyhedral

fundamental domain Π ⊂ CX . This is a very general statement on lattices of signature
(1, ρ − 1) which has nothing to do with the geometry of K3 surfaces. The standard
reference for this is the book by Ash et al [23, Ch. II.4], but see also [377, Sec. 4] and
the survey in [496, Thm. 2.5]. In [574, Sec. 2] one finds a rather detailed explanation.
The precise statement is as follows: There exists a rational polyhedral domain Π ⊂ Ce

X

for the action of O+(NS(X)) on the effective positive cone Ce
X which is defined as the real

convex hull of CX ∩NS(X). In fact, in [574] one finds the explicit description

(4.2) Π = {x ∈ Ce
X | (H.g(x)− x) ≥ 0 for all g ∈ O+(NS(X))},

where H is a fixed ample class.
For g = s[C] the inequality defining Π reads (H.x+ (x.C)[C]) ≥ (H.x) which is equiv-

alent to (x.C) ≥ 0, as (H.C) > 0. Therefore, Π ⊂ Nefe(X) and, moreover, Π is up
to finite index a rational polyhedral fundamental domain for the action of Aut(X) on
Nefe(X). In fact, a rational polyhedral fundamental domain for the action of Aut(X)

can be described similarly to (4.2), where H is chosen such that its stabilizer in Aut(X)

is trivial. See Totaro’s [600, Thm. 3.1, Lem. 2.2 arxiv version] or Looijenga’s [377, Prop.
4.1, Appl. 4.14].
The assertion for projective K3 surfaces over algebraically closed fields of characteristic

zero follows from the complex case. For positive characteristic the arguments above were
adapted by Lieblich and Maulik in [367]. Very roughly, if X is not supersingular, then
NS(X) and Aut(X) lift to characteristic zero. In positive characteristic 6= 2 one applies
Ogus’s crystalline theory [476]. �

Example 4.3. If π : X //P1 is an elliptic K3 surface with rk MW(X) > 0 (see Section
11.3.2) then the induced natural inclusion MW(X) �

� // Aut(X) (see Remark 15.4.5)
yields an infinite subgroup of (symplectic) automorphisms all fixing the class [Xt] ∈
∂CX ∩NS(X). Hence, any neighbourhood of [Xt] intersects infinitely many copies of the
fundamental domain. Compare this to Example 4.1, ii).

Corollary 4.4. The effective nef cone Nefe(X) is rational polyhedral if and only if
Aut(X) is finite. �
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Remark 4.5. It is instructive to compare the above results to the case of complex
abelian surfaces. The nef cone of an abelian surface A can be understood more explicitly,
mainly because 1 ≤ ρ(A) ≤ 4.
If ρ(A) = 2, then Nef(A) is obviously polyhedral, but not necessarily rational poly-

hedral, cf. Section 3.2, case i). In fact, it is rational polyhedral if and only if A =

E1 × E2 with E1 and E2 non-isogenous elliptic curves without complex multiplication.
For ρ(A) = 3, 4, the nef cone is not rational polyhedral. Bauer in [36, Thm. 7.2] gives
a detailed description. The analogue of Theorem 4.2 for abelian surfaces was proved by
Kawamata in [285].

4.3. Here are a few consequences of the theorem that show that the convex geometry
of the natural cones, ample, nef, etc., has strong implications for the geometry of a K3
surface, which we continue to assume to be over an algebraically closed field.
For the first one see the article [574] by Sterk. Lieblich and Maulik [367] checked the

case char(k) > 0.

Corollary 4.6. The set of (−2)-curves up to automorphisms

{C ⊂ X | C ' P1}/Aut(X)

is finite. More generally, for any d there are only finitely many orbits of the action of
Aut(X) on the set of classes α ∈ NS(X) of the form α = [C] with C ⊂ X irreducible7

and (α)2 = (C)2 = 2d.

Proof. Throughout the proof one uses that every P1 ' C ⊂ X defines a wall of
codimension one of Nef(X), see Remark 2.8.
Let now Π be a rational polyhedral fundamental domain for the action of Aut(X) on

Nefe(X). Then Nefe(X) and Π share finitely many walls [C1]⊥, . . . , [Cn]⊥ for certain
P1 ' C1, . . . , Cn ⊂ X. Now, consider another P1 ' C ⊂ X. Then there exist an
f ∈ Aut(X) such that f∗[C]⊥ is one of the [Ci]

⊥. But two (−2)-curves that define the
same wall coincide. Hence, every Aut(X)-orbit on the set of (−2)-curves meets the finite
set {C1, . . . , Cn}.
For the second part, i.e. (C)2 = 2d ≥ 0, one first observes that the (rational) polyhedral

fundamental domain Π ⊂ Nefe(X) contains only finitely many integral classes with (α)2 =

2d ≥ 0. (This needs an extra but still elementary argument when Π contains a class in
∂CX .) Now, if C ⊂ X is an irreducible curve with (C)2 = 2d ≥ 0, then C is nef, i.e.
[C] ∈ Nefe(X). Hence, there exists f ∈ Aut(X) such that f∗[C] ∈ Π, which is then one
of these finitely many classes. �

The next result is due to Pjateckĭı-Šapiro and Šafarevič [490, §7 Thm. 1] and Sterk
[574].

Corollary 4.7. Consider the following conditions:
(i) The effective cone NE(X) is rational polyhedral.

7For d ≥ 0 it suffices to require that C is nef.
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(ii) The quotient O(NS(X))/W is finite.
(iii) The group Aut(X) is finite.
(iv) There are only finitely many smooth rational curves contained in X.
Then (i) ⇔ (ii) ⇔ (iii) ⇒ (iv). If X contains at least one (−2)-curve, then also (iv) ⇒
(i).

Proof. Assume (i). Thus, NE(X) and hence NE(X) are rational polyhedral. But
then also the dual Nef(X) and Nefe(X) are rational polyhedral. Hence, by Corollary 4.4,
Aut(X) is finite and, therefore, (i) implies (iii).
Next, (ii) and (iii) are equivalent, because Auts(X)nW ⊂ O(NS(X)) is of finite index,

see the proof of Theorem 4.2 or Theorem 15.2.6.
Now assume (iii). Then, by Corollary 4.4, Nefe(X) is rational polyhedral and, therefore,

also Nef(X) = Nef
e
(X) is. This in turn implies that NE(X) is rational polyhedral and

hence (i) holds, e.g. by going through i)-vii). As all smooth rational curves define a wall
of of codimension one of Nef(X) (see Remark 2.8), (ii) and (iii) imply (iv).
For ρ(X) ≥ 3, Corollary 3.12 shows that either X does not contain any smooth rational

curves or NE(X) is the closure of the cone spanned by smooth rational curves. So, if X
contains a (−2)-curve and (iv) is assumed, then NE(X) = NE(X) is rational polyhedral.
(Note that for Nef(X) = CX , the existence of a rational polyhedral domain for Nefe(X)

requires Aut(X) to be infinite.)
If ρ(X) = 2 and X contains a (−2)-curve, then only iii) and iv) can occur and in both

cases NE(X) is rational polyhedral.
See again [367] for the case of positive characteristic. �

Thus, whether NE(X) is rational polyhedral can be read off from NS(X) alone. In fact,
there are only finitely many choices for the hyperbolic lattice NS(X) such that NE(X) is
rational polyhedral. An explicit (but still quite involved) complete classification of these
lattices is known, cf. [13, Thm. 2.12] or [147, Cor. 4.2.4, Thm. 2.2.2], see Section 15.2.4.
Rephrasing the above in terms of the nef cone yields

Corollary 4.8. If Nef(X) is not rationally polyhedral, then Aut(X) is infinite. �

In practice, it is often quite mysterious where these infinitely many automorphisms
come from, e.g. in the cases i) and v) in Section 3.2. See Section 15.2.5 for examples
with infinite Aut(X) but with no (−2)-curve.

Example 4.9. The following, which can be deduced by closed inspection of i)-iv), was
observed in [490, Sec. 7]: If ρ(X) = 2, then Aut(X) is finite if and only if there exists a
class α ∈ NS(X) with (α)2 = −2 or = 0. See also Section 14.2 and Example 15.2.11.

Another immediate, and partially more geometric, consequence of the cone conjecture
can be spelled out as follows:

Corollary 4.10. Up to the action of Aut(X), there exist only finitely many ample line
bundles L on X with (L)2 fixed. Equivalently, for a fixed K3 surface X0 the set

{(X,L) ∈Md | X ' X0}
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is finite. �

Here, Md is the moduli space of polarized K3 surfaces (X,L) with (L)2 = 2d, see
Chapter 5.

5. Kähler cone

We quickly explain what happens if instead of the ample cone in NS(X)R one considers
the Kähler cone KX inside H1,1(X,R).

5.1. For this let X be a complex K3 surface. It is known that any complex K3
surface is Kähler (see comments in Section 7.3.2) and we shall assume this here. A
Kähler metric g on X with induced Kähler form ω defines a class [ω] ∈ H1,1(X,R). A
class in H1,1(X,R) is called a Kähler class if it can be represented by a Kähler form.
Since a positive linear combination of Kähler forms is again a Kähler form, the set of all
Kähler classes in H1,1(X,R) describes a convex cone.

Definition 5.1. The Kähler cone

KX ⊂ H1,1(X,R)

is the open convex cone of all Kähler classes [ω] ∈ H1,1(X,R). The positive cone of the
complex K3 surface X is the connected component

CX ⊂ H1,1(X,R)

of the open set {α ∈ H1,1(X,R) | (α)2 > 0} that contains KX .

Note that the inclusion

(5.1) NS(X)R = H1,1(X,Z)R ⊂ H1,1(X,R)

is in general strict. In fact, for very general X one has NS(X) = 0. Equality in (5.1) only
holds for K3 surfaces of Picard number ρ(X) = 20. Observe that KX and CX are open
convex cones of real dimension 20 independent of X, whereas the dimension of Amp(X)

depends on ρ(X).
Under the inclusion (5.1), one has Amp(X) = KX ∩ NS(X)R by Kodaira’s characteri-

zation of positive classes (cf. [219, 251, 617]) and CX ∩NS(X)R gives back the positive
cone in NS(X)R (for which we used the same notation). Recall that X is projective if
and only if KX contains an integral class or, equivalently, if CX contains an integral class,
see Remark 1.3.
The following is the Kähler analogue of Corollary 1.7.

Theorem 5.2. The Kähler cone KX is described by

(5.2) KX = {α ∈ H1,1(X,R) | α ∈ CX and (α.C) > 0 for all P1 ' C ⊂ X}.

Moreover, if α is in the boundary of KX , then (α)2 = 0 or there exists a P1 ' C ⊂ X

with (α.C) = 0.
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Note that the cone described by the right hand side of (5.2) is open by Remark 1.3,
which remains true in the Kähler setting due to Remark 2.7. In Section 7.3.2 we stated
a special case of the theorem as:

Corollary 5.3. If Pic(X) = 0, then KX = CX . �

In fact, this corollary was there used to deduce the Global Torelli Theorem, on which
the classical proof of Theorem 5.2, to be sketched below, relies. So there is a certain (but
no actual) circular touch to the argument.

Proof of Theorem 5.2. The theorem can nowadays be seen as a consequence of the
much more general result by Demailly and Paun [145], which in dimension two had been
proved by Buchdahl [88] and Lamari [344, 345]. However historically, its first proof
relied on the surjectivity of the period map (cf. Section 7.4.1) and the Global Torelli
Theorem 7.5.3.
Let us sketch the classical approach following [53, Exp. X]. Let KoX denote the set

of classes α ∈ CX with (α.C) > 0 for all P1 ' C ⊂ X and such that the positive
three-space W := 〈Re(σ), Im(σ), α〉 contains a class 0 6= α0 ∈ W ∩ H2(X,Q). Here,
0 6= σ ∈ H2,0(X). Note that if α ∈ KoX then (α.δ) 6= 0 for all (−2)-clases δ ∈ NS(X).
Now write W = α⊥0 ⊕R ·α0 and use the surjectivity of the period map (cf. Section 7.4.1)
to realize α⊥0 as the period of a K3 surface X0. Passing from X to X0 has the advantage
that due to the existence of the rational class α0 ∈ H1,1(X0,Q) with (α0)2 > 0 one now
has an algebraic K3 surface X0, see Remark 1.3. Note that α0 has still the property that
(α0.δ0) 6= 0 for all (−2)-classes δ0 ∈ NS(X0). Indeed, otherwise δ0 ∈ W⊥ and hence
δ0 ∈ NS(X) and (α.δ0) = 0.
By Corollary 2.9, there exists a Hodge isometry g ofH2(X0,Z) such that g(α0) becomes

Kähler. Using the twistor space construction for g(α0) (see Section 7.3.2), one finds a
K3 surface X ′ together with a Hodge isometry g̃ : H2(X,Z) ∼− // H2(X ′,Z) mapping α
to a Kähler class α′ := g(α). (Tacitly, we are using the natural identification H2(X,Z) '
H2(X0,Z).) By the Global Torelli Theorem 7.5.3 or rather its proof in Section 7.5.5
one can lift g̃ to an isomorphism X ∼− // X ′, for α is positive on all P1 ' C ⊂ X. In
particular, all α ∈ KoX are Kähler classes. As KoX is dense in the open cone described by
the right hand side of (5.2), this is enough to conclude. �

Remark 5.4. In the Kähler setting too, the notions of nef classes and of the nef cone
exist. Since in general there are too few curves (sometimes none) to measure positivity
of classes, one rather uses an analytic definition. A posteriori it turns out that the
corresponding nef cone is again the closure KX of the Kähler cone, see [145] for further
references.

5.2. The definition of the Weyl group of a complex K3 surface remains unchanged

W := 〈sδ | δ ∈ NS(X) with (δ)2 = −2〉,

but it is now considered as a subgroup of O(H2(X,Z)). Note that all sδ act as id on
H2,0 ⊕ H0,2 and in fact on T (X) = NS(X)⊥ (which, however, might not complement
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NS(X)), see Example 3.3.2). The set of roots ∆ := {δ ∈ NS(X) | (δ)2 = −2} induces
a chamber decomposition of CX ⊂ H1,1(X,R). Due to Remark 2.7, the main results of
Sections 2.2 and 2.4 still hold true.

Proposition 5.5. The Weyl group W of any complex K3 surface acts simply transi-
tively on the set of chambers of the positive cone CX ⊂ H1,1(X,R). Moreover, KX ∩ CX
is a fundamental domain for this action. It is locally polyhedral in the interior of CX . �

5.3. The ample cone and the positive cone in NS(X)R of an algebraic K3 surface
behave badly under deformation of the surface. Since the Picard number usually jumps
on dense subsets (see Sections 6.2.5 and 17.1.3), even their dimension cannot be expected
to be locally constant. The situation is different for the Kähler cone. Already the positive
cone CX ⊂ H1,1(X,R) behaves well under deformation, it is always a real open cone of
dimension 20 and the family of positive cones CXt for a deformation X //S forms a real
manifold CX/S //S of relative real dimension 20 over S. This still holds true for the
family of Kähler cones KX/S //S but takes a bit more effort to prove. For the following
we refer to [32, Ch. VIII.9] and [53, Exp. IX]. The result can also be deduced from the
general fact that for a family of (1, 1)-classes, being Kähler is an open condition.

Proposition 5.6. For a smooth family of K3 surfaces f : X //S, the family of Kähler
cones KXt ⊂ CXt ⊂ H1,1(Xt,R) forms an open subset

KX/S ⊂ (R1f∗ΩX/S)R

of the real vector bundle on the right hand side with fibres H1,1(Xt,R).

5.4. Some of the results for Amp(X) do not carry over to KX . Here are two exam-
ples.
Lemma 3.13 fails in two ways. If X is not algebraic, then NS(X) might very well be

of rank one generated by a line bundle L with (L)2 = 0 and, in particular, up to sign
no other primitive integral class (of square zero) exists. But even when X is algebraic
Lemma 3.13 only yields density of rational classes in the boundary of the positive cone
in NS(X)R. For example, if ρ(X) < 20, then the rational classes in the positive cone
CX ⊂ H1,1(X,R) can certainly not be dense.
Theorem 3.11 is false in the general Kähler case and so are Theorem 4.2 and Corollaries

3.12 and 4.7. For example, using the surjectivity of the period map (see Theorem 7.4.1),
one ensures the existence of a K3 surface X such that NS(X) is generated by three
pairwise orthogonal (−2)-classes [Ci], i = 1, 2, 3. So, ρ(X) = 3, but KX has a large
circular part. Only within the interior of CX it is cut out by the three hyperplanes [Ci]

⊥.

References and further reading:
It can be quite difficult to describe the ample cone Amp(X) of a particular K3 surface X

explicitly. See e.g. Nikulin’s article [451] or the more recent [29] by Baragar for ρ(X) = 3, 4.
The latter studies certain fractals associated with the ample cone.
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The Cox ring of a K3 surface is by definition

Cox(X) :=
⊕

L∈NS(X)

H0(X,L).

It contains the usual section rings
⊕
H0(X,Ln) for any L, which are finitely generated subring

for all nef L, see comments at the end of Chapter 2. However, the Cox ring is rarely finitely
generated. In fact, as shown by Artebani et al in [13] the Cox ring of a projective complex
K3 surface is finitely generated if and only if NE(X) is rational polyhedral. Another proof for
ρ(X) = 2 was given by Ottem in [481] which also contains explicit descriptions of generators of
Cox(X) in this case, see also [13, Thm. 3.2]. The more general case of klt Calabi–Yau pairs in
dimension two is the subject of Totaro’s [600].

Coming back to Corollary 4.10: In [553, Cor. 1.7] Shimada shows that (under certain as-
sumptions on X) up to automorphisms any H with (H)2 = 2d also satisfies an upper bound
(H.H0) ≤ φ(d) with φ(d) a explicit linear function in d. This should allow one to bound the
cardinality of the finite set.

The interior of NE(X) is the big cone Big(X), i.e. the set of positive real linear combinations∑
aiLi with Li big, i.e. h0(Lni ) ∼ n2. See [355, Ch. 2.2]. Also the big cone admits a chamber

decomposition. In fact, it admits two. Firstly, one can look at the Weyl chambers, which by
definitions are the connected components of Big(X) \

⋃
[C]⊥, where the union is over all P1 '

C ⊂ X. Clearly, on CX ⊂ Big(X) this gives back the classical chamber decomposition. Secondly,
one can consider the decomposition into Zariski chambers. By definition, two big divisors L1, L2

are contained in the same Zariski chamber if the negative part in the Zariski decomposition of
L1 are the (−2)-curves with (L2.C) = 0 (see page 37). These two notions have been compared
carefully in [38]. In particular, it is shown that the two decompositions coincide if and only if
one cannot find two (−2)-curves C1, C2 with (C1.C2) = 1.

The cone conjecture for deformations of Hilbn(X) with X a K3 surface has recently been
established by Markman and Yoshioka in [388] and in general by Amerik and Verbitsky in [4].

Questions and open problems:
Presumably, (4.1) and and Corollary 4.6 may fail for general complex K3 surfaces, i.e. Auts(X)n

W ⊂ O(NS(X)) might not be of finite index and there may be infinitely many (−2)-curves and
yet finite Aut(X). It could be interesting to describe explicit examples.

Using the surjectivity of the period map, it is easy to show that every class α ∈ H2(M,R)

(with M the differentiable manifold underlying a K3 surface) with (α)2 > 0 is a Kähler class [ω]

with respect to some complex structure X = (M, I) (automatically defining a K3 surface). This
implies that every symplectic structure on M compatible with the standard orientation of M can
cohomologically be realized by a (hyper)Kähler structure. It is however unknown whether this
remains true on the level of forms or whether the space of symplectic structure in one cohomology
class is connected. This is related to the discussion in Section 7.5.6 and at the end of Chapter 7.
For further references see [517].



CHAPTER 9

Vector bundles on K3 surfaces

In this chapter, a few explicit and geometrically relevant bundles on K3 surfaces and
their properties are studied in detail. In particular, stability of the tangent bundle and
of bundles naturally associated with line bundles and curves is discussed. Stability of the
tangent bundle can be seen as a strengthening of the non-existence of vector fields on
K3 surfaces and is only known in characteristic zero. We mention the algebraic approach
due to Miyaoka and the analytic one that uses the existence of Ricci-flat Kähler metrics,
see Section 4. Vector bundle techniques developed by Lazarsfeld to prove that generic
curves in integral linear systems on K3 surfaces are Brill–Noether general are outlined
in Section 2. In the appendix we outline how the vanishing H0(X, TX) = 0 in general is
used to lift K3 surfaces from positive characteristic to characteristic zero.

1. Basic techniques and first examples

This section introduces the Mukai pairing, proves that the tangent bundle of a very
general complex K3 surface is simple and studies the rigid bundle obtained as the kernel
of the evaluation map of a big and nef line bundle.

1.1. For the convenience of the reader we collect a few standard results on coherent
sheaves on a smooth surface X. For proofs and more results see Friedman’s book [183]
or [264].

o) A coherent sheaf F on a smooth surface X is torsion free if its torsion T (F ) is trivial.

i) If F is torsion free, then F is locally free on the complement X \{x1, . . . , xn} of a finite
set of closed points.

ii) The dual F ∗ := Hom(F,OX) of any coherent sheaf F is locally free.

iii) The double dual F ∗∗ := Hom(Hom(F,OX),OX) of a coherent sheaf F is called its
reflexive hull . There is a natural morphism F //F ∗∗ which is injective if and only if F
is torsion free. Its cokernel is a sheaf with zero-dimensional support.

iv) The rank of a coherent sheaf F can be defined as dimk(x) F (x) with x ∈ X generic
(or even the generic point) or as the rank of the locally free sheaf F ∗. Then, rk(F ) = 0

if and only if F is a torsion sheaf.

v) Any torsion free sheaf of rank one is isomorphic to a sheaf M ⊗ IZ with M ∈ Pic(X)

and IZ the ideal sheaf of a subscheme Z ⊂ X of dimension zero.

167
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1.2. Arguably, the two most important techniques in the study of the geometry
of a K3 surface X (over an arbitrary field k) are Serre duality and the Riemann–Roch
formula. Serre duality for two coherent sheaves E,F ∈ Coh(X) or, more generally, for
two bounded complexes of coherent sheaves E,F ∈ Db(X) asserts that there exist natural
isomorphisms

Exti(E,F ) ' Ext2−i(F,E)∗.

In a more categorical language this can be phrased by saying that the derived category

Db(X) := Db(Coh(X))

of the abelian category Coh(X) is endowed with a Serre functor S : Db(X) ∼− // Db(X)

which is isomorphic to the double shift E � //E[2], cf. Section 16.1.3. For a coherent
sheaf E one can use a locally free resolution of E to compute Exti(E,F ). For complexes,
the description

Exti(E,F ) = HomDb(X)(E,F [i])

might be more useful.
Also note that for coherent sheaves E and F one has Exti(E,F ) = 0 for i > 2 and

i < 0, which fails for arbitrary complexes. Thus, Serre duality for sheaves reduces to the
two isomorphisms Hom(E,F ) ' Ext2(F,E)∗ and Ext1(E,F ) ' Ext1(F,E)∗.
Assume E = F (sheaves or complexes). Then Serre duality Ext1(E,E) ' Ext1(E,E)∗

can be seen as the existence of a non-degenerate quadratic form on Ext1(E,E). The
duality pairing

(1.1) Ext1(E,E)× Ext1(E,E) // k

is in fact obtained by composing α ∈ HomDb(X)(E,E[1]) with β ∈ HomDb(X)(E,E[1]) '
HomDb(X)(E[1], E[2]) followed by the trace giving tr(β ◦ α) ∈ H2(X,O) ' k.1

Proposition 1.1. The Serre duality pairing (1.1) is non-degenerate and alternating.

Proof. There are various ways of proving this. See [264, Ch. 10] for a proof using
Čech cohomology. Here is an argument using Dolbeault cohomology. It only works for
locally free sheaves on complex K3 surface but it shows clearly how the sign comes up.
One uses that for E locally free Ext1(E,E) = H1(X, End(E)) can be computed as the

first cohomology of the ∂̄-complex

A0(End(E)) //A0,1(End(E)) //A0,2(End(E)).

Classes α, β ∈ Ext1(E,E) can be represented by
∑
αi ⊗ γi resp.

∑
βj ⊗ δj with αi, βj

differentiable endomorphisms of the complex bundle and γi, δj forms of type (0, 1). Then
the Serre duality pairing of α and β yields

∑
tr(βj ◦αi)⊗ (δj ∧ γi). Clearly, tr(βj ◦αi) =

tr(αi ◦ βj) but δj ∧ γi = −γi ∧ δj . �

1The last isomorphism is not canonical. Viewing H2(X,O) as H0(X,ωX)∗, it depends on the choice
of a trivializing section of ωX , i.e. a non-trivial regular two-form.
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Recall from Section 1.2.4 that the Hirzebruch–Riemann–Roch formula for arbitrary
coherent sheaves (or bounded complexes of such) on a K3 surface takes the form

(1.2) χ(F ) =

∫
ch(F )td(X) = ch2(F ) + 2rk(F ).

This is generalized to an expression for a quadratic form as follows. Define for E and F
the Euler pairing

χ(E,F ) :=
∑

(−1)i dim Exti(E,F ).

Then, Serre duality implies χ(E,F ) = χ(F,E), i.e. the Euler pairing is symmetric. Note
that for E = OX one finds χ(OX , F ) = χ(F ) and, more generally, for E locally free
χ(E,F ) = χ(E∗ ⊗ F ). Then (1.2) generalizes to

(1.3) χ(E,F ) =

∫
ch∗(E)ch(F )td(X) =

∫
(ch∗(E)

√
td(X))(ch(F )

√
td(X)).

Here, ch∗ is defined by ch∗i = (−1)ichi, which for a locally free sheaf E yields ch∗(E) =

ch(E∗), and
√

td(X) = 1 + (1/24)c2(X).

Definition 1.2. The Mukai vector for (complexes of) sheaves is defined by

v(E) := ch(E)
√

td(X) = (rk(E), c1(E), ch2(E) + rk(E))

= (rk(E), c1(E), χ(E)− rk(E)).

The Mukai vector can be considered in cohomology (étale, singular, crytalline, de
Rham), in the Chow ring CH∗(X) (see Section 12.1.4), or in the numerical Grothendieck
group (see Section 16.2.4). As it this point, this is of no importance for our discussion,
we shall be vague about it.

Example 1.3. For later reference, we record the special cases:

v(k(x)) = (0, 0, 1), v(OX) = (1, 0, 1), and v(L) = (1, c1(L), c2
1(L)/2 + 1)

for L ∈ Pic(X).

In order to express χ(E,F ) as an intersection of Mukai vectors, one introduces the
Mukai pairing. This can be done for arbitrary K3 surfaces (see Section 16.2.4), but for
complex K3 surfaces it can be most conveniently phrased using singular cohomology.

Definition 1.4. For a complex K3 surface X the Mukai pairing on H∗(X,Z) is

〈α, β〉 = (α2.β2)− (α0.β4)− (α4.β0),

where ( . ) denotes the usual intersection form on H∗(X,Z).

In other words, the Mukai pairing differs from the intersection form only by a sign
in the pairing on H0 ⊕ H4. See also Section 1.3.3, where ( . ) was only considered on
H2(X,Z).
With this definition, the Hirzebruch–Riemann–Roch formula (1.3) becomes

(1.4) χ(E,F ) = −〈v(E), v(F )〉.
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1.3. Let us henceforth assume that we work over an algebraically closed field. Then
a sheaf E is simple if End(E) = k.2 Then

χ(E,E) = 2− dim Ext1(E,E) ≤ 2

and hence 〈v(E), v(E)〉 ≥ −2. Typical examples with 〈v(E), v(E)〉 = −2 are provided
by line bundles E = L ∈ Pic(X) and the structure sheaf E = OC of a smooth rational
curve P1 ' C ⊂ X, cf. Section 16.2.3.

Remark 1.5. The inequality 〈v(E), v(E)〉 ≥ −2 for a simple sheaf E can be spelled
out as (rk(E)− 1)c2

1(E)− 2rk(E)c2(E) + 2rk(E)2 ≤ 2 or, equivalently,

∆(E) := 2rk(E)c2(E)− (rk(E)− 1)c2
1(E) ≥ 2(rk(E)2 − 1).

For rk(E) ≥ 1, this yields the weak Bogomolov inequality ∆(E) ≥ 0, which holds for
semistable(!) sheaves on arbitrary surfaces, cf. Section 3.1.

It is surprisingly difficult to find simple bundles explicitly. In fact, there are very few
naturally given bundles on a K3 surface. The tangent bundle TX and bundles derived
from it by linear algebra operations, like tensor and symmetric powers, are the only
natural non-trivial bundles. Proving simplicity of TX is not trivial and is usually seen as
a consequence of stability, see Section 3.1. For complex K3 surfaces X with Pic(X) = 0,
and then for a Zarisiki open subset of all K3 surfaces (including many projective ones),
the simplicity of TX can be proved by an elementary argument which we shall explain
next.

Example 1.6. i) Suppose TX were not simple. Then there exists an endomorphism
0 6= ϕ : TX // TX which is not an isomorphism. Indeed, for any ψ : TX // TX which is not
of the form λ · id pick a point x ∈ X and an eigenvalue λ of ψx : TX ⊗ k(x) // TX ⊗ k(x).
Then, ϕ := ψ − λ · id is not an isomorphism at the point x and not trivial either. As a
morphism of sheaves, ϕ cannot be injective, for otherwise Coker(ϕ) would be a non-trivial
torsion sheaf with trivial Chern classes. Hence, Ker(ϕ) 6= 0. Since Im(ϕ) is torsion free
and hence of homological dimension ≤ 1 (see e.g. [264, Ch. 1]), Ker(ϕ) has homological
dimension zero. Thus, Ker(ϕ) is a line bundle and Ker(ϕ) ' OX if Pic(X) = 0. This,
however, contradicts H0(X, TX) = 0 (see Section 1.2.4 and the appendix).
ii) Note that the arguments work for arbitrary sheaves and show: A locally free sheaf E

that is not simple admits a non-trivial endomorphism ϕ : E //E with non-trivial kernel.

A straightforward computation yields 〈v(TX), v(TX)〉 = 88 which together with the fact
that TX is simple (at least over C) yields

dim Ext1(TX , TX) = 90.3

2Over an arbitrary field a sheaf is called simple if End(E) is a division algebra.
3A geometric interpretation of this number would be interesting.
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1.4. In the case of a polarized K3 surface X, or more precisely of an embedded K3
surface X ⊂ PN , the restricted tangent bundle TPN |X also appears naturally and one
might ask whether it has particular properties. By the Euler sequence, the twisted dual
ΩPN (1)|X can often be described as the vector bundle ML associated naturally with the
line bundle L = O(1)|X which we now define.

Definition 1.7. For a globally generated, big and nef line bundle L let ML be the
kernel of the evaluation map:

(1.5) 0 // ML
// H0(X,L)⊗OX

ev // L // 0.

Note that ML is of rank h0(L)− 1 and satisfies H0(X,ML) = H1(X,ML) = 0, for the
latter use H1(X,O) = 0. The following result is taken from Camere’s thesis [95].

Example 1.8. For any globally generated, big and nef line bundle L the vector bundle
ML is simple. Indeed, tensoring (1.5) with EL := M∗L yields the short exact sequence

0 //ML ⊗ EL //H0(X,L)⊗ EL //L⊗ EL // 0,

the long cohomology sequence of which has the form

. . . //H1(X,L⊗ EL) //H2(X,ML ⊗ EL) //H0(X,L)⊗H2(X,EL) // 0.

By Serre duality and definition of ML, H2(X,EL) ' H0(X,ML)∗ = 0. To compute
H1(X,L⊗ EL), dualize (1.5) and tensor with L. The long cohomology sequence reads

. . . //H0(X,L)∗ ⊗H1(X,L) //H1(X,L⊗ EL) //H2(X,OX) ' k // . . . .

However, H1(X,L) = 0 by Proposition 2.3.1 and, therefore, H2(X,ML ⊗EL) is at most
one-dimensional. Thus, ML is indeed simple, since H2(X,ML ⊗ EL) ' End(ML)∗.
Also note thatML is in fact simple and rigid , i.e. also Ext1(ML,ML) = 0. This follows

from 〈v(ML), v(ML)〉 = −2, using v(ML) = h0(X,L) · v(OX)− v(L).

Restricting the Euler sequence 0 //ΩPN ⊗O(1) //H0(X,L)⊗O //O(1) // 0 to the
projective embedding X �

� // PN induced by a very ample linear system |L| shows

ΩPN |X 'ML ⊗ L∗,

which is therefore simple.

2. Simple vector bundles and Brill–Noether general curves

The evaluation map for a line bundle on a curve viewed as a sheaf on the ambient
surface is another source of interesting examples of bundles. The construction provides
a link between Brill–Noether theory on curves in K3 surfaces and the theory of bundles
on K3 surfaces. This has led to many important results.
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2.1. If we allow ourselves to use more of the geometry of the K3 surface X, in
particular curves contained in the surface, then more vector bundles can be exhibited. A
standard technique in this context uses elementary transformations along curves. Here is
an outline of the construction, for more details see [264, Ch. 5] or the survey by Lazarsfeld
[354, Sect. 3].
Let C ⊂ X be a curve and A a line bundle on C, simultaneously be viewed as a torsion

sheaf onX. If E is a vector bundle onX and E|C // //A a surjection on C, then the kernel
F of the composition E // //E|C // //A, which is a sheaf on X, is called the elementary
transformation of E along C (but it clearly depends also on A and the surjection). Thus,
there exists a short exact sequence on X

(2.1) 0 //F //E //A // 0.

Lemma 2.1. The elementary transformation F is locally free and satisfies

det(F ) ' det(E)⊗O(−C) and c2(F ) = c2(E)− (C.c1(E)) + deg(A).

Proof. The first assertion can be checked locally and so we may can assume A '
OC . Using the locally free resolution 0 //O(−C) //OX //OC // 0, one finds for the
homological dimension that dh(OC) = 1. Since F is the kernel of E // //OC with E

locally free, this is enough to conclude dh(F ) = 0, i.e. F is locally free.
The line bundle A is trivial on the complement of finitely many points x1, . . . , xn ∈ C.

Therefore, as a vector bundle on X is uniquely determined by its restriction to X \ {xi},
to compute det(F ), we may assume A ' OC . Then conclude by using det(OC) ' O(C).
To compute c2(F ), use the Riemann–Roch formula on C, cf. [264, Prop. 5.2.2]. �

Dualizing the exact sequence (2.1) yields a short exact sequence of the form

(2.2) 0 //E∗ //F ∗ //A∗ ⊗OC(C) // 0.

Here, A∗ denotes the dual of the line bundle A on C (and not the dual on X which
is trivial). Indeed, the injection of locally free sheaves F //E, which generically is an
isomorphism, dualizes to an injection E∗ //F ∗. So the only thing to check is that indeed
Ext1X(A,OX) ' A∗ ⊗ OC(C). If A = L|C for some line bundle L on X, then dualizing
0 //L(−C) //L //A // 0 yields this isomorphism. The general case can be reduced
to this by writing A = L|C ⊗OC(−x1 − . . . − xn) and the fact that the computation of
ExtiX(k(xj),OX) is purely local.

2.2. Let us apply this general construction to the following special situation. Con-
sider a globally generated line bundle A on a curve C ⊂ X and let r := h0(C,A)− 1. For
E := Or+1

X and the evaluation map E|C ' Or+1
C

// //A, the elementary transformation of
E along C is in this case described by

(2.3) 0 //F //Or+1
X

//A // 0.

The following result is due to Lazarsfeld [352].
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Proposition 2.2. Assume in addition that A∗ ⊗OC(C) is globally generated and that
every curve in the linear system |C| is reduced and irreducible. Then the elementary
transformation F in (2.3) is locally free and simple. (As it turns out, F is in fact µ-
stable, see Corollary 3.3.)

Proof. Clearly, F is simple if and only if its dual G := F ∗ is simple. By (2.2) the
bundle G sits in a short exact sequence 0 //Or+1

X
//G //A∗ ⊗ OC(C) // 0. Using

H1(X,OX) = 0, this shows that G is globally generated.
If G is not simple, then there exists a non-trivial endomorphism ϕ : G //G with non-

trivial kernel, see Example 1.6. For K := Im(ϕ), one has a short exact sequence

0 //K //G //G/K // 0

with K torsion free of rank 0 < s < r + 1.
Since G is globally generated and K and G/K are both quotients of G, their determi-

nants are also globally generated and hence of the form det(K) ' O(C1) and det(G/K) '
O(C2) for some effective curves C1, C2. They are both non-trivial, which can be proved
as follows. The surjectivity of G // //K and the vanishing Hom(G,OX) = H0(X,F ) = 0

imply that K is globally generated with Hom(K,OX) = 0. The restriction K|D to a
generic ample curve D is locally free and globally generated. Thus, there exists a short
exact sequence

0 // (K|D)∗ //Os+1
D

// det(K)|D // 0

of vector bundles on D, see [264, Ch. 5].
For sufficiently positive D, the restriction map Hom(K,OX) //Hom(K|D,OD) is sur-

jective and thus H0(D, (K|D)∗) = Hom(K|D,OD) = 0. Hence, h0(D,det(K)|D) ≥ s+ 1.
This clearly implies deg(K|D) > 0 and hence C1 6= 0. For G/K, which is not necessarily
torsion free, one applies the argument to G // // (G/K)/T (G/K). Note that the torsion
part T (G/K) has an effective (but possibly trivial) determinant as well.
On the other hand, det(G) ' O(C) which leads to

O(C1 + C2) ' det(K)⊗ det(G/K) ' det(G) ' O(C),

i.e. C1 + C2 ∈ |C|. This contradicts the assumption on |C|. �

Remark 2.3. The proposition is typically applied to the case that O(C) generates
Pic(X), as in this case the assumption on |C| is automatically satisfied. However, the
proof shows that it is enough to assume that C is ample with (C)2 minimal among all
intersection numbers (C.D) with D effective.

2.3. The above construction was used in Lazarsfeld’s influential paper [352] to
deduce properties of curves on K3 surfaces from the geometry of the ambient K3 surfaces
or, more precisely, from the Riemann–Roch formula χ(F, F ) = −〈v(F ), v(F )〉. For an
alternative proof of the following fact see [353].

Corollary 2.4. Let C be a smooth curve on a K3 surface X such that all curves in
|C| are reduced and irreducible. Then every line bundle A ∈ Pic(C) satisfies

ρ(A) := g(C)− h0(A) · h1(A) ≥ 0.
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Proof. Assume first that A and A∗ ⊗ OC(C) are both globally generated. The
construction in Section 2.2 and Proposition 2.2 yield the simple bundle F which satisfies

−〈v(F ), v(F )〉 = χ(F, F ) ≤ 2.

On the other hand, a simple computation using Lemma 2.1 shows

〈v(F ), v(F )〉 = 2ρ(A)− 2

which immediately gives the assertion ρ(A) ≥ 0.
It remains to reduce the general case to the case that A and A∗ ⊗ ωC ' A∗ ⊗ OC(C)

are globally generated. If h0(A) = 0 or h1(A) = 0, then ρ(A) = g(C) ≥ 0 and thus the
assertion holds. Suppose h0(A) 6= 0 but A not globally generated. Let D be the fixed
locus of A. Hence, A(−D) is globally generated, h0(A) = h0(A(−D)), and

h1(A) = h0(A∗ ⊗ ωC) ≤ h0(A∗(D)⊗ ωC) = h1(A(−D)).

Therefore, ρ(A) ≥ ρ(A(−D)). Thus, it suffices to prove the assertion for A globally
generated. One argues similarly to reduce to the case that A∗⊗ωC is globally generated
without introducing base points for A. This is left as an exercise. �

A few words putting the corollary in perspective, see also [11] or the surveys in [9, 353,
354]: Brill–Noether theory for smooth projective curves C studies the Brill–Noether loci

W r
d (C) ⊂ Picd(C)

of all line bundles A on C of degree d with h0(A) ≥ r+ 1. The W r
d (C) are determinantal

subvarieties of Picd(C) given locally by the vanishing of certain minors, see e.g. [11]. To
study the W r

d (C), one introduces the Brill–Noether number

ρ(g, r, d) := g − (r + 1)(g − d+ r).

If ρ(g, r, d) ≥ 0, then the Brill–Noether locus W r
d (C) is non-empty (Kempf and Kleiman–

Laksov) and, if ρ(g, r, d) ≥ 1, it is also connected (Fulton–Lazarsfeld), cf. [11].
Moreover, the Brill–Noether number is the expected dimension of W r

d (C). More pre-
cisely, if W r

d (C) is non-empty, then dimW r
d (C) ≥ ρ(g, r, d) and equality holds for generic

curves C. The latter is a result due to Griffiths and Harris [220], which was proved
using degeneration techniques that do not allow to describe Brill–Noether general curves
explicitly. Part of this statement is that W r

d (C) is empty if ρ(g, r, d) < 0. In this sense,
smooth curves on K3 surfaces defining integral linear systems are Brill–Noether general.
This is made precise by the following result.

Corollary 2.5. Let C be a smooth curve on a K3 surface X such that all curves in
|C| are reduced and irreducible. If ρ(g, r, d) < 0, then W r

d (C) = ∅.

Proof. Suppose A ∈ W r
d (C). Then h0(A) ≥ r + 1 and deg(A) = d. By Riemann–

Roch, h1(A) = g − 1− d+ h0(A) ≥ g − d+ r. Hence, by Corollary 2.4,

ρ(g, r, d) = g − (r + 1)(g − d+ r) ≥ g − h0(A) · h1(A) = ρ(A) ≥ 0.
�

It is worth pointing out that the proof of Corollary 2.5 does not involve any degeneration
techniques, unlike the original in [220].



3. STABILITY OF SPECIAL BUNDLES 175

Remark 2.6. i) In fact, Lazarsfeld shows in [352] that the generic(!) curve C in an
integral linear system |C0| is Brill–Noether general in the broader sense that all W r

d (C)

are of dimension ρ(g, r, d) and smooth away fromW r+1
d (C) ⊂W r

d (C). See also Pareschi’s
variation of the argument in [485].
ii) The literature on the generic behavior of curves on K3 surfaces is vast. For example,

in [216] Green and Lazarsfeld show that all smooth curves in a linear system on a K3
surface have the same Clifford index. Recall that the Clifford index of a line bundle A
is deg(A)− 2(h0(A)− 1) and the Clifford index of C is the minimum of those over all A
with h0(A), h1(A) ≥ 2. A conjecture of Green relates the Clifford index of a curve to the
properties of the minimal resolution of the canonical ring. It turns out that again curves
on K3 surfaces are more accessible. See Beauville’s Bourbaki talk [48] for a survey and
for further references.
iii) In the same spirit, Harris and Mumford asked whether all smooth curves in an

ample linear system |L| on a K3 surface have the same gonality. And indeed, as Ciliberto
and Pareschi show in [118], this is the case, unless the K3 surface is a double plane and
L = π∗O(3), which were known to be counterexamples [153].

3. Stability of special bundles

The section is devoted to the stability of the bundle F in (2.3) associated with a line
bundle on a curve by relating it to the kernel of the evaluation map on the curve itself.
For simplicity we work over an algebraically closed field (using in particular that under
this assumption a simple bundle has only scalar endomorphisms).

3.1. We start with the definition of µ-stability on K3 surfaces. So, let X be an
algebraic K3 surface over a field k with an ample line bundle H or a complex K3 surface
with a Kähler class ω ∈ H1,1(X). The degree of a coherent sheaf E on X with respect to
H or ω is defined as

degH(E) := (c1(E).H) resp. degω(E) := (c1(E).ω)

Recall that c1(E) of an arbitrary coherent sheaf E is c1(det(E)), where det(E) can
be computed by means of a locally free resolution4 0 //En // . . . //E0

//E // 0 as
det(E) =

∏
det(Ei)

(−1)i . In the following, we shall often write deg(E) in both situations
while keeping in mind the dependence on H resp. ω.
If E is not torsion, one defines its slope (again depending on H or ω) as

µ(E) :=
deg(E)

rk(E)
.

Definition 3.1. A torsion free sheaf E is called µ-stable (or slope stable) if for all
subsheaves F ⊂ E with 0 < rk(F ) < rk(E) one has

µ(F ) < µ(E).

4Locally free resolutions of coherent sheaves exist on non-projective complex (K3) surfaces too, see
[531].
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Similarly, a torsion free sheaf E is called µ-semistable if only the weaker inequality
µ(F ) ≤ µ(E) is required. Note that a non-trivial subsheaf of a torsion free sheaf is itself
torsion free and hence its slope is well-defined.

Here are a few standard facts concerning slope stability of sheaves on smooth surfaces.

i) Any line bundle is µ-stable. The sum E1 ⊕E2 of two µ-stable sheaves E1, E2 is never
µ-stable and it is µ-semistable if and only if µ(E1) = µ(E2).

ii) For a short exact sequence

0 //F //E //G // 0

with rk(F ) 6= 0 6= rk(G) one has:

µ(F ) < µ(E) if and only if µ(E) < µ(G).

Indeed, deg(E) = deg(F ) + deg(G), rk(E) = rk(F ) + rk(G), and hence µ(E)−µ(F ) =

(rk(G)/rk(F ))(µ(G)−µ(E)), which yields the assertion. Alternatively, draw a picture of
the ranks and degrees of the involved sheaves.
Thus, a torsion free sheaf E is µ-stable if µ(E) < µ(G) for all quotients E // //G with

0 < rk(G) < rk(E). Since the degree of a torsion sheaf is always non-negative, one
has µ(G/T (G)) ≤ µ(G) and thus only torsion free quotients need to be tested. If E
itself is locally free, then the torsion freeness of G translates into the local freeness of F .
Therefore, to check µ-stability of a locally free E only locally free subsheaves F ⊂ E need
to be tested. A similar result holds for µ-semistability.

iii) Any µ-stable sheaf E is simple. Indeed, otherwise there is a non-trivial ϕ : E //E

with a non-trivial kernel (see Example 1.6) and in particular 0 < rk(Im(ϕ)) < rk(E).
Now use µ-stability for E // // Im(ϕ) and Im(ϕ) ⊂ E to derive the contradiction µ(E) <

µ(Im(ϕ)) < µ(E).

Remark 3.2. There is some kind of converse to this statement proved by Mukai in
[427, Prop. 3.14]: If Pic(X) ' Z and the Mukai vector of a simple sheaf E is primitive
with 〈v(E), v(E)〉 = −2 or = 0, then E is µ-semistable (and in fact stable, in the sense
of Definition 10.1.4).

iv) A torsion free sheaf E is µ-stable if and only if its dual sheaf E∗ is µ-stable. In
particular, the µ-stability of a torsion free sheaf E is equivalent to the µ-stability of its
reflexive hull E∗∗ which is locally free. Moreover, µ(E) = µ(E∗∗).

v) Any µ-semistable torsion free sheaf E satisfies the Bogomolov inequality

(3.1) ∆(E) = 2rk(E)c2(E)− (rk(E)− 1)c2
1(E) ≥ 0.

Note that the µ-semistability of E depends on the choice of the polarization, but the
Bogomolov inequality does not. For K3 surfaces this is not surprising as we have shown
in Remark 1.5 that it holds for arbitrary simple torsion free sheaves. See e.g. [264, Thm.
3.4.1] for a proof of the Bogomolov inequality in general.
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3.2. As in Section 2, we consider the elementary transformation

0 //F //Or+1
X

//A // 0

for a globally generated line bundle A on a curve C ⊂ X with r + 1 = h0(A). Then
µ(F ) = −degO(C)/(r + 1).
As a strengthening of Proposition 2.2, one has the following (as in Remark 2.3, the

assumption on C can be weakened):

Corollary 3.3. If O(C) generates Pic(X) and A∗ ⊗ ωC is globally generated as well,
then the elementary transformation F is µ-stable.

Proof. First note that if F ′ ⊂ F is a locally free subsheaf of rank s, then det(F ′) ⊂∧s F ⊂
∧sOr+1

C = OnX . Thus, OX ⊂ det(F ′)∗. As in the proof of Proposition 2.2, one
argues that if also A∗ ⊗ ωC and hence F ∗ are globally generated, then det(F ′)∗ ' O(C1)

with C1 ⊂ X a non-trivial curve.
Under the assumption that ρ(X) = 1, the line bundle O(C) is automatically ample

and the slope is taken with respect to it. If F ′ ⊂ F is as above, then det(F ′)∗ ' O(C1) '
O(kC) for some k > 0. Hence, deg(F ′) = k deg(F ) < 0 which for rk(F ′) < rk(F ) shows
µ(F ′) < µ(F ). �

3.3. Recall from Section 1.4 the definition ofML associated with any globally gene-
rated, big and nef line bundle L on a K3 surface X as the kernel of the evaluation map
H0(X,L) ⊗ OX // //L. In Example 1.8 we have seen that ML or, equivalently, its dual
EL is always simple. A result of Camere [95] shows that ML is in fact µ-stable with
respect to L. (Note that stability can be formally defined with respect to any line bundle
H, although later in the theory ampleness becomes crucial.) Let us start by recalling the
analogous statement for curves.

Theorem 3.4. Let C be a smooth projective curve and L ∈ Picd(C) be a globally
generated line bundle. The kernel ML of the evaluation map H0(C,L) ⊗ OC // //L is
stable if one of the following conditions holds:

(iii) L ' ωC and C is non-hyperelliptic or
(iiiiii) d > 2g or

(iiiiiiiii) d = 2g, C is non-hyperelliptic, and L is general.

A proof for (i) can be found in the article [484] by Paranjape and Ramanan. A short
argument for (ii) is given by Ein and Lazarsfeld in [162] and Beauville treats in [46] the
case (iii).
As a consequence of this theorem, or rather of a technical lemma proved by Paranjape

in this context, the following result is proved in [95].

Corollary 3.5. Let L be a globally generated ample line bundle on a K3 surface X.
Then ML is µL-stable.

Note that for a smooth C ∈ |L| the restriction L|C is isomorphic to the canonical bundle
ωC . Moreover, ML|C ' MωC ⊕ OC and by Theorem 3.4 the bundle MωC is stable if C
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is not hyperelliptic. However, this does not quite prove the assertion of the corollary.5

Instead of going into the details of the proof, which would require a discussion of [484]
and a special discussion of the hyperelliptic case, we shall link the bundle ML to the
elementary transformation F discussed in Section 3.2.

Lemma 3.6. Let L be a globally generated line bundle on a K3 surface X and C ∈ |L|.
Then the elementary transformation F of H0(C,L|C)⊗OX along L|C , i.e. the kernel of
the evaluation map H0(C,L|C)⊗OX // //L|C , is isomorphic to the bundle ML which is
the kernel of the evaluation map H0(X,L)⊗OX // //L.

Proof. Use the commutative diagram

OX
= //

��

OX
��

ML
//

'��

H0(L)⊗OX //

��

L

��
F // H0(L|C)⊗OX // L|C . �

Since L|C and L∗|C⊗ωC ' OC are globally generated, Corollary 3.3 immediately leads
to the following special case of Corollary 3.5.

Corollary 3.7. If L is a globally generated line bundle on a K3 surface X that generates
Pic(X), then ML is µL-stable. �

4. Stability of the tangent bundle

The tangent bundle TX of a K3 surface is µ-stable if and only if all line bundles L ⊂ TX
are of negative degree deg(L) (with respect to a fixed polarization or a Kähler class).

Example 4.1. If X is a complex K3 surface with Pic(X) = 0, then the only line
bundle TX could contain is OX . Since H0(X, TX) = 0 by Hodge theory, this is excluded
as well. Thus, for the generic complex K3 surface the µ-stability of TX follows from
Hodge theory.6 The weaker assertion that TX is simple in this case has been explained
already in Example 1.6.

There are two approaches to the stability of TX . Both are limited to the case of cha-
racteristic zero, but for different reasons:
i) The algebraic approach relies on general results of Miyaoka and Mori about the ex-
istence of foliations and rational curves. Working in characteristic zero allows one to
reduce to large(!) finite characteristic p. It is worth pointing out that Miyaoka’s tech-
niques only prove that TX does not contain a line bundle of positive degree. The vanishing
H0(X, TX) = 0 has to be dealt with separately, using Hodge theory, to exclude the case

5Camere also notes that the ampleness is not really essential. If L is just globally generated and
satisfies (L)2 ≥ 2, then ML is µL-semistable. For the stability only the case g(C) = 6 poses a problem.

6The existence of a Kähler metric is not needed, as the Hodge decomposition holds for all compact
complex surfaces, see Section 1.3.3.
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of degree zero line bundles. Also note that although characteristic p methods are applied,
the stability of the tangent bundle in positive characteristic is not known. The algebraic
approach proves µ-stability of the tangent bundle for algebraic complex K3 surfaces.

ii) The analytic approach uses the existence of a Kähler–Einstein metric on any complex
K3 surface. This makes use of the fact that K3 surfaces are Kähler (a result due to Siu
and Todorov) and of Yau’s solution to the Calabi conjecture, see Section 7.3.2. Since a
Kähler–Einstein metric describes in particular a Hermite–Einstein metric on the tangent
bundle, slope stability follows immediately from the easy direction of the Kobayashi–
Hitchin correspondence. Eventually, this approach proves the µ-stability of the tangent
bundle for all complex K3 surfaces.

4.1. The following statement is a consequence of a general theorem due to Miyaoka
applied to K3 surfaces. The original result is [415, Thm. 8.4], see also [416]. A simplified
proof was given by Shepherd-Barron in [314].7

Theorem 4.2. Suppose (X,H) is a polarized K3 surface over an algebraically closed
field of characteristic zero. If L ⊂ TX is a line bundle with torsion free quotient and such
that (H.L) > 0, then through a generic closed point x ∈ X there exists a rational curve
x ∈ C ⊂ X with TC(x) ⊂ L(x) ⊂ TX(x).

Remark 4.3. In [314] the result is phrased for normal complex projective varieties, but
then L has to be a part of the Harder–Narasimhan filtration of TX , which is automatic for
K3 surfaces. In addition, the degree of the curves can be bounded: (C.H) ≤ 4(H)2/(H.L).

Corollary 4.4. Let (X,H) be a polarized K3 surface over an algebraically closed field
of characteristic zero. Then TX does not contain any line bundle of positive degree.

Proof. Suppose there exists a line bundle L ⊂ TX with (H.L) > 0. By base change
to a larger field, we may assume that the base field is uncountable. Then, by the theorem
and a standard Hilbert scheme argument, the surface X must be uniruled.
Indeed, Pic(X) is countable but for any non-empty open subscheme U ⊂ X the set U(k)

cannot be covered by a countable union of curces. Hence, by the theorem there exists a
linear system |L| that contains uncountably many rational curves. As being rational is a
(closed) algebraic condition, one finds a curve D ⊂ |L| parametrizing only rational curves.
The restriction C //D of the universal family comes with a dominant map C // //X.
Resolving singularities eventually yields a rational dominant map D × P1 // // X , i.e.
X is uniruled. Resolving indeterminacies one obtains a surjective morphism Y // //X

with Y a smooth surface birational to D × P1.
In characteristic zero the morphism Y // //X is generically étale (see [234, III.Cor.

10.7]) and hence H0(X,ωX) //H0(Y, ωY ) is injective. On the one hand, H0(X,ωX) 6= 0,
as X is a K3 surface, and on the other hand H0(Y, ωY ) = 0, as Y is birational to D×P1

7Thanks to Nick Shepherd-Barron for helpful discussions on topics touched upon in this section.
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and h0(ω) is a birational invariant, see [234, II.Thm. 8.19].8 This gives a contradiction
and thus proves the assertion. �

Proposition 4.5. The tangent bundle TX of a polarized K3 surface (X,H) in charac-
teristic zero is µ-stable.

Proof. Let L ⊂ TX be a line bundle. By Corollary 4.4 (H.L) ≤ 0. If (H.L) = 0 but
L is not trivial, then (H ′.L) > 0 with respect to some other polarization H ′ contradicting
Corollary 4.4. Hence, either (H.L) < 0 or L ' OX . The latter case can be excluded in
characteristic zero by Hodge theory: H0(X, TX) ' H0(X,ΩX) = 0, see Section 1.2.4. �

Similar techniques can be used to approach the non-existence of global vector fields on
K3 surfaces in positive characteristic. Currently, there are three proofs known [347, 459,
510]. The first step in two of them consists of showing that the existence of a non-trivial
vector field would imply that the K3 surface is unirational. This was shown by Rudakov
and Šafarevič in [510]. The short proof given by Miyaoka in [416, Cor. III.1.13] can be
extended to prove the following result.

Proposition 4.6. Let X be a K3 surface defined over an algebraically closed field k of
characteristic p > 0. If TX is not µ-stable, e.g. if H0(X, TX) 6= 0, then X is unirational.

Proof. Here is an outline of the argument. Suppose L ⊂ TX is a subsheaf of rank
one with (H.L) ≥ 0. We may assume that L is saturated, i.e. that TX/L is torsion
free. As in the arguments in characteristic zero, one would like to view L as the tangent
directions of a certain foliation. A local calculation and rkL = 1 show that L ⊂ TX is
preserved by the Lie bracket, i.e. [L,L] ⊂ L. Next one needs to show that L is p-closed,
i.e. that with ξ a local section of L ⊂ TX also ξp ∈ TX lies in L. Here, ξp is the p-th
power of the derivation ξ.
Assume first that (H.L) > 0. Using [163, Lem. 4.2], it suffices to show that the
OX -linear homomorphism L // TX/L, ξ � // ξ̄p is trivial, which follows from TX/L being
torsion free of degree −(H.L) < 0. Thus, L ⊂ TX indeed defines a foliation and its
quotient π : X // Y is obtained by endowing X with the structure sheaf

OY := Ann(L) := {a ∈ OX | ξ(a) = 0, ∀ξ ∈ L} ⊂ OX .

By construction, Y is normal. Indeed, any rational function t on Y integral over OY is
also integral over OX and hence regular on X. However, t is regular on a dense open
subset U ⊂ Y and as a rational function on Y annihilated by L. But then t as a regular
function on X is annihilated by L everywhere. Moreover, Y is smooth if and only if TX/L
is locally free, see [416, I.Prop. 1.9].
Since OpX ⊂ Ann(L), the absolute Frobenius factors through X // Y //X(1) //X.

It is thus enough to show that Y is rational. The canonical bundle formula [416, I.Cor.
1.11] yields in the present situation π∗ωY ' L−(p−1) over the smooth locus of Y . As

8See [310, IV.Cor. 1.11] for the following general result: If X is a smooth, proper and separably
uniruled variety, then H0(X,ωmX ) = 0 for all m > 0.
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(H.L) > 0, this implies H0(Y, ωnY ) = 0 for all n > 0. Hence, by the Bombieri–Mumford–
Enriques classification, Y is a ruled surface. However, the base of the ruling Y //C

has to be rational, for g(C) ≤ h1(Y,OY ) and by Leray spectral sequence h1(Y,OY ) ≤
h1(X,OX) = 0. Hence, Y is rational.
If (H.L) = 0, then either there exists a polarization H ′ with (H ′.L) > 0, in which

case one argues as before, or L = OX . As above, OX ' L ⊂ TX is involutive and to
show p-closedness Miyaoka argues as follows: Any local section of L is in this case of the
form fξ, where ξ ∈ H0(X, TX) spans L. Thus, it suffices to show that ξp is still in L.
If not, then ξ ∧ ξp would be a non-trivial global section of Λ2TX ' OX and, therefore, ξ
would have no zeroes. The latter, however, contradicts c2(X) = 24 > 0. Alternatively,
one could argue that the map OX // TX/OX , ξ � // ξ̄p defines a global section of TX/OX
which is isomorphic to some ideal sheaf IZ . So, either this section vanishes or Z is empty.
However, the latter would say that TX is an extension of OX by itself, which would
contradict c2(X) = 24.
Now, as before, we use the quotient π : X // Y . The canonical bundle formula shows

this time that ωY is trivial on the smooth locus of Y . For the minimal desingularization
Ỹ // Y one has ω

Ỹ
' O(ΣaiEi) with ai ≤ 0, see [391, Thm. 4.6.2]. If Y were not

ruled, then H0(Ỹ , ωn
Ỹ

) 6= 0 for some n > 0. Thus, only ai = 0 can occur and using
H1(X,OX) = 0 one finds that Ỹ is either a K3 or an Enriques surface. On the other
hand, since π : X // Y is a homeomorphism and X is a K3 surface,

22 = b2(X) = b2(Y ) ≤ b2(Ỹ ) ≤ 22.

Hence, Ỹ ' Y is a smooth(!) K3 surface and, therefore, TX/L is locally free (and in fact
' OX). But ξ must have zeroes. Contradiction. �

Note that in the proof one actually shows that X is dominated by a rational variety
via a purely inseparable morphism. Of course, H0(X, TX) = 0 is known even when X is
unirational, but it seems to be an open question whether TX is always stable.
Later we shall see that a unirational K3 surface X has maximal Picard number ρ(X) =

22, see Proposition 17.2.7, and vice versa, see Section 18.3.5.

4.2. The standard reference for the differential geometry of complex vector bundles
is Kobayashi’s book [303]. In condensed form some of the following results can also be
found in [251].
Let h be a hermitian metric on a holomorphic vector bundle E on a compact complex

manifold X. The Chern connection on E is the unique hermitian connection ∇ on E with
∇0,1 = ∂̄E . Let Fh denote its curvature, which is a global section of A1,1(End(E)). If X is
endowed with a Kähler form ω, then the form part of Fh = ∇◦∇ can be contracted with
respect to ω to yield a global differentiable section ΛωFh of the complex bundle End(E).

Definition 4.7. A hermitian structure h on E is called Hermite–Einstein (HE) if

(4.1) i · ΛωFh = λ · idE
for some λ ∈ R.
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It is important to note that the HE condition not only depends on the hermitian
structure h of E but also on the choice of the Kähler structure on X.
Let us assume for simplicity that X is a surface. Then the scalar λ in the HE condition

(4.1) is uniquely determined by the slope µω(E), see Section 3.1. In fact,

λ = 4π
µω(E)

(ω)2
.

Remark 4.8. For the following two results see e.g. [251, App. 4.B].
i) It is not difficult to produce a HE metric on a line bundle. The curvature is the

unique harmonic representative of c1(E) (up to scaling).
ii) A holomorphic bundle E that admits a HE structure satisfies the Bogomolov–Lübke

inequality

(4.2) ∆(E) = 2rk(E)c2(E)− (rk(E)− 1)c2
1(E) ≥ 0.

Line bundles are always µ-stable. Moreover, (4.2) is (3.1) for µ-semistable sheaves. This
might serve as a motivation for the following deep result due to Donaldson, Uhlenbeck,
and Yau. The difficult direction is the ‘if’ part, as it requires the construction of a special
metric. For the proof one either has to consult the original sources or [303] or the more
recent account [379] by Lübke and Teleman.

Theorem 4.9 (Kobayashi–Hitchin correspondence). A holomorphic vector bundle on
a compact Kähler manifold X admits a Hermite–Einstein metric if and only if E is µ-
polystable.

A bundle is µ-polystable if it is isomorphic to a direct sum
⊕
Ei with all Ei µ-stable

of the same slope µω(Ei). Clearly, µ-polystable bundles are automatically µ-semistable,
but the converse does not hold.

If E is the holomorphic tangent bundle TX , then the two metric structures, h on E and
ω on X, can be related to each other. Requiring that they are equal, the HE condition
becomes the following notion.

Definition 4.10. A Kähler structure on X is called Kähler–Einstein (KE) if the un-
derlying hermitian structure on TX is Hermite–Einstein.

This condition is stronger than just saying that TX admits a HE metric with respect
to ω. In fact, if a KE metric on X exists, then the Miyaoka–Yau inequality holds which
is stronger than (4.2). For surfaces the Miyaoka–Yau inequality reads

3c2(X)− c2
1(X) ≥ 0

instead of the Bogomolov inequality 4c2(X)− c2
1(X) ≥ 0.

The KE condition can equivalently be expressed as the Einstein condition for the un-
derlying Kähler metric, see [251, Cor. 4.B.13]. In particular, a Ricci-flat Kähler metric
is automatically KE. Since the cohomology class of the Ricci-curvature equals 2πc1(X),
this only happens for compact Kähler manifolds with trivial c1(X) ∈ H2(X,R). The
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following is an immediate consequence of Yau’s solution to the Calabi conjecture. For
the special case of K3 surfaces, see Theorem 7.3.6.

Theorem 4.11 (Calabi–Yau). Let X be a compact Kähler manifold with c1(X) = 0 in
H2(X,R). Then any Kähler class in H2(X,R) can be uniquely represented by a Kähler
form that defines a Kähler–Einstein structure on X.

Since a KE structure on X is in particular a HE structure on TX , the theorem implies
the following.

Corollary 4.12. ?? Let X be a complex K3 surface which is Kähler. Then TX is
µ-stable with respect to any Kähler class.

Proof. By Theorems 4.9 and 4.11, the tangent bundle TX is µ-polystable with re-
spect to any Kähler class ω on X. Thus, TX is µ-stable or a direct sum of line bundles
L⊕M of the same degree with respect to any Kähler class, i.e. degω(L) = degω(M) for all
Kähler classes. Since degω(TX) = 0, one has in the second case degω(L) = degω(M) = 0

for all ω which implies L 'M ' OX . But this contradicts c2(X) = 24. �

It is known that any complex K3 surface is Kähler, a highly non-trivial statement due
to Todorov and Siu, and, therefore, the corollary holds in fact for all complex K3 surfaces,
cf. Section 7.3.2.
The differential geometric approach yields more. Due to a general result of Kobayashi

[302] one also knows:9

Corollary 4.13. Let X be a complex K3 surface. Then H0(X,SmTX) = 0 for all
m > 0.

Note that tensor powers of the tangent bundle might very well have global sections, for
example TX ⊗ TX ' S2TX ⊕OX .

5. Appendix: Lifting K3 surfaces

The fact that K3 surfaces do not admit any non-trivial vector fields is a central result
in the theory. The proof is easy in characteristic zero and technically involved in general.
All the existing proofs in positive characteristic are either rather lengthy or use techniques
beyond the scope of these notes. So, we only state the result (again) and say a few words
about the strategy of the three existing proofs.
The most important consequence is the smoothness of the deformation space of a K3

surface and the liftability of any K3 surface in characteristic p > 0 to characteristic zero.
The latter is the key to many results in positive characteristic, as it unleashes the power
of Hodge theory for arithmetic considerations

9Thanks to John Ottem for reminding me of Kobayashi’s article.
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5.1. The following result in complete generality is due to Rudakov and Šafarevič
[510, Thm. 7], see also their survey [511].

Theorem 5.1. Let X be a K3 surface over an arbitrary field k. Then

H0(X, TX) = 0.

It is enough to verify the assertion for K3 surfaces over algebraically closed fields. In
characteristic zero, the theorem follows from Hodge theory, as

H0(X, TX) ' H0(X,ΩX) ' H1,0(X) ' H0,1(X) = 0

(cf. Section 1.3.3), and can also be seen as a shadow of µ-stability of TX (cf. Corollary
??).
In positive characteristic, Proposition 4.6 proves the assertion in the case that X is not

unirational. To treat unirational K3 surfaces (over a field of characteristic p > 0) one first
evokes the relatively easy Proposition 17.2.7, showing that any unirational K3 surface
has maximal Picard number ρ(X) = 22. But K3 surfaces of Picard number ρ(X) ≥ 5

are all elliptic,10 see Proposition 11.1.3, and, therefore, the theorem is reduced to the
case of unirational elliptic K3 surfaces. Those are dealt with by using the fairly technical
[510, Thm. 6].
In [459] Nygaard provides an alternative proof of Theorem 5.1. He first reduces to the

unirational case as above, and so can assume that ρ(X) = 22 and hence NS(X) ⊗ Z` '
H2
ét(X,Z`(1)). Then, combining the fact that K3 surfaces with maximal Picard number

ρ(X) = 22 are automatically supersingular (cf. Corollary 18.3.9) with the slope spectral
sequence (see Section 18.3.3), he concludes that H2(X,ΩX) = 0. By Serre duality the
latter is equivalent to the assertion.
Another proof can be found in the article [347] by Lang and Nygaard. Their arguments

do not require the reduction to the case of unirational K3 surfaces as a first step and
roughly proceed as follows. First one proves that the d : H0(X,ΩX) //H0(X,Ω2

X) ' k

is trivial, i.e. all one-forms are closed. In the second step, a result of Oda is applied to
show that the space of (infinitely) closed forms in H0(X,ΩX) is a quotient of the dual
of the Dieudonné module associated with the p-torsion in NS(X). But NS(X) is torsion
free and, therefore, H0(X,ΩX) = 0.

5.2. Deformations of K3 surfaces, both with or without polarizations, have been
discussed twice already. In Section 5.3, the local structure of the moduli space of polar-
ized K3 surfaces was approached by first embedding all K3 surfaces in question into a
projective space and then applying the deformation theory for Hilbert schemes. In Sec-
tion 6.2.3, deformation theory of general compact complex manifolds was reviewed and
then applied to complex K3 surfaces without polarization. Building up on this, Section
6.2.4 explained how to deal with the polarized case.

10For simplicity, we assume char(k) > 3, otherwise one would also have to deal with quasi-elliptic
fibrations.
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Let us now first rephrase the local deformation theory from a more functorial point of
view, applying Schlessinger’s theory [524].
Start with a K3 surface X over an arbitrary perfect field k. Let W be a fixed complete

noetherian local ring with residue field W/m ' k. The two examples relevant for us are
W = k and W = W (k), the ring of Witt vectors. Recall that W (k) = limoo −Wn(k) which
for k = Fp becomes W (k) = limoo −Z/p

nZ ' Zp. Under our assumption that k is perfect,
W (k) is a DVR of characteristic zero.
Next consider the category (Art/W ) of Artinian local W -algebras A with residue field

k and let
DefX : (Art/W ) // (Sets)

be the deformation functor that maps A to the set of all (X , ϕ), where X // Spec(A) is
flat and proper and ϕ : X0

∼− // X is an isomorphism of k-schemes. Here, X0 is the fibre
over the closed point of Spec(A) which has residue field k. General deformation theory
[524], briefly outlined in Section 18.1.3, combined with Theorem 5.1 yields the following
fundamental result.

Proposition 5.2. The functor DefX is pro-representable by a smooth formalW -scheme
of dimension 20

Def(X) ' Spf(W [[x1, . . . , x20]]). �

For W = W (k) this setting mixes the deformation theory for X as a k-variety with the
liftability of X to characteristic zero. On the one hand, the deformation theory of X as
a k-scheme is controlled by the closed formal subscheme

Def(X/k) ' Spf(k[[x1, . . . , x20]]) ⊂ Def(X) ' Spf(W (k)[[x1, . . . , x20]]).

On the other hand, the question whether X can be lifted to characteristic zero asks for a
scheme X with a flat and proper morphism X // Spf(W (k)) with closed fibre X0 ' X.
In both contexts, the obstructions are classes in H2(X, TX). For example, to extend
X to first order to X1

// Spec(k[x]/(x2)) or X1
// Spec(W2(k)), respectively, defines

a class in H2(X, TX). Similarly, the obstructions to extend a flat and proper scheme
Xn−1 over Spec(k[x]/(xn)) or Spec(Wn(k)) further to a flat and proper scheme Xn over
Spec(k[x]/(xn+1)) or Spec(Wn+1(k)) is again a class in H2(X, TX). Now, due to Theorem
5.1 and Serre duality, H2(X, TX) ' H0(X, TX)∗ = 0 and so the deformations of X are
unobstructed.

Remark 5.3. Deligne and Illusie in [142] show that for an arbitrary smooth projective
varietyX over k the existence of a flat extension X1

// Spec(W2(k)) implies the degenera-
tion of the Hodge–Frölicher spectral sequence as well as Kodaira vanishing H i(X,L∗) = 0

for i > 0 and any ample line bundle L, cf. Remark 2.1.9 and Proposition 2.3.1.

Note that the proposition in particular implies that for any K3 surface X over a perfect
field k of characteristic p > 0 there exists a smooth formal scheme

X // Spf(W (k))
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with special fibre X0 ' X. Whether this formal lift is algebraizable, i.e. whether it can
be extended to a smooth proper scheme over Spec(W (k)), is a priori not clear. The
only general method to approach this question is Grothendieck’s existence theorem, see
for example Illusie’s account of it [174, Thm 8.4.10]. It asserts that X // Spf(W (k))

is algebraizable to a smooth and proper scheme X̃ // Spec(W (k)) if there exists a line
bundle L on the formal scheme X with ample restriction L|X0 to the closed fibre. This
naturally leads to a deformation theory for K3 surfaces endowed with an additional line
bundle, which we discuss next.

5.3. Indeed, the deformation theory becomes more subtle if a polarization of the
K3 surface X or just a non-trivial line bundle L on it is taken into account. We consider
the deformation functor

(5.1) Def(X,L) : (Art/W ) // (Sets)

parametrizing X // Spec(A) and ϕ := X0
∼− // X as above and, additionally, line bundles

L on X such that ϕ∗L ' L|X0 . This new deformation functor is obstructed by classes in
H2(X,OX) ' k which are indeed non-trivial in general. This has been observed already
for k = C in Section 6.2.4. For other fields k, the situation is similar when one restricts
to deformations of (X,L) over k. Note, however, that for char(k) = p > 0 the space
H2(X,OX) is p-torsion and so for each order n a possible obstruction to deform Ln on
Xn // Spec(k[x]/(xn+1)) to order n+ 1 is annihilated by passing to Lpn.
The more interesting question concerns the lifting of (X,L). This is addressed by the

following result due to Deligne [142, Thm. 1.6].

Theorem 5.4. Let X be a K3 surface over a perfect field of characteristic p > 0 with
a non-trivial line bundle L. Then the deformation functor (5.1) with W = W (k) is
pro-representable by a formal Cartier divisor

Def(X,L) ⊂ Def(X),

which is flat over Spf(W (k)) of relative dimension 19.

Thus, Def(X,L) ⊂ Def(X) is defined by one equation and, by flatness, this equation
is not divisible by p, so that the closed fibre Def(X,L)0 is still of dimension 19. To prove
the flatness, one has to ensure that the one equation cutting out Def(X,L), which cor-
responds to the one-dimensional obstruction space H2(X,OX), is not the one describing
Spf(k[[x1, . . . , x20]]) ⊂ Spf(W (k)[[x1, . . . , x20]]). In other words, one needs to show that
L cannot be extended to a line bundle on the universal deformation of X as a k-scheme
which lives over Spf(k[[x1, . . . , x20]]).

However, as Def(X,L) // Spf(W (k)) is a priori not smooth (but see Remark 5.7 below),
a lift of L to any given lift X // Spf(W (k)) of X might not exist. Instead, Deligne proves

Corollary 5.5. Let X // Spf(W (k)) be a formal lift of a K3 surface X ' X0 and let L
be a line bundle on X. Then there exists a complete DVR W (k) ⊂W ′, finite over W (k),
such that L extends to a line bundle on the formal scheme X ×W (k) Spf(W ′) // Spf(W ′).
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The aforementioned existence result of Grothendieck allows one to conclude immedi-
ately the following liftability result.

Corollary 5.6. Let X be a K3 surface over a perfect field endowed with an ample line
bundle L. Then there exists a complete DVR W (k) ⊂W ′, finite over W (k), and a smooth
proper scheme

X̃ // Spec(W ′)

together with a line bundle L̃ on X̃ such that X̃0 ' X and L̃|X0 ' L. �

Note that due to the vanishing H1(X,OX) or, alternatively, due to the injectivity of
the specialization map sp: Pic(X̃η) �

� // Pic(X) (see Proposition 17.2.10), there exists at
most one extension of L to any given lift X̃ .

Remark 5.7. Ogus [475, Cor. 2.3] proves that in fact most K3 surfaces admit projec-
tive lifts to Spec(W (k)). Combined with the Tate conjecture, which has been proven since
then (see Section 17.3), one finds that for any K3 surface X over an algebraically closed
field k of characteristic p > 2 there exists a smooth and projective scheme X̃ // Spec(W (k))

with closed fibre X0 ' X.
More precisely, Ogus proves [475, Prop. 2.2] that Def(X,L) // Spf(W (k)) is smooth

whenever L is not a p-th power and X is not ‘superspecial’. The superspecial case is
dealt with separately, see [475, Rem. 2.4] and also [370, Thm. 2.9]. This applies to all
K3 surfaces of finite height.

5.4. For any K3 surface X over a field of characteristic p > 0 the first Chern class
induces an injection

NS(X)/p ·NS(X) �
� // NS(X)⊗ k �

� // H2
dR(X),

which, moreover, leads to an injection NS(X)/p ·NS(X) �
� // NS(X)⊗ k �

� // H1(X,ΩX)

unless X is supersingular, cf. Proposition 17.2.1. In [367] Lieblich and Maulik observed
that this is enough to lift the entire Picard group. See Section 18.3 for the notion of the
height of a K3 surface.

Proposition 5.8. Let X be a K3 surface over a perfect field k of characteristic p > 0.
Assume that X is of finite height. Then there exists a projective lift X // Spec(W (k)),
X0 ' X, such that the specialization defines an isomorphism

NS(Xη) ∼− // NS(X).

Remark 5.9. Charles [109, Prop. 1.5] and Lieblich and Olsson [369, Prop. A.1] prove
a version that covers supersingular K3 surfaces as well: For a K3 surface X over a perfect
field k of characteristic p > 0 and line bundles L1, . . . , Lρ with ρ ≤ 10 and L1 ample there
exists a complete DVRW (k) ⊂W ′, finite overW (k), and a projective lift X // Spec(W ′)

such that the image of the specialization map NS(Xη) //NS(X) contains L1, . . . , Lρ.
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References and further reading:
We have not discussed bundles on special K3 surfaces like elliptic K3 surfaces. We recommend

Friedman’s book [183]. Spherical bundles, in particular on double planes, have been studied by
Kuleshov in [330, 331]. The existence of stable bundles on K3 surfaces has been treated by
Kuleshov and Yoshioka in [332, 641], cf. Section 10.3.1.

Questions and open problems:
What is known about stability and simplicity of the tangent bundle for char(k) > 0? I am not

aware of any result in this direction apart from H0(X, TX) = 0.
The result of Rudakov and Šafarevič, see Proposition 4.6, shows that in positive characteristic

the existence of a non-trivial vector field implies unirationality of the K3 surface. I wonder if
this can be turned into a completely algebraic (not using Hodge theory) proof of H0(X, TX) = 0

in characteristic zero. In fact, if H0(X, TX) 6= 0 then the reduction in all primes would be
unirational and this might show that X itself is unirational, which is absurd in characteristic
zero.11

It would be interesting to find a purely algebraic proof of Corollary 4.13 only relying on the
stability of TX and H0(X, TX).

11As Matthias Schütt points out, one could maybe use Bogomolov–Zarhin who show that ordinary
reductions have density one. One would need to check that they do not use H0(X, TX) = 0 and that
there is no problem with deforming to a K3 surface defined over a number field.



CHAPTER 10

Moduli spaces of sheaves on K3 surfaces

After having studied special sheaves and bundles on K3 surfaces in Chapter 9, we now
pass to the study of all sheaves on a given K3 surface. This naturally leads to moduli
spaces of (stable) sheaves. A brief outline of the general theory can be found in Section
1. In Section 2 the tangent space and the symplectic structure of the moduli space of
sheaves on K3 surfaces is discussed. Low-dimensional moduli spaces and the Hilbert
scheme, viewed as a moduli space of sheaves, are dealt with in Section 3.

1. General theory

Most of the material recalled in this first section is covered by [264].

1.1. Let X be a smooth projective variety over a field k which for simplicity we
assume algebraically closed. The moduli space of sheaves that is best understood is the
Picard scheme PicX representing the functor (Sch/k)o // (Sets) mapping a k-scheme S
to the set {L ∈ Pic(S×X)}/∼, where L ∼ L⊗p∗M for allM ∈ Pic(S), see e.g. [80, 174].
In particular, the k-rational points of PicX form the Picard group Pic(X).
The Picard scheme itself is neither projective nor of finite type, but it decomposes as

PicX =
⊔

PicPX

with projective components. Here, PicPX parametrizes line bundles on X with fixed
Hilbert polynomial P ∈ Q[t] with respect to a chosen ample line bundle O(1) on X.
Note that the Hilbert polynomial P (L,m) := χ(X,L(m)) of a line bundle on X can be

computed via the Hirzebruch–Riemann–Roch formula as

χ(X,L(m)) =

∫
ch(L)ch(O(m))td(X).

Obviously, the expression only depends on c1(L) and (X,O(1)).
The naive question this theory raises is the following: If one generalizes the Picard

functor as above to the functor of higher rank vector bundles or arbitrary coherent sheaves,
is the resulting functor again representable?
The following two examples immediately show that care is needed when leaving the

realm of line bundles.

Example 1.1. Consider on P1 the bundles En := O(n)⊕O(−n), n > 0. First observe
that h0(En) = n+ 1. In particular the bundles En are pairwise non-isomorphic. On the
other hand, they are all of rank two with trivial first Chern class c1(En) = 0. All higher
Chern classes of En are trivial for dimension reasons.

189
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Suppose there exists a moduli space parametrizing in particular all bundles En. Since
h0(E) ≥ m is a closed condition, the infinitely many bundles En would lead to a strictly
descending chain of closed subschemes, which obviously excludes M from being of finite
type. Thus, fixing the Hilbert polynomial or even all numerical invariants does not ensure
that a moduli space, if it exists at all, is of finite type.

Example 1.2. i) On P1 the extension group Ext1(O(1),O(−1)) = H1(P1,O(−2)) is
one-dimensional. Hence, there exists for any λ ∈ k a unique (up to scaling) non-trivial
extension 0 //O(−1) //Eλ //O(1) // 0. In fact, these bundles together form a vector
bundle E on A1 × P1 such that the restriction to {λ} × P1 is isomorphic to Eλ.
It is easy to see that for λ 6= 0 all bundles are isomorphic to each other, in fact

Eλ ' O ⊕O. On the other hand, E0 ' O(−1)⊕O(1).
Thus, if the moduli functor of higher rank bundles on P1 were represented by a scheme

M , then the universality property would induce a morphism A1 //M mapping all closed
points λ 6= 0 to the point x ∈ M corresponding to O ⊕ O and the origin 0 ∈ A1 to the
point y ∈M given by O(−1)⊕O(1). Thus, if x 6= y, which would be the case if M really
represented the functor, then M cannot be separated.
ii) A similar example can be produced on an elliptic curve C by considering extensions

of the form 0 //O //Eλ //O // 0 with λ ∈ H1(C,O) ' k.

1.2. From the above examples it is clear that for sheaves other than invertible ones,
extra conditions need to be added in order to construct a well-behaved moduli space.
This condition is stability. As there are several notions of stability, let us for now call the
extra condition just (∗). Then we are interested in

M : (Sch/k)o // (Sets),

S � // {E ∈ Coh(S ×X) | E S-flat, ∀s ∈ S : P (Es) = P, (∗) for Es}/∼.

Here, Es denotes the restriction of E to the fibre {s}×X, P is a fixed Hilbert polynomial
(see Section 1.3 below), and ∼ is as before defined by the action of Pic(S).

Definition 1.3. The functor M is corepresented by a scheme M if there exists a
transformationM //M = hM (functor of points) with the universal property that any
other transformationM //N with N ∈ (Sch/k) factorizes over a uniquely determined
M //N , i.e.

M

""

// M

∃!
��
N.

We say that M is a moduli space forM.

Recall from Section 5.1 that a coarse moduli space satisfies the additional requirement
that the induced M(k) //M(k) is a bijection. For a fine moduli space one needs the
even stronger condition M ∼− // M , which is equivalent to the existence of a universal
family E on M × X. Allowing the map M(k) //M(k) to contract certain sets, i.e. to
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map different sheaves on X to the same point in M , eventually solves the non-separation
problem hinted at in Example 1.2.

1.3. In Section 9.3.1 we have already encountered µ-stability. So one could try
to define the additional condition (∗) as µ-(semi)stability. This works perfectly well for
smooth curves which was the starting point of the theory, see e.g. Mumford’s classic [442].
However, in higher dimensions the better notion is (Gieseker) stability. It has (at least)
three advantages over µ-stability: i) fewer objects are identified under M(k) //M(k),
ii) the translation to GIT-stability is more direct, and iii) stability for torsion sheaves
makes sense.
Before we can properly define stability, let us recall some facts on Hilbert polyno-

mials. For an arbitrary projective scheme X with an ample line bundle O(1) the Hilbert
polynomial of a sheaf E is

P (E,m) := χ(E(m)) =

d∑
i=0

αi(E)
mi

i!
.

Here, d := dim(E) := dim supp(E) and α0, . . . , αd ∈ Z. For a sheaf E of rank r and
Chern classes c1, c2 on a smooth surface X this becomes

P (E,m) =

∫ (
r + c1 +

c2
1 − 2c2

2

)(
1 +mH +

m2(H)2

2

)
td(X)

=
r(H)2

2
m2 +m((H.c1) + r(H.c1(X))) + const,

where we write H for the first Chern class of O(1).
Note that rk(E) = αd(E)/αd(OX) for a sheaf E of maximal dimension d = dim(X).

For sheaves of smaller dimension the role of torsion free sheaves is played by pure sheaves.
A coherent sheaf E of dimension d is called pure if dim(F ) = dim(E) for every non-trivial
subsheaf F ⊂ E. Thus, a sheaf of maximal dimension is pure if and only if it is torsion
free.

Definition 1.4. The reduced Hilbert polynomial of a sheaf E is defined as

p(E,m) :=
P (E,m)

αd(E)
.

A coherent sheaf E is called stable if E is pure and

p(F,m) < p(E,m), m� 0,

for all proper non-trivial subsheaves F ⊂ E.

A sheaf is called semistable if only the weak inequality is required. Recall that the
inequality of polynomials f(m) < g(m) for m� 0 is equivalent to the inequality of their
coefficients with respect to the lexicographic order.
Let us spell out what stability means for sheaves on surfaces.

i) Suppose E is a sheaf of dimension zero, i.e. its support consists of finitely many closed
points. Then P (E,m) ≡ const and hence p(E,m) = 1. Clearly, such a sheaf is always
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pure and semistable. It is stable if and only if E ' k(x) for some closed point x ∈ X.
ii) For a vector bundle E supported on an integral curve C ⊂ X one easily computes
that µ-stability of E on C is equivalent to stability of E viewed as a torsion sheaf on X.
iii) If E is of maximal dimension two, then

p(E,m) =
m2

2
+m

(
(H.c1(E))

rk(E)(H)2
+

(H.c1(X))

(H)2

)
+

α0(E)

rk(E)(H)2
.

Hence, E is stable if and only if E is torsion free and for all non-trivial proper subsheaves
F ⊂ E one of the two conditions hold:

(1.1)
(H.c1(F ))

rk(F )
<

(H.c1(E))

rk(E)

or

(1.2)
(H.c1(F ))

rk(F )
=

(H.c1(E))

rk(E)
and

α0(F )

rk(F )
<
α0(E)

rk(E)
.

The slope of a torsion free sheaf E is by definition µ(E) = (H.c1(E))
rk(E) . As µ-stability is

defined in terms of inequality (1.1) in Section 9.3.1, this immediately yields

Corollary 1.5. The following implications hold for any torsion free sheaf:

µ-stable⇒ stable⇒ semistable⇒ µ-semistable. �

1.4. Analogously to results on µ-stability observed in Section 9.3.1, one can show
that stability of a pure sheaf E of dimension d is equivalent to either of the two conditions:
• p(F,m) < p(E,m), m � 0, for all non-trivial proper subsheaves F ⊂ E with pure
quotient E/F of dimension d or
• p(E,m) < p(G,m), m� 0, for all non-trivial proper quotients E // //G.

Moreover, Hom(E1, E2) = 0 if E1, E2 are semistable with p(E1,m) > p(E2,m), m� 0.
If E is stable, then End(E) is a division algebra and hence isomorphic to k. (Recall, we
are assuming k = k̄.)

Proposition 1.6. Let E be a semistable sheaf. Then there exists a filtration

0 ⊂ E0 ⊂ . . . ⊂ En = E

such that all quotients Ei+1/Ei are stable with reduced Hilbert polynomial p(E,m). The
isomorphism type of the graded object

JH(E) :=
⊕

Ei+1/Ei

is independent of the filtration.

The filtration itself is called the (or rather a) Jordan–Hölder filtration and is not unique
in general.

Definition 1.7. Two semistable sheaves E and F are called S-equivalent if JH(E) '
JH(F ).
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1.5. The following result is only needed for K3 surfaces or families of K3 surfaces,
but it holds for arbitrary projective varieties.

Theorem 1.8. For fixed Hilbert polynomial P the functor

M : (Sch/k)o // (Sets),

S � // {E ∈ Coh(S ×X) | E S-flat, P (Es) = P,Es semistable}/∼
is corepresented by a projective k-scheme M . The closed points of M parametrize the
S-equivalence classes of semistable sheaves with Hilbert polynomial P .1

The result in this generality is due to Maruyama and Simpson. The boundedness in
positive characteristic was proved by Langer. For more on the history of this result see
[264].

Example 1.9. We have described already the stable sheaves of dimension zero. This
immediately yields the following explicit description of a moduli space. Let P be the con-
stant polynomial n. Then the moduli space M corepresentingM is naturally isomorphic
to the symmetric product Sn(X). See [264, Ex. 4.3.6].

The first step in the construction of the moduli space in general consists of showing that
adding stability produces a bounded family. (Note that in Example 1.1 the bundles are
indeed not semistable except for E0.) In particular there exists n0 such that for all E ∈
M(k) and all n ≥ n0 the sheaf E(n) is globally generated with trivial higher cohomology.
Thus, for any E ∈ M(k) there exists a point in the Quot-scheme QuotPX/V⊗O(−n) of the
form [V ⊗ O(−n) // //E]. Here, V is a vector space of dimension P (n). For the notion
of the Quot-scheme see [174, 223, 264].
The next step involves the construction of the Quot-scheme as a projective scheme. For

this, one chooses a high twist and maps [V ⊗O(−n) // //E] to the point [V ⊗H0(X,O(m−
n)) // //H0(X,E(m))] in Gr := Gr(V ⊗H0(X,O(m− n)), P (m)).
Next, one has to prove, using the Hilbert–Mumford criterion, that the (semi)stability

of the sheaf E is equivalent to the GIT-(semi)stability of the point [V ⊗O(−n) // //E] in
QuotPX/V⊗O(−n) with respect to the natural GL(V )-action and the standard polarization
on Gr. In the last step, one has to twist all sheaves once more in order to control also all
potentially destabilizing quotients.

Remark 1.10. Note that the general result of Keel and Mori (see [287] and Section
5.2.3) on quotients of proper linear group actions can be applied here as well, but only
to the stable locus. Their result proves that there exists a separated algebraic space that
is a coarse moduli space for the subfunctorMs ⊂ M of stable sheaves. The properness
of the group action can be deduced from a result of Langton [264, Thm. 2.B.1].

1There is the following relative version of this result: If X // S is a projective morphism of k-
schemes of finite type and O(1) is a relative ample line bundle on X, then the analogously defined
moduli functorM : (Sch/S)o // (Sets) is corepresented by a projective S-scheme M // S. See [264,
Thm. 4.3.7].
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1.6. IfM has a fine moduli space M as in Theorem 1.8, then applying the isomor-
phismM ∼− // M to Spec(k[x]/x2) shows that the tangent space TtM at a point t ∈ M
corresponding to a stable sheaf E ∈ M(k) is naturally isomorphic to Ext1(E,E). If M
is only a coarse moduli space (in a neighbourhood of t), this is still true but one needs
to argue via the Quot-scheme.

Proposition 1.11. Let M be the moduli space of M and let t ∈ M be a point corre-
sponding to a stable sheaf E ∈M(k).

(i) Then there exists a natural isomorphism

TtM ' Ext1(E,E).

(ii) If Ext2(E,E) = 0, then M is smooth at t ∈M .
(iii) If the trace map Ext2(E,E) //H2(X,O) is injective and PicX is smooth at the

point corresponding to the determinant det(E), then M is smooth at t ∈M .

Proof. The moduli space M is constructed as a PGL(V )-quotient of an open sub-
scheme

R ⊂ Q := QuotPX/V⊗O(−n).

Moreover, over the stable part M s ⊂M , which is also open, the quotient morphism

Rs //M s

is a principal bundle.
The tangent space TqQ at a quotient q = [V ⊗O(−n) // //E] ∈ Q(k) is naturally iso-

morphic to Hom(K,E),2 where K is the kernel, and the obstruction space is Ext1(K,E).
Now apply Hom( , E) to the exact sequence

0 //K // V ⊗O(−n) //E // 0.

Using the vanishing H i(X,E(n)) = 0, i > 0, one immediately obtains an isomorphism
Ext1(K,E) ∼− // Ext2(E,E), proving (ii), and an exact sequence

0 // End(E) // Hom(V ⊗O(−n), E)
α // Hom(K,E) // Ext1(E,E) // 0.

Since the image of α describes the tangent space of the PGL(V )-orbit, this yields (i).
(iii) The trace map for locally free sheaves can be defined in terms of a Čech covering.

For arbitrary sheaves one first passes to a locally free resolution. Consider the obstruction
class

o(E , A) ∈ Ext2
X(E , E ⊗ I) ' Ext2

X(E,E ⊗k I)

to lift an Ā = A/I-flat deformation E of E⊗A/m ' E to an A-flat deformation, where, as
usual, we assume m · I = 0. Then according to Mukai [426, (1.13)] the image of o(E , A)

under the trace map is o(det(E), A). If PicX is smooth at det(E), the latter vanishes. �

2This is the sheaf analogue of the classical fact that the tangent space of the Grassmannian at a
point corresponding to a subspace U ⊂ V is isomorphic to Hom(U, V/U).
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2. On K3 surfaces

From now on X is a K3 surface over a field k and for simplicity we continue to assume
that k is algebraically closed. Then the Picard scheme PicX consists of reduced isolated
points. Indeed, if ` ∈ PicX(k) corresponds to a line bundle L on X, then

Ext1(L,L) ' H1(X,O) = 0.3

Moduli spaces of sheaves other than line bundles are more interesting. The most
influential paper on the subject is Mukai’s [427] which contains a wealth of interesting
results. To start, let us fix a Mukai vector instead of the Hilbert polynomial. Recall from
Section 9.1.2 that the Mukai vector v(E) of a sheaf E is

v(E) := (rk(E), c1(E), ch2(E) + rk(E)) = (rk(E), c1(E), χ(E)− rk(E)).

For k = C the Mukai vector is usually considered as an element inH∗(X,Z) and otherwise
in the numerical Grothendieck group (see Sections 12.1.3, 16.1.2, and 16.2.4):

N(X) := K(X)/∼.

By definition E1 ∼ E2 if χ(E1, F ) = χ(E2, F ) for all F ∈ Coh(X). Note that for k = C,
the numerical Grothendieck group N(X) is naturally isomorphic to H∗(X,Z)∩(H0(X)⊕
H1,1(X)⊕H4(X)), see Section 16.3.1.
Since P (E,m) = χ(E(m)) = −〈v(E), v(O(−m))〉 (see (1.4) in Section 9.1.2), the

Mukai vector determines the Hilbert polynomial. Conversely, if E is an S-flat sheaf on
S ×X with S connected, then v(Es) is constant. Indeed, χ(Es, F ) is constant for all F
on X.
Thus, instead of fixing the Hilbert polynomial, it is more convenient, at least for K3

surfaces, to fix the Mukai vector. So we shall fix v = (r, l, s) ∈ N(X) and consider
the moduli functor M(v) of semistable sheaves with its moduli space M(v). The open
(possibly empty) subscheme parametrizing stable sheaves shall be denoted

M(v)s ⊂M(v),

which is a coarse moduli space for M(v)s. Note that although we are not using the
Hilbert polynomial to fix the numerical invariants of the sheaves, the polarization still
enters the picture via the stability condition. Thus, implicitlyM(v) depends onH. When
we want to stress this dependence, we write MH(v).

2.1. For the following discussion see also Section 9.1.2. Due to Serre duality, the
local structure of moduli spaces of sheaves on K3 surfaces is particularly accessible. In-
deed, for any sheaf E on a K3 surface X one has Ext2(E,E) ' End(E)∗. Thus, if E is

3The behavior of the Picard group under base field extension is interesting (cf. Chapter 17). For
example, if a line bundle L lives only on Xk′ for some field extension k′/k, the argument still works, for
then Ext1(L,L) ' H1(Xk′ ,O) = 0. Here we may even allow k not algebraically closed.
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a stable (and hence a simple) sheaf, one finds Ext2(E,E) ' k. In fact, Serre duality in
degree two is described by composition and the trace, i.e. the pairing

Ext2(E,E)× End(E) // Ext2(E,E)
tr // H2(X,O) ' k

is non-degenerate. In particular, the trace tr : Ext2(E,E) //H2(X,O) is Serre dual to
the natural inclusion H0(X,O) //End(E), λ � // λ · id and hence non-trivial, see [426,
Sec. 1].4 Thus, Proposition 1.11 applies and shows that at a point t ∈M(v)s correspond-
ing to a sheaf E the moduli space M(v)s is smooth of dimension

dim M(v)s = dim Ext1(E,E).

As remarked before, the Picard scheme of a K3 surface consists of isolated reduced points,
for H1(X,O) = 0, and is thus in particular smooth. For higher rank sheaves the moduli
spaces are often not discrete anymore. Since for E ∈M(v)s

χ(E,E) =
∑

(−1)i dim Exti(E,E) = 2− dim Ext1(E,E)

and, on the other hand, χ(E,E) = −〈v, v〉, one finds

Corollary 2.1. Either M(v)s is empty or a smooth, quasi-projective variety of dimen-
sion 2 + 〈v, v〉. �

2.2. As an interlude, let us state a few observations on the existence of a universal
sheaf. The existence usually simplifies the arguments, but is often not essential for any
particular result one wants to prove for the moduli space.

i) If there exists a vector v′ ∈ N(X) with 〈v, v′〉 = 1, then the moduli space M(v)s

is fine, i.e. there exists a universal family E on M(v)s × X. We briefly indicate the
arguments needed to prove this assertion, but refer to [264, Sec. 4.6] for the details.
Indeed, on QuotPX/V⊗O(−n) × X and hence on Rs × X there always exists a universal
quotient V ⊗ (ORs �OX(−n)) // // E . The naturally GL(V )-linearized sheaf E descends
under the action of GL(V ) on Rs to a sheaf on M(v)s × X if and only if the kernel of
GL(V ) //PGL(V ) (i.e. the center of GL(V )) acts trivially on E , which it does not, as
it is actually of weight one. If now there exists a complex of coherent sheaves F with
v(F ) = −v′, then the natural linearization of the line bundle L(F ) := det p∗(E ⊗ q∗F ∗)
on Rs is of weight 1 = 〈v, v′〉. Hence, the center of GL(V ) acts trivially on the linearized
sheaf p∗L(F )∗ ⊗ E , which therefore descends to a universal sheaf on M s(v)×X.

ii) However, even when no v′ ∈ N(X) with 〈v, v′〉 = 1 is available, a twisted(!) universal
sheaf on M × X := M(v)s × X always exist. To explain this notion, recall that by
Luna’s étale slice theorem (cf. Section 5.3.3), there exists an étale (or analytic, in the
complex setting) covering

⋃
Ui ⊂ Rs of M . Denote by Ei the restriction of E to Ui ×X.

4We remark again, see page 168, that implicitly ones fixes a trivializing section of ωX in all of this.
A priori, the pairing only gives natural isomorphisms Exti(E,E) ⊗ H0(X,ωX) ' Ext2−i(E,E)∗ and
Exti(E,E) ' Ext2−i(E,E ⊗ ωX)∗.
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On the intersection (Ui ×M Uj) ×X the two sheaves Ei and Ej differ by the line bundle
Lij := p∗Hom(Ei, Ej) so that

Ej |(Ui×MUj)×X ' Ei|(Ui×MUj)×X ⊗ p
∗Lij .

By refining the covering
⋃
Ui, we may assume that there exist ξij : Lij ∼− // OUij , which

together with the natural isomorphisms Lik ' Lij ⊗Ljk over the triple intersections Uijk
give rise to αijk := (ξij ⊗ ξjk) ◦ ξ−1

ik ∈ Γ(Uijk,O∗) defining a Brauer class α ∈ Br(M). By
construction, the sheaves Ei on Ui×X descend to an {αijk}� 1-twisted sheaf on M ×X.
See Section 16.5 for some comments on twisted sheaves.

In Căldăraru’s thesis [94, Prop. 3.3.2], using arguments of Mukai in [427, Thm. A.6],
the reasoning is closer to i) by changing the sheaves Ei by linearized line bundles of weight
one. Via Hodge theory, so in the complex setting, the obstruction class α ∈ Br(M)

is by [94, Thm. 5.4.3] identified as a generator of the kernel of a natural surjection
Br(M) // //Br(X), i.e.

(2.1) 0 // 〈α〉 //Br(M) //Br(X) // 0.

Here, M = MH(v)s is assumed to be smooth, projective, and two-dimensional. See (5.6)
in Remark 11.5.9 for a special case.
Note that neither the universal nor the twisted universal sheaf is unique, e.g. they can

always be modified by line bundles onM(v)s. More precisely, if E is a (twisted) universal
sheaf on M(v)s × X then so is E ⊗ p∗L for any line bundle L on M(v)s. In ii) this
ambiguity is already contained in the choice of the trivializations ξij .

2.3. We can now come back to the tangent bundle of the moduli space. The descrip-
tion of the tangent space of the moduli space at stable points provided by Proposition
1.11 generalizes to the following.

Corollary 2.2. Suppose there exists a universal family E over M(v)s×X. Then there
is a natural isomorphism TM(v)s

∼− // Ext1p(E , E).

Proof. Here, p : M(v)s×X //M(v)s denotes the projection and Ext1p(E , E) denotes
the relative Ext-sheaf. For example, if E is locally free, then Ext1p(E , E) ' R1p∗(E∗ ⊗ E).
To shorten notation, we write M = M(v) and M s = M(v)s.
Roughly, one should think of the isomorphism TMs

∼− // Ext1p(E , E) as obtained by
gluing the isomorphisms TtM s ∼− // Ext1(Et, Et). Since the dimension of Ext1(Et, Et)
stays constant over M s, these spaces are indeed given as the fibres Ext1p(E , E)⊗ k(t).
A better way to define the Kodaira–Spencer map inducing the isomorphism, is to use

the Atiyah class A(E) ∈ Ext1(E , E⊗ΩMs×X). Its image in H0(M s, Ext1p(E , E)⊗ΩMs) can
be interpreted as a natural map TMs // Ext1p(E , E) which fibrewise yields the isomorphism
TtM

s ∼− // Ext1(Et, Et). For details see [264, 10.1.8]. �

Remark 2.3. The existence of the universal family is not needed for the corollary. Al-
though E might not exist (or exists only étale locally), the relative Ext-sheaves Extip(E , E)
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always do. For example, if all sheaves parametrized byM(v)s are locally free, then E∗⊗E
on the Quot-scheme exists and descends to M(v)s ×X.
Alternatively, one can work with a twisted universal sheaf as introduced before. The

twists of the two factors in the relative Ext-sheaf cancel each other out (similarly to
twists by a line bundle coming from the moduli space), so that Extip(E , E) becomes a
well-defined untwisted sheaf.

Once TM(v)s
∼− // Ext1p(E , E) is constructed, one can globalize Serre duality (cf. Propo-

sition 9.1.1) to a non-degenerate alternating pairing

TM(v)s × TM(v)s
∼− // Ext1p(E , E)× Ext1p(E , E) //OM(v)s .

Corollary 2.4. The moduli space of stable sheaves M(v)s is endowed with a natural
regular two-form σ ∈ H0(M(v)s,Ω2

M(v)s) which is everywhere non-degenerate. �

This was first observed by Mukai in [426]. In fact, the two-form exists more generally
on the moduli space of simple sheaves on X (which, however, is in general not separated).
Moreover, the two-form is closed, which can be deduced from an explicit description using
the Atiyah class, cf. [264, Ch. 10].

2.4. The condition that the moduli space is smooth and parametrizes isomorphism
classes of sheaves (and not merely S-equivalence classes) is essentially equivalent to the
non-existence of properly semistable sheaves. Thus, it is important to understand under
which conditions on the Mukai vector v and the polarization H semistability is equivalent
to stability.
A torsion free semistable sheaf E fails to be stable if there exists a proper saturated

subsheaf F ⊂ E with
p(F,m) ≡ p(E,m)

or, in other words, if 〈rk(F )v(E) − rk(E)v(F ), v(O(m))〉 = 0 for all m. The latter is
equivalent to:

(2.2) i) (ξE,F .H) = 0 and ii) rk(F )(χ(E)− rk(E)) = rk(E)(χ(F )− rk(F )),

where ξE,F := rk(F )c1(E)− rk(E)c1(F ).

Let us now fix the Mukai vector v ∈ N(X). It can be uniquely written as v = mv0 with
m ∈ Z>0 and v0 ∈ N(X) primitive, i.e. v0 cannot be divided further or, equivalently,
m is maximal. Let us first consider the case m = 1, i.e. v itself is primitive. Then if
i) and ii) hold for all H, then (rk(E)/rk(F ))v(F ) = v(E) = v = v0, which is absurd as
rk(F ) < rk(E). This leads to the following result.

Proposition 2.5. Assume v = (r, `, s) ∈ N(X) is primitive. Then, with respect to a
generic choice of H, any semistable sheaf E with v(E) = v is stable. Hence, MH(v) =

MH(v)s, which is smooth and projective of dimension 〈v, v〉+ 2 if not empty.

The polarization is generic if it is contained in the complement of a locally finite union
of hyperplanes in NS(X)R.
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Proof. For the case of torsion free sheaves, i.e. rk > 0, the proof is in [264, App.
4.C]. The argument given above only shows that for a generic choice of H equalities i)
and ii) in (2.2) can be excluded for subsheaves F ⊂ E with a fixed Mukai vector v(F ).
To complete the proof, one shows the following two things:
Firstly, if E is µH -semistable and F ⊂ E is µH -destabilizing, then

(2.3) (ξE,F .H) = 0 and either ξE,F = 0 or (−rk(E)2/4)∆(v) ≤ ξ2
E,F < 0.

Here, ∆(v) = ∆(E) = 2rk(E)c2(E) − (rk(E) − 1)c1(E)2. See [264, Thm. 4.C.3]. The
proof uses the Hodge index theorem and the Bogomolov inequality for F .
Secondly, the union of walls

Wξ := {H ∈ NS(X)R ample | ξ,H satisfying (2.3)}

is locally finite. See [264, Lem. 4.C.2].
The case of torsion sheaves has been dealt with by Yoshioka in [641, Sec. 1.4], but see

also the thesis [650] by Zowislok. Let us show the existence of a generic H in this case.
If v(E) = (0, `, s) with ` 6= 0 and hence (`.H) > 0 for all ample H (the case ` = 0 being
trivial), then s = χ(E) and p(E,m) = m+ χ(E)/(`.H).
As MH(v) ∼− // MH(v.ch(H)) via E � //E(H), one can assume that s 6= 0. Thus, E

is semistable if χ(F )/(`′.H) ≤ χ(E)/(`.H) for all F ⊂ E with v(F ) = (0, `′, χ(F )). If
equality holds for a proper subsheaf F and all H, then `′ = (χ(F )/χ(E)) ·`. If supp(E) =∑
niCi and supp(F ) =

∑
miCi, then clearly mi ≤ ni and hence χ(F )/χ(E) ≤ 1. But if

v is primitive, then this implies χ(F ) = χ(E), `′ = `, and hence mi = ni. From the latter
one deduces that E/F is torsion and hence χ(E)− χ(F ) = χ(E/F ) > 0. Contradiction.
The local finiteness of the wall structure is proven as in the case r > 0. �

Remark 2.6. If v = mv0 with v0 primitive and m > 1, then M(v) is expected neither
to coincide with M(v)s nor to be smooth. In [279] Kaledin, Lehn, and Sorger show that
for 〈v0, v0〉 > 2 the moduli spaceM(v) is still locally factorial, i.e. all local rings are UFD,
and in particular normal. The same result holds for 〈v0, v0〉 = 2 and m > 2.

2.5. The theory is not void, i.e. these moduli spaces are not all empty. But this
is a highly non-trivial statement. For general results on the existence of stable sheaves
on algebraic surfaces see references in [264, Ch. 5]. Roughly, for arbitrary surfaces one
can prescribe rk(E) and det(E) and prove existence of µ-(semi)stable vector bundles for
large c2(E)� 0. For K3 surfaces the situation is better due to the following result.

Theorem 2.7. Let X be a complex projective K3 surface with an ample line bundle H.
For any v = (r, `, s) ∈ Z ⊕ NS(X) ⊕ Z with 〈v, v〉 ≥ −2 and such that r > 0 or ` ample
(or, weaker, (`)2 ≥ −2 and (`.H) > 0), there exists a semistable sheaf E with v(E) = v.

i) Mukai in [427, Thm. 5.1&5.4] showed that for primitive v = (r, `, s) with r > 0 and
〈v, v〉 = 0 there exists a µH -semistable sheaf E with v(E) = v. If H = `, then E

can be chosen to be µH -stable. These sheaves are first constructed on special (so-called
monogonal) K3 surfaces by the methods explained in Section 9.3 and then deformed to
sheaves on arbitrary K3 surfaces.
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Note that once a µ-(semi)stable sheaf E has been found, taking the kernel of surjections

E // //
n⊕
i=1

k(xi)

yields a µ-(semi)stable sheaves with Mukai vector (r, `, s − n). However, this does not
produce µ-semistable sheaves for all possible Mukai vectors, as 〈(r, `, s−n), (r, `, s−n)〉 =

〈v, v〉−2rn = −2rn. Also note that the primitivity of v is not essential for the construction
of µ-semistable sheaves, as µ-semistability of E implies µ-semistability of E⊕n.

ii) The existence of stable sheaves with 〈v, v〉 = −2 is due to Kuleshov, see Remark 3.3.

iii) The result in the above form is implicitly part of a result by Yoshioka [641, Thm. 8.1]
which asserts that MH(v)s and Hilb〈v,v〉/2+1(X) are deformation equivalent for primitive
v. Once more, the actual construction is done on special elliptic surfaces. General
deformation theory yields the result for all K3 surfaces. Originally, for r = 0 it was
assumed that ` is ample, but in [643, Cor. 3.5] the hypothesis was weaken to just (`)2 ≥
−2 and (`.H) > 0, which implies that ` is effective.

In principle, the arguments should go through for arbitrary algebraically closed fields.
However, since global deformations to elliptic K3 surfaces are used, details would need to
be checked in positive characteristic, but the irreducibility of the moduli space proved by
Madapusi Pera in [385] should be enough. It would be highly desirable to produce stable
bundles and sheaves more directly, but no techniques seem to exist that would reproduce
the theorem in full generality.

3. Some moduli spaces

Let us consider moduli spaces of dimension zero and two and those that are provided
by Hilbert schemes of points on K3 surfaces.

3.1. In analogy to the case of PicX , one can study rigid sheaves. Suppose t ∈M(v)s

corresponds to a rigid sheaf E, i.e. Ext1(E,E) = 0. Then t is a reduced isolated point of
M(v). Note that in this case, 〈v, v〉 = −2. Indeed,

〈v, v〉 = −χ(E,E) = −dim Ext0(E,E)− dim Ext2(E,E)

and Ext2(E,E) ' Ext0(E,E)∗ ' k, by Serre duality and stability of E.5

The moduli space M(v)s for a (−2)-vector v is not only discrete, it in fact consists
of at most one point. Note however that in general MH(v)s may parametrize different
sheaves for different polarizations H. The beautiful argument goes back to Mukai, see
[264, Thm. 6.16].

Proposition 3.1. If 〈v, v〉 = −2, then M(v)s consists of at most one reduced point. If
M(v)s 6= ∅, then M(v)s = M(v).

5Note that for numerical considerations of this sort k = k̄ is crucial.
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Proof. Suppose E,F ∈ M(v)s. Then χ(E,F ) = −〈v(E), v(F )〉 = −〈v, v〉 = 2.
Hence, Hom(E,F ) 6= 0 or Hom(F,E) ' Ext2(E,F )∗ 6= 0. Since E and F are both stable
with the same Hilbert polynomial, this yields E ' F . The same argument also applies
when only E is stable, which proves the second assertion. �

Remark 3.2. If r > 0, then a stable rigid sheaf is automatically locally free. Indeed
such a sheaf E is torsion free and isomorphic to the kernel of a surjection E∗∗ // //S with
S of dimension zero. A quotient of this form can be deformed such that the support of S,
which is the singularity set of E, actually changes. Hence, E itself deforms non-trivially
which contradicts Ext1(E,E) = 0, see [264, Thm. 6.16] for details.

Remark 3.3. The existence of simple rigid bundles is non-trivial. Suppose v is a Mukai
vector with r > 0 and 〈v, v〉 = −2. Then there indeed exists a (usually non-unique) sheaf
E with v(E) = v such that E is rigid and simple. This result is due to Kuleshov [330].
The sheaf is automatically locally free and for ρ(X) = 1 even stable, as explained by
Mukai in [427, Prop. 3.14]. The existence is proved by first constructing such a bundle
explicitly on a special (elliptic) K3 surface and then deforming it to any K3 surface.
For generic polarization the bundle can even be assumed stable. See Section 2.5 for the
general existence statement.

3.2. Let v ∈ N(X) with 〈v, v〉 = 0. Then M(v)s is empty or smooth and two-
dimensional. The analogue of Proposition 3.1 is the following result, again due to Mukai.

Proposition 3.4. Let 〈v, v〉 = 0 and let M1 ⊂ M(v)s be a complete connected (or,
equivalently, irreducible) component. Then M1 = M(v)s = M(v).

Proof. For the detailed proof see [264, Thm. 6.1.8]. Let us here just outline the
main steps under the simplifying assumption that there exists a locally free universal
family E on M1 × X. The reader should have no problem modifying the arguments to
also cover the general case.
Consider a semistable sheaf F on X with v(F ) = v, and let us compute Rip∗(q∗F⊗E∗),

where p and q denote the two projections fromM1×X. Fibrewise one hasH i(X,F⊗E∗t ) =

Exti(Et, F ) = 0 for i = 0, 2 and F 6' Et. Since χ(Et, F ) = −〈v(Et), v(F )〉 = −〈v, v〉 = 0,
in fact H i(X,F ⊗ E∗t ) = 0 for all i whenever F 6' Et. Thus, if the point [F ] ∈ M(v)

corresponding to F is not contained in M1, then Rip∗(q∗F ⊗ E∗) = 0 for all i.
On the other hand, one shows that Rip∗(q∗F ⊗ E∗) = 0 for i = 0, 1, even when

t = [F ] ∈M1, and that

(3.1) R2p∗(q
∗F ⊗ E∗)⊗ k([F ]) // //H2(X,F ⊗ E∗t ) ' Ext2(F, F )

is surjective. The latter assertion follows from standard base change theorem [234,
III.Thm. 12.11]. For the vanishing of Rip∗(q∗F ⊗ E∗), i = 0, 1, one however needs to
use more of the proof of the base change theorem, which shows the existence (locally)
of a complex of locally free sheaves K• : 0 //K0 //K1 //K2 // . . . with Hi(K•) '
Rip∗(q

∗F ⊗ E∗). This can be combined with the observation above that the support of
the sheaves Rip∗(q∗F ⊗ E∗) is contained in the point [F ] as follows. For i = 0 one uses
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the inclusion R0p∗(q
∗F ⊗ E∗) ⊂ K0 into the torsion free sheaf K0 to conclude vanishing.

From this, one deduces a short exact sequence

0 //K0 //Ker(d1) //R1p∗(q
∗F ⊗ E∗) // 0.

However, since in the exact sequence

0 //Ker(d1) //K1 // Im(d1) // 0

the sheaf Im(d1) is torsion free and K1 is locally free, the sheaf Ker(d1) must be locally
free as well. Now use that the quotient of the locally free sheaves Ker(d1) by K0 is either
trivial or concentrated in codimension ≤ 1. Thus, R1p∗(q

∗F ⊗ E∗) = 0.
Finally, use the Grothendieck–Riemann–Roch formula (see [234, App. A])

ch(Rp∗(q
∗F ⊗ E∗)) = p∗ {ch(q∗F ⊗ E∗)q∗td(X)} = p∗

{
ch(E∗)q∗v(F )q∗

√
td(X)

}
.

The right hand side only depends on E and v(F ), whereas the left hand side is trivial for
[F ] 6∈ M1 and equals ch(R2p∗(q

∗F ⊗ E∗)) 6= 0 otherwise (use (3.1)). This contradiction
shows M(v) \M1 = ∅. �

Corollary 3.5. Assume v = (r, `, s), r ≥ 0, is primitive with 〈v, v〉 = 0. Assume that
` is effective if r = 0 or, equivalently, that (`.H) > 0. Then for generic H, the moduli
space M(v) is a K3 surface.

Proof. Indeed, by Mukai’s result (see Corollary 2.4 and Proposition 2.5) and The-
orem 2.7 one knows that M := M(v) is a smooth projective irreducible surface endowed
with an everywhere non-degenerate regular two-form σ ∈ H0(M,Ω2

M ). Hence, ωM ' OM .
Thus, it remains to prove that H1(M,O) = 0. If one works over k = C, then one could

study the correspondence H∗(X,Q) ∼− // H∗(M,Q) which is given by the cohomology
class ch(E)

√
td(X ×M), cf. Proposition 16.3.2. Or, one uses the Leray spectral sequence

Ei,j2 = H i(M, Extjp(E , E))⇒ Exti+j(E , E),

which immediately yields H1(M,O) �
� // Ext1(E , E). The vanishing of the latter is how-

ever not so easy to prove. Eventually, both arguments reduce to a statement about the
composition of certain Fourier–Mukai equivalences, see [264, Lem. 6.1.10].
From a derived category point of view one could argue as follows, cf. the proof of

Proposition 16.2.1. The functor ΦE : Db(M) ∼− // Db(X), G � // q∗(p
∗G ⊗ E) is fully

faithful, which can be shown using a criterion of Bondal and Orlov, see [252, Prop.
7.1] or Proposition 16.1.6. In fact, it is an equivalence, for X and M are smooth sur-
faces with trivial canonical bundle (use another criterion of Bondal and Orlov, see [252,
Prop. 7.6] or Lemma 16.1.7). See Proposition 16.2.3 for more details. This then al-
lows one to reverse the role of X and M and compute Ext1(E , E) via the spectral se-
quence Ei,j2 = H i(X, Extjq(E , E))⇒ Exti+j(E , E). Since H1(X,O) = H0(X, TX) = 0 and
TX ' Ext1q(E , E), this immediately shows Ext1(E , E) = 0 as required, see Proposition
16.2.1 for more details. If a universal family E is not available, replace it in the above
arguments by a twisted universal sheaf. �
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Example 3.6. In [264, Ex. 5.3.7] one finds the following example. Let X ⊂ P3 be a
general quartic and let v = (2,OX(−1), 1). Then M(v) ' X, where the isomorphism is
given by mapping a sheaf F to the point x ∈ X, the ideal sheaf Ix of which is the quotient
of a uniquely determined (up to the natural GL(3)-action) injection F �

� // O⊕3
X . In other

words, the isomorphism is given by the shift of the spherical twist Ix � // TO(Ix)[1] (cf.
Section 16.2.3). There are other examples where the two-dimensional moduli space is
isomorphic to the original K3 surface, but this is not typical.

Remark 3.7. Let us mention another result which may convey an idea of how a K3
surface X is related to the K3 surface that is given by some moduli space M(v). Assume
that X is a complex projective K3 surface and M(v) = M(v)s is two-dimensional. Then
there exists a natural isomorphism

(3.2) H2(M(v),Z) ' v⊥/Z · v

respecting the Hodge structures of weight two and the quadratic forms. Here, v⊥ ⊂
H̃(X,Z) is endowed with the Mukai pairing and the Hodge structure of K3 type given
by H2,0(X) ⊂ v⊥C . The result is due to Mukai, see [264, Thm. 6.1.14]. It is remarkable
that it holds without assuming the existence of a universal sheaf.6

For a fine two-dimensional moduli space M(v) = M(v)s with a universal family E one
deduces (3.2) from the Hodge isometry

(3.3) H̃(M(v),Z) ∼− // H̃(X,Z), α � // q∗(p
∗α.v(E))

between the full cohomologies endowed with the Mukai pairing. See also Proposition
16.3.2 for an analogous result for derived equivalent K3 surfaces. Indeed, once (3.3) has
been proved, use that under this isomorphism v is the image of [pt] ∈ H4(M(v),Z), for
the image of the skyscraper sheaf of a point [E] ∈M(v) under Db(M(v)) ' Db(X) is E,
and then use that v⊥/Z · v ' [pt]⊥/Z · [pt] ' H2(M(v),Z).
A concrete realization of (3.2) is described by Corollary 11.4.7.

3.3. After moduli spaces of dimension zero and two, Hilbert schemes are the most
accessible ones. Recall that for P ≡ n or equivalently v = (0, 0, n), the moduli space
M(v) is isomorphic to the symmetric product Sn(X), see Example 1.9. If n > 1, then
M(v)s = ∅.
Let us now consider v = (1, 0, 1 − n). Then any E ∈ M(v) is a torsion free sheaf of

rank one and hence of the form IZ ⊗ L with Z ⊂ X a subscheme of dimension zero and
L ∈ Pic(X), see Section 9.1.1. Note that a torsion free sheaf of rank one does not contain
any non-trivial subsheaf with torsion free quotient and that it is therefore automatically
stable with respect to any polarization. Using the exact sequence

0 // IZ ⊗ L //L //OZ // 0,

6Over an arbitrary algebraically closed field k, when a priori one cannot speak of the period of X
and M(v), the same proof at least shows that the two lattices NS(M(v)) and v⊥/Z · v (with v⊥ the
orthogonal complement in N(X)) are isometric.
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one finds

v = v(E) = v(IZ ⊗ L) = v(L)− v(OZ) = (1, c1(L), c2
1(L)/2 + 1− h0(OZ)).

Hence, L ' OX and h0(OZ) = n. This observation links the moduli space M(v) =

M(1, 0, 1− n) to the Hilbert scheme Hilbn(X) of subschemes Z ⊂ X of length n. Recall
that Hilbn(X) represents the functor

HilbnX : (Sch/k)o // (Sets)

that maps a k-scheme S to the set of all S-flat closed subschemes Z ⊂ S × X with
geometric fibres Zt ⊂ X of length n, cf. Section 5.2.1.

Proposition 3.8. Mapping a subscheme Z ⊂ X to its ideal sheaf IZ induces an iso-
morphism

Hilbn(X) ∼− // M(1, 0, 1− n).

Proof. Sending Z ⊂ S × X in HilbnX(S) to its ideal sheaf IZ , which defines an
element inM(1, 0, 1− n)(S), defines a functor transformation

HilbnX //M(1, 0, 1− n).

Conversely, if E ∈M(1, 0, 1−n)(S), then the spaces Hom(Et,O{t}×X) glue to an invert-
ible sheafM := Homp(E,OS×X) on S and the naturally induced map E⊗p∗M //OS×X
is fibrewise an embedding and hence E ⊗ p∗M ' IZ for some Z ∈ HilbnX(S). Since
E ∼ E ⊗ p∗M , this yields an inverse map. �

Remark 3.9. It can be shown that Hilbn(X) admits a unique (up to scaling) regular,
everywhere non-degenerate two-form σ, i.e. the one given by Corollary 2.4 is unique up to
scaling. Moreover, H0(Hilbn(X),Ω2i) is spanned by σ∧i and H0(Hilbn(X),Ω2i+1) = 0.
For k = C this is equivalent to Hilbn(X) being simply connected. See [267] or, for a
direct argument, [264, Thm. 6.24]. The result is due to Beauville [44] and to Fujiki for
n = 2.

3.4. Moduli spaces of stable sheaves on K3 surfaces were for a long time hoped to
produce higher-dimensional irreducible symplectic manifolds in abundance. A smooth
projective variety M (or a compact Kähler manifold) is called irreducible symplectic if
H0(M,Ω2

M ) is spanned by an everywhere non-degenerate two form σ, i.e. σ induces an
isomorphism TM ∼− // ΩM and is unique up to scaling, and M does not admit any non-
trivial finite étale covering. The Hodge structure of weight twoH2(M,Z) of an irreducible
symplectic (projective) manifold M plays the same central role in higher dimensions as
H2(X,Z) for K3 surfaces. It can be endowed with a natural quadratic form, the Beauville–
Bogomolov form. For a survey on irreducible symplectic manifolds see [249] and Lehn
[357].
The existence of the symplectic structure on the moduli space, due to Mukai, was a

very promising first step. However, the irreducibility, i.e. the uniqueness of the two-form
and the simply connectedness, was difficult to establish. In some cases, this could be
shown by relating a higher rank moduli space to the Hilbert scheme. For example, for
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a Mukai vector v = (r, `, s) with ` primitive it was shown (in [212] for r = 2 and by
O’Grady in [463] for r ≥ 2) that for generic H the moduli space MH(v) is an irreducible
symplectic projective manifold whose Hodge numbers equal those of the Hilbert scheme
of X of the same dimension. This was later generalized by Yoshioka in [641] to the case
that only v is primitive and allowing torsion sheaves.
However, moduli spaces of stable sheaves do not provide really new examples, which

was first observed in [248], where birational irreducible symplectic manifolds are shown
to be always deformation equivalent.

Theorem 3.10. Suppose v = (r, `, s) is a primitive Mukai vector and H is generic.
Assume r > 0 (or r = 0 and (`.H) > 0) and 〈v, v〉 ≥ −2. Then MH(v) is an irreducible
symplectic projective manifold deformation equivalent to Hilb〈v,v〉+2(X). Moreover, if
〈v, v〉 > 0, then there exists a Hodge isometry H2(MH(v),Z) ' v⊥.

The deformation equivalence to the Hilbert scheme was proved in [248, Cor. 4.8] for
v1 primitive and later by Yoshioka in [641, App. 8] in general. For r = 0 see [643, Cor.
3.5]. For primitive v and generic H it was computed explicitly for MH(v) by O’Grady
[463] and Yoshioka [640].
We cannot resist to state here Göttsche’s formulae expressing the Betti and Euler

numbers of all Hilbn(X) (and then for all moduli spaces MH(v) covered by Theorem
3.10) simultaneously, using the corresponding generating series:

∞∑
n=0

4n∑
i=0

bi(Hilbn(X))ti−2nqn =

( ∞∏
m=1

(1− t−2qm)(1− qm)22(1− t2qm)

)−1

∞∑
n=0

e(Hilbn(X))qn =

( ∞∏
m=1

(1− qm)24

)−1

.

A similar formula exists for the Hodge numbers. We refer to Göttsche’s original article
[210] for comments and proofs.

References and further reading:
The Picard scheme and moduli spaces of stable sheaves also exist for varieties over non-

algebraically closed fields (after étale sheafification if one wants to have a chance to represent the
functor). The construction is compatible with base field extensions.

There is one other series of examples of irreducible symplectic projective manifolds, also dis-
covered by Beauville. They are obtained as the fibre of the summation Hilbn+1(A) //A, where
A is any abelian surface. For n = 1 this gives back the Kummer surface associated with A.

O’Grady studied moduli spaces MH(v) with non-primitive v. In one case he could show that
although the moduli space is singular, it can be resolved symplectically. This indeed leads to an
example of an irreducible symplectic projective manifold of dimension 10, which is truly new, i.e.
topologically different from Hilb5(X) and generalized Kummer varieties. By work of Kaledin,
Lehn, and Sorger [279] and by Choy and Kiem [116] we know that O’Grady’s example is the
only one that admits a symplectic resolution. This follows almost immediately from the result
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mentioned in Remark 2.6. In [279] one also finds a generalization of Mukai’s irreducibility result
to the case of non-primitive vectors: If M(v) has a connected component parametrizing purely
stable sheaves only, then it equals this component. Singular two-dimensional moduli spaces are
studied in great detail [479].

Two-dimensional fine moduli spaces of stable sheaves on a K3 surface X are also called Fourier–
Mukai partners of X, because the Fourier–Mukai transform

Db(X) //Db(M), F
� // p∗(q

∗F ⊗ E)

defines an equivalence of triangulated categories. In fact, all Fourier–Mukai partners are of this
form. The number of isomorphism classes of Fourier–Mukai partners of a fixed K3 surface X is
finite, but with X varying it is unbounded. See the articles by Hosono et al [245] and Stellari
[572] and the discussion in Chapter 16.

A finer study of moduli spaces of (Bridgeland stable) complexes on K3 surfaces has just begun.
See [264] for some comments and references and the recent preprints [40, 41, 637].

Questions and open problems:
It is still an open question whether moduli spaces of stable sheaves on a fixed K3 surface,

maybe with additional conditions on the prescribed Mukai vectors, are derived equivalent as
soon as their dimensions coincide. This is even open for cases where the moduli spaces are known
to be birational (except for dimension two and four).

The link between the Brauer groups of a K3 surface and of a non-fine moduli space as expressed
by (2.1) has only been proved using Hodge theory and so is a priori only valid for complex
projective K3 surfaces. Is there a purely algebraic argument for it?



CHAPTER 11

Elliptic K3 surfaces

The literature on elliptic surfaces is vast. Elliptic surfaces play a central role, both
in complex geometry and in arithmetic. We restrict ourselves to the case of elliptic K3
surfaces and do not hesitate to take short cuts whenever possible. The discussion of the
Jacobian fibration of an elliptic K3 surface from the point of view of moduli spaces of
sheaves on K3 surfaces is not quite standard. Popular sources for elliptic surfaces include,
among many others, [32, 131, 184, 373, 412].

1. Singular fibres

We shall begin with the definition of an elliptic K3 surface and a classical existence
result. The main part of this section reviews Kodaira’s classification of singular fibres of
elliptic fibrations of K3 surfaces.

1.1. In the following X is an algebraic K3 surface over an arbitrary algebraically
closed field k. To simplify, we shall exclude the cases char(k) = 2, 3 from the start. Most
of what is said holds verbatim for non-projective complex K3 surfaces. We will explicitly
state when this is not the case.

Definition 1.1. An elliptic K3 surface is a K3 surface X together with a surjective
morphism π : X //P1 such that the geometric generic fibre is a smooth integral curve of
genus one or, equivalently, if there exists a closed point t ∈ P1 such that Xt is a smooth
integral curve of genus one.

The morphism π : X //P1 itself is called an elliptic fibration of the K3 surface X and
it is automatically flat (use [234, II.Prop. 9.7]). In particular, for the arithmetic genus
of all fibres Xt ⊂ X one has pa(Xt) = 1 − χ(OXt) = 1. We shall abusively speak of the
smooth fibres of π : X //P1 as elliptic curves, although we do not assume the existence
of a (distinguished) section and the fibres, therefore, come without a distinguished origin.

Example 1.2. i) Let X be the Kummer surface associated with the product of two
elliptic curves E1 ×E2, see Example 1.1.3. Then the two projections induce two natural
elliptic fibrations πi : X //Ei/± ' P1. In fact, X has many more, as explained by Shioda
and Inose [565, Thm. 1].
ii) Consider a general elliptic pencil of cubics in P2 as an elliptic fibration π̄ : P̃2 //P1

of the blow-up of the nine fixed points P̃2 //P2. To have a concrete example in mind,
consider the Hesse (or Dwork) pencil x3

0 + x3
1 + x3

2 − 3λ · x0x1x2.

Thanks to Matthias Schütt for detailed comments on this chapter.

207
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A double cover X // P̃2 branched over the union Ft0 t Ft1 of two smooth fibres of
π̄ describes a K3 surface, which can also be obtained via base change with respect to
a double cover P1 //P1 branched over t0, t1 ∈ P1 or as the minimal resolution of the
double plane branched along the sextic described by the union Ft0 ∪ Ft1 ⊂ P2.
iii) The Fermat quartic X ⊂ P3, x3

0 + . . .+ x4
3 = 0, admits many elliptic fibrations, see

Example 2.3.11.

The generic K3 surface is not elliptic but elliptic ones are rather frequent. In fact,
the following result for k = C combined with Proposition 7.1.3 implies that elliptic K3
surfaces are parametrized by a dense codimension one subset in the moduli space of all
K3 surfaces.

Proposition 1.3. Let X be a K3 surface over an algebraically closed field k with
char(k) 6= 2, 3.

(i) Then X admits an elliptic fibration if and only if there exists a non-trivial line
bundle L with (L)2 = 0.

(ii) If ρ(X) ≥ 5, then X admits an elliptic fibration.
(iii) The surface X admits at most finitely many non-isomorphic elliptic fibrations.

Proof. For the first part see Remark 8.2.13. In order to prove the second, use the
consequence of the Hasse–Minkowski theorem saying that any indefinite form of rank
at least five represents zero, see [544, IV.3.2]. Then apply (i). For (iii) see Corollary
8.4.6. �

As we are only considering algebraic K3 surfaces in this chapter, an elliptic K3 surface
X satisfies ρ(X) ≥ 2. A K3 surface with 2 ≤ ρ(X) < 5 may or may not admit an elliptic
fibration. For non-projective complex K3 surfaces (ii) and (iii) above may fail.

Remark 1.4. Similarly, a K3 surface X admits an elliptic fibration with a section if
there exists an embedding U �

� // NS(X). For complex projective K3 surfaces this is the
case, e.g. if ρ(X) ≥ 12, see Corollary 14.3.8. As it turns out, elliptic K3 surfaces (with
a section) are dense in the moduli space of all complex (not necessarily algebraic) K3
surfaces and also in the moduli space of polarized K3 surfaces, see Remark 14.3.9.

1.2. Before passing to the classification of singular fibres of elliptic fibrations of K3
surfaces, let us state a few general observations.

Remark 1.5. i) If π : X //C is a surjective morphism from a K3 surface X onto a
curve C, then C is rational. So C ' P1 if C is smooth. Indeed, after Stein factorization,
we may assume π∗OX ' OC and C smooth. Then the Leray spectral sequence yields an
injection H1(C,OC) �

� // H1(X,OX) = 0 and hence C ' P1.
ii) If π : X //P1 is an elliptic fibration of a K3 surface, then not all fibres of π can be

smooth. Indeed, if π were smooth, then R1π∗Z ' Z2 (as P1 is simply connected) and
hence Leray spectral sequence would yield the contradiction H1(X,Z) ' Z2. Here we
assume that X is a complex K3 surface, but the same argument works in the algebraic
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context using étale cohomology. Alternatively, one could use Leray spectral sequence to
deduce the contradiction e(X) = e(P1) · e(Xt) = 0.
iii) Any smooth irreducible fibre of an arbitrary surjective morphism π : X //P1 from

a K3 surface X is automatically an elliptic curve. Indeed, for a smooth fibre Xt, t ∈ P1,
one has O(Xt) ' π∗O(1) and hence O(Xt)|Xt ' OXt . Therefore, by adjunction formula
ωXt ' OXt .
iv) An arbitrary surjective morphism π : X //P1 has a geometrically integral generic

fibre if and only if OP1 ' π∗OX . In this case, also the closed fibres Xt are integral for
t ∈ P1 in a non-empty Zariski open subset, see [27, Chap. 7]. In characteristic zero, the
generic fibre is smooth by Bertini (see [234, III.Cor. 10.9]) and, therefore, π : X //P1

is an elliptic fibration. This is still true in positive characteristic 6= 2, 3. Indeed, by
a result of Tate the geometric generic fibre is either smooth or a rational curve with
one cusp. Moreover, the latter cannot occur for char(k) 6= 2, 3. See [27, Thm. 7.18] or
[438, 530, 587] and the proof of Proposition 2.3.10.

The next result holds true more generally (modified appropriately) for arbitrary (even
non-projective complex) elliptic surfaces. The first part is known as the canonical bundle
formula (see e.g. [32, V.12] or [183, Thm. 7.15]) and an important consequence of it
should in the general context be read as χ(OX) = deg(R1π∗OX)∗.

Proposition 1.6. Let π : X //P1 be an elliptic K3 surface.
(i) Then π∗OX ' OP1 and R1π∗OX ' OP1(−2).
(ii) All fibres Xt, t ∈ P1, are connected.
(iii) No fibre is multiple (but possibly non-reduced).
(iv) (Zariski’s lemma) If Xt =

∑`
i=1miCi with Ci integral, then (Ci.Xt) = 0. Moreover,

(
∑
niCi)

2 ≤ 0 for all choices ni ∈ Z and equality holds if and only if n1/m1 = . . . =

n`/m`.

Proof. Consider the short exact sequence 0 //O(−Xt) //OX //OXt // 0 and
the induced exact sequences

0 // k ' H0(X,OX) //H0(Xt,OXt) //H1(X,O(−Xt)) //H1(X,OX) = 0

0 = H1(X,OX) //H1(Xt,OXt) //H2(X,O(−Xt)) //H2(X,OX) ' k // 0.

The generic fibre Xt is an elliptic curve and thus h0(Xt,OXt) = h1(Xt,OXt) = 1. There-
fore, H1(X,O(−Xt)) = 0 and H2(X,O(−Xt)) ' k2. But H i(X,O(−Xt)) is independent
of t which in turn implies h0(Xt,OXt) = h1(Xt,OXt) = 1 for all t ∈ P1. This is enough to
conclude that the natural map OP1 // π∗OX is an isomorphism and, using [234, III.Thm.
12.11], that R1π∗OX is invertible. Write R1π∗OX ' O(d) and use Leray spectral sequence
to show k ' H2(X,OX) ' H1(P1, R1π∗OX) and hence d = −2.1

1Alternatively, one can use relative (Grothendieck–Verdier) duality to conclude. Indeed, taking coho-
mology in degree −2 of Rπ∗ωX [dim(X)] ' (Rπ∗O)∗⊗ωP1 [dim(P1)] yields π∗OX ' (R1π∗OX)∗⊗OP1(−2).
More concretely, the fibrewise trace map H1(Xt, ωXt)

∼− // k glues to an isomorphism R1π∗ωπ
∼− // OP1 ,

but ωπ ' ωX ⊗ π∗ω∗P1 ' π∗O(2). This approach is applicable to general elliptic surfaces.
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Stein factorization [234, III.Cor. 11.5] yields connectedness of all fibres. This could also
be concluded directly from Zariski’s connectedness principle, see [234, III.Exer. 11.4] or
[373, Thm. 5.3.15], or even more directly from h0(Xt,OXt) = 1.
Suppose a fibre Xt is of the form mC, m ≥ 2 (with C possibly reducible). Then use

0 //O((m− 1)C) //O(Xt) //O(Xt)|C // 0,

O(Xt)|C ' OC , h0(X,O(Xt)) = h0(P1,O(1)) = 2, and the fact that the composition
H0(P1,O(1)) //H0(X,O(Xt)) //H0(C,O) is not zero, to deduce h0(X,O((m−1)C)) =

1. But by Riemann–Roch χ(X,O((m−1)C)) = 2, as (C)2 = (1/m)2(Xt)
2 = 0, and hence

h0(X,O((m − 1)C)) ≥ 2, for h2(X,O((m − 1)C)) = 0 for m ≥ 2. Contradiction. (See
also Remark 2.3.13 for a slightly different proof.)
For Zariski’s lemma use that for any fibre O(Xt)|Xt ' OXt . So, O(Xt)|Ci ' OCi and

thus (Ci.Xt) = 0. The second assertion can be rephrased by saying that the intersection
form is semi-negative definite on

⊕
Z[Ci] with radical

∑
mi[Ci]. The first part can be

seen as a consequence of the Hodge index theorem, see Section 1.2.3. To prove the full
statement, we introduce the notation cij := (Ci.Cj) and aij := mimjcij . Clearly, aij ≥ 0

for i 6= j and
∑

j aij = (miCi.Xt) = 0 for fixed i and similarly
∑

i aij = 0 for fixed j.
If now C =

∑
niCi and n̄i := ni/mi, then

(C)2 =
∑

ninjcij =
∑

n̄in̄jaij = −
∑
i<j

(n̄i − n̄j)2aij ≤ 0.

This shows again semi-negativity of the intersection form and, moreover, using connec-
tivity of Xt that (C)2 < 0 except for n̄1 = . . . = n̄`. �

Combined with Section 2.1.3 this yields

Corollary 1.7. Either a fibre Xt of an elliptic fibration X //P1 is irreducible (and
in fact integral) or a curve of the form Xt =

∑`
i=1miCi with (−2)-curves Ci ' P1 and

(m1, . . . ,m`) = (1).
Moreover, if ` > 2, then (Ci.Cj) ≤ 1 for all i, j, whereas (C1.C2) = 2 for ` = 2.

Proof. The corollary can also be deduced directly from Section 2.1.4. Indeed, if
Xt = C + C ′, then 0 //O(C) //O(Xt) //O(Xt)|C′ // 0 shows h0(X,O(C)) = 1.
For the last part observe that (Ci + Cj)

2 < 0 for ` > 2, which yields the result. For
` = 2, the equation (m1C1+m2C2)2 = 0 has up to scaling only one solution: m1 = m2 = 1

and (C1.C2) = 2. �

One can similarly show that for ` > 3 there are no cycles of length three as then
(C1 +C2 +C3)2 < 0. But this can also be read off from the description of the dual graphs
to be discussed next.

1.3. The following table lists all possible fibres of an elliptic fibration of a K3 surface.
See Theorem 1.9 for the precise statement.
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I0 smooth elliptic Ã0 e = 0

I1 rational curve with DP Ã0 e = 1

II rational curve with cusp Ã0 e = 2

III Ã1 e = 3

I2 Ã1 e = 2

IV Ã2 1
1

1
e = 4

In≥3 Ãn−1
1 1

e = n

I∗n≥0 . . . D̃n+4 2 2 2 2
1

1

1

1

e = n+ 6

II∗ Ẽ8
2 4 6

3

5 4 3 2 1
e = 10

III∗ Ẽ7
1 2 3 4

2

3 2 1
e = 9

IV∗ Ẽ6
1 2 3 2 1

2

1

e = 8

The first step in the classification of the singular fibres is pure lattice theory and
describes the dual graph of the singular fibres. Recall that the vertices of the dual graph
of a curve

∑
miCi correspond to the irreducible components Ci and two vertices Ci, Cj

are connected by (Ci.Cj) edges. Note that the dual graph a priori does not take into
account the multiplicities mi.
For the following recall the definition of extended Dynkin diagrams and, in particular,

that a graph of type Ãn, D̃n and Ẽn has n+ 1 vertices. See Section 14.0.3 and the table
below.

Corollary 1.8. Let Xt =
∑
miCi be a fibre of an elliptic fibration π : X //P1 of a

K3 surface. Then the dual graph of Xt is one of the extended Dynkin diagrams Ãn, D̃n,
Ẽ6, Ẽ7, or Ẽ8.

Proof. This is a consequence of a general classification result, see [32, I.2] for the
precise statement and references or [412, I.6] or Section 14.0.3. It can be applied once
the fibre Xt is known to be connected and two components Ci, Cj intersect in at most one
point (and there transversally). The case of two irreducible components, i.e. Xt = C1+C2

with (C1.C2) = 2, has to be dealt with separately. �
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The dual graph of Xt does not always determine the isomorphism type of the curve
Xt. But this only happens for fibres with up to five ireducible components. Those can
be described explicitly.

• Irreducible fibres Xt are either smooth elliptic or rational curves with one singular
point which can be an ordinary double point or a cusp. This follows immediately from
pa(Xt) = 1. Note that the dual graph is in all three cases Ã0 (although this notation is
not commonly used). The three cases are called I0, I1, resp. II.
• Two irreducible components: If Xt has two irreducible components, then by Corollary

1.7 one knows Xt = C1 +C2 with C1 and C2 meeting either in one point with multiplicity
two (type III) or in two points with multiplicity one (type I2). The two types are not
distinguished by their dual graph which is Ã1 in both cases.
• Three irreducible components: If Xt has three irreducible components, then Xt =

C1 + C2 + C3 and any two of the curves Ci meet transversally in one point. Moreover,
either all three curves meet in the same point (type IV) or the intersection points are
all different (type I3). Note that again the dual graph, which is Ã2, cannot distinguish
between the two types.
• Five irreducible components: For type I∗0 the isomorphism type is defined by the

choice of the four points on the central component. The graph for this one-parameter
family of choices is always D̃4.
In particular, if Xt =

∑
miCi is a singular fibre, then any two of the curves Ci meet

transversally in at most one point and no three meet in a single point with the exception
of the fibres of type I2, III, and IV.

1.4. The next result was proved by Kodaira for complex (also non-projective) sur-
faces in [305, Thm. 6.2] and was later confirmed by work of Néron and Tate in positive
characteristic, see [445, 590].

Theorem 1.9. The isomorphism types of the singular fibres Xt =
∑
miCi of an elliptic

K3 surface π : X //P1 are classified by the table above. The vertices are labelled by the
coefficients mi and the last column gives the topological Euler number.

Proof. It remains to determine the multiplicities mi of the components of a singular
fibre Xt =

∑
miCi. Since the radical of the intersection form on

⊕
Z[Ci] is spanned by∑

mi[Ci] and no fibre is multiple, it suffices to prove that with the multiplicities mi as
given in the theorem one indeed has (

∑
miCi)

2 = 0. This is straightforward to check. �

Remark 1.10. Observe that if one removes a vertex of multiplicity one in one of
the extended Dynkin graphs, one obtains a usual Dynkin graph of type An, Dn, or En,
respectively. Also, using Zariski’s lemma and the known bounds for the Picard number
ρ(X) ≤ 20 and ≤ 22 (depending on the characteristic), one can bound n in the fibres of
type In and I∗n.

Example 1.11. i) Consider the natural elliptic fibration π : X //E1/± ' P1 of the
Kummer surface X associated with the product of two elliptic curves E1 × E2. The



2. WEIERSTRASS EQUATION 213

only singular fibres are over images of the four two-torsion points. The fibre of (E1 ×
E2)/± //E1/± over such a point is E2/± ' P1 and contains four of the sixteen singular
points of (E1 × E2)/±, which have to be blown up when passing to X. Hence, X //P1

has four singular fibres, all four are of type I∗0. Shioda and Inose [565, Thm. 1] describe
elliptic fibrations on X with other types of elliptic fibres, e.g. II∗ and IV∗.
ii) Let us come back to Example 1.2, ii) and consider a pencil of cubics in P2 spanned

by a smooth cubic C and another cubic D. The isomorphism type of the fibres Xt of the
elliptic fibration P̃2 //P1 (and then also of X //P1) corresponding to D depends on the
singularities of D and how D and C intersect. Suppose D intersects C transversally (in
nine points), then for D integral the fibre F is of type I0, I1, or II. If D is allowed to
have two or three components, one can realize I2 and III or I3 and IV, respectively.
For the Hesse pencil x3

0 +x3
1 +x3

2− 3λ ·x0x1x2 the fibration P̃2 //P1 has four singular
fibres, in particular for λ =∞ the fibre is easily seen to be the union of three lines. The
same holds for λ = 1, ζ3, ζ

2
3 . All other fibres are smooth. Hence, X //P1 is an elliptic

K3 surface with eight singular fibres, all of type I3.

Remark 1.12. The possible configurations of singular fibres is restricted by the global
topology of the K3 surface. Let us demonstrate this for K3 surfaces over C in terms of
the classical topology. Using the additivity and multiplicativity of the topological Euler
number one finds

(1.1) 24 = e(X) =
∑

e(Xt),

where the sum is over all singular fibres (in fact e(Xt) = 0 for smooth Xt). The Euler
number e(Xt) only depends on the type I1, II, etc., which is recorded in the above table.
For example, if Xt is of type III∗, then e(Xt) = e(III∗) = 9. In particular, there can be
at most two fibres of type III∗.
The generic elliptic K3 surfaces has only singular fibres of type I1 (see [184, I.1.4]) and

exactly 24 of those: 24 = 24 · e(I1). In Example 1.11, i) we found 24 = 4 · e(I∗0).
In [414] Miranda and Persson study elliptic K3 surfaces (with a section) with fibres of

type Ini only. (These fibres are the only semistable fibres and so elliptic K3 surfaces of
this type are called semistable.) Now, combine the Shioda–Tate formula, see Corollary
3.4, with equation (1.1), which in this case reads

∑
ni = 24. One finds that there are at

least six singular fibres. It turns out that there are 1242 tuples (n1, . . . , ns), s ≥ 6, with∑
ni = 24 and all except for 135 can indeed be realized. See also [412, X.4].

2. Weierstrass equation

Every elliptic surface with a section can be reconstructed from its Weierstrass model.
We present the beautiful theory for K3 surfaces only. For details and the general situation
the reader is referred to [280, 411].
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2.1. Let us briefly recall some of the standard facts on elliptic curves. An elliptic
curve is by definition a smooth connected projective curve E of genus one over a (not
necessarily algebraically closed) field K with E(K) 6= ∅ or, equivalently, a smooth pro-
jective curve E over K which is isomorphic to a curve in P2

K defined by a cubic equation
which on the affine chart z 6= 0 takes the form

(2.1) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

See e.g. [373, Cor. 7.4.5]. Note that E given by (2.1) has a distinguished K-rational
point [0 : 1 : 0] which is taken as the origin. Conversely, for any p ∈ E(K) the line bundle
O(3p) is very ample and defines an embedding E �

� // P2
K .

If char(K) 6= 2, 3, which is assumed throughout, a linear coordinate change transforms
(2.1) into the Weierstrass equation

(2.2) y2 = x3 + a4x+ a6

or more commonly into

(2.3) y2 = 4x3 − g2x− g3.

The pair (g2, g3) is well-defined up to the action of (λ4, λ6), λ ∈ K∗. The discriminant
is in this notation defined as

∆(E) := −16(4a3
4 + 27a2

6) = g3
2 − 27g2

3.

It is independent up to scaling by 12th powers in K. An equation of the form (2.2) defines
a smooth curve if and only if ∆(E) 6= 0. For example, y2 = x3 and y2 = x3 − 3x + 2

define rational curves with one cusp and one ordinary double point, respectively.
The j-invariant of E is defined as

j(E) = −1728 · (4a4)3

∆(E)
= 1728 · g3

2

∆(E)
,

which indeed only depends on E and not on the particular Weierstrass equation. Con-
versely, if K is algebraically closed or, more precisely, if (a4/a

′
4)1/4, (a6/a

′
6)1/6 ∈ K, then

j(E) = j(E′) implies E ' E′, see [566, III.1].
Consider a field K with a discrete valuation v. Then (2.1) for an elliptic curve E over

K is called minimal if v(ai) ≥ 0 for all i and v(∆(E)) is minimal. Thus, if v(ai) ≥ 0 and
v(∆(E)) < 12 (or v(g2) < 4 or v(g3) < 6), then the equation is minimal. See [566, VII.1]
for a converse. For K = k(t) and an equation y2 = 4x3− g2x− g3 these assumptions say
that g2, g3 ∈ k[t] and ∆(E) ∈ k[t] has order of vanishing < 12 (or the analogous condition
for g2 or g3). The minimality condition eventually translates into the Weierstrass fibration
associated with an elliptic K3 surface having only simple singularities, see below.

2.2. Consider an elliptic K3 surface π : X //P1. A section of π is a curve C0 ⊂ X
with π|C0 : C0

∼− // P1. Thus, a section meets every fibre transversally. In particular, it
meets a singular fibre Xt =

∑
miCi in exactly one of the irreducible components Ci0

(and in a smooth point!) for which, moreover, mi0 = 1. Note that then by Kodaira’s
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classification of singular fibres the reduced curve
∑

i 6=i0 Ci is an ADE curve (i.e. its dual
graph is of ADE type) which therefore can be contracted to a simple surface singularity.2

Let us assume that a section of π exists and let us fix one C0 ⊂ X. The exact sequence
0 //OX //O(C0) //OC0(−2) // 0 induces the long exact sequence

0 //OP1 // π∗O(C0) //OP1(−2) //R1π∗OX // 0,

where the vanishing R1π∗O(C0) = 0 is deduced from the corresponding vanishing on the
fibres. Note that π∗O(C0) is a line bundle, as h0(Xt,O(p)) = 1 for any point p ∈ Xt in
an arbitrary fibre Xt. (It is in fact enough to test smooth fibres, as π∗O(C0) is clearly
torsion free.) Thus, the cokernel of OP1 // π∗O(C0) is torsion, but also contained in the
torsion free OP1(−2). Hence,

OP1 ' π∗O(C0) and OP1(−2) ' R1π∗OX

(the latter confirming (i) in Proposition 1.6). Similarly, using the short exact sequences

0 //O(C0) //O(2C0) //OC0(−4) // 0

and
0 //O(2C0) //O(3C0) //OC0(−6) // 0

one proves

π∗O(2C0) ' OP1(−4)⊕OP1 and π∗O(3C0) ' OP1(−4)⊕OP1(−6)⊕OP1 =: F.

Thus, the linear system O(3C0)|Xt on the fibres Xt (or rather the natural surjection
π∗F = π∗π∗O(3C0) // //O(3C0)) defines a morphism

ϕ : X //P(F ∗)

with ϕ∗O(1) ' Op(3C0), which is a closed embedding of the smooth fibres and contracts
all components of singular fibres Xt that are not met by C0. (It is not difficult to see that
O(3C0) is indeed base point free on all fibres.) The image X̄ is the Weierstrass model of
the elliptic surface X:

X

π
%%

ϕ // // X̄ := ϕ(X) �
� // P(F ∗)

p
ww

P1

The surface X̄ has at most simple singularities and is indeed just the contraction of all
ADE curves obtained by removing the unique component in every singular fibre met by
the section C0. The fibres of X̄ //P1 are either smooth elliptic or irreducible rational
with one cusp or one ordinary double point. Fibrations of this type with a section are
called Weierstrass fibrations.
In order to determine O(X̄) of the hypersurface X̄ ⊂ P(F ∗), use the adjunction formula
OX̄ ' ωX̄ ' (ωP(F ∗)⊗O(X̄))|X̄ and the relative Euler sequence expressing ωP(F ∗) to show

2...also called rational double point, du Val, canonical, or Kleinian singularity, cf. Section 14.0.3.



216 11. ELLIPTIC K3 SURFACES

O(X̄) ' Op(3) ⊗ p∗OP1(12). Thus, X̄ ⊂ P(F ∗) is described by one equation which can
be viewed as a section

f ∈ H0(P(F ∗),Op(3)⊗ p∗OP1(12)).

Now use H0(P(F ∗),Op(3) ⊗ p∗OP1(12)) ' H0(P1, S3(F ) ⊗ OP1(12)) and view x, y, and
z as the local coordinates of the direct summands OP1(−4), OP1(−6), and OP1 of F .
In this sense, a Weierstrass equation (2.3) y2z = 4x3 − g2xz

2 − g3z
3 with coefficients

(2.4) g2 ∈ H0(P1,OP1(8)) and g3 ∈ H0(P1,OP1(12))

can be seen as a section of p∗Op(3) ⊗ OP1(12). For example, g2 is here interpreted as a
section of OP1(8) = [xz2]O(−4)P1 ⊗ OP1(12). The discriminant in this situation is the
non-trivial section

∆ := g3
2 − 27g2

3 ∈ H0(P1,OP1(24)).

Applying the standard coordinate changes, one can always reduce to the situation that f
has this form and (g2, g3) is unique up to passing to (λ4g2, λ

6g3), λ ∈ k∗. Moreover, since
X̄ has at worst simple singularities, there is no point of P1 in which g2 vanishes of order
≥ 4 and g3 vanishes of order ≥ 6. See e.g. [412, III.3] or [280] for details. The proof
relies on a detailed analysis of singularities of the double cover in Remark 2.2 below.

Remark 2.1. The construction can be reversed. Suppose g2 and g3 as in (2.4) with
∆ 6= 0 are given such that for the vanishing order one has min{3v(g2), 2v(g3)} < 12 in
every point of P1. Then the Weierstrass equation (2.3) defines a surface X̄ ⊂ P(F ∗)

with at worst simple singularities. Its minimal desingularization X // X̄ is a K3 surface
which admits an elliptic fibration given by π : X // X̄ //P1. It comes with a section C0

obtained by the intersection with P(OP1(6)) ⊂ P(F ∗). See [577, II.4] for more details.

Remark 2.2. Similarly one studies the surjection π∗π∗O(2C0) // //O(2C0) which gives
rise to a cover X //F4 = P(OP1(4) ⊕ OP1) of degree two. See [412, III.2] for the
description of the branching curve.

It is sometimes convenient to describe an elliptic K3 surface not in terms of its Weier-
strass equation, but, for example, by an equation of the form y2 = x(x2 +ax+ b). In this
case a ∈ H0(P1,O(4)) and b ∈ H0(P1,O(8)).

2.3. To relate the discussions in the previous two sections, let us now consider the
generic fibre of an elliptic fibration π : X //P1:

E := Xη = π−1(η).

Then E is a smooth curve of genus one over K := k(η) ' k(t). Moreover, π admits a
section if and only if E(K) 6= ∅. More precisely, E(K) is naturally identified with the set
of sections of π, cf. Section 3.2 below.
Suppose a section C0 of π is fixed and f ∈ H0(P(F ∗),Op(3)⊗p∗OP1(12)) is an induced

Weierstrass equation. In order to use f to describe the generic fibre E one needs first to fix
a point in P1 or rather a section 0 6= s ∈ H0(P1,OP1(1)) defining a local parameter at this
point. Then s−8g2, s−12g3, and s−24∆ are contained in the function field K. Moreover,
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the Weierstrass equation for E obtained in this way is minimal for the valuation of K
given by the chosen point in P1. Note that j(E) can be directly read off from g2 ∈
H0(P1,OP1(8)) and ∆ ∈ H0(P1,OP1(24)) by interpreting g3

2/∆ as a rational function.
Typically the isomorphism type of the smooth fibres of an elliptic K3 surface X //P1

varies. Whether this is indeed the case is encoded by the j-invariant. The smooth fibres
of π are all isomorphic if and only if j(E) ∈ k. In this case, π : X //P1 is called isotrivial.

Example 2.3. i) The Kummer surface associated with the product of two elliptic
curves E1 ×E2 comes with a natural elliptic fibration π : X //P1 = E1/±, see Example
1.11, i). Clearly, this family is isotrivial, as all smooth fibres are isomorphic to E2. In
particular, the j-invariant of the generic fibre E overK = k(η) ' k(t) is j(E) = j(E2) ∈ k
and so the two elliptic curves E and E2×kK overK have the same j-invariant but become
isomorphic only after passage to an appropriate extension of K, namely, k(E1)/K.
After a coordinate change on P1, one can assume that E1

//E1/± ' P1 ramifies
over 0, 1,∞, and λ. Up to scaling, the discriminant function is the polynomial ∆ =

(z0z1(z0 − z1)(z0 − λz1))6.
ii) Consider an elliptic K3 surface associated with the Hesse pencil x3

0 + x3
1 + x3

2 − 3λ ·
x0x1x2 as in Example 1.2, ii). Then depending on the quadratic base change P1 //P1,
t = [t0 : t1] � // [λ(t) : 1] the j-invariant is given by

j(t) = 27

(
λ(t)(λ(t)3 + 8)

λ(t)3 − 1

)3

.

Here, [λ(t) : 1] has to be chosen such that ramification does not take place over∞, 1, ζ3, or
ζ2

3 . Computing the Weierstrass equation for this example is actually a little cumbersome,
but knowing that there are eight fibres of type I3 (see Example 1.11, ii)) is enough to
write down ∆ (depending on the quadratic base change). In any case, the Hesse pencil
induces an elliptic K3 surface that is not isotrivial.

2.4. Since ∆ ∈ H0(P1,OP1(24)), an ellliptic fibration π : X //P1 of a K3 surface X
has 24 singular fibres if counted properly. For example, for the Kummer surface associated
with E1 × E2 we have seen that there are only four singular fibres, which are all of type
I∗0, but each one has to be counted with multiplicity six. This is a general phenomenon.
If Xt is a singular fibre of type I∗0, then ∆ vanishes of order six at t. More generally, the
order of vanishing δ of ∆ at t is determined by the type of Xt:

I0 I1 II III IV In≥2 I∗n II∗ III∗ IV∗

δ 0 1 2 3 4 n n+ 6 10 9 8

See [412, IV.3] for proofs. One obviously has

(2.5)
∑
t∈P1

δt = 24,



218 11. ELLIPTIC K3 SURFACES

which should be seen as the analogue of (1.1). In fact, comparing the above table with
the one in Theorem 1.9 reveals that

e(Xt) = δ(t).

This can be seen as a consequence of the local versions of the formulae χ(OX) =

−deg(R1π∗OX) and e(X) = 12 · χ(OX) = degO(24).
It turns out that the type of a fibre Xt0 together with the value j(t0) of the j-function

and the multiplicity with which it is attained determine the germ of the family X //P1

near Xt0 , see [412, VI.1], where one also finds a description of the monodromy groups
around these fibres.

2.5. Let π : X //P1 be an elliptic fibration with a section C0 ⊂ X. Then all smooth
fibres Xt come with a distinguished point and hence a group structure. This still holds
for the smooth part of a singular fibre. More precisely, if Xt =

∑
miCi is an arbitrary

fibre and X ′t ⊂ Xt denotes the open set of smooth points, then X ′t has a natural group
structure. Note that all components Ci with mi > 1 have to be completely discarded
when passing to X ′t. The idea for the construction is to use local (complex, étale, etc.,
depending on the situation) sections through smooth points x, y of a fibre Xt and add
the two sections on the generic smooth fibre. The resulting section then intersects Xt in
a point x + y, which has to be smooth again. If X ′ ⊂ X is the open set of π-smooth
points, then the fibres of X ′ //P1 are the X ′t and the construction gives rise to a group
scheme structure on X ′ over P1.
For example, for a fibre of type I1, i.e. a nodal rational curve, or a fibre of type II, i.e. a

rational curve with a cusp, one finds the multiplicative group Gm and the additive group
Ga, respectively. It coincides with the classical group structure on the smooth points of
a singular cubic in P2.
Note that the fibre X ′t might be disconnected. Its connected component (X ′t)

o, con-
taining the intersection with C0 and the group of components X ′t/(X ′t)o, can be read off
from Kodaira’s table in Theorem 1.9.

Corollary 2.4. For the smooth fibres of the π-smooth part X ′ //P1 one of the following
holds:

(i) (X ′t)
o = Xt is a smooth elliptic curve for type I0 or

(ii) (Xt)
o ' Gm and X ′t/(X ′t)o ' Z/nZ for type In≥1 or

(iii) (Xt)
o ' Ga for all other types with X ′t/(X ′t)o ' Z/2Z for type III and III∗, X ′t/(X ′t)o '

(Z/2Z)2 for type I∗n, X ′t/(X ′t)o ' Z/3Z for type IV and IV∗, and X ′t/(X ′t)o ' {1}
for type II and II∗. �

Remark 2.5. i) One could similarly treat the Weierstrass model X̄ //P1. The fibres
of the resulting smooth fibration X̄ ′ //P1 are either smooth elliptic or of isomorphism
type Gm or Ga. In fact, X̄ ′t ' (X ′t)

o.
ii) The π-smooth part X ′ //P1 of the elliptic K3 surface π : X //P1 is the Néron

model of the generic fibre E = Xη and has a distinguished universal property: Any
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rational map Y //X ′ over P1 of a scheme Y smooth over P1 extends to a morphism, see
e.g. [18].

3. Mordell–Weil group

For this section we recommend the articles by Cox [132] and Shioda [562], see also
Shioda’s survey article [563]. Throughout we consider an elliptic K3 surface π : X //P1

with a section C0 ⊂ X. In particular, C0 ' P1 and (C0)2 = −2. The generic fibre of π is
denoted as before

E := Xη = π−1(η).

It is an elliptic curve over the function field K = k(η) ' k(t) of P1. The origin oE ∈ E(K)

is chosen to be the point of intersection with C0.
Recall that the set of sections of π : X //P1 is naturally identified with the set E(K)

of K-rational points of E by mapping a section C to its intersection with E. Conversely,
the closure p̄ ⊂ X of a point p ∈ E(K) defines a section of π, for example, ōE = C0.

E(K) //oo {C �
� //X | π : C ∼− // P1}

3.1. A divisor D =
∑
niCi on X is called vertical if all components are supported

on some fibres, i.e. the images π(Ci) are closed points. In particular, if D is vertical, then
(D.Xt) = 0. An irreducible curve C is horizontal if π|C : C //P1 is surjective, e.g. any
section is horizontal.
Restriction to the generic fibre yields a group homomorphism

Div(X) //Div(E)

the kernel of which consists of vertical divisors. As the function fields ofX and E coincide,
one also obtains a homomorphism

Pic(X) //Pic(E),

the kernel of which is the subgroup of all line bundles linearly equivalent to vertical
divisors.
For an arbitrary L ∈ Pic(X), let dL := (L.Xt) be its fibre degree. Then the line bundle

L|E ⊗ O(−dL · oE) is a degree zero line bundle on the elliptic curve E and thus, by
Abel’s theorem, isomorphic to O(pL − oE) for a unique point pL ∈ E(K). For example,
if L = O(C0), then pL = oE . More generally, if L = O(C) for a section C ⊂ X of
π : X //P1, then pL is the point of intersection of C and E.
For arbitrary L we shall denote by p̄L ⊂ X the section corresponding to the point

pL ∈ E. Then

(3.1) L ' O(p̄L)⊗O((dL − 1)C0)⊗O(nXt)⊗O
(∑

niCi

)
with n = (L.C0) + 2(dL − 1) − (p̄L.C0) and Ci are certain irreducible fibre components
not met by the section C0.
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3.2. The set of sections of π is endowed with the group structure of E(K) (with the
origin oE). This gives rise to the following

Definition 3.1. The Mordell–Weil group MW(X) of an elliptic K3 surface π : X //P1

is the set of sections or, alternatively,

MW(X) ' E(K).

Although not reflected by the notation, MW(X) depends of course on the elliptic
fibration π : X //P1.
With this definition, the map L � // pL is easily seen to define a group homomorphism

NS(X) ' Pic(X) //MW(X),

which is surjective, because pL = p for L = O(p̄).
The following result holds more generally, e.g. for minimal regular elliptic surfaces, and

is an immediate consequence of the above discussion.

Proposition 3.2. There exists a short exact sequence

0 //A //NS(X) //MW(X) // 0,

where A is the subgroup generated by vertical divisors and the section C0. In particular,
the Mordell–Weil group is a finitely generated abelian group. �

Remark 3.3. That the Mordell–Weil group is finitely generated is reminiscent of the
Mordell–Weil theorem asserting that E(K) is a finitely generated group for any number
(or, more generally finitely generated) field K, see [173, Ch. VI]. But the result also
shows that the elliptic curves E over K, e.g. for K = C(t), appearing as generic fibres of
an elliptic K3 (or regular elliptic) surface are rather special.

Corollary 3.4 (Shioda–Tate). Let π : X //P1 be an elliptic K3 surface with a section
C0 ⊂ X and let rt denote the number of irreducible components of a fibre Xt. Then

(3.2) ρ(X) = 2 +
∑
t

(rt − 1) + rk MW(X).

Proof. It suffices to prove rkA = 2+
∑

t(rt−1), which is a consequence of Zariski’s
lemma, see Proposition 1.6. Indeed, the intersection form restricted to the part generated
by the components of the singular fibres not met by the section has rank

∑
t(rt−1). The

hyperbolic plane generated by the fibre class Xt and the section C0 is orthogonal to it
and, of course, of rank two. �

Example 3.5. If X is the Kummer surface associated with the product E1 × E2 of
two elliptic curves viewed with its elliptic fibration X //P1 = E1/±, then the Shioda–
Tate formula yields ρ(X) = 18 + rk MW(X). In particular, if E1 and E2 are isogenous,
then rk MW(X) > 0 (which can also be verified more explicitly by looking at the section
induced by the graph of an isogeny).
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Remark 3.6. If char(k) = 0, then ρ(X) ≤ 20 and the Shioda–Tate formula shows
that for an elliptic K3 surface with a section fibres of type In and I∗m can only occur for
n ≤ 19 and m ≤ 14.
That the same bound still holds in positive characteristic 6= 2, 3, although one only has

ρ(X) ≤ 22, was shown in by Schütt and Shioda in [532, 564]. There one also finds a
classification of elliptic K3 surfaces realizing the maximal singular fibres I19 and I∗14.

Remark 3.7. Assume char(k) = 0. An elliptic K3 surface π : X //P1 with a section
is called extremal if rkA = 20 or, equivalently, if ρ(X) = 20 and MW(X) is a finite group.
Extremal elliptic K3 surfaces have been classified in terms of lattices by Shimada and
Zhang in [554]. There are 325 cases. For many of them explicit descriptions have been
found by Schütt in [533]. Note that every K3 surface with ρ(X) = 20 admits a Shioda–
Inose structure, see Remark 15.4.1, i.e. a rational map of degree two onto a Kummer
surface which in this case is associated with the product of two isogenous elliptic curves
E ×E′ and hence itself elliptic (but not extremal). See also [488] where Persson studies
the analogy between extremal elliptic K3 surfaces and maximizing double planes, cf.
Section 17.1.4.

In the proof of the Shioda–Tate formula we have seen already that A can be written
as a direct orthogonal sum (cf. Example 14.0.3):

A = U ⊕R.

The hyperbolic lattice U is spanned by the classes of a fibre Xt and the section C0 and the
orthogonal R is the negative definite lattice spanned by all fibre components not met by
C0. Note that by Kodaira’s classification R is a direct sum of lattices of ADE type. For
example, for the canonical elliptic fibration of a Kummer surface X //E1/± associated
with E1 × E2 the lattice R is isomorphic to D⊕4

4 .

Remark 3.8. i) Specialization yields for every closed fibre Xt a natural map

MW(X) ' E(K) //Xt,

which in geometric terms is obtained by intersecting a section with Xt. Its image is
contained in the smooth part of Xt. For smooth fibres Xt, this is a group homomorphism.
Moreover, in characteristic zero the map induces an injection on torsion points

MW(X)tors
� � // Xt

or, in other words, two distinct sections whose difference is torsion on the generic fibre
never meet. This can be proved by associating with any torsion section C1 a symplectic
automorphism fC1 : X ∼− // X, see Remark 15.4.6. Alternatively, one can use the follow-
ing argument which proves that a torsion section C1 cannot intersect C0 in any smooth
fibre. Locally around a smooth fibre Xt0 , a complex elliptic K3 surface X //P1 can be
written as C/(Z+τ(t)Z)×∆. The point of intersection x(t) of C1 with Xt is contained in
Q+ τ(t)Q and if C0 and C1 intersect in Xt0 in the same point, then x(t0) = 0 and hence
x(t) ≡ 0 locally if C1 is a torsion section. A similar argument applies for the intersection
with singular fibres, see [412, VII.Prop. 3.2].
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If char(k) = p > 0, specialization is still injective on the torsion part prime to p, but
may fail in general, cf. [473].
ii) The torsion subgroup can also be controlled via the restriction to the group of

connected components of all fibres which yields an injective group homomorphism

MW(X)tors
� � //

∏
t

X ′t/(X
′
t)
o.

Indeed, if C1 is a torsion section of order k, then kC1 ∈ A = U ⊕ R can be written as
kC1 = aC0 + b[Xt] + α. Intersecting with [Xt] yields a = k, from which one concludes
b = k((C0.C1) + 2) by further intersecting with C0. Finally, if C1 and C0 intersects the
same connected component of each fibre, then (C1.α) = 0. This leads to the contradiction
−2k = 2k((C0.C1) + 1), unless C0 = C1. For an alternative proof see Lemma 3.10.

3.3. The map that sends a point p ∈ E(K) to the line bundle O(p̄), which was used
to prove the surjectivity of NS(X) // //MW(X), is in general not additive. In fact, the
quotient MW(X) = NS(X)/A is in general not even torsion free, i.e. A ⊂ NS(X) might
not be primitive. Since A ⊂ NS(X) is a non-degenerate sublattice, the orthogonal direct
sum A⊕A⊥ ⊂ NS(X) is of finite index. Moreover, A⊥ is a negative definite lattice with
rkA⊥ = rk MW(X) given by (3.2) and discriminant (see (14.0.2))

discA⊥ =
disc NS(X)

discA
· (NS(X) : A⊕A⊥)2.

The projection NS(X) // //MW(X) yields a surjection AQ⊕A⊥Q ' NS(X)Q // //MW(X)Q
with kernel AQ and, therefore, a natural injection of groups

MW(X)/MW(X)tors
� � // MW(X)Q

∼− // A⊥Q ⊂ NS(X)Q.

The intersection form ( . ) on NS(X)Q induces a non-degenerate quadratic form on
MW(X)/MW(X)tors.

Definition 3.9. The Mordell–Weil lattice of an elliptic K3 surface π : X //P1 is the
group MW(X)/MW(X)tors endowed with 〈 . 〉 := −( . ).

Warning: The quadratic form 〈 . 〉 on MW(X) really takes values in Q and not neces-
sarily in Z.
So calling MW(X)/MW(X)tors a lattice is slightly abusive. But it can easily be turned

into a positive definite lattice in the traditional sense by passing to an appropriate positive
multiple of 〈 . 〉 (this has been made explicit by Shioda [562, Lem. 8.3]) or by restricting
to a distinguished finite index subgroup. More precisely, let

MW(X)0 ⊂ MW(X)

be the subgroup of sections intersecting every fibre in the same component as the given
section C0. Since by the discussion in Section 2.5 the component of a singular fibre met
by C0 (or rather its smooth part) is a subgroup, this really defines a subgroup.

Lemma 3.10. The subgroup MW(X)0 is torsion free and of finite index in MW(X).
Moreover, 〈 . 〉 restricted to MW(X)0 is integral, even, and positive definite.
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Proof. Suppose C ∈ MW(X)0 is n-torsion. Then L := O(n(C − C0)) is linearly
equivalent to a vertical divisor. As C and C0 intersect the same component of every
fibre, (L.D) = 0 for every vertical curve D. But then (L)2 = 0 and by Zariski’s lemma,
Proposition 1.6, (iv), L = O(`Xt). Now use (L.C) = ` = (L.C0) to deduce n(−2 −
(C0.C)) = n((C.C0) + 2). Thus, if n were non-zero, then (C.C0) = −2, which is absurd
unless C = C0.
To prove finite index, observe first that MW(X)0 is contained in the kernel of the map

(3.3) MW(X) //AR = R∗/R

which is induced by NS(X) //R∗/R (restriction of the intersection form). If C ∈
MW(X) does not meet a singular fibre Xt =

∑
miCi in the same component as C0,

say (C.Ci) = 1 but (C0.Ci) = 0, then mi = 1 and by using that R is an orthogonal
direct sum of lattices of ADE type one proves (C. ) 6= 0 in R∗/R, see [412, VII.2].
Hence, MW(X)0 is the kernel of (3.3) and, thus, of finite index. Alternatively, use that
if N :=

∏
|X ′t/(X ′t)o|, then N · C ∈ MW(X)0 for all C ∈ MW(X).

For C ∈ MW(X)0, one finds

C = (C0 − (2 + (C.C0))Xt)⊕ αC ∈ A⊕A⊥ ⊂ NS(X).

Thus, the intersection form restricted to MW(X)0 is indeed integral, as for C,C ′ ∈
MW(X)0 one has 〈C.C ′〉 = −(αC .αC′) ∈ Z and 〈C,C〉 = −(αC)2 ∈ 2Z. By Hodge index
theorem, ( , ) has signature (1, ρ(X)−1) on NS(X) and as A contains a hyperbolic plane,
it is negative definite on A⊥. �

The bilinear form on MW(X)0 can be written explicitly as

〈C.C ′〉 = 2 + (C.C0) + (C0.C
′)− (C.C ′).

The induced quadratic form

MW(X)0 //Z, C � // 〈C.C〉 = 4 + 2(C.C0)

is (up to a factor two) the restriction of the canonical height (as introduced by Manin
[387] and Tate [591])

ĥE/K : E(K)/E(K)tors
//Q.

The regulator of E over K (or of the elliptic surface X) is by definition

RE/K = RX := disc (MW(X)/MW(X)tors) = det 〈 . 〉 ∈ Q.

A more Hodge theoretic approach to the Mordell–Weil group goes back to Cox and
Zucker in [133]. In particular, they observe

|disc NS(X)| = RX
|MW(X)tors|2

·
∏

nt =
RX

|MW(X)tors|2
· |discA|,

where nt is the number of components of the fibre Xt appearing with multiplicity one
(which in fact equals |discRt| due to [556, Lem. 1.3]). See also [565, Lem. 1.3] for the
case MW(X)tors = MW(X).
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The Mordell–Weil lattice is a positive definite lattice of rank

0 ≤ rk MW(X) ≤ rk NS(X)− 2.

Hence, rk MW(X) ≤ 18 in characteristic zero and ≤ 20 in positive characteristic.

Remark 3.11. i) In characteristic zero, all values 0 ≤ rk MW(X) ≤ 18 are realized.
This has been proved by Cox in [132] using surjectivity of the period map. Explicit
equations for rk 6= 15 have been given by Kuwata [340] and for rk = 15 by Kloosterman
[296] and Top and De Zeeuw [599].
ii) The torsion group MW(X)tors is a finite group of the form Z/nZ × Z/mZ, use

e.g. Remark 3.8. As every element in MW(X) defines a symplectic automorphism of
X, one knows n,m ≤ 8 in characteristic zero, cf. Remark 15.4.5. Moreover, as Cox
shows in [132, Thm. 2.2] whenever MW(X)tors 6= 0 for a (non-isotrivial) elliptic fibra-
tion, then rk MW(X) ≤ 10. More precisely, he gives a complete and finite list for non-
trivial MW(X)tors and for the possible Mordell–Weil ranks in each case. For example, if
MW(X)tors ' Z/8Z, then rk MW(X) = 0.
The computation hinges on the observation that MW(X)tors is a subgroup of AR, which

is a direct sum of discriminant groups of lattices of ADE type. See also [412, VII.3].3

iii) The opposite of extremal elliptic K3 surfaces (see Remark 3.7) in characteristic zero
are elliptic K3 surfaces π : X //P1 with rk MW(X) = 18. Those have been studied by
Nishiyama [456] and Oguiso [468].
iv) In [458] Nishiyama proves that the minimal 〈v.v〉, for non-torsion v ∈ MW(X), for

all elliptic K3 surfaces in characteristic zero is 11
420 . The minimum is attained for certain

very special K3 surfaces of Picard rank 19 and 20.

4. Jacobian fibration

The previous section dealt with elliptic K3 surfaces with a section. What about those
that do not admit a section? They do exist and here we shall explain how one can pass
from an elliptic K3 surface π : X //P1 without a section to one with a section. This is
achieved by looking at the relative Jacobian J(X) //P1. In Section 5 we shall discuss
the Tate–Šafarevič group which conversely controls all elliptic K3 surfaces with the same
Jacobian.
In Sections 4.1 and 4.2 π : X //P1 is assumed to be an algebraic elliptic K3 surface

over an algebraically closed field k. In Section 4.3 we add comments on the non-algebraic
case.

4.1. We consider an elliptic K3 surface π : X //P1 and introduce the relative (com-
pactified) Jacobian J(X) //P1. Jacobians of elliptic surfaces are usually studied via
Picard functors and Néron models, see [3, 80, 174]. Let us sketch this first, before
later viewing the construction from the point of view of moduli spaces of stable sheaves.

3Is there a deeper relation between Cox’s finite list of possible torsion groups MW(X)tors and Mazur’s
result that for an elliptic curve over Q the torsion group E(Q)tors is isomorphic to Z/nZ, n = 1, . . . , 10, 12

or Z/2Z× Z/nZ, n = 1, . . . 4?
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The latter approach in particular shows that J(X) is again a K3 surface, without first
analysing the fibres of J(X), and allows one to control the period of J(X).

Start with an elliptic K3 surface π : X //P1 and consider its generic fibre E = Xη as
a smooth genus one curve over the function field K ' k(t) of P1. The Jacobian Jac(E) is
again a smooth genus one curve over K representing the étale sheafification of the functor

Pic0
E : (Sch/K)o // (Ab), S � //Pic0(E × S)/∼,

where Pic0(E × S) is the group of line bundles which are of degree zero on the fibres
of E × S //S and the equivalence relation ∼ is generated by the natural action of
Pic(S). The existence of Jac(E) is a fundamental fact, which we take for granted. See
[234, Ch. IV.4] for the assertion over an algebraically closed field and [174, Part 5]
for a general discussion. In particular, there exists a natural functor transformation
Pic0

E
// Jac(E) which, moreover, yields isomorphisms Pic0

E(S) ∼− // MorK(S, Jac(E)) as
soon as Pic0

E(S) 6= ∅. So, for example, Jac(E)(K̄) = Pic0(EK̄) and Jac(E) coarsely
represents Pic0

E . See Section 5.1 for the notion of coarse moduli spaces.
Note that E might not have any K-rational points. However, Jac(E) always has, as

[OE ] ∈ Jac(E)(K). So, Jac(E) is a smooth elliptic curve over K. Also recall that in
general a Poincaré bundle on E × Jac(E) may only exist after an appropriate base field
extension.
The residue field k(ξ) of the generic point ξ ∈ Jac(E) is a finitely generated field

extension of K of transcendence degree one and thus of transcendence degree two over
k. It can therefore be realized as the function field of a surface over k. The natural
inclusion K �

� // k(ξ) corresponds to a dominant rational map of such a surface to P1.
The Jacobian

J(X) //P1

of the original elliptic fibration X //P1 is then defined as the unique relatively minimal
smooth model. In particular, its function field K(J(X)) is just k(ξ) = K(ξ), where ξ
is regarded as the generic point of the surface J(X) and, simultaneously, of the elliptic
curve Jac(E) over K. The uniqueness is important and is used throughout.
Alternatively, one could first look at the relative Jacobian fibration

Jac(X/P1) //P1

coarsely representing (or representing the étale sheafification of) the functor

(Sch/P1)o // (Sets), T � //Pic0(X ×P1 T )/∼.

Due to the existence of reducible fibres, Jac(X/P1) is in general not separated. The
existence as an algebraic space is due to a general result by Artin (see [80, Sec. 8.3]), but
presumably, in the situation at hand it is in fact a (non-separated) scheme.
The fibre of Jac(X/P1) //P1 over a closed point t ∈ P1 is Jac(Xt) and over the generic

fibre one recovers Jac(E).4 So, J(X) //P1 can also be seen as a relatively minimal smooth

4As it turns out, π̂ : Jac(X/P1) // P1 is locally smooth (but not separated). This can be proved by
a standard argument from deformation theory. For L a line bundle on Xt and the inclusion i : Xt

� � // X
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model of Jac(X/P1) //P1. Note that in both descriptions one sees that J(X) //P1

admits a natural section, either given as the closure of the point [OE ] ∈ Jac(E) in J(X)

or by interpreting OX ∈ Pic0(X) as a section of Jac(X/P1) //P1.

Remark 4.1. Similarly, one defines elliptic surfaces

Jd(X) //P1

for arbitrary d as the unique relatively minimal smooth compactification of Jacd(X/P1)

coarsely representing T � //Picd(X×P1 T )/∼ or of Jacd(E) coarsely representing the func-
tor S � //Picd(E × S)/∼. However, for d 6= 0 it comes without a (natural) section.

Remark 4.2. Note that the rational map that sends x ∈ Xt to OXt(x) extends by
minimality to an isomorphism

X ∼− // J1(X).

To be more precise, the ideal sheaf of x ∈ Xt is locally free if and only if x ∈ Xt

is a smooth point of the fibre Xt (and in particular not contained in a multiple fibre
component). Hence, x � //OXt(x) is regular on the π-smooth part X ′ ⊂ X.

Definition 4.3. The index d0 of an elliptic fibration π : X //P1 is the minimal fibre
degree d0 = (C.[Xt]) of a curve C ⊂ X such that π : C //P1 is finite.

Equivalently, the index d0 is the smallest positive deg(L|Xt) = (L.Xt), L ∈ Pic(X).
Indeed, if (L.Xt) > 0, then H0(X,L(nXt)) 6= 0 for n� 0.
Thus, π : X //P1 admits a section if and only if d0 = 1. Also note that a complex

elliptic K3 surface is projective if and only if d0 <∞. Indeed, if D is a divisor of positive
fibre degree, then (D + nXt)

2 > 0 for n � 0, cf. page 16 or Remark 8.1.3. See Section
4.3 for more on the non-projective case.

Remark 4.4. Let C ⊂ X be of degree d0 over P1. Then the rational map that sends
L ∈ Picd(Xt) to L⊗O(C)|Xt ∈ Picd+d0(Xt) extends to an isomorphism of elliptic surfaces

Jd(X) ∼− // Jd+d0(X).

In particular, if π : X //P1 admits a section, then

X ∼− // Jd(X)

for all d.

In this sense, the above construction yields at most d0 different elliptic surfaces

J0(X) = J(X), J1(X) ' X, . . . , Jd0−1(X).

applying HomXt( , L) to the exact triangle L[1] // i∗i∗L // L and using adjunction yields the exact
sequence

Ext1
Xt

(L,L) // Ext1
X(i∗L, i∗L) // Ext0

Xt
(L,L) // Ext2

Xt
(L,L).

The morphism in the middle can be interpreted as differential of π̂ at [L]. However, for the locally free
L on the curve Xt, one has Ext2

Xt
(L,L) ' H2(Xt,OXt) = 0, i.e. π̂ is smooth at [L].



4. JACOBIAN FIBRATION 227

Although, these surfaces are usually different, one can nevertheless show that

(4.1) Jd(X)t ' Xt

for all d and all closed t ∈ P1. This is clear for smooth fibres, because then Jd(X)t '
Picd(Xt) ' Xt (over the algebraically closed field k), and for elliptic surfaces with a
section, because then in fact Jd(X) ' X for all d. For singular fibres, one reduces to
the case with a section by constructing a local (analytic, étale, etc.) section through a
smooth point of the fibre Xt. Here one uses that an elliptic fibration of a K3 surface does
not admit multiple fibres. So in fact there exists an open (analytic or étale) covering of
P1 over which X //P1 and Jd(X) //P1 become isomorphic.
Also note that

J(Jd(X)) ' J(X)

for all d. Indeed, both elliptic surfaces come with a section and all their fibres are
isomorphic. More algebraically, if E = Xη, then all Ed := Jacd(E) are torsors under the
elliptic curve E0 := Pic0(E) by E0 × Ed //Ed, (M,L) � //M ⊗ L. However, the curve
Ed is a torsor under only one elliptic curve, namely its dual, and hence E0

∼− // Pic0(Ed),
see [407, Thm. 7.19] or [566, X.Thm. 3.8] and also Section 5.1.
Finally we remark that there are natural rational maps fromX to all J(X), . . . , Jd0−1(X):

X // Jd(X)

obtained by mapping a line bundle L of degree one on a smooth fibre Xt to Ld. Use
J(X) ' Jd0(X) to get X // J(X) .

4.2. Let us now explain how to use moduli spaces of stable sheaves to give a modular
construction for the compactification J(X) and not only for the open part Jac(X/P1).
This directly proves that J(X) and in fact all Jd(X) are K3 surfaces. Moreover, it allows
one to control their Picard groups and their periods.
Recall from Chapter 10 the notationMH(v) for the moduli space of semistable sheaves

F on X with Mukai vector v(F ) = v, where semistability is measured with respect to the
polarization H. If one thinks of a line bundle L ∈ Picd(Xt) on a fibre Xt as a sheaf on
X, i.e. as F := i∗L, one is led to choose

v = vd := v(i∗L) = (0, [Xt], d).

Here, [Xt] is the class of the fibre Xt. It is not hard to see that any line bundle L on a
smooth fibre Xt gives rise to a sheaf i∗L on X that is stable with respect to any H. This
yields an open immersion

(4.2) Jacd((X/P1)reg) �
� // MH(vd),

where (X/P1)reg is the union of all smooth fibres.
For all choices of d the Mukai vector vd = (0, [Xt], d) is primitive and hence for generic

H the moduli space MH(vd) is a K3 surface, cf. Proposition 10.2.5 and Corollary 10.3.5.
But then MH(v) can be taken as the unique minimal model of Jd(X).
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Summarizing one obtains the following which can also be deduced from [131, Thm.
5.3.1], cf. Proposition 5.4.

Proposition 4.5. For all d, the Jacobian fibration of degree d associated with an elliptic
K3 surface π : X //P1 defines an elliptic K3 surface Jd(X) //P1. �

Remark 4.6. i) The embedding (4.2) can in general not be extended to a modular
embedding of Jac(X/P1) into MH(v). Indeed, a line bundle L on a reducible fibre Xt

does not necessarily define a stable sheaf i∗L on X.
ii) The choice of a generic polarization is essential. For example, if Xt of type I2 and H

restricts to O(1) on each component, then the fibre of MH(v0) //P1 over t is of type I1,
see [94, Thm. 6.3.11]. Choosing a generic polarization blows up the node which results
in a I2-fibre as needed to ensure J(X)t ' Xt.

Combining Jd(X) 'MH(vd) with Remark 10.3.7 yields

Corollary 4.7. Let X //P1 be a complex projective elliptic K3 surface and let vd :=

(0, [Xt], d), d 6= 0. Then there exists an isometry of Hodge structures

(4.3) H2(Jd(X),Z) ' v⊥d /Z · vd.

In particular, ρ(Jd(X)) = ρ(X) for all d. �

Although d = 0 is explicitly excluded, the result nevertheless describes also the Hodge
structure and Picard group in this case. Indeed, J(X) ' Jd0(X) for d0 the index of the
elliptic fibration and hence:

(4.4) H2(J(X),Z) ' v⊥d0
/Z · vd0 .

In [289] Keum used the Hodge isometry described by (4.4) to define a lattice embed-
ding NS(X) �

� // NS(J(X)), α � // ((α.[Xt])/d0, α, 0) ∈ v⊥d0
/Z · vd0 the cokernel of which

is generated by (0, 0, 1). Since d0 · (0, 0, 1) ∈ NS(X) under this identification and d0 is
minimal with this property, one finds (cf. Section 14.0.1)

(4.5) disc NS(X) = d2
0 · disc NS(J(X)).

This immediately yields the following result due to Keum [289].

Corollary 4.8. If disc NS(X) of an elliptic K3 surface π : X //P1 is square free, then
π admits a section. �

It is not difficult to generalize (4.5) to arbitrary d 6= 0 by describing a common over-
lattice for NS(X) and NS(Jd(X)). Eventually, one finds

(4.6) disc NS(X) = g.c.d.(d, d0)2 · disc NS(Jd(X)),

which sometimes excludes two Jacobians of different degrees Jd1(X) and Jd2(X) from
being isomorphic K3 surfaces. See also Example 16.2.11.
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Remark 4.9. As explained above, Jd(X) //P1 can be described as moduli spaces.
However, the moduli space is not always fine, i.e. there does not always exist a universal
sheaf P on X × Jd(X). In fact, general existence results (see [264, Cor. 4.6.7] or Section
10.2.2) assert that a universal family exists whenever the index d0 and d are coprime. In
this case there exists an equivalence of derived categories

(4.7) Db(X) ' Db(Jd(X)),

see Example 16.2.4.
A universal sheaf always exists étale locally and the obstruction to glue these locally

defined universal sheaves yields a class αd in the Brauer group of Jd(X), see Section
10.2.2. We shall get back to this shortly, see Remark 5.9. In any case, see Section 16.4.1,
this then yields an equivalence

(4.8) Db(X) ' Db(Jd(X), αd).

The equivalence can also be interpreted as saying that X is a fine moduli space of αd-
twisted sheaves on Jd(X).
All these observations hold true over any algebraically closed field k, which leads to the

next remark.

Remark 4.10. The assertions on the Néron–Severi group still hold for elliptic K3
surfaces over arbitrary algebraically closed fields. For d and d0 coprime, this can be
deduced directly from the equivalence Db(X) ' Db(Jd(X)) and the induced isometry
between their extended Néron–Severi groups

N(X) ' N(Jd(X)),

see Example 16.2.11. This in particular shows that (4.6) continues to hold for elliptic K3
surfaces over arbitrary algebraically closed field at least for g.c.d.(d, d0) = 1.5

4.3. The above algebraic approach is problematic when it comes to non-projective
complex elliptic K3 surfaces π : X //P1. Nevertheless, it is possible to define the relative
Jacobian J(X) //P1 and all its relatives Jd(X) //P1 also in the complex setting.
Plainly, we cannot work with the Jacobian of the generic fibre and so cannot define

J(X) as the relatively minimal model of it. One can however restrict to the open part
of all smooth fibres π : (X/P1)reg

//P1 and define J((X/P1)reg) as the total space of
R1π∗O/R1π∗Z. Then one still needs to argue that a (relatively minimal) compactifi-
cation yielding J(X) //P1 exists, which is not granted on general grounds. Kodaira’s
approach is to say that locally analytically X //P1 has sections, as elliptic K3 surfaces
come without multiple fibres, and every (local) elliptic fibration with a section is its own
Jacobian fibration. The remaining bit is to glue the local families according to the cocycle
for R1π∗Z. We refer to [32, 184] and the original paper by Kodaira [305].

5And there is little doubt that using the twisted version (4.8) it can be proved for all d 6= 0 and
hence proving (4.5) for arbitrary k. Equality of their Picard numbers for arbitrary d 6= 0 is easier to
show.
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A priori, it should be possible to define the Jd(X) //P1 as a moduli spaces of sheaves
on the fibres of X //P1 as explained in Section 4.2. However, the theory of moduli spaces
of sheaves (especially of torsion sheaves as in our case) on non-projective manifolds has
not yet been sufficiently developed to be used here.

5. Tate–Šafarevič group

The Tate–Šafarevič group of an elliptic K3 surfaceX0
//P1 with a section parametrizes

all elliptic (K3) surfaces X //P1 for which X0
//P1 is isomorphic to the Jacobian fi-

bration J(X) //P1. The notion is modeled on the Tate–Šafarevič and the Weil–Châtelet
group of an elliptic curve, which shall be briefly recalled. The difference between the two
groups, however, disappears for K3 surfaces. The algebraic and the complex approach to
the Tate–Šafarevič group are quite similar, but in the latter context also non-algebraic
surfaces are parametrized. Both versions are presented, using the occasion to practice
the different languages.

5.1. Let us start with the Weil–Châtelet group of an elliptic curve E0 over a field
K, where K later is the function field k(t) of P1

k with k algebraically closed (or a finite
field).
A torsor under E0 is a smooth projective curve of genus one over K together with a

simply transitive action
E0 × E //E, (p, x) // p+ x.

Isomorphisms of E0-torsors are defined in the obvious manner. In particular, E is iso-
morphic to the trivial torsor E0 if and only if E(K) 6= ∅. Then the Weil–Châtelet group
is the set

WC(E0) := {E = E0-torsor}/'.
This groups contains the Tate–Šafarevič groupX(E0) as a subgroup, which is in general
a proper subgroup. As in our applications both groups coincide, we do not go into the
definition ofX(E0).
If E is an E0-torsor, then E0 ' Jac(E) as algebraic groups. Indeed, choose any

x ∈ E(K ′) for some finite extension K ′/K and define E0
∼− // Jac(E), p � //OE((p+x)−

x), which is an isomorphism over K. For an isomorphism f : E ∼− // E′ of E0-torsors
this isomorphism changes by f∗. Conversely, if a group isomorphism E0

∼− // Jac(E),
p � //Lp, is given, then define E0×E //E, (p, x) � // y with y the unique point satisfying
O(x) ⊗ Lp ' O(y). This turns E into an E0-torsor. As a result, one obtains a natural
bijection

(5.1) WC(E0) ' {(E,ϕ) | ϕ : E0
∼− // Jac(E)}/',

where (E,ϕ) ' (E′, ϕ′) if there exists an isomorphism f : E ∼− // E′ with f∗ ◦ ϕ = ϕ′. A
cohomological description of the Weil–Châtelet group is provided by the next result.

Proposition 5.1. There exists a natural bijection

(5.2) WC(E0) ' H1(K,E0).
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Here, H1(K,E0) := H1(Gal(K̄/K), E0(K̄)) is the Galois cohomology of E0, where K̄
denotes the separable closure of K.

Proof. For any E0-torsor E the Galois group G := Gal(K̄/K) acts naturally on
E(K̄). If x ∈ E(K̄), then G //E0(K̄), g � // pg with g · x = pg + x defines a continuous
crossed homomorphism and thus an element in H1(G,E0(K̄)). Choosing a different
point x′ ∈ E(K̄) the crossed homomorphism differs by a boundary. Hence, there is a
well-defined map WC(E0) //H1(G,E0(K̄)).
Conversely, a crossed homomorphism G //E0(K̄), g � // pg, yields for all g an isomor-

phism ϕg : E0 × K̄ //E0 × K̄, ϕg(x) = pg + x. The isomorphisms ϕg satisfy the cocycle
condition ϕg · (g ·ϕh) = ϕgh and thus define a descent datum, which in turn yields E over
K that splits the descent datum after extension to K̄. Note that one does not really need
the full machinery of descent at this point, as smooth curves are uniquely determined by
their function field and it suffices to construct K(E) by descent. See [407, Ch. IV.7] or
[566, Ch. X] for details and references. �

The right hand side of (5.2) has the structure of an abelian group. The induced group
structure on the left hand side has the property that the product E3 of two E0-torsors
E1, E2 comes with a morphism ψ : E1 × E2

//E3 satisfying ψ(p + x1, q + x2) // (p +

q) + ψ(x1, x2), see [566, p. 355].

Remark 5.2. Let E be an E0-torsor and so Jac(E) ' E0. Then, Jacd(E) (see Section
4.1) admits canonically the structure of an E0-torsor, i.e.

Jacd(E) ∈WC(Jac(E)).

Using the group structure of WC(E0) and writingE ' Jac1(E), one finds that [Jacd(E)] =

d·[E] ∈WC(E0). Indeed, Jacd1(E)×Jacd2(E) // Jacd1+d2(E), (L,M) � //L⊗M satisfies
the above property with respect to the natural action of Jac(E).

The Weil–Châtelet group can be defined more generally for any group scheme, e.g. for
the smooth part X ′t of a singular fibre Xt of an elliptic K3 surface π : X //P1, see Section
2.5. So, in particular, one can speak of WC(X ′t). However, over an algebraically closed
field k this group is trivial and only when put in families it becomes interesting. It leads
to the notion of the Weil–Châtelet group of an elliptic surface, see below.

5.2. Let π : X0
//P1 be an elliptic K3 surface with a section C0 ⊂ X0. We shall

work over an algebraically closed field k, but the arguments remain valid for k = Fq.
Consider the open set X ′0 ⊂ X0 of π-smooth points as a group scheme X ′0 //P1, see

Section 2.5. A torsor under X ′0 is defined similarly to the absolute case as a smooth
fibration X ′ //P1 with a group action

X ′0 ×P1 X ′ //X ′,

making the fibres X ′t torsors under (X ′0)t. The set of all X ′0-torsors is the Weil–Châtelet
group of X0, but due to the absence of multiple fibres, it equals the Tate–Šafarevič group
of X0 and we shall, therefore, not distinguish between the two.
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Definition 5.3. The Tate–Šafarevič group6 of an elliptic K3 surface π : X0
//P1 with

a section is the set of all torsors under the group scheme X ′0 //P1:

X(X0) := {(X ′ //P1) = (X ′0 //P1)-torsor}/'.

The next result is the converse of Proposition 4.5. It allows us to interpreteX(X0) in
terms of Jacobian fibrations.

Proposition 5.4. Let X //P1 be a relatively minimal elliptic surface such that its
Jacobian X0 := J(X) //P1 is a K3 surface. Then X is a K3 surface itself.

Proof. There are various approaches to the assertion. The first one is to view X as
a moduli space of twisted sheaves on X0, cf. Remarks 4.9 and 5.9. This, in the spirit of
the arguments used to prove Proposition 4.5, would essentially immediately show that X
is a K3 surface.
The second approach uses the observation that étale locally J(X) and X are isomorphic

if in addition one assumes the existence of local sections also for X, i.e. that X //P1 has
no multiple fibres. This then implies e(J(X)) = e(X) = 24 and hence R1π∗OX ' O(−2).
(In [131, Prop. 5.3.6] this is proved without the additional assumption onX.) The general
canonical bundle formula for elliptic fibrations yields ωX ' OX . Moreover, χ(OX) = 2

and hence h1(X,OX) = 0. Altogether this indeed proves that X is a K3 surface.
For yet another approach in the case of complex K3 surfaces see Remark 5.15. �

For the following note that by definition the generic fibre E of a torsor X ′ //P1 under
X ′0

//P1 is a torsor under the generic fibre E0 of X0
//P1 and so Jac(E) ' E0.

Corollary 5.5. Let π : X0
//P1 be an elliptic K3 surface with a section and let E0 be

its generic fibre.
(i) Taking the generic fibre of a torsor under X ′0 //P1 (the open part of π-smooth

points) defines an isomorphism

X(X0) ∼− // WC(E0).

(ii) The Tate–Šafarevič group X(X0) can be naturally identified with the set of pairs
(X,ϕ) with X //P1 an elliptic K3 surface and an isomorphism ϕ : X0

∼− // J(X)

over P1 respecting the group scheme structures on X ′0 and J(X)′.

Proof. (i) An E0-torsor E is trivial if and only if it admits a K-rational point.
Similarly, a (X ′0

//P1)-torsor X ′ //P1 is trivial if and only if it admits a section. Now,
if the generic fibre E of X ′ admits a K-rational point, then its closure in X ′ defines a
section. Hence, X ′ � //E defines an injectionX(X0) //WC(E0).
To prove surjectivity, one considers the relatively minimal model X //P1 of an E0-

torsor E. Then J(X) ' X0 and, hence, X is a K3 surface. However, for an elliptic K3
surface π : X //P1 the π-smooth part X ′ is a torsor under J(X)′. This is the global
version of the observation (4.1) that Xt ' J(X)t for all t.

6The name respects the correct alphabetic order in Cyrillic.
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(ii) Combine (5.1) with (i) and the proposition. Once more, one uses the uniqueness
of the minimal model to extend E0 ' Jac(E) to an isomorphism X0 ' J(X). �

The reason behind the isomorphism between the Weil–Châtelet groups of the surface
and the generic fibre is the absence of multiple fibres in an elliptic fibration of a K3
surface. The situation is more involved for arbitrary elliptic surfaces.

Proposition 5.6. Let π : X0
//P1 be an elliptic K3 surface with a section C0 ⊂ X0.

Then there exist natural isomorphisms

X(X0) ' H2(X0,Gm) ' Br(X0).

Proof. The proof, inspired by the discussion of Friedman and Morgan in [184], is
split in three parts. See also [603, Ch. 5.3]. We work in the étale topology.
i) There exists a natural isomorphism

(5.3) H2(X0,Gm) ' H1(P1, R1π∗Gm).

This holds without the assumption that there exists a section and follows from the
Leray spectral sequence Ep,q2 = Hp(P1, Rqπ∗Gm) ⇒ Hp+q(X0,Gm) and the following
facts: π∗Gm ' Gm (which is proved similarly to π∗OX0 ' OP1), R2π∗Gm = 0 (see [225,
III.Cor. 3.2]), and Hq(P1,Gm) = 0 for q ≥ 2 (see [140, III.Prop. 3.1]).
ii) Denote by X0 the sheaf of étale local sections σ : U //X0 of X0

//P1 or, equiva-
lently, of X ′0 //P1. Since the latter is a group scheme, X0 is indeed a sheaf of abelian
groups on P1. Then

(5.4) X(X0) ' H1(P1,X0).

This is the relative version of Proposition 5.1 and proved analogously.
iii) The sheaf R1π∗Gm is associated with the presheaf U � //Pic(X0×P1 U). Using this,

one defines a natural sheaf homomorphism

X0
//R1π∗Gm, σ � //O(σ(U)− C0|U ).

Here, σ is a section of X ′0 //P1 over the étale open set U and σ(U) and C0|U are
considered as divisors on X0 ×P1 U . This sheaf homomorphism is injective, because
different points on smooth fibres are never linearly equivalent, and in fact induces an
isomorphism

(5.5) H1(P1,X0) ∼− // H1(P1, R1π∗Gm).

To prove this, note first that the subgroups of vertical divisors in Pic(X0 ×P1 U) form a
subsheaf of R1π∗Gm concentrated in the finitely many singular values t ∈ P1 of π. Hence,
H1(P1, R1π∗Gm) ∼− // H1(P1, R1π∗Gm/vert). Now the cokernel of the induced injection
X0
� � // R1π∗Gm/vert is just Z, measuring the fibre degree. Taking H1 yields (5.5), as

H1
ét(P1,Z) = 0 and H0(P1, R1π∗Gm/vert) // //Z is surjective, for O(C0) � // 1.
Composing (5.3) with (5.5) and (5.4) proves the first isomorphism of the proposition.

For the second see Section 18.1.1. �

Corollary 5.7. The Tate–Šafarevič group X(X0) is a torsion group.
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Proof. This can, of course, be seen as a consequence of X(X0) ' H2(X0,Gm), as
the latter is known to be torsion, see Example ??.1.4.
However, one can also argue geometrically as follows: Let (X,ϕ) ∈X(X0), i.e.X //P1

is an elliptic K3 surface with ϕ : X0
∼− // J(X). Then d · [(X,ϕ)] is represented by

Jd(X) //P1 (see Remark 5.2) and Jd0(X) ' J(X) if d0 is the index of the elliptic
fibration X //P1, see Remark 4.4. Hence, [(X,ϕ)] ∈ X(X0) is of finite order dividing
d0. (In fact, it is of order exactly d0, see Remark 5.9.) �

Despite this result, X(X0) is difficult to grasp. For complex K3 surfaces the analytic
description of the Brauer group gives some insight, but over other fields, e.g. finite ones,
the Tate–Šafarevič group remains elusive.

Remark 5.8. In the proof of the proposition we used the sheaf of étale local sections
X0 of the elliptic K3 surface π : X0

//P1 and the isomorphismX(X0) ' H1(P1,X0), see
(5.4). On the other hand, the Mordell–Weil group MW(X0) is by definition H0(P1,X0),
so Mordell–Weil group and Tate–Šafarevič group are cohomology groups of the same
sheaf on P1. Let us elaborate on this a little more.
Fibrewise multiplication by n yields a short exact sequence

0 //X0[n] //X0
//X0

// 0,

where X0[n] is the sheaf of sections through n-torsion points in the fibres. Taking the
long exact cohomology sequence gives the exact sequence

0 //MW(X0)/n ·MW(X0) //H1(P1,X0[n]) //X(X0)[n] // 0.

Here, X(X0)[n] ⊂ X(X0) is the subgroup of elements of order dividing n. The coho-
mology H1(P1,X0[n]) linking MW(X0) and X(X0) is the analogue of the Selmer group
of an elliptic curve for the elliptic K3 surface π : X0

//P1. So one could introduce

Sn(X0) := H1(P1,X0[n])

and call it the Selmer group of the elliptic surface π : X0
//P1.

Remark 5.9. For α ∈ X(X0), let π : Xα
//P1 be the associated elliptic K3 surface

together with the natural isomorphism J(Xα) ' X0. The techniques in the proof of
Proposition 5.6 yield an exact sequence, see also [225, (4.35)] or [20, Prop. 1.6],

0 //X0
//R1π∗Gm/vert

//Z // 0,

which splits for trivial α. For general α, taking cohomology one obtains an exact sequence

Pic(Xα) //Z //X(X0) //H1(P1, R1π∗G/vert).

By definition, the image of Pic(Xα) //Z is generated by the index d0 and the boundary
of 1̄ ∈ Z/d0Z yields α ∈X(X0). In particular, d0 is the order of α ∈X(X0) ' Br(X0).
Moreover, as in the proof of Proposition 5.6, one obtains the short exact sequence

(5.6) 0 // 〈α〉 //Br(X0) //Br(Xα) // 0.

This is a special case of (2.1) in Section 10.2.2.
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Viewing J(Xα) ' X0 as the moduli space of sheaves on Xα, the class α can also be
interpreted as the obstruction class to the existence of a universal sheaf on X0 ×Xα and
hence by (4.8)

Db(X0, α) ' Db(Xα).

Donagi and Pantev in [154] generalized this equivalence to

(5.7) Db(Xβ, ᾱ) ' Db(Xα, β̄),

for arbitrary α, β ∈ X(X0). Here, ᾱ, β̄ denote their images under the natural maps
Br(X0) //Br(Xβ) and Br(X0) //Br(Xα), respectively.
The following special case of (5.7) has been observed earlier. Consider the ellip-

tic K3 surface Jd(Xα). As has been explained before, there is a natural isomorphism
J(Jd(Xα)) ' J(Xα) ' X0. Thus, Jd(Xα) corresponds to some class β ∈ X(X0) and in
fact β = dα. Therefore, in this case β̄ is trivial and (5.7) becomes Db(Jd(X), αd) ' Db(X)

with X = Xα and αd = ᾱ, as in (4.8).

Remark 5.10. The famous conjecture of Birch and Swinnerton-Dyer (see the an-
nouncement as one of the Clay Milllenium Problems by Wiles in [633]) predicts that for
an elliptic curve over a number field K the rank of the Mordell–Weil group E(K) equals
the order of the L-series L(E, s) at s = 1. Its generalization links the first non-trivial
coefficient of the Taylor expansion of L(E, s) to the order of the Tate–Šafarevič group
X(E). In particular,X(E) is expected to be finite.
The function field analogue of it leads to the conjecture that for an elliptic curve E

over Fq(t) the Tate–Šafarevič groupX(E) should be finite. Combined with Proposition
5.6 it therefore predicts that for an elliptic K3 surface X0

//P1 over Fq the Brauer group
Br(X0) is finite. This has been generalized by Artin and Tate to the conjecture that the
Brauer group of any surface over a finite field should be finite, see Tate’s [593, Sec. 1]
and the discussion in Section 18.2.2, especially Remark 18.2.9.

5.3. We change the setting and consider complex elliptic K3 surfaces π : X //P1.
Recall that X is projective if and only if its index (cf. Definition 4.3) d0 is finite. In partic-
ular, an elliptic K3 surface X0

//P1 with a section C0 is always algebraic. Analogously
to the definition ofX(X0) in the algebraic setting one has:

Definition 5.11. The analytic Tate–Šafarevič groupXan(X0) of a complex elliptic K3
surface X0

//P1 with a section is the set of elliptic K3 surfaces π : X //P1 such that
the π-smooth part X ′ //P1 is endowed with the structure of an X ′0 //P1 torsor.

We stress that, although X0 is algebraic, an elliptic K3 surface X representing an
element in Xan(X0) may very well be non-algebraic. However, as in Proposition 5.4, X
is automatically a K3 surface. Arguing via moduli spaces of twisted sheaves is tricky
in the non-algebraic setting, but the fact that X and J(X) are locally (this time in the
analytic topology) isomorphic fibrations still holds. See also Remark 5.15.
Most of what has been said above in the algebraic setting holds true in the analytic

one, by replacing étale topology, cohomology etc., by their analytic versions. However,
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there are also striking differences, as becomes clear immediately. Firstly, the proof of
Proposition 5.6 goes through in the analytic version and the asserted isomorphism then
reads (see also [514, Ch. VII.8])

(5.8) X
an(X0) ' H2(X0,O∗X0

).

In fact, the intermediate isomorphisms (5.4), (5.4), and (5.5) also hold:

X
an(X0) ' H1(P1,X an

0 ) ' H1(P1, R1π∗O∗X0
) ' H2(X0,O∗X0

).

Here, X an
0 denotes the sheaf of analytic sections of X0

//P1.

Corollary 5.12. For a complex elliptic K3 surface X0
//P1 with a section there exists

a short exact sequence

0 //NS(X0) //H2(X0,Z) //H2(X0,OX0) //Xan(X0) // 0.

In particular,
X

an(X0) ' C/Z22−ρ(X0).

Proof. This follows from the exponential sequence, H3(X0,Z) = 0, and (5.8). �

Remark 5.13. The standard comparison of the analytic cohomology of O∗ with the
étale cohomology of Gm relates the analytic with the algebraic Tate–Šafarevič group. As
a motivation, start with the well-known

(5.9) H1(X0,Gm) ' H1(X0,O∗X0
).

The two sides are naturally isomorphic to Pic(X0), which is the same for both topologies.
However, in degree two this becomes

H2(X0,Gm) ' H2(X0,O∗X0
)tors

and hence

(5.10) X(X0) 'Xan(X0)tors.

To prove (5.10), we use the usual comparison morphism ξ : H2(X0,Gm) //H2(X0,O∗X0
),

the Kummer sequence 0 // µn //Gm //Gm // 0, and the fact that étale and analytic
cohomology coincide for finite abelian groups. This then yields immediately that ξ sur-
jects onto the torsion of H2(X0,O∗X0

). To prove injectivity, apply (5.9) and the fact
that H2(X0,Gm) is torsion. (The latter follows from Corollary 5.7 for elliptic X0, but of
course holds in general for the Brauer group of a smooth surface, see Section 18.1.1.)
In particular, one finds (see Section 18.1.2)

X(X0) ' (Q/Z)22−ρ(X0).

The identification
X(X0) 'Xan(X0)tors ⊂Xan(X0)

can also be explained geometrically. Clearly, one has a natural inclusion X(X0) ⊂
X

an(X0) and we have remarked already that X(X0) is torsion. On the other hand, if
X //P1 defines a torsion class in Xan(X0), then there exists a finite d > 0 such that
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Jd(X) admits a section, see proof of Corollary 5.7. This section gives rise to a line bundle
of degree d on each fibre which then can be shown to glue to a line bundle L on X.
Moreover, π∗L ⊗ OP1(n) for n � 0 admits non-trivial global sections. Interpreted as
sections of L⊗π∗OP1(n), their zero sets are divisors on X of positive fibre degree. Hence
X is algebraic and, therefore, is contained inX(X0).

Remark 5.14. Note that for a non-algebraic elliptic K3 surface X //P1 its generic
fibre E is ill defined. However, as J(X) //P1 is always algebraic, Jac(E) makes perfect
sense nevertheless.

Remark 5.15. The surjection

H2(X0,OX0) // //H2(X0,O∗X0
) 'Xan(X0)

allows one to write down (however, not effectively) a family of elliptic surfaces over the
line C ' H2(X0,OX0) parametrizing all elliptic surfaces X //P1 with J(X) ' X0.
A sketch of the argument can be found in [184, Ch. 1.5], it roughly goes as follows:

Pick a fine enough open cover P1 =
⋃
Ui such that classes in

H2(X0,OX0) ' H1(X0, R
1π∗OX0)

can be represented by sections of R1π∗OX0 over Ui ∩Uj and such that for every singular
fibre Xt there exists a unique Ui containing t. Now use

R1π∗OX0 |Ui∩Uj // //X an
0 |Ui∩Uj

to translate the glueing maps over Ui ∩Uj defining X0 by the section of X an
0 obtained as

images of classes in H2(X0,OX0). This yields new elliptic surfaces and one checks that
their classes in Xan(X0) ' H2(X0,O∗X0

) are given by the image under the exponential
map H2(X0,OX0) //H2(X0,O∗X0

).
It is worth noting that the family constructed in this way really is a family of elliptic

surfaces, i.e. it comes with compatible projections to P1. Also note that this approach
to Xan(X0) shows that all elliptic surfaces X //P1 in Xan(X0) (and so in particular
all inX(X0)) are deformation equivalent to X0

//P1 and, therefore, are K3 surfaces as
well. This is an alternative argument for Proposition 5.4 when k = C. In this family, the
algebraic surfaces are dense, because

X(X0) ' (Q/Z)22−ρ(X0) ⊂Xan(X0) ' C/Z22−ρ(X0)

induced by H2(X0,Q) �
� // H2(X0,R) // //H2(X0,OX0) ' C is dense.

References and further reading:
In practice, it can be very difficult to determine or describe all elliptic fibrations of a given K3

surface. This is only partially due to the automorphism group. For Kummer surfaces associated
with the Jacobian Jac(C) of a generic genus two curve C this was recently studied in detail
by Kumar in [337]. For elliptic fibrations of Kummer surfaces associated with a product of
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elliptic curves see [342, 457, 464] and [295] for elliptic fibrations of a generic double plane with
ramification over six lines.

Is a semistable (i.e. only In-fibres occur) extremal elliptic K3 surface determined by its configu-
ration of singular fibres? This question has been treated by Miranda and Persson [414] and Artal
Bartolo, Tokunaga, and Zhang [12], in the latter article one finds more on the possible Mordell–
Weil groups. In [339] Kuwata exhibits examples of elliptic quartic surfaces with Mordell–Weil
groups of rank at least 12.

The description of NS(J(X)) by Keum [289] was motivated by Belcastro’s thesis [56]. However,
in the latter J(X) was linked to a moduli space of bundles with Mukai vector (d0, [Xt], 0). The
relation between the two approaches can be explained in terms of elementary transformations as
in Section 9.2.2 or, more abstractly, by the spherical twist TO, see Section 16.2.3.

Questions and open problems:
To the best of my knowledge, not all of the statements for complex elliptic K3 surfaces that

should hold as well in positive characteristic have actually been worked out in full detail, see e.g.
Remarks 3.11 and 4.10.

It would be interesting to compute periods of non-projective (X // P1) ∈Xan(X0).
As mentioned in Section 4.3, there are things left to check to view Jd(X) as moduli space of

sheaves in the non-algebraic setting.



CHAPTER 12

Chow ring and Grothendieck group

This chapter starts with a quick review of the basic facts on Chow and Grothendieck
groups. In particular, we mention Roitman’s result about torsion freeness, which we
formulate only for K3 surfaces, and prove divisibility of the homologically trivial part.
Section 2 outlines Mumford’s result about CH2(X) being big for complex K3 surfaces
and contrasts it with the Bloch–Bĕılinson conjecture for K3 surfaces over number fields.
This section also contains two approaches, due to Bloch and Green–Griffiths–Paranjape,
to prove that CH2(X) grows under transcendental base field extension. The last section
discusses more recent results of Beauville and Voisin on a natural subring of CH∗(X) that
naturally splits the cycle map.

1. General facts on CH∗(X) and K(X)

We consider an algebraic K3 surface X over an arbitrary field k and study its Chow
ring CH∗(X) and its Grothendieck group K(X). In this first section we recall standard
definitions and results and explain what they say for K3 surfaces.

1.1. The ultimate reference for intersection theory and Chow groups is Fulton’s
book [190]. A brief outline summarizing the basic functorial properties of the Chow ring
can be found in [234, App. A].
For an arbitrary variety Y over a field k, a cycle of codimension n is a finite linear

combination Z =
∑
ni[Zi] with ni ∈ Z and Zi ⊂ Y closed integral subvarieties of

codimension n. The group of all such cycles shall be denoted Zn(Y ).
Let ν : Ṽ // V ⊂ Y be the normalization of a subvariety V ⊂ Y . Recall that two

divisors D,D′ on Ṽ , i.e. cycles of codimension one on the normal variety Ṽ , are linearly
equivalent if D − D′ is a principal divisor (which for Cartier divisor is equivalent to
O(D) ' O(D′)). In this case, the image cycles Z := ν∗D and Z ′ := ν∗D

′ on Y are called
rationally equivalent. The equivalence relation generated by this is rational equivalence
and is denoted Z ∼ Z ′.
The Chow group of cycles of codimension n on a variety Y is by definition the group

of all cycles of codimension n modulo rational equivalence:

CHn(Y ) := Zn(Y )/∼.

For a smooth variety Y the map D � //O(D) yields an injection CH1(Y ) �
� // Pic(Y )

(by definition rational equivalence equals linear equivalence for codimension one cycles),
which is in fact an isomorphism for integral Y , see [234, II.Prop. 6.15]. One can define
the first Chern class c1 : Pic(Y ) //CH1(Y ) as its inverse.

239
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For a smooth quasi-projective variety Y it is possible to define the intersection of cycles
modulo rational equivalence which endows

CH∗(Y ) :=
⊕

CHn(Y )

with the structure of a graded commutative ring. For two subvarieties Z,Z ′ ⊂ Y meeting
transversally this is given by the naive intersection Z ∩Z ′. If the two subvarieties do not
intersect transversally or even in the wrong codimension, one needs to deform them first
according to Chow’s moving lemma (for algebraically closed k) which requires working
modulo rational equivalence, cf. [190, Ch. 11] or [617, 21.2]. Another approach to the
intersection product uses deformation to the normal cone.
If Y is of dimension d, then any Z ∈ CHd(Y ) can be written as a finite sum Z =

∑
ni[yi]

with closed points yi ∈ Y . The degree of Z is then defined as

deg
(∑

ni[yi]
)

:=
∑

ni[k(yi) : k],

which does not depend on the chosen representative. It defines a group homomorphism

deg : CHd(Y ) //Z,

the kernel of which is denoted

CHd(Y )0 := Ker
(

deg : CHd(Y ) //Z
)
.

Let us now specialize to the case that Y is a K3 surface X. For dimension reasons one
has

CH∗(X) = CH0(X)⊕ CH1(X)⊕ CH2(X).

Clearly, CH0(X) ' Z, which is naturally generated by [X], and CH1(X) ' Pic(X) via
the first Chern class.1

Remark 1.1. For k = k̄ rational equivalence of 0-cycles can be understood more ex-
plicitly as follows. A cycle Z of codimension zero is rationally equivalent to 0 if there
exists a morphism f : P1 //Sn(X) such that f(0) − f(∞) = Z. The equivalence rela-
tion generated by this condition really is rational equivalence. Here, Sn(X) denotes the
symmetric product of the surface X, cf. Section 10.3.3, and the cycle f(t) is

∑
[xi] if the

image of t under f is the point (x1, . . . , xn) ∈ Sn(X), see [190, Ex. 1.6.3] or [437].

The intersection product with CH0(X) = Z is obvious and for dimension reasons
CH2(X) intersects trivially with CH1(X)⊕CH2(X). Thus, the only interesting intersec-
tion product on a surface X is

CH1(X)× CH1(X) //CH2(X).

If C1, C2 ⊂ X are two curves, then [C1] · [C2] ∈ CH2(X) can be described as the image
ν∗[D] under the normalization ν : C̃1

//C1 ⊂ X of any divisor D with O(D) ' ν∗O(C2).

1For a complex non-projective K3 surface X it might happen that X does not contain any curve,
and in this sense Z1(X) = 0 and CH1(X) = 0, but nevertheless one could have Pic(X) 6= 0. For example,
consider a K3 surface with Pic(X) = NS(X) generated by a line bundle L with (L)2 = −4, cf. Example
3.3.2.
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Note that in this case, deg([C1] · [C2]) = degO(D) = (C1.C2), see Section 1.2.1. In
Section 3, we shortly return to the intersection product of codimension one cycles and
describe its image in CH2(X).

1.2. The really mysterious part of the Chow ring of a K3 surface is CH2(X). (See
Section 17.2 for a discussion of the group CH1(X) ' Pic(X).) If X contains a k-
rational point, then deg : CH2(X) //Z is surjective. Otherwise its image is a finite index
subgroup. In any case, the essential part of CH2(X) is the kernel CH2(X)0.
The following observation, although stated here only for K3 surfaces, holds in full

generality, see e.g. [190, Ex. 1.6.6].

Proposition 1.2. If k is algebraically closed, then the group CH2(X)0 is divisible.

Proof. Clearly, CH2(X)0 is generated by cycles of the form [x]− [y] with x, y ∈ X.
Choose a smooth irreducible curve x, y ∈ C ⊂ X. Then O(x−y) ∈ Pic0(C). The abelian
variety Pic0(C) is divisible, for multiplication by n defines a finite and hence surjective
morphism Pic0(C) // //Pic0(C). The push-forward of a divisor corresponding to the n-th
root of O(x− y) yields (1/n)([x]− [y]) ∈ CH2(X). �

The next theorem, originally due to Roitman [509], is much harder. It is again only a
special case of a completely general statement that involves the Albanese variety (which
is trivial for K3 surfaces).

Theorem 1.3. If k is separably closed, then CH2(X) is torsion free.

Proof. See Roitman’s original article [509] and Bloch’s version [65, 66] showing that
there is no torsion prime to the characteristic. The general statement was established by
Milne [404]. A brief account was given by Colliot-Thélène in [120], but see also Voisin’s
[617, Sec. 22.1.2] in the complex setting. �

Summarizing, for a K3 surface over an algebraically closed field the Chow groups

CH0(X) ' Z, CH1(X) ' Pic(X) = NS(X) ' Zρ(X), and CH2(X)

are torsion free. Moreover, the degree map yields an exact sequence

0 //CH2(X)0
//CH2(X) //Z // 0

with CH2(X)0 a divisible group.

Remark 1.4. The torsion of CH2(Y ) for arbitrary surfaces has been studied intensively.
For a survey see [120]. We only briefly mention the following results applicable to K3
surfaces. So, we shall assume that X is a K3 surface over an arbitrary field k, although
the following results hold under more general assumptions.
i) If ` is prime to the characteristic of k, then CH2(X)[`∞] (the part of CH2(X) anni-

hilated by some power of `) is a subquotient of H3
ét(X,Q`/Z`(2)), see [120, Thm. 3.3.2].

ii) If k is a finite field, then the torsion subgroup of CH2(X) is finite, cf. [120, Thm.
5.2] and [124]. See also Proposition 2.16, asserting that in fact CH2(X) is torsion free in
this situation.
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iii) I am not aware of any finiteness results or instructive examples for the torsion of
CH2(X) for a K3 surface X over a number field or over Fq(t). See the comments at the
end of this chapter.

1.3. The Grothendieck group K(Y ) of a variety (or a noetherian scheme) Y is the
free abelian group generated by coherent sheaves F on Y divided by the subgroup gene-
rated by elements of the form [F2] − [F1] − [F3] whenever there exists a short exact
sequence 0 //F1

//F2
//F3

// 0. Elements of K(Y ) are represented by finite linear
combinations

∑
ni[Fi] with ni ∈ Z and Fi ∈ Coh(Y ).

By the very construction, K(Y ) is in fact a group that is naturally associated with
the abelian category Coh(Y ). Indeed, for an arbitrary abelian category A one defines its
Grothendieck group K(A) as the quotient of the free abelian group generated by objects
of A by the subgroup generated by elements of the form [A2] − [A1] − [A3] for all short
exact sequences 0 //A1

//A2
//A3

// 0. Note that in particular [A] = [A′] in K(A)

if A ' A′ and [A⊕B] = [A] + [B]. Thus, clearly

K(Y ) = K(Coh(Y )).

There is yet another categorical interpretation of K(Y ) which relies on the bounded
derived category Db(Y ) := Db(Coh(Y )) viewed as a triangulated category. For an arbi-
trary (small) triangulated category D one defines K(D) as the quotient of the free abelian
group generated by the objects of D modulo the subgroup generated by elements of the
form [A2]− [A1]− [A3] for all exact triangles A1

//A2
//A3

//A1[1]. For the notion of
a triangulated category and, in particular, of exact triangles see [206, 610] and Section
16.1.1. Since the identity A = A gives rise to an exact triangle A // 0 //A[1] //A[1],
one has [A[1]] = −[A] for all objects A. As any object in the bounded derived category
Db(A) of an abelian category A admits a finite filtration with ‘quotients’ isomorphic to
shifts of objects in A, there is a natural isomorphism K(Db(A)) ' K(A). Applied to our
case, one finds

K(Y ) = K(Coh(Y )) ' K(Db(Y )).

For a smooth and quasi-projective variety Y , the Grothendieck group can equivalently
be defined as the free abelian group generated by locally free sheaves modulo short exact
sequences as before. Indeed, any coherent sheaf on Y admits a finite locally free resolution
0 //Fn // . . . //F0

//F // 0 and thus [F ] =
∑

(−1)i[Fi]. The advantage of working
with locally free sheaves only is that the tensor product induces on K(Y ) the structure
of a commutative ring by

[F ] · [F ′] := [F ⊗ F ′].
The Grothendieck group and the Chow group can be compared via the Chern character.

The Chern character defines a ring homomorphism

ch: K(Y ) //CH∗(Y )Q.

(Recall that for abelian groups G we use the shorthand GQ := G⊗ZQ.) The Chern classes
ci(F ) of a coherent sheaf F itself are elements in CHi(Y ), but the Chern character ch(F )
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has non-trivial denominators in general. However, it induces a ring isomorphism

ch: K(Y )Q
∼− // CH∗(Y )Q.

Observe that ch(OZ) = [Z] mod CH∗>n(Y ) for any subvariety Z ⊂ Y of codimension n.

1.4. Let us come back to the case of a K3 surface X. Then the Chern character of
a sheaf F on X is given as

ch(F ) = rk(F ) + c1(F ) +
(c2

1 − 2c2)(F )

2
.

Here, rk(F ) is the dimension of the fibre of F at the generic point η ∈ X, i.e. rk(F ) =

dimK(X)(Fη), and c1(F ) = c1(det(F )). If F is globally generated and locally of rank two,
then c2(F ) can be represented by [Z(s)], where Z(s) is the zero locus of a regular section
s ∈ H0(X,F ). Proposition 1.2 can be used to show that Chern characters of sheaves on
K3 surfaces are in fact integral, at least for k = k̄.

Corollary 1.5. Let X be a K3 surface over an algebraically closed field k. Then the
Chern character naturally defines an isomorphism of rings

ch: K(X) ∼− // CH∗(X).

Proof. By the Riemann–Roch formula deg(c1(L)2) = (L)2 is even. Thus, for alge-
braically closed k it is divisible by two in the image of the surjection deg : CH2(X) //Z.
On the other hand, by Proposition 1.2 the kernel of deg, i.e. CH2(X)0, is divisible for
k = k̄ and hence (1/2)c1(L)2 exists uniquely, due to the absence of torsion in CH2(X),
see Theorem 1.3.
Next we prove that ch: K(X) //CH∗(X) is surjective. Indeed, the generator 1 = [X]

of CH0(X) equals ch(OX) and [x] = ch(k(x)) for all closed points x ∈ X. Thus CH0(X)⊕
CH2(X) is contained in the image. As (1/2)c1(L)2 ∈ CH2(X) for all L ∈ Pic(X) and
ch(L) = 1 + c1(L) + (1/2)c1(L)2, all first Chern classes c1(L) are in the image of the
Chern character, i.e. CH1(X) ⊂ Im(ch).
To prove injectivity, one shows that for any smooth surface Y there are natural iso-

morphisms
rk : F 0K(Y )/F 1K(Y ) ∼− // Z,

c1 : F 1K(Y )/F 2K(Y ) ∼− // Pic(Y ), and c2 : F 2K(Y ) ∼− // CH2(Y ).

Here, F iK(Y ) is the subgroup generated by sheaves with support of codimension ≥ i. In
particular, ch: K(Y ) //CH∗(Y )Q is always injective. See [190, Ex. 15.3.6]. �

It would be interesting to find a direct proof for the torsion freeness of K(X).

2. Chow groups: Mumford and Bloch–Bĕılinson

After these general results, we now pass to things that are more specific to K3 surfaces.
In fact, although we shall state the results for K3 surfaces only, often the condition
pg(X) := h0(X,ωX) > 0 suffices.
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2.1. We start with a celebrated result of Mumford for K3 surfaces over C (or over
any uncountable algebraically closed field of characteristic zero). In [437] he disproves
an old claim of Severi that the group of 0-cycles modulo rational equivalence is always
finite-dimensional by showing that the dimension of the image of the natural map

σn : Xn ×Xn //CH2(X)0, ((x1, . . . , xn), (y1, . . . , yn)) � //
∑

([xi]− [yi])

cannot be bounded. To make this precise, we need a few preparations. See [617] for
details and more general results.
Clearly, the map σn : Xn ×Xn //CH2(X)0 factorizes over the symmetric product

σn : Sn(X)× Sn(X) //CH2(X)0

and we shall rather work with the latter.

Proposition 2.1. The fibres of the map σn : Sn(X)×Sn(X) //CH2(X)0 are countable
unions of closed subvarieties. Moreover, there exists a countable union Y ⊂ Sn(X) ×
Sn(X) of proper subvarieties such that for all points (Z1, Z2) in the complement of Y the
maximal dimension of σ−1

n σn(Z1, Z2) is constant.

Proof. The very rough idea goes as follows. Cycles Z1, Z2 ∈ Sn(X) that define the
same class α ∈ CH2(X)0 are obtained by adding cycles of the form div0(f) + D and
div∞(f) +D to Z1 and Z2, respectively. Here, f is a rational function on some curve C
in X, div0(f) and div∞(f) are its zero and pole divisor, and D is just some divisor on C.
These data are parametrized by certain Hilbert schemes and thus form a countable set

of varieties. For more details see [617, Lem. 22.7]. �

Let now fn be the dimension of the generic fibre σ−1
n σn(Z1, Z2) in the sense of the

proposition. Although the image of σn does not have the structure of a variety, one can
talk about its dimension.

Definition 2.2. The image dimension of σ is defined as

dim(Im(σn)) := dim(Sn(X)× Sn(X))− fn = 4n− fn.

The following result then says that the ‘dimension’ of CH2(X)0 is infinite.

Theorem 2.3 (Mumford). For a complex K3 surface X one has

lim dim(Im(σn)) =∞.

Proof. The key idea is the following. The fibres of σn are countable unions of
subvarieties. The generator of H0(X,Ω2

X) induces a non-degenerate regular two-form on
Xn×Xn which is symmetric and hence descends to a generically non-degenerate two-form
on Sn(X) × Sn(X). (Restrict to the smooth part to avoid the singularities.) Morally
(but not literally!), the components of the fibres of σn tend to be rationally connected, for
they parametrize rationally equivalent cycles. Since a rationally connected variety does
not admit any non-trivial two-form (see [310, IV Cor. 3.8]), the components of the fibres
should be of dimension at most (1/2) dim(Sn(X)× Sn(X)). �
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Remark 2.4. It turns out that for general surfaces CH2(X)0 is finite dimensional if
and only if σn is surjective for large n, see [617, Prop. 22.10]. Furthermore, this condition
for a K3 surface is equivalent to CH2(X)0 = 0 or, still equivalent, to Jac(C) // //CH2(X)0

for some ample curve C ⊂ X. The latter is the notion of finite-dimensionality used by
Bloch in [66]. So K3 surfaces over C have infinite dimensional CH2(X).

2.2. In contrast to Mumford’s result for K3 surfaces over C (or, more generally,
uncountable algebraically closed fields of characteristic zero) the situation is expected to
be completely different for K3 surfaces over global fields, e.g. over number fields.

Conjecture 2.5 (Bloch–Bĕılinson). If X is a K3 surface over a number field k (i.e. a
finite field extension of Q), then the degree map defines an isomorphism

CH2(X)Q ' Q.

If X is a K3 surface over Q̄, then CH2(X) ' Z.

This is only a special case of much deeper conjectures generalizing the conjecture of
Birch and Swinnerton-Dyer for elliptic curves, see [55, 67, 501]. However, there is
essentially no evidence for this conjecture. There is not a single K3 surface X known
that is defined over a number field and has CH2(X)Q ' Q. In fact, it seems we do not
even have examples where any kind of finiteness result for CH2(X)0 has been established.
As shall be briefly mentioned below, CH2(X)0 often contains torsion classes which after
base change to Q̄ become trivial.

Remark 2.6. It is expected that the conjecture fails when one replaces Q̄ by the
minimal algebraically closed field of definition. But to the best of my knowledge, there
has never been given an explicit example for this, i.e. there does not seem to be known an
example of a K3 surface X defined over an algebraically closed field k with trdegQ(k) > 0

and not over any field of smaller transcendence degree with CH2(X) 6= Z.2

Remark 2.7. There is a different set of finiteness conjectures due to Bass.3 For a
smooth projective variety X over a field k which is finitely generated over its prime field,
the Grothendieck groupK(X) is conjectured to be finitely generated, see [34, Chap. XIII].
Note that this in particular predicts that for a K3 surface over a number field CH2(X)

should be finitely generated, but (up to torsion) the conjecture of Bloch–Bĕılinson is
more precise. A priori Bass’s conjectures do not explain why passing from a number
field to Q̄ the rank of CH2(X) does not increase. On the other hand, Bass’s conjectures
also predict that CH2(X) is finitely generated for fields which are finite extension of
Q(t) or Fp(t1, t2) (or other purely transcendental extensions of the prime field of finite
transcendence degree). Compare this to the results in Sections 2.3 and 2.4.

2In [277, App. B] one finds an example due to Schoen of a K3 surface X over some finite extension
of Q(t) that cannot be defined over Q̄ and for which CH2(X)0 is of infinite rank. However, this example
becomes isotrivial after passing to the algebraic closure of Q(t). Thanks to Stefan Schreieder for pointing
this out.

3I wish to thank Jean-Louis Colliot-Thélène for the reference and explanations.
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Example 2.8. Note that while we do not have a single example confirming the Bloch–
Bĕılinson conjecture, we have plenty of examples confirming the conjecture of Bass. For
example, it is not difficult to show that CH2(X) ' Z for the generic fibre X := Xη of the
universal quartic X ⊂ |O(4)| × P3

Q. So, here the base field is the finitely generated field
k(η) = Q(t1, . . . , t34).4 Note also, that considering the same situation over C yields an
example of a K3 surface with CH2(X) ' Z over the field C(t1, . . . , t34), which certainly
is not finitely generated.

2.3. The Chow group can change under base field extension. Suppose a K3 surface
X is defined over a field k and k ⊂ K is a field extension. The pull-back defines a natural
homomorphism

CH∗(X) //CH∗(XK), Z � //ZK .

Clearly, CH0(X) ∼− // CH0(XK) and CH1(X) �
� // CH1(XK), see Section 17.2.1. In degree

two the map is in general neither injective nor surjective. However, its kernel is purely
torsion, due to the following easy

Lemma 2.9. For any field extension k ⊂ K the pull-back map

CH2(X)Q
� � // CH2(XK)Q

is injective.

Proof. Consider first a finite extension k ⊂ K. Then the natural projection π : XK
//X

is a finite morphism of degree [K : k] and thus satisfies

π∗π
∗α = [K : k] · α

for all α ∈ CH∗(X). This is a special case of the projection formula, see e.g. [234, p.
426]. Hence, if π∗α ∈ CH2(XK) is zero, then α ∈ CH2(X) was at least torsion. This
proves the result for any finite (and then also for any algebraic) field extension. Below
we reduce the general result to this case.
Let now k ⊂ K be an arbitrary field extension k ⊂ K. If Z ∈ CH2(X) is in the kernel

of the pull-back CH2(X) //CH2(XK), then Z becomes trivial after a finitely generated
field extension k ⊂ L ⊂ K. Indeed, the rational equivalence making ZK trivial over K
involves only finitely many curves Ci and rational functions on them. The finitely many
coefficients needed to define these curves with the rational functions generate a field L.
In fact, we may assume that L is the quotient field of a finitely generated k-algebra A
and the curves Ci are defined over A. Now think of XL as the generic fibre of the ‘spread’
X×k Spec(A) // Spec(A). In particular, for any closed point a ∈ Spec(A) the restriction
of ZSpec(A) to the fibre X × Spec(k(a)) is rationally equivalent to zero by means of the
restriction of the curves Ci. As k(a) is a finite field extension of k and the restriction
of ZSpec(A) to the fibre over a is nothing but Zk(a), this shows by step one that Z was
torsion. �

4We emphasize again, that no explicit examples of K3 surfaces over a number field seems to be
known for which CH2(X) is finitely generated.
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Note that for finite Galois extensions K/k with Galois group G, the cokernel of the
base-change map CH2(X) //CH2(XK)G is torsion (see [120, §2] and compare this to
the discussion in Section 17.2.2), i.e.

CH2(X)Q
∼− // CH2(XK)GQ.

The following result due to Bloch, see [66].

Proposition 2.10. Let X be a K3 surface over an arbitrary field k such that ρ(X ×k
k̄) < 22. If K = k(X) denotes the function field of X, then

CH2(X)Q //CH2(XK)Q

is not surjective.

Proof. The construction of an extra cycle is very explicit. Consider the diagonal
∆ ⊂ X × X and its restriction ∆K to the generic fibre XK = X × Spec(K) ⊂ X × X
of the second projection. One now proves that [∆K ] ∈ CH2(XK)Q is not contained in
CH2(X)Q. For this, one can certainly pass to the algebraic closure of k and, therefore,
we may simply assume k = k̄.
Suppose it was, i.e. [∆K ] =

∑
ni[xi] in CH2(XK)Q for certain ni ∈ Q and closed

points xi ∈ X with their associated classes [xi] ∈ CH2(X)Q ⊂ CH2(XK)Q. In other
words, there exist curves Ci ⊂ XK and rational functions fi ∈ K(Ci) such that ∆K =∑
nixi +

∑
divCi(fi) as cycles on XK ⊂ X ×X. Taking the closure in X ×X yields

(2.1) ∆ =
∑

ni({xi} ×X) +
∑

Di + V

as cycles on X × X. Here, V ⊂ X × X does not meet the generic fibre (and therefore
does not dominate the second factor) and Di := divC̄i(fi) with C̄i the closure of Ci.
Both sides of the equation can be viewed as cohomological correspondences. In char-

acteristic zero one could pass to the associated complex surfaces and use singular coho-
mology. Otherwise use `-adic étale cohomology, ` 6= char(k).
Clearly, [∆]∗ is the identity on H2

ét(X,Q`(1)). On the other hand, [{xi} × X]∗ acts
trivially on H2

ét(X,Q`(1)) for degree reasons and the Di are rationally and hence homo-
logically trivial.5 Thus, id = [∆]∗ = [V ]∗.
Under the assumption ρ(X) < 22, the first Chern class induces a proper inclusion

NS(X)Q` ⊂ H2
ét(X,Q`(1)), cf. Section 17.2.2. Since the image of V under the second

projection is supported in dimension ≤ 1, the image of [V ]∗ is contained in NS(X)Q` .
Contradiction. �

Remark 2.11. Clearly, in characteristic zero the assumption on the Picard group is
superfluous. One always has ρ(X ×k k̄) ≤ 20, which can be proved by Hodge theory over
C, see Sections 1.3.3 or 17.1.1.
However, for K3 surfaces in positive characteristic the case ρ(X ×k k̄) = 22 may occur

and the above argument breaks down. In fact, it was conjectured and has now been proved

5At this point one uses that the cycle map factors through the Chow ring and, in this case more
precisely, that CH2(X ×X) //H4

ét(X ×X,Q`(2)) is well-defined.
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by Liedtke in [371] that for a K3 surface X the condition ρ(X×k k̄) = 22 is equivalent to
X being unirational, see Proposition 17.2.7 and Section 18.3.5. Any unirational surface
satisfies CH2(X)Q ' Q and, since a unirational variety remains unirational after base
change, the Chow group does indeed not grow after passage to Xk(X) or any other field
extension.

As an immediate consequence, we obtain the following weak form of Mumford’s result,
cf. Theorem 2.3.

Corollary 2.12. Let X be a K3 surface over C. Then dimQ CH2(X)Q =∞.

Proof. Indeed, X is defined over the algebraic closure k0 of a finitely generated
extension of Q, i.e. X = X0 ×k0 C, and by choosing inductively ki to be the algebraic
closure of K(X0 ×k0 ki−1) and embeddings k0 ⊂ k1 ⊂ . . . ⊂ C one obtains a strictly
ascending chain of vector spaces

CH2(X0)Q ( CH2(X0 ×k0 k1)Q ( . . . ( CH2(X0 ×k0 C)Q. �

Remark 2.13. i) The same arguments show that for every K3 surface X over an
algebraically closed field k of infinite transcendence degree over its prime field, one has
dimQ CH2(X)Q =∞ provided that ρ(X) < 22.
ii) In fact, Bloch uses similar methods to prove the full result of Mumford, i.e. that there

is no curve C ⊂ X (possibly disconnected) such that Pic0(C) //CH2(X)0 is surjective,
cf. Remark 2.4. For details see [66, App. Lect. 1].

In characteristic zero, an analogous construction can be used to show that the Chow
group increases already after base change to an algebraically closed field of transcendence
degree one. The following is based on the paper by Green, Griffiths, and Paranjape [215]
and works more generally for surfaces with pg 6= 0.

Proposition 2.14. Let X be a K3 surface over a field k of characteristic zero. If K
is an algebraically closed extension of k with trdegk(K) ≥ 1, then

CH2(X)Q //CH2(XK)Q

is not surjective.

Proof. Similar to the proof of Proposition 2.10, one constructs a certain cycle Z ⊂
X × C, whose generic fibre over C defines a class that is not contained in the image of
the pull-back CH2(X)Q //CH2(Xk(C))Q. Here, C is a smooth curve with function field
k(C). For the following we can assume that k is algebraically closed of finite transcendence
degree with an embedding k ⊂ C, which allows us to use Hodge theory for the complex
manifolds XC and CC.
The cycle Z is constructed as follows. Firstly, consider the diagonal ∆ ⊂ X ×X and

its action [∆]∗ on H∗(XC,Q). In degree two it respects the decomposition H2(XC,Q) =

Pic(XC)Q ⊕ T (XC)Q. Here, T (XC) is the transcendental lattice, cf. Section 3.2.2. On
Pic(XC)Q one can describe [∆]∗ as the action of a cycle of the form

∑
mi(Ci ×Di) with
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curves Ci, Di ⊂ X and mi ∈ Q. Since Pic(X) ' Pic(XC) (cf. Lemma 17.2.2), we may
assume that indeed these curves exist over k. Now, fix a closed point x ∈ X and let

Y := ∆−
∑

mi(Ci ×Di)− {x} ×X.

Viewed as a correspondence from the second to the first factor, it acts trivially on
H4(XC,Q) and Pic(X) and as the identity on the transcendental part T (XC).6 Now
pick a smooth curve C ⊂ X and let Z be the pull-back of Y under the natural inclusion
X × C ⊂ X ×X.
One checks that Z is homologically trivial, i.e. 0 = [Z]∗ : H∗(CC,Q) //H∗(XC,Q). For

example, for the generator [C] ∈ H0(CC,Z) one computes, using the projection formula,
that [Z]∗[C] = [Y ]∗[C], where on the right hand side [C] ∈ H2(XC,Z) is contained in
the Picard group and hence [Y ]∗[C] = 0. A similar argument works for the generator of
H2(CC,Z). Furthermore, the image of H1(CC,Z) is contained in H3(XC,Z) and hence
trivial.
As a homologically trivial cycle, Z on the complex threefold XC ×CC is the boundary

∂Γ of a real three-dimensional cycle Γ ⊂ XC × CC. This yields a map

(2.2) H2(XC)×H1(CC) //C, (α, β) � //
∫

Γ
p∗Xα ∧ p∗Cβ,

which is well-defined up to classes in H3(XC×CC,Z). In other words, we are considering
the Abel–Jacobi class of Z in the intermediate Jacobian J3(XC×CC), see [617, Ch. 12].
At this point one has to check that the pairing (2.2) is non-trivial on T (XC) ×H1(CC)

(up to integral classes) for sufficiently generic C. In fact, it suffices to choose a generic
member of a pencil on X. For the details of this part of the argument see [215].
The rest is similar to the arguments in the proof of Proposition 2.10. Suppose Zk(C) ∈

CH2(Xk(C))Q is of the form
∑
nixi for certain closed points xi ∈ X. Since Z is homo-

logically trivial, one automatically has
∑
ni = 0. Then the closure of Z in X × C is of

the form ∑
ni({xi} × C) +

∑
Di + V

with [Di] = 0 in CH2(X × C) and such that the image of V under X × C //C consists
of a finite number of points. This is the analogue of (2.1).
The Abel–Jacobi map is defined on the homologically trivial part of CH2(X × C)

and in particular trivial on the rationally trivial cycles Di. One now shows that also∑
ni({xi} × C) and V are trivial under the Abel–Jacobi map. More precisely, they

define trivial pairings on T (XC) ×H1(CC). Indeed, a cycle Γ0 ⊂ XC × CC with ∂Γ0 =∑
ni({xi} × CC) can be obtained, by connecting the points xi ∈ X by real paths γ and

then taking the product with CC. Clearly, the integral
∫

Γ0
is then trivial on classes of

the form α ∧ β, as the two-form α vanishes when restricted to the paths γ.
As the vertical cycle V lives over finitely many points yi ∈ C, it is of the form

∑
mi(Ci×

{yi}). Using paths γ ⊂ CC, one constructs a cycle Γ1 with ∂Γ1 = VC with components

6This construction is inspired by Murre’s decomposition of the diagonal for surfaces, see [443].
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of the form Ci× γ. Now use that T (XC) is contained in the kernel of the restriction map
H2(XC,Q) //H2(Ci,Q) to deduce that

∫
Ci×γ α ∧ β = 0 for all α ∈ T (XC). �

As we shall briefly mention below, the assumption on the characteristic is essential, e.g.
for k = F̄p the result does not hold, cf. Remark 2.18.

Remark 2.15. Passing to an algebraically closed extension of transcendence degree
one not only makes the Chow group bigger, but one even expects CH2(X)Q to become
infinite-dimensional right away. An explicit example has been worked out by Schoen
[527]: For the Fermat elliptic curve E over Q it is shown that CH2((E × E)Q(E)

)0 is
infinite-dimensional, i.e. not concentrated on a curve, see Remark 2.4.

Summarizing one can say that cohomological methods can be used to prove non-
triviality of classes, but there are no techniques known, cohomological or other, that
would prove triviality of cycles in an effective way, i.e. that potentially could lead to a
proof of the Bloch–Bĕılinson Conjecture 2.5.

2.4. Let us add a few comments on the situation over finite fields. The following is
a folklore result.

Proposition 2.16. Let X be a smooth projective variety of dimension n over a finite
field k. Then CHn(X)0 is torsion (and in fact finite). In particular, if X is a K3 surface,
then CH2(X)0 is torsion (and in fact trivial).

Proof. For any cycle Z =
∑
ni[xi] ∈ CHn(X), there is a curve C ⊂ X defined

over some finite extension k′ of k such that all points xi are contained in C(k′). For
simplicity we shall assume that C is smooth, otherwise work with its normalization. If Z
is of degree zero, i.e. Z ∈ CHn(X)0, then Z defines a k′-rational point of Pic0(C ′), where
C ′ := C ×k k′. However, the group of k′-rational points of Pic0(C ′) is finite for a finite
field k′. Hence, Z as an element in Pic0(C ′) must be torsion. Since the push-forward
CH∗(C ′) //CH∗(Xk′) is additive, this shows that Z ∈ CHn(Xk′)0 is torsion. Since the
kernel of CHn(X) //CHn(Xk′) is torsion by Lemma 2.9, this proves the assertion.
To prove finiteness of CHn(X)0 and triviality of CH2(X)0 for K3 surfaces, one uses a

result of Kato and Saito, cf. [120, Thm. 5.3], which describes CHn(X)0 as the kernel of
the natural map πab1 (X) // Ẑ, which is trivial for K3 surfaces. Alternatively, at least for
the `-torsion, one can use that CH2(X)[`] �

� // H4
ét(X,Z`(2)) due to a result of Colliot-

Thélène, Sanscu, and Soulé [124, Cor. 3]. �

Corollary 2.17. Let X be a K3 surface over F̄p. Then CH2(X) ' Z.

Proof. Let x, y ∈ X be closed points. Then there exists a finite field extension Fq
of Fp such that X and x, y are defined over Fq, i.e. there exists a K3 surface X0 over Fq
with X = X0 ×Fq F̄p and such that x, y are obtained by base changing some Fq-rational
points x0, y0 ∈ X0. Thus, the class [x] − [y] ∈ CH2(X)0 is contained in the image of
CH2(X0)0

//CH2(X)0.
However, by Proposition 2.16, CH2(X0)0 is torsion and hence [x] − [y] ∈ CH2(X)0 is

torsion. Theorem 1.3 then shows CH2(X)0 = 0 and thus CH2(X) ' Z. �
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Remark 2.18. The Bloch–Bĕılinson conjecture predicts properties of cycle groups over
global fields. In particular, it would say that for a K3 surface over finite extensions of
Fp(t), the group CH2(X)0 is torsion. Equivalently, one expects that for a K3 surface over
the algebraic closure of Fp(t) the group CH2(X)0 is trivial.
Note that in particular Proposition 2.14 is not expected to generalize to positive charac-

teristic even for K3 surfaces with ρ(X) < 22, cf. Remark 2.11. Schoen shows in [527,
Prop. 3.2] that for a K3 surface X over Fq that is dominated by a product of curves (e.g.
a Kummer surface) the Chow group is just Z after base change to the algebraic closure
of Fp(t). This holds true for all K3 surfaces which are finite-dimensional in the sense of
Kimura–O’Sullivan, see [260].

3. Beauville–Voisin ring

Due to Mumford’s result, the Chow group CH2(X) of a complex K3 surfaceX is infinite-
dimensional, see Theorem 2.3. Besides this fact, very little is known about CH2(X).
In this section we discuss a result of Beauville and Voisin showing that the cycle map
CH∗(X) //H∗(X,Z) can be split multiplicatively by a natural subring R(X) ⊂ CH∗(X).
Moreover, the ring R(X) contains many interesting characteristic classes of bundles that
we have encountered earlier.

3.1. Let X be a complex algebraic K3 surface.

Definition 3.1. The Beauville–Voisin ring

R(X) ⊂ CH∗(X)

is the subring generated by the Chow–Mukai vectors

vCH(L) := ch(L)
√

td(X) ∈ CH∗(X)

of all line bundles L ∈ Pic(X).

Theorem 3.2 (Beauville–Voisin). Let X be a complex algebraic K3 surface. Then the
cycle map CH∗(X) //H∗(X,Z) induces an isomorphism of rings

R(X) ∼− // H0(X,Z)⊕NS(X)⊕H4(X,Z).

The theorem, or rather its proof sketched below, is spelled out by

Corollary 3.3. There exists a distinguished class (the Beauville–Voisin class)

cX ∈ CH2(X)

of degree one with the following properties.

(i) If x ∈ X is contained in a (possibly singular) rational curve C ⊂ X, then [x] = cX .
(ii) For any L ∈ Pic(X), one has c2

1(L) ∈ Z · cX ⊂ CH2(X).
(iii) c2(X) = 24cX . �
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Proof. Since Pic(X) ' NS(X), the cycle map R(X) //H∗(X,Z) is injective in
degree at most one. Thus, only the injectivity of R2(X) //H4(X,Z) needs to be proved.
We only present an outline of the main arguments and refer to [52] for the details.
The first step of the proof consists in showing that the classes c1(L)2 ∈ CH2(X) for

line bundles L ∈ Pic(X) are all contained in a subgroup of CH2(X) of rank one. This
is equivalent to showing that for two line bundles L1, L2 the classes c1(L1)2 and c1(L2)2

are linearly dependent. Since Pic(X) is spanned by ample line bundles, it is enough to
prove this for L1 and L2 ample.
Now use the theorem of Bogomolov and Mumford (see Theorem 13.1.1 and Corollary

13.1.5) which implies that any ample divisor is linearly equivalent to a sum of rational
curves. Since any ample curve is 1-connected by Remark 2.1.7, it suffices to show that
for irreducible rational curves C1, C2, C3 ⊂ X, the products

Ci.Cj = c1(O(Ci)).c1(O(Cj)) ∈ CH2(X)

are linearly dependent. As all points on an irreducible rational curve C are rationally
equivalent, one has c1(O(C)).c1(O(Ci)) = (C.Ci) · [x] for any point x ∈ C.
This first part of the proof in particular shows that all points x ∈ X contained in some

rational curve are rationally equivalent, i.e. they all define the same class [x] ∈ CH2(X).
This class is taken as the Beauville–Voisin class cX .
The second part of the proof, more involved and using elliptic curves, shows that

c2(X) = 24cX . Since vCH(L) = exp(c1(L)).(1 + c2(X)/24), this clearly would prove the
assertion of the theorem.
The key to this part is the following property of the class cX , cf. [52, Cor. 2.3]: For

a point x0 contained in some rational curve (and thus [x0] = cX) let i and j be the
embeddings X //X × X, x � // (x, x0) and x � // (x0, x), respectively. Then for all ξ ∈
CH2(X ×X)

(3.1) ∆∗ξ = i∗ξ + j∗ξ + n · cX ,

where n = deg(∆∗ξ − i∗ξ − j∗ξ). As for ξ = [∆] one has ∆∗ξ = c2(X), this proves
the claim. We do not attempt to prove (3.1) here, but see below for examples where
c2(X) ∈ Z · cX can be checked easily. �

Example 3.4. In the first version of [52] Beauville listed a number of specific examples
of K3 surfaces for which c2(X) ∈ Z·cX is easy to prove. Those include elliptic K3 surfaces,
Kummer surfaces, and quartic hypersurfaces. For example, for a quartic X ⊂ P3 the
normal bundle sequence 0 // TX // TP3 |X //O(4)|X // 0 and c2(P3) = c2(O(1)⊕4) (use
the Euler sequence) immediately yield c2(X) ∈ Z ·c2

1(O(1)|X). For a Kummer surface one
simply uses the fact that away from the 16 rational curves C1, . . . , C16 corresponding to
the 16 two-torsion points, the tangent bundle of X is, after pull-back to the blow-up of the
abelian surface in the two-torsion points, isomorphic to the tangent bundle of the abelian
surface. The latter is trivial and thus only points on the Ci, i = 1, . . . , 16, contribute to
c2(X). However, as explained in the proof, [x] = cX for any point contained in a rational
curve.
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Note that if X satisfies ρ(X) ≥ 3 and contains at least one smooth rational curve, then
the existence result of ample rational curves can be avoided altogether, as then NS(X) is
in fact spanned by classes of smooth rational curves, see Corollary 8.3.12.

Remark 3.5. As all points on rational curves x ∈ C ⊂ X represent the same distin-
guished class [x] = cX , one might ask for a possible converse. Curves with this property
have been introduced as constant cycle curves in [260]. Although they enjoy many prop-
erties of rational curves, they need not always be rational.

3.2. In [255] the result of Beauville and Voisin has been generalized to a statement
on spherical objects in Db(X) = Db(Coh(X)).

Definition 3.6. An object E ∈ Db(X) is called spherical if Exti(E,E) ' k for i = 0, 2

and zero otherwise, see Section 16.2.3.

Example 3.7. Since H1(X,O) = 0, any line bundle L on a K3 surface is spheri-
cal. Also, if C ⊂ X is a smooth(!) rational curve, then all OC(i) are spherical. Ev-
ery rigid bundle E, i.e. a bundle with no non-trivial deformation or, equivalently, with
Ext1(E,E) = 0, is spherical provided it is simple. In particular, stable rigid bundles are
spherical. It is known that for any class δ = (r, `, s) ∈ H0(X,Z) ⊕ NS(X) ⊕ H4(X,Z)

with 〈δ, δ〉 = (`)2 − 2rs = −2, there exists a spherical complex E ∈ Db(X) with Mukai
vector v(E) = δ. See Section 10.3.1 for comments on the existence of spherical bundles.

We state the following theorem without proof. It was proved in [255] for ρ(X) ≥ 2

and using Lazarsfeld’s result that curves in primitive linear systems on K3 surfaces are
Brill–Noether general, see Section 9.2. Voisin in [621] gives a more direct argument for
spherical vector bundles not relying on Brill–Noether theory and also covering the case
ρ(X) = 1.

Theorem 3.8. The Chow–Mukai vector of any spherical object E is contained in the
Beauville–Voisin ring, i.e.

vCH(E) = ch(E) · (1, 0, cX) ∈ R(X) ⊂ CH∗(X).

The interest in this generalization stems from the fact that the set of spherical objects
in Db(X) is preserved under linear exact autoequivalences of Db(X), which is not the
case for the set of line bundles. In [255] it was seen as evidence for the Bloch–Bĕılinson
conjecture for K3 surfaces over number fields, because a spherical object on XC for a K3
surface X over Q̄ is always defined over Q̄.
For a K3 surface X over Q̄, base change CH∗(X) //CH∗(XC) should identify CH∗(X)

with the Beauville–Voisin ring R(X). This would clearly prove Conjecture 2.5.

References and further reading:
For a K3 surface X over a field k 6= k̄ the Chow group CH2(X) might have torsion. It would

be interesting to have some explicit examples. We recommend [120] for a survey on the general
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question concerning torsion in Chow groups. It is generally believed that for a number field k the
torsion should be finite. This has been shown for surfaces with pg = 0 by Colliot-Thélène and
Raskind [123] and Salberger [518] and for certain surfaces of the form E ×E with E an elliptic
curve by Langer and Saito [348]. It is not clear what to expect for other fields. In particular, in
[21] Asakura and Saito give examples of hypersurfaces of degree ≥ 5 in P3 over p-adic fields such
that for every ` 6= p the `-torsion in CH2(X) is infinite. It is not clear whether this also happens
for d = 4, i.e. for quartic K3 surfaces. Note that it is conjectured that over p-adic fields CH2(X)0

is the direct product of a finite group and a divisible group. The `-divisibility for almost all `
was shown by Saito and Sato in [516], see also [122]. Already in [502] Raskind finds examples
of K3 surfaces over p-adic fields such that the prime to p torsion of CH2(X)0 is finite, see also
[121]. For questions on the torsion of CH2(X) for varieties over finite fields see the article [124]
by Colliot-Thélène, Sansuc, and Soulé.

The results of Section 3 are part of a bigger picture. It seems that the conjectured Bloch
filtration of CH∗(X) for arbitrary varieties admits a natural splitting in the case of hyperkähler or
irreducible symplectic manifolds. This has been put forward by Beauville in [49] and strengthened
and verified in a series of examples by Voisin in [620].

It is an interesting problem to decide which points on a K3 surface X are rationally equivalent
to a given point x0. Maclean in her thesis [383] shows that for a generic complex projective
K3 surface X and generic x0 ∈ X the set {x | x ∼ x0} is always dense in the classical topology
independent of whether [x0] = cX or not, cf. Theorem 13.5.2. But note that the set is not expected
to have any reasonable topology. For example, when X is defined over a finitely generated
field K ⊂ C, then AutK(C) acts on X(C) in a highly non-continuous way but leaves the set
{x | [x] = cX} invariant.

We have not touched upon the general finiteness conjecture of Kimura and its applications
in the case of K3 surfaces, see e.g. [486]. Also, we have left untouched the results confirming
the Bloch–Bĕılinson conjectures for symplectic automorphisms acting on Chow groups, see e.g.
[258, 263, 622].

We have also omitted the cohomological approach, which describes CH2(X) as the Zariski co-
homology H2(X,K2) with K2 the sheaf associated with U � //K2(U) (Milnor K-theory). Passing
to the formal version of it, cf. Section 18.1.3, leads to the definition of the ‘tangent space’ of
CH2(X) as H2(X,OX) ⊗ Ωk/Q for a K3 surface X defined over a field k of characteristic zero.
See Bloch’s lecture notes [66] for details.

Questions and open problems:
It would be interesting to find a different approach to the torsion of CH2(X) via the torsion of

K(X) in the case of non-separably closed fields k. Nothing seems to be known in this direction.
More generally, it would be interesting to see whether viewing CH∗(X) as K(X) or K(Db(X))

sheds new light on certain aspects of cycles on K3 surfaces. For example, in [256] it is shown
that the Bloch–Bĕılinson conjecture is equivalent to the existence of a bounded t-structure on
the dense subcategory spanned by spherical objects.

In [616] Voisin conjectures that for a complex projective K3 surface X and any two closed
points x, y ∈ X the two points (x, y), (y, x) ∈ X × X satisfy [(x, y)] = [(y, x)] in CH4(X × X).
This has been proved in [616] for interesting special cases, but the general assertion remains
open.



CHAPTER 13

Rational curves on K3 surfaces

For this chapter we highly recommend the paper [68] by Bogomolov, Hassett, and
Tschinkel and Hassett’s survey [237]. All K3 surfaces in this chapter are projective. As
an introduction, we shall discuss in detail the two main conjectures concerning rational
curves on K3 surfaces: There exist infinitely many rational curves an on arbitrary K3
surface, and all rational curves on the general K3 surface are nodal.

0.1. Let us begin with the following observation. Suppose there is a family

C ⊂ B ×X, Cb ⊂ X (b ∈ B)

of rational curves on a surface X parametrized by some variety B such that C //X is
dominant. Then there exists a dominant rational map D × P1 // // X with D a curve.
In characteristic zero this would imply kod(X) ≤ kod(D × P1) = −∞. This is absurd
if X is a K3 surface. Thus, rational curves on K3 surfaces in characteristic zero do not
come in families.
The assumption on the characteristic cannot be dropped, but even in positive charac-

teristic K3 surfaces that admit families of rational curves are rare and should be regarded
as very special.

Example 0.1. Consider the Fermat quartic x4
0 +x4

1 +x4
2 +x4

3 = 0 over an algebraically
closed field k of characteristic p ≡ 3(4). It is unirational, i.e. there exists a dominant
rational map

P2 // // X

or, equivalently, the function fieldK(X) ofX admits a (non-separable) extensionK(X) ⊂
k(T1, T2) ' K(P2). This example was first studied by Tate in [588, 589] who showed
that in this case ρ(X) = 22. A detailed computation of the function field can be found
in Shioda’s article [557] or Section 17.2.3, see also [237] for further examples. Shioda
in fact observed that any unirational (or, a priori weaker, uniruled) K3 surface over an
algebraically closed field has maximal Picard number 22, see Proposition 17.2.7. The
converse has recently been proved by Liedtke in [371], answering a question by Artin in
[16, p. 552], see Section 18.3.5.1

Parts of this chapter are based on a seminar during the winter term 2011/12. I wish to thank
the participants, in particular Stefanie Anschlag and Michael Kemeny, for stimulating discussions and
interesting talks on the subject.

1As was pointed out to me by Christian Liedtke, it is a priori not clear that a uniruled K3 surface
is in fact unirational, but see the arguments in the proof of Proposition 9.4.6.

255
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Therefore, naively one would rather expect a K3 surfaceX to contain only finitely many
rational curves, unless X is very special. However, the above discussion only excludes the
existence of families of rational curves, not the existence of discrete and possibly infinite
sets of them. And indeed, as we shall see, this is what seems to happen.

0.2. The following conjecture has proved to be a strong motivation for a number of
interesting developments over the last years. It is trivial for unirational, or equivalently
supersingular, K3 surfaces, but it is otherwise as interesting in positive characteristic as
it is in characteristic zero.

Conjecture 0.2. Every polarized K3 surface (X,H) over an algebraically closed field
contains infinitely many integral rational curves C linearly equivalent to some multiple of
H.

Note that it is not even known whether every polarized K3 surface (X,H) admits an
integral rational curve linearly equivalent to some multiple nH at all.

Remark 0.3. A weaker question would be to ask for infinitely many integral rational
curves without requiring the curves to be linearly equivalent to a multiple of the fixed
polarization. This provides more flexibility when ρ(X) ≥ 2. As we shall see, Conjecture
0.2 has been verified for many K3 surfaces, but even the weaker version is still open in
general.

Example 0.4. Here are two concrete examples of K3 surfaces containing infinitely
many integral rational curves. Both, however, are not typical, as the curves are smooth
and thus not ample.

i) For the following see [68]. Let C be a smooth curve of genus two over an algebraically
closed field of characteristic 6= 2. Consider a hyperelliptic involution η : C ∼− // C, so
π : C //C/〈η〉 ' P1. Pick a ramification point x0 ∈ C, i.e. η(x0) = x0, and let

i : C �
� // Pic0(C), x � //O(x− x0)

be the induced closed embedding. For n ∈ N we denote by Cn the image of C under the
morphism

Pic0(C) //Pic0(C), L � //Ln.

The standard involution L � //L∗ on Pic0(C) acts on Cn via η. Indeed, O(x − x0)∗ '
O(η(x) − x0), as O(x + η(x)) ' π∗O(1) ' O(2x0). Hence, the image of Cn under the
quotient

Pic0(C) //Pic0(C)/±

is a smooth rational curve and so is its strict transform in the Kummer surface X as-
sociated with the abelian surface Pic0(C). Note that this indeed yields infinitely many
rational curves in X, for L � //Ln does not respect C, i.e. Cm 6= Cn for m 6= n. (For
example, one could use that C ⊂ Pic0(C) is ample and thus its pull-back under the n-th
power cannot split off a component isomorphic to C.)
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In fact, any Kummer surface contains infinitely many rational curves, see [68, Ex. 5].
The example is also interesting from the point of view of rational points. Bogomolov and
Tschinkel show in [70, Thm. 4.2] that for k = F̄p, p 6= 2, every point on X is contained
in a rational curve.
ii) Every elliptic surface X //P1 with a zero section C0 ⊂ X and a section C ⊂ X that

is of infinite order (e.g. as point in the generic fibre or as an element in the Mordell–Weil
group MW(X), see Section 11.3.2) contains infinitely many rational curves. Indeed, the
multiples Cn := nC (with respect to the group structure of the fibres) yield infinitely
many smooth rational curves.
Equivalently, C can be used to define an automorphism fC : X ∼− // X of infinite order

by translation in the fibres, see Section 15.4.2, and the infinitely many rational curves
can be obtained as the image of C under the iterations of fC .
More generally, K3 surfaces X with infinite Aut(X) often provide examples of K3

surfaces with infinitely many rational curves, see Remark 1.6.

0.3. To the best of my knowledge, there is no general philosophy supporting Con-
jecture 0.2. However, it does fit well with other results and conjectures. The following
two circles of considerations should be mentioned in this context, see also [96].
i) Smooth complex projective varieties X with trivial canonical bundle are conjectured
to be non-hyperbolic. Even stronger, one expects that through closed points x ∈ X in
a dense set there exists a non-constant holomorphic map f : C //X. Any rational or
elliptic curve yields such a holomorphic map. Thus, if the union of all rational curves is
dense in X, then X is indeed non-hyperbolic in the stronger sense.
It is known that K3 surfaces are indeed non-hyperbolic in this strong sense, but this is

proved via families of elliptic curves, see Corollary 2.2, although rational curves also play
a role. In fact, it has been conjectured that complex K3 surfaces are dominable, i.e. that
there exists a holomorphic map

C2 //X

such that the determinant of the Jacobian is not identical trivial, see [93]. This is true
for some K3 surfaces, e.g. Kummer surfaces (which involves showing the non-trivial fact
that the complement of any finite subset of a torus C2/Γ is dominable), but remains an
open question in general.
ii) Lang conjectured that the set

X(k) ⊂ X
of k-rational points of a variety X of general type defined over a number field k should
not be Zariski dense. A stronger version predicts the existence of a proper closed subset
Z ⊂ X such that for any finite extension K/k, the set of K-rational points X(K) is up
to a finite number of points contained in Z.
So it is natural to wonder what happens for X not of general type, e.g. for a K3 surface.

The general expectation, known as potential density, is that for a K3 surface X defined
over a number field k, there always exists a finite extension K/k such that X(K) is dense
in X.
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The relation between rational points and rational curves on K3 surfaces is not com-
pletely understood. It is not excluded and sometimes even conjectured (Bogomolov’s
logical possibility) that through any point x ∈ X(Q̄) there exists a rational curve. This
would of course imply the existence of infinitely many rational curves and prove the
Bloch–Bĕılinson conjecture for K3 surfaces, see Section 12.2.2. It is not clear whether
one should expect that rational curves defined over some finite extension K/k are already
dense, but it would of course imply potential density.

0.4. The second question that shall be discussed in this chapter is concerned with
‘good’ rational curves and asks, more specifically, whether every rational curve can be
deformed to a nodal one on some deformation of the underlying K3 surface. Since a
smooth rational curve has negative self-intersection, nodal curves are the least singular
rational curves that can be hoped for in an ample linear system.

Conjecture 0.5. For the general polarized K3 surface (X,H) ∈ Md(C) all rational
curves in the linear systems |nH| are nodal.

Since the Picard group of the general (X,H) is generated by H, the conjecture simply
predicts that all rational curves on X are nodal. One could be more optimistic and relax
‘general’ to ‘generic’, see Section 0.5 for these notions.
Conjecture 0.2 was triggered by the Yau–Zaslow conjecture, which gives a formula,

invariant under deformations of (X,H), for the number of rational curves in |H| counted
with the right multiplicities dictated by Gromov–Witten theory. The Yau–Zaslow con-
jecture was verified under the assumption that all rational curves are nodal. See Section
4 for more details and references.

Remark 0.6. Let C ⊂ X be a nodal integral rational curve with δ nodes and let

P1 ' C̃ //C

be its normalization. Then (cf. Section 2.1.3)

1 = χ(O
C̃

) = χ(OC) + δ.

For C ∈ |nH| with (H)2 = 2d this shows

δ = n2d+ 1.

For reducible curves the number of nodes increases. For example if C = C1 +C2 ∈ |nH|
is the sum of two smooth rational curves Ci ' P1 intersecting transversally, then C is a
nodal rational curve with δ = n2d+ 2 nodes.

0.5. To conclude the introduction we elaborate on the difference between generic
and general. A certain property for polarized K3 surfaces holds for the generic (X,H) if it
holds for all (X,H) in a non-empty Zariski open subset of the moduli space Md. It holds
only for the general (X,H) if it holds for all (X,H) in the complement of a countable
union of proper Zariski closed subsets.
So, ρ(X) = 1 for the general complex polarized K3 surface X ∈ Md, but not for the

generic one. Also, if for one polarized K3 surface (X0, H0) the linear system |H0| contains
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a nodal rational curve, then the same is true for the generic (X,H) ∈ Md, cf. Section
2.3 However, if all (infinitely many) rational curves on X0 are nodal, this a priori only
implies that the same is true for the general complex polarized K3 surface (X,H) ∈Md.
Special care is needed if the ground field k is countable. Then in principle a countable

union of proper closed subsets could contain all k-rational points. Also, if the polarized
K3 surface corresponding to the scheme-theoretic (geometric) generic point η ∈ Md has
a certain property usually does not imply that also the generic fibres (X,H) in the above
sense have the same property.

1. Existence results

We shall outline the standard argument to produce rational curves on arbitrary com-
plex projective K3 surfaces by first constructing special nodal, but reducible, ones on
particular Kummer surfaces. The resulting curves are linearly equivalent to the primi-
tive polarization, but a more lattice theoretic and less explicit construction allows one to
also prove the existence of integral rational curves linearly equivalent to multiples of the
polarization, at least on the generic K3 surface.
We shall as well discuss the situation over arbitrary fields and state, but not prove,

Chen’s result on nodal rational curves.

1.1. The first result we have to mention is generally attributed to Bogomolov and
Mumford and was worked out by Mori and Mukai in [421]. Note that (iii) below cannot
be found in [421], but it was apparently known to the experts that essentially the same
arguments proving (i) and (ii) would yield (iii) as well, see [68].2

Theorem 1.1. (i) Every polarized K3 surface (X,H) ∈Md(C) contains at least one
rational curve C ∈ |H|.

(ii) The generic polarized K3 surface (X,H) ∈Md(C) contains a nodal integral rational
curve C ∈ |H|.

(iii) For fixed n > 0, the generic polarized K3 surface (X,H) ∈ Md(C) contains an
integral rational curve C ∈ |nH|.

Proof. To prove (i), one starts with a Kummer surfaceX0 associated with an abelian
surface of the form E1 × E2. We choose elliptic curves E1 and E2 such that there exists
an isogeny ϕ : E1

//E2 of degree 2d + 5. To be completely explicit, one could take
E1 = C/((2d+ 5)Z+ iZ) and E2 = C/(Z+ iZ) with ϕ the natural projection.
Let now Γ := Γϕ ⊂ E1 × E2 be the graph of ϕ and let

C1 ⊂ X0

be the strict transform of its quotient Γ/± by the standard involution on E1 ×E2. Note
that Γ contains (exactly) four of the 16 fixed points and that, therefore, C1 ' P1. Next

2Maybe it was actually stated for the first time by Chen in [112]. The proof there uses more
complicated arguments which in fact prove the existence of one nodal(!) integral rational curve in |nH|
for the generic (X,H). This does not come out of the proof reproduced here.
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consider the strict transform
C2 ⊂ X0

of the quotient (E1 × {0})/±. The four two-torsion points of E1 yield the fixed points of
the involution and, therefore, C2 ' P1 as well.
Thus, X0 contains two smooth rational curves C1, C2, for which, of course, (C1)2 =

(C2)2 = −2. To compute (C1 + C2)2, one observes that the transversal intersection
Γ∩(E1×{0}) consists of the 2d+5 points ϕ−1(0). The order of the subgroup E1[2] of two-
torsion points of E1 contained in ϕ−1(0) must divide 2d+5 and 4. Thus, E1[2]∩ϕ−1(0) =

{0}. The point 0 does not contribute to (C1.C2), as under the blow-up X0
// (E1 ×

E2)/± the two curves (E1×{0})/± and Γ/± get separated over the corresponding point.
However, all others do and, hence, (C1.C2) = d+ 2. Thus,

C1 + C2 ⊂ X

is a reducible rational nodal curve with (C1 + C2)2 = 2d.
A further analysis reveals that C1 + C2 is big and nef (but not ample). Indeed, (C1 +

C2.D) ≥ 0 for all curves D 6= Ci and (C1+C2.Ci) = d > 0 (but some of the 16 exceptional
curves of X0

// (E1 × E2)/± are not met).
Also, the class of C1 +C2 is primitive, as the intersection numbers of C1 +C2 with the

fibres of the projections
X0

//E1/± and X0
//E2/±

are 2 and 2d+ 5, respectively.
Now use deformation theory for C1 + C2 ⊂ X0, to be explained in Section 2.2, to

conclude that C1 + C2 deforms sideways to a curve in |H| on the generic (X,H) ∈ Md.
In fact, as rational curves can only specialize to rational curves, this yields that every
complex polarized K3 surface (X,H) ∈Md contains a (possibly non-nodal) rational curve
in |H|.
For (ii) just note that being nodal and irreducible is an open property and thus it suffices

to find one (X,H) with this property. Going back to (i), one observes that (X,H) is
provided by a small deformation C ⊂ X of C1 + C2 ⊂ X0 for which ρ(X) = 1.

(iii) We follow [68]. Ideally, one would like to argue as above and construct a specific K3
surfaceX0 containing two smooth integral rational curves C1, C2 intersecting transversally
and such that O(C1),O(C2) are linearly independent in NS(X)⊗Q, with C1 +C2 = nH0

where H0 is primitive and (H0)2 = 2d. Then, C1 + C2 would again be a nodal rational
curve (with n2d + 2 nodes) that deforms sideways to a curve C ∈ |nH| on the generic
deformation (X,H) of (X0, H0).
Since ρ(X) = 1 for generalX and thus only multiples of O(H0) deform, the components

C1, C2 cannot be specializations of curves on X. Therefore, C would automatically be
an integral nodal rational curve.
Unfortunately, an explicit construction of C1 + C2 ⊂ X0 with these properties is not

available. Instead, one has to argue using abstract existence results, which has the con-
sequence that the curves C1, C2 are not known to intersect transversally. This makes the
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deformation theory more complicated and the resulting deformation C ∈ |nH| on X is
not known to be nodal. Details concerning the deformation problem for the non-nodal
curve are contained in [68], but see Remark 2.6.
Let us work out the details of how to find C1 +C2 ⊂ X0. First realize the lattice with

intersection matrix (
−2 nd

nd 2d

)
(with respect to a basis x, y) as a primitive sublattice Γ ⊂ Λ of the K3 lattice Λ =

E8(−1)⊕2 ⊕ U⊕3. For example, take

x = e1 − f1 and y = ndf1 + (e2 + df2),

where e1, f1 and e2, f2 are the standard bases of the first two hyperbolic planes U1 ⊕ U2

in U⊕3. It is easy to see that Γ ⊂ Λ is indeed primitive. Then consider the moduli space
of marked lattice polarized K3 surfaces

NΓ = {(X,ϕ) | ϕ : H2(X,Z) ∼− // Λ, ϕ−1(Γ) ⊂ Pic(X)}/∼,

which (modulo certain non-Hausdorff phenomena) can be identified with the intersection
of the period domain D ⊂ P(ΛC) with P(Γ⊥C ), cf. Sections 6.3.3, 7.2.1, and the papers by
Dolgachev [148] and Beauville [47].
Next apply the surjectivity of the period map to produce a marked K3 surface (X0, ϕ)

with ϕ−1(Γ) = Pic(X0). Then ϕ−1(y) ∈ Pic(X0) is a class of square 2d. Using Corollary
8.2.9, we may assume that ϕ−1(y) = [H0] with H0 nef. Since (x)2 = −2 and (x.y) > 0,
the class [C1] := ϕ−1(x) ∈ Pic(X0) is effective and can thus be written as [C1] =

∑
[Di]

for integral curves Di ⊂ X0. In particular, (Di.H0) ≥ 0. Suppose [C1] is not represented
by an integral curve. Then there is one component, say D1, which is contained in the
shaded region representing the set {a[C1] + b[H0] | b < 0, a ≥ −2b/n}:

H0

H⊥0

C1

The second inequality is expressing (D1.H0) ≥ 0. In particular, (D1)2 < 0 and, there-
fore, (D1)2 = −2 (see Section 2.1.3), which for D1 6= C1 leads to the contradiction
a2 − 1 = abnd+ b2d ≤ −b2d.
Hence, [C1] can indeed be represented by a smooth integral rational curve, i.e. C1 ' P1.

A similar computation shows thatH0 is not orthogonal to any (−2)-class and hence ample.
Finally, if X0 has been found with NS(X0) = Z[C1] + Z[H0], C1 ' P1, and H0 ample,

then one shows that n[H0] − [C1] can be represented by a smooth rational curve C2.
As its intersection with H0 is positive and (nH0 − C1)2 = −2, the class is effective,
i.e. represented by a curve C2 with irreducible components Di (possibly occurring with



262 13. RATIONAL CURVES ON K3 SURFACES

positive multiplicities). Then (Di.H0) ≥ 0 and, if Di 6= C1, also (Di.C1) ≥ 0. At least one
component C2, say D1, has a class in the shaded region representing {a[C1] + b[H0] | b ≥
−(an)/2, a = −1,−2, b ∈ [0, n]}:

C2

H⊥0

C⊥1

n

If a = −2, then [D1] = −2[C1] +n[H0] and hence (D1)2 < −2, which is absurd. Hence,
[D1] = −[C1] + b[H0] with 0 ≤ b ≤ n. Therefore,

[D1]2 = b22d− b2nd− 2 = 2bd(b− n)− 2 ≤ −2

with equality only if b = n. Since (D1)2 ≥ −2 (as for any integral curve), this shows
b = n. Thus, [D1] = n[H0]− [C1], i.e. C2 = D1 is smooth and irreducible. �

Corollary 1.2. The general complex polarized K3 surface (X,H) ∈ Md contains in-
finitely many integral rational curves linearly equivalent to some multiple nH.

Proof. For each n > 0, there exists a dense open dense set Un ⊂Md such that every
(X,H) ∈ Un admits an integral rational curve C ∈ |nH|. Thus, the assertion holds for
all (X,H) ∈

⋂
Un. �

The ‘integral’ is added to avoid counting a given rational curve C infinitely often by
taking multiples nC. Of course, the corollary is equivalent to the assertion that there
exist infinitely many reduced rational curves.

1.2. In Theorem 1.1 the K3 surfaces are assumed to be defined over C. However,
in characteristic zero, the (finitely generated) field of definition k of a given polarized K3
surface (X,H) can always be embedded into C.

Remark 1.3. Since rational curves on K3 surfaces in characteristic zero are rigid, every
rational curve in |nH| on XC is in fact defined over k̄, cf. the arguments in Lemma 17.2.2
and Section 16.4.2. This shows that Theorem 1.1 holds for K3 surfaces defined over
arbitrary algebraically closed fields of characteristic zero. Note however that Corollary
1.2 for countable fields, for example k = Q̄, is a void statement, cf. Remark 3.6.

Using the liftability of K3 surfaces from positive characteristic to characteristic zero (cf.
Section 9.5), one can obtain rational curves in positive characteristic as specializations of
rational curves in characteristic zero. As specialization could turn irreducible curves into
reducible or non-reduced ones, only the existence of finitely many rational curves can be
obtained in this way, i.e. only (i) in Theorem 1.1 is a priori known in full generality. One
might try to adapt the proof of (ii) to the case of positive characteristic at least under
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the assumption that the K3 surface can still be deformed to a Kummer surface of the
required type. Presumably, p|2d would need to be excluded for this.

Corollary 1.4. Let (X,H) be a polarized K3 surface over an algebraically closed field
k of arbitrary characteristic. Then |H| contains a rational curve. �

In [358] Li and Liedtke explain how the lifting to characteristic zero can be used to
cover the case that H is only big and nef. This and the fact that for any effective line
bundle L on a K3 surface there exist rational curves Ci such that L = H +

∑
niCi with

ni > 0 and H nef (and hence either also big or satisfying (H)2 = 0 in which case H
is linearly equivalent to an effective sum of rational curves, cf. the proof of Proposition
2.3.10 and Remark 2.3.13) can then be used to show the following statement, cf. [69,
Prop. 2.5, Rem. 2.13] and [358, Thm. 1.1].

Corollary 1.5. Let L be a non-trivial effective line bundle L on a K3 surface over
an algebraically closed field. Then there exists a curve in |L| which can be written as an
effective sum of (possibly singular) rational curves. �

One might also want to compare the corollary with Kovács’s result in [325], see Corol-
lary 8.3.12, saying that for ρ(X) ≥ 3 there are either no smooth rational curves at all or
the closure of the effective cone is spanned by them.

Remark 1.6. In [69] Bogomolov and Tschinkel prove the weak version of Conjecture
0.2, cf. Remark 0.3, for K3 surfaces with infinite Aut(X), cf. Example 0.4, ii), and elliptic
K3 surfaces.3 In both cases, the rational curves are in general not linearly equivalent to
some nH.
i) If Aut(X) is infinite, cf. [69, Thm. 4.10], then one roughly proves that there is at

least one integral rational curve C such that O(C) in Pic(X) has an infinite orbit under
the action of Aut(X). Using Corollary 1.5, this eventually boils down to lattice theory.
If X is known to contain one smooth rational curve, then it contains infinitely many by
Corollary 8.4.7.
ii) For elliptic K3 surfaces see [69, Sec. 3] and [237, Sec. 3.2]. To illustrate the idea,

assume X //P1 is an elliptic fibration with a section C0 ⊂ X that serves as the zero
section. Assume furthermore, that there exists another rational curve C ⊂ X for which
the intersection C ∩ Xt with some smooth fibre Xt contains a non-torsion point. Con-
sider its images Cn under the map fn : X //X fibrewise given by multiplication with n.
Clearly, all curves Cn are rational and, as C is a non-torsion section, they are pairwise
different. The main work in [69] consists of proving that any elliptic K3 surface X //P1

is dominated by an elliptic K3 surface X ′ //P1 satisfying these additional assumptions.

Note that for a K3 surface X which is elliptic or has infinite Aut(X), the Picard number
ρ(X) is at least two. However, just assuming ρ(X) ≥ 2 seems not quite enough to confirm
the weak version of Conjecture 0.2. Although in this case there exists an infinite number

3Originally, ρ ≤ 19 was assumed, but see [68, Rem. 6].
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of primitive ample classes Hi for which Theorem 1.1 proves the existence of rational
curves Ci ∈ |Hi|, they could a priori all be linear combinations of just a finite number of
rational curves. However, this does not happen for the general (X,H) of Picard number
ρ(X) ≥ 2 as remarked in [70, Rem. 4.7].

1.3. One would like to have to deal only with rational curves that are nodal. In
Theorem 1.1, (ii) the existence of at least one nodal rational curve in |H| was deduced
for generic (X,H). But one could ask whether maybe every rational curve in |H| for
generic (X,H) is nodal. Also, what about nodal rational curves which are not primitive,
i.e. which are contained in |nH| with n > 1? These questions have been dealt with in
Chen’s papers [112] and [113]. The results, which partially answer Conjecture 0.5, are
summarized as follows.

Theorem 1.7. For K3 surfaces over C one has:
(i) For generic (X,H) ∈Md, every rational curve in |H| is nodal.
(ii) For given n > 0, the generic (X,H) ∈Md contains an integral nodal rational curve

in |nH|.

Chen’s arguments in [112] are based on the degeneration of K3 surfaces to the union
of two rational surfaces. Its main result is (ii), but also (i) is discussed. The deformation
theory is more involved than in the approach outlined above and in Section 2 below.
In his sequel [113] degenerations of rational curves to curves on particular elliptic K3

surfaces are studied. This eventually allows Chen to prove (i), which should be seen as a
strengthening of Theorem 1.1, (ii).
Similarly to Corollary 1.2 one obtains

Corollary 1.8. The general complex polarized K3 surface (X,H) ∈ Md contains in-
finitely many integral nodal rational curves linearly equivalent to some multiple nH. �

2. Deformation theory and families of elliptic curves

The deformation theory of curves on K3 surfaces has various flavors. A curve C ⊂ X

can be deformed as a subvariety of X and the deformation theory is then completely
described by the linear system |O(C)|. More insight is gained by viewing C as the image
of a morphism f : C̃ //C ⊂ X, e.g. from the normalization of C. Eventually, also X can
be allowed to deform. We briefly sketch the basic principles and mention the results that
are used in the context of this chapter.

2.1. If C ⊂ X is a possibly singular curve contained in a K3 surface X, then the
first order deformations of C in X are parametrized by H0(C,NC/X), where

NC/X := OC(C) ' O(C)|C
is the usual normal bundle TX |C/TC if C is smooth. The obstructions would a priori
live in H1(C,NC/X), but this space is often trivial and in any case all obstructions are
trivial, for deformations of C ⊂ X are described by the linear system |O(C)| which is of
dimension h0(C,NC/X) = h0(X,O(C))− 1, as H1(X,OX) = 0.
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Proposition 2.1. Let X be a K3 surface over an algebraically closed field of charac-
teristic zero. Suppose there exists an integral nodal rational curve C ⊂ X of arithmetic
genus g > 0. Then there is a one-dimensional family of nodal elliptic curves in |O(C)|.

Proof. The curve C is a stable curve of arithmetic genus g = (C)2/2 + 1 and, as C
is rational, it has g nodes, see Remark 0.6. Let [C] ∈ M̄g be the associated point in the
moduli space of stable curves, see [10, 231]. As being stable is an open property, there
exists an open set C ∈ U ⊂ |O(C)| parametrizing integral stable curves. Let

ϕ : U // M̄g

be the induced classifying morphism. Then ϕ[C] is contained in the locus of stable curves
with at least g − 1 nodes, which is of codimension g − 1, see [10, Ch. XI] or [231, p.
50]. Hence, as |O(C)| is of dimension at least g, there exists a one-dimensional subvariety
C ∈ B ⊂ U parametrizing only nodal curves with at least g − 1 nodes. However, if Cb,
b ∈ B, has more than g − 1 nodes, then Cb is rational. As X cannot be dominated by
a family of rational curves, the generic Cb, b ∈ B, has exactly g − 1 nodes and hence be
elliptic. �

Corollary 2.2. Let X be a K3 surface over an algebraically closed field of characteristic
zero. Then there exist morphisms

X̃
p // //

q
��

X

B

with X̃ a smooth surface, p : X̃ // //X a surjective morphism, and q : X̃ //B a fibration
for which the generic fibre X̃b is a smooth elliptic curve and such that p : X̃b

//X is
generically injective.
In other words, any K3 surface in characteristic zero is dominated by a family of smooth

elliptic curves.

Proof. Due to Theorem 1.1, (ii), the generic K3 surface (X,H) ∈ Md(C) admits a
nodal integral rational curve C ∈ |H|. Proposition 2.1 thus applies and yields a family
C //B ⊂ |H| with generic fibre Cb a nodal elliptic curve. Let X̃ // C be the resolution
of the normalization of the surface C. Then the generic closed fibre X̃b over B is the
normalization of Cb and hence a smooth elliptic curve.4

Inspection of the proof of Proposition 2.1 reveals that the argument works very well in
families, i.e. over the open subset U ⊂Md (or an appropriate finite cover of it) of (X,H)

containing a nodal integral rational curve in |H|. Specialization to surfaces in Md \ U
yields the assertion for all K3 surfaces. Indeed, the elliptic curves may specialize to curves
with worse singularities and possibly to reducible ones. However, as in characteristic zero
no K3 surface is covered by a family of rational curves, this still yields a dominating

4Usually, one mentions simultaneous resolutions at this point, which would involve passing to a finite
cover of the base B. However, in the case of families of curves this is not necessary.
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family of elliptic curves. If the generic fibre X̃b is reducible, one has to pass to a finite
cover of B to get irreducible fibres. Observe that in this last step one might end up with
elliptic curves not linearly equivalent to any multiple nH. �

Note that reduction to positive characteristic also essentially proves the assertion for
K3 surfaces over algebraically closed fields k with char(k) > 0. However, specializing
might turn a dominating family of elliptic curves into a dominating family of rational
curves. Of course, a family of rational curves can always be dominated by a family of
elliptic curves, which, however, would not map generically injectively into X anymore.

2.2. If instead of a single K3 surface X one considers a family of K3 surfaces

π : X //S,

say over a smooth connected base S, and a curve C ⊂ X = X0 in one of the fibres, then
the situation becomes more interesting. We only consider the case thatH1(X,O(C)) = 0,
which holds if e.g. C is ample. Moreover, we assume that there exists a line bundle L on X
with L|X ' O(C). Then the deformations of C in the family π : X //S are parametrized
by the projective bundle

P := P(π∗L) //S

which, due to H1(X,O(C)) = 0, is fibrewise the linear system |L|Xt | on Xt and hence of
dimension dim(P ) = dim(S) + g, where g = (C)2/2 + 1.

It is straightforward to adopt the arguments in the proof of Proposition 2.1 to show
that any nodal integral rational curve C ∈ |H| on X = X0 deforms sideways to a nodal
integral rational curve on the generic fibre Xt. In order to complete the proof of Theorem
1.1, (i), we shall however discuss the slightly more complicated case of a nodal rational
curve

C = C1 + C2 ⊂ X = X0

given as the union of two smooth rational curves C1, C2 intersecting transversally in g+1

points, e.g. the curve on the Kummer surface associated with E1×E2 constructed in the
proof of Theorem 1.1. Then C is a stable curve and thus corresponds to a point in the
moduli space M̄g of stable curves of genus g = (C)2/2 + 1. We now repeat the proof of
Proposition 2.1.
Being stable is an open property and thus there exists an open neighbourhood [C] ∈

U ⊂ P parametrizing only stable curves in nearby fibres Xt. The universality of M̄g

yields a classifying morphism ϕ : U // M̄g. Then ϕ[C] is contained in the locus of stable
curves with at least g nodes, which is of codimension g, see [10, Ch. XI] or [231, p. 50].
Hence, there exists a subvariety [C] ∈ T ⊂ U parametrizing curves with at least g nodes
and such that dim(T ) ≥ dim(S).
Since C as a curve with at least g nodes does not deform within X = X0 (they would

all be rational), it must deform sideways to curves Ct ⊂ Xt with at least g nodes, i.e.
T //S is dominant.
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If X //S and C ⊂ X = X0 are now given such that ρ(Xt) = 1 for general t ∈ S and
C primitive, then Ct must be integral. This yields integral nodal rational curves in the
general (and hence in the generic) fibre Xt. The argument is taken from [68]. For a more
local argument, which in fact underlies the bound for the dimension of the nodal locus
see [32, VIII.Ch. 23].

2.3. Let us now turn to stable maps. For the purpose of this chapter it suffices to
consider stable maps of arithmetic genus zero. By definition this is a morphism

f : C //X

with only finitely many automorphisms and such that C is a connected projective curve
with at most nodal singularities and pa(C) = 0. Thus, the irreducible components
C1, . . . , Cn of C are all isomorphic to P1, the intersection of two components is always
transversal, and there are no loops in C. Some of the components might be contracted
by f , although stable maps of this type are of no importance for our discussion.
Clearly, the image of such a stable map f : C //X is a rational, possibly singular,

reducible, or even non-reduced curve in X. In characteristic zero or if X is not uniruled,
the image f(C) cannot be deformed without becoming non-rational. However, the map
f itself can nevertheless have non-trivial deformations. But, although the isomorphism
type of C may change, the components keep being isomorphic to P1.

There exists a moduli spaceM0(X,β) of stable maps f : C //X of arithmetic genus
zero and such that f∗[C] ∈ NS(X) equals the given class β. We need a relative version
of it. To simplify the discussion, we shall henceforth work in the complex setting. Then
one can alternatively fix β as a cohomology class in H2(X,Z).
For a family of complex K3 surfaces X //S and β ∈ H2(X ,Z), letM0(X/S, β) denote

the relative moduli space of stable maps. Thus, the fibre of

M0(X/S, β) //S

over t is justM0(Xt, βt). In particular, if β is a non-algebraic class on Xt, then the fibre
is empty.
It is known that M0(X/S, β) admits a coarse moduli space which is projective over

S, cf. [191]. The construction as a proper algebraic space over S is easier and can
be deduced from a standard Hilbert scheme construction and general existence results
for quotients, e.g. the Keel–Mori result, cf. Theorem 5.2.6. In the discussion here we
completely ignore the necessity of introducing markings in order to really obtain stable
curves. But in any case, the global structure of M0(X/S, β) is of no importance for
our purpose. The only thing that is needed is the following dimension count, which can
be obtained from deformation theory for embedded rational curves or for maps between
varieties, see [68, 310, 500] or [263, Prop. 2.1] for a short outline also valid for higher
genus.
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Theorem 2.3. The dimension of each component of the moduli spaceM0(X/S, β) of
stable maps to a family of K3 surfaces X //S is bounded from below:

dim(M0(X/S, β)) ≥ dim(S)− 1.

Remark 2.4. The theorem works as well for families of K3 surfaces X //S in mixed
characteristic. In fact in [68, 358] it is applied to the spread of a K3 surface X over a
number field K, which is a family of K3 surfaces over an open set S of Spec(OK).

Geometrically the most instructive case is that of a universal deformation of a complex
K3 surface X given by

X //S = Def(X),

see Section 6.2. As in the definition of the period map, we may assume that the cohomo-
logy of the fibres is trivialized, so that isomorphisms H2(Xt,Z) ' H2(X,Z) are naturally
given. A class β ∈ H2(X,Z) can thus be considered as a cohomology class on all the fibres.
The bound on the dimension given above does a priori not allow one to conclude that
M0(X/S, β) //S is surjective even when the fibres are zero-dimensional. And indeed,
if β is an algebraic class on X, i.e. of type (1, 1), then it stays so only in a hypersurface
Sβ ⊂ S which via the period map is obtained as the hyperplane section with β⊥, see
Section 6.2.4. Thus, the image of M0(X/S, β) //S is contained in Sβ and now the
dimension bound reads

dim(M0(X/S, β)) ≥ dim(S)− 1 = dim(Sβ)

which under the condition that the fibreM0(X,β) is zero-dimensional yields surjectivity
of

M0(X/S, β) // //Sβ.

Following Li and Liedtke [358] we say that a stable map f : C //X is rigid ifM0(X,β)

is of dimension zero in the point [f : C //X] ∈M0(X,β), but possibly non-reduced. As
a special case of the above we state

Corollary 2.5. Let D ⊂ X be an integral rational curve. Then the normalization

f : P1 ' D̃ // //D ⊂ X

is a rigid stable map. Therefore, if [D] stays in NS(Xt) for a family X //S, then
f : P1 //X deforms sideways to ft : P1 //Xt to the generic fibre. �

Note that in order to really obtain a deformation P1×S //X (over S) one might have
to pass to an open subset of a finite covering of S.

Remark 2.6. Similarly, one can prove that every unramified stable map f : C //X

of arithmetic genus zero is rigid (in the stronger sense that it does not even admit first
order deformations), see [68]. This can be used to complete the proof of Theorem 1.1,
(iii), by considering a stable map

f : C ′ = C ′1 ∪ C ′2 //C = C1 + C2,
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where C ′ is the nodal curve constructed as the union of two copies C ′i ' P1 intersecting
transversally in one point and f induces C ′i

∼− // Ci and maps the node to one of the
singularities of C.

A curve D ⊂ X has a rigid representative if there exists a rigid stable map f : C //X

with image D (with multiplicities). Thus, an integral rational curve has a rigid represen-
tative and so has a reduced connected union of smooth rational curves D1 + . . . + Dm.
In fact, as it turns out, any rational curve can be rigidified by an ample nodal rational
curve according to the following result proved in [358].

Proposition 2.7. Let D1, . . . , Dm ⊂ X be integral rational curves (not necessarily
distinct) and let D ⊂ X be an integral ample nodal rational curve. Then for some ` ≤ m
the curve `D +D1 + . . .+Dm has a rigid representative.

For the details of the proof we refer to [358, Thm. 2.9]. The idea is to view `D as the
image of a stable map like this:

C`C1 C2

q q
. . .

//

q r

`D

Here, the Ci are ` copies of the normalization of D. In a first step, they are glued in
the pre-images of one node such that the resulting morphism is unramified. In the next
step, the normalizations D̃i of the components Di are glued to the Ci depending on the
intersection D∩Di and according to certain rules, of which the following drawings should
convey the basic idea.

q D̃i Di

q q
. . .

//

q

r q D̃` D`q
. . .

// r

q D̃i Diq q
qq

q
. . .

//

//oo

r
r

If one of the components Di coincides with D, then it is dropped altogether, which
might lead to ` < m. Note that since D is ample, it really intersects all Di non-trivially.
The final outcome is a stable map that does not contract any component and for which
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the intersection of two components is proper. According to [358, Lem. 2.6], such a stable
map is rigid.

3. Arithmetic aspects

This section is devoted to an arithmetic approach towards the existence of infinitely
many rational curves due to Bogomolov–Hassett–Tschinkel and developed further by
Li–Liedtke. First, the geometric part of the argument is explained and then we turn
to the arithmetic aspects that involve reduction to positive characteristic and the Tate
conjecture.

3.1. We begin this part with a result which is implicitly proved but not stated in
[358]. Presenting it first, allows one to concentrate on the geometric ideas of the argument
in [68, 358] before combining them with more arithmetic considerations.
It is worth pointing out that the proof of the following theorem relies only on the

existence of nodal rational curves in |H| for generic (X,H), see Theorem 1.1, and not on
the more complicated result by Chen, cf. Theorem 1.7, evoked in [358].

Theorem 3.1. Let (X,H) be a complex polarized K3 surface which cannot be defined
over Q̄. Then X contains infinitely many integral rational curves (not necessarily ample
or linearly equivalent to multiples of H).

Proof. The first step in the proof is to ‘spread’ the given K3 surface and thus view
it as the (geometric) generic fibre of a non-isotrivial family. The second step consists of
showing that the jump of the Picard number in this family gives rise to infinitely many
rational curves in the generic fibre.
i) To fix notation, write (H)2 = 2d and consider (X,H) as a C-rational point of Md,

the moduli space of polarized K3 surfaces of degree 2d, cf. Section 5.1. For the purpose
of this proof, Md is considered over Q̄. Base change yields the moduli space of complex
polarized K3 surfaces Md ×Q̄ C.
The polarized complex K3 surface (X,H) thus corresponds to a closed point ofMd×Q̄C,

but its image under
Md ×Q̄ C //Md

is not closed, as X is not defined over Q̄. Let us denote by T := {(X,H)} ⊂ Md the
Q̄-variety (or a non-empty open subset of it) obtained as the closure of the image of
(X,H) ∈ Md(C). Base changing T yields a subvariety S := TC ⊂ Md ×Q̄ C and we
denote its generic point by η ∈ S. Pass to an irreducible component of S if necessary.
Without using moduli spaces, this can be phrased as saying that a K3 surface X that

cannot be defined over Q̄ can be ‘spread out’ over a positive-dimensional variety over Q̄
to yield a non-isotrivial family of K3 surfaces with generic fibre X. This can be base
changed to yield a family of complex K3 surfaces, cf. the proof of Proposition 3.2.
The K3 surface corresponding to η ∈ S, i.e. a K3 surface defined over a certain finite

extension of k(η), can also be obtained directly by base changing X to C ⊂ k(η). Note
that there is a bijection between rational curves in X and rational curves in Xη = X ×C



3. ARITHMETIC ASPECTS 271

k(η) (or in Xη̄), due to the rigidity of rational curves on K3 surfaces in characteristic zero,
see Remark 1.3.
Now, by construction, the Picard number ρ(Xη) of the generic fibre is just ρ(X). More-

over, using specialization or parallel transport we can view NS(X) as a sublattice of the
Néron–Severi lattice NS(Xt) of any closed fibre Xt, see Proposition 17.2.10. In this sense,
we shall view the polarization H on X also as a polarization on all the fibres Xt.
For any such a family X //S the Noether–Lefschetz locus

S0 := {t ∈ S(C) | ρ(Xt) > ρ(X)}

is a dense subset of S with S \ S0 6= ∅, see Sections 6.2.5 and 17.1.3.
ii) We are now going to produce rational curves on Xη (and hence on X) by detecting

more and more curves on the special fibres Xt. By Corollary 1.5, one knows that for a
dense set of points t ∈ S(C), the fibre Xt contains an integral rational curve Dt ⊂ Xt
such that its class Dt ∈ NS(Xt) is not contained in NS(X) ⊂ NS(Xt).5
Moreover, the degree (Dt.H) is unbounded and, more precisely, for any N the set t ∈ S0

with (Dt.H) ≥ N is dense in S. To prove the latter, use that the moduli space

Mor<N (P1,X/S) //S

of morphisms f : P1 //Xt of bounded degree (f∗[P1].H) < N is a scheme of finite type
over S, and that if the normalizations f : P1 //Dt ⊂ Xt of all the Dt were contained in
it, then one component of Mor<N (P1,X/S) would dominate S, for S0 ⊂ S is dense. But
whether f∗[P1] is contained in NS(X) ⊂ NS(Xt) is invariant under deformations and as
NS(X) = NS(Xt) for all t ∈ S \ S0, this yields a contradiction.
For each rational curve Dt ⊂ Xt and n � 0 (depending on t) the divisor nH − Dt

is effective and hence, by Corollary 1.5, linearly equivalent to a sum D1 + . . . + Dk of
integral rational curves. The Di are not necessarily distinct and k may depend on t.
Let now U ⊂ Md ×Q̄ C be the dense open substack of polarized K3 surfaces (X ′, H ′)

containing an integral nodal rational curve in |H ′|, see Theorem 1.1, (ii). We shall first
prove the assertion under the simplifying assumption that U∩S 6= ∅. Then for any N > 0

there exists a t ∈ U ∩S0 with (Dt.H) ≥ N , integral rational curves D1, . . . , Dk ⊂ Xt such
that Dt +D1 + . . .+Dk ∈ |nH|, and an integral nodal rational curve D ⊂ Xt in |H|. By
[358, Thm. 2.9], cf. Proposition 2.7, for some ` ≤ k + 1 the curve

`D +Dt +D1 + . . .+Dk ∈ |(n+ `)H|

is the image of a rigid stable map Ct //Xt which therefore deforms to a stable map
f : C //Xη̄ in the geometric generic fibre. Thus, in particular, there exists an integral
component Dη of the image f(C) which specializes to a curve in Xt that contains Dt

as an irreducible component. This concludes the proof, because then Dη is an integral
rational curve on Xη̄ of degree

(Dη.H) ≥ (Dt.H) ≥ N.

5According to Remark 17.2.13, the cokernel of the specialization NS(X) = NS(Xη̄)
� � // NS(Xt) is

torsion free. Hence, ρ(X) = ρ(Xt) if and only if NS(X) ∼− // NS(Xt).



272 13. RATIONAL CURVES ON K3 SURFACES

Note that we have no control over the linear equivalence class of Dη as a component of
the curve f(C) ⊂ Xη̄ which is contained in the linear system |(n+ `)H|.
If the open set U of (X ′, H ′) with nodal rational curves in |H ′| does not intersect S,

then the argument has to be modified as follows. Through each t ∈ S0 and for Dt ⊂ Xt
chosen as above, there exists a codimension one subspace St in Md ×Q̄ C such that the
normalization P1 //Dt ⊂ Xt deforms to P1 //Xs, for generic s ∈ St. Since the closed
complement of U can only accommodate at most finitely many divisors St, we may assume
that for almost all t ∈ S0 the divisor St through t intersects U . Then one argues as before
to obtain integral rational curves Dξ ⊂ Xξ̄ of arbitrary high degree in the fibre over the
generic point ξ ∈ U that specialize to a curve in Xt containing Dt. Specializing first to a
curve in Xη̄ may decompose Dξ, but one component Dη of it still specializes to a curve
in Xt that contains Dt. This allows one to conclude as before that there exist integral
rational curves in Xη̄ of unbounded degree. �

3.2. The following is proved in [68]. As observed in [358], the proof also works if
in addition the Picard number is fixed.

Proposition 3.2. Conjecture 0.2 holds for any algebraically closed field k of charac-
teristic zero if it holds for k = Q̄.

Proof. Any polarized K3 surface in characteristic zero is defined over a finitely
generated field extension of Q̄. So we may assume that (X,H) is defined over the function
field of an affine variety B = Spec(A) over Q̄. After shrinking B further if necessary, one
obtains a smooth polarized family

(X ,H) //B

with geometric generic fibre X = Xη̄.
If Conjecture 0.2 holds for K3 surfaces over Q̄, it holds for all closed fibres Xb of

(X ,H) //B. Thus, there exist integral rational curves P1 ' C̃ // //C ⊂ Xb in |nHb| for
arbitrary large n. By Corollary 2.5, these curves deform sideways as rational curves and,
therefore, yield an integral rational curve P1 //Xη̄ = X. �

Remark 3.3. Also the weak version of Conjecture 0.2, not fixing the linear equivalence
class of the curves C, see Remark 0.3, can be reduced to K3 surfaces over Q̄. For this one
needs the existence of closed points b ∈ B such that the specialization NS(X) //NS(Xb)
is an isomorphism, see Remark 17.2.16.

The following results prove the conjecture in Remark 0.3 in many cases. It does not,
however, address the stronger Conjecture 0.2, except when the Picard number is one.
The first part is due to Bogomolov, Hassett, and Tschinkel [68] and the second to Li and
Liedtke [358].

Theorem 3.4. Let X be a K3 surface defined over an algebraically closed field k of
characteristic zero. Then X contains infinitely many integral rational curves if one of the
following conditions holds:
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(i) Pic(X) = Z ·H with (H)2 = 2, or
(ii) ρ(X) is odd.

Remark 3.5. As proved in [358], the assertion of Theorem 3.4 also holds in the
following situation: char(k) = p ≥ 5, ρ(X) odd, and X is not supersingular. As since
then supersingular has been proved in [371] to be equivalent to unirational and plenty of
rational curves can be found on unirational K3 surfaces, the last condition is superfluous.

Sketch of Proof of Theorem 3.4. First one reduces the assertion to the case of
K3 surfaces defined over a number field K, see Proposition 3.2. Then one considers the
‘spread’ X //S of X over an open set S ⊂ Spec(OK) with OK ⊂ K the ring of integers.
Eventually one mimics the argument in the proof of Theorem 3.1. The Hodge theoretic
argument to ensure that the Picard number jumps in a dense subset is in the arithmetic
situation replaced by the Tate conjecture. Indeed, for any p ∈ S the fibre Xp is a K3
surface over a finite field k(p) (after shrinking S to an open subset, if necessary) and the
Tate conjecture implies that ρ(X

k(p)
) is even, see Corollary 17.2.9. Thus, if ρ(X) is odd,

then the Picard number of the geometric closed fibres X
k(p)

is always bigger.6

The rest of the proof is then almost identical to the one of Theorem 3.1. Note that in
order to deform the additional rational curves in the special fibres, one still has to make
sure that there are infinitely many fibres that are not supersingular. �

Remark 3.6. Summarizing the above results, one can conclude that the only cases for
which we do not yet know the existence of infinitely many integral rational curves (not
necessarily linearly equivalent to some nH) are:

• K3 surfaces over Q̄ with Picard number ρ(X) = 2 or 4 and
• K3 surfaces over an algebraically closed field k with char(k) = 2, 3 or ρ(X) ≡

0 (2).7

Indeed, for ρ(X) = 1, 3 use Theorem 3.4, (ii) and K3 surfaces with ρ(X) ≥ 5 are elliptic
(cf. Proposition 11.1.3) for which the weak version, cf. Remark 0.3, is known, see Remark
1.6.
In fact, for ρ(X) = 2 only the case iv) in Section 8.3.2 remains open, as in i)-iii)

either the K3 surface X has infinite Aut(X) (see Corollary 8.4.8) or is elliptic. See also
Example 8.4.9.
In contrast, the stronger Conjecture 0.2 seems to be known only when ρ(X) = 1.

4. Counting of rational curves

As proved by Chen, cf. Theorem 1.7, for the generic polarized complex K3 surface
(X,H) ∈ Md all rational curves in the linear system |H| are nodal and, moreover, there

6When [358] appeared the Tate conjecture was still open, but results of Bogomolov–Zarhin and
Joshi–Rajan were enough to arrange the situation such that it holds for most fibres, cf. [358, Thm. 3.1].

7It seems reasonable to expect that the available techniques could prove the existence of infinitely
many rational curves for elliptic K3 surfaces also in positive characteristic, so that also the case char(k) 6=
2, 3 and ρ(X) ≥ 5 would be settled. But details would need to be worked out.
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always exists at least one. Since there are only finitely many of them, one would like
to know how many there are exactly. The same question makes sense for arbitrary, i.e.
non-generic, (X,H) ∈ Md possibly containing non-nodal rational curves in |H|, which
would need to be counted with appropriate multiplicities.

4.1. If C ⊂ X is a nodal rational curve in |H| (or in some multiple), then C deforms
with X to all nearby fibres Xt parametrized by Md, see the discussion in Section 2.2. In
other words, the number ng of nodal rational curves in |H| should be constant for generic
(X,H).
It is customary to use the genus g instead of the degree d. Recall that 2d = 2g − 2.

Then the following formula was conjectured by Yau and Zaslow in [638]:

(4.1)
∑
g≥0

ngq
g =

q

∆(q)
=
∏
n≥1

(1− qn)−24.

Here, ∆(q) is the modular form q
∏
n≥1(1 − qn)24 which can also be written in terms

of the first two Eisenstein series

G2 = (1/60)g2 and G3 = (1/140)g3

as (see [544, Ch. VIII]):
∆(q) = (1/2π)12(g3

2 − 27g2
3).

Since g = 0, 1 correspond to d = −2 and d = 0, which are certainly not allowed for a
polarized K3 surface, one simply sets n0 = 1 and n1 = 24. The latter, however, can
be motivated geometrically as follows. The generic elliptic K3 surface π : X //P1 has
exactly 24 singular fibres each of which is a nodal rational curve with one node, see
Remark 11.1.12. So, if in this case one replaces the polarization H by the nef line bundle
π∗O(1), the number 24 fits well.

Beauville in [45] succeeded to prove (4.1) under the assumption that all rational curves
in |H| are nodal which later was proved by Chen, see Theorem 1.7. In [45] the number ng
is replaced by the Euler number e(Jacg(C/|H|)) of the relative compactified Jacobian of
the universal curve C // |H|. Moreover, it is shown that for a non-rational curve C ∈ |H|
the Euler number e(Jacg(C)) is zero and, therefore, does not contribute to n(g). If C
is nodal rational, then indeed e(Jacg(C)) = 1, which proves that both definitions of ng
coincide if all rational curves in |H| are nodal. The contribution for rational but more
singular C was further discussed by Fantechi, Göttsche, and van Straten in [175].

Remark 4.1. The relative compactified Jacobian Jacg(C/|H|) can be viewed as a
moduli space of simple or in fact stable sheaves on X with support on curves in |H|,
cf. Section 10.1.5. It is known that these moduli spaces are deformation equivalent
to the Hilbert scheme Hilbn(X) of the same dimension, see Theorem 10.3.10 for the
precise assumptions. In fact, Jacg(C/|H|) is even birational to Hilbn(X). Now, since the
Euler number of the Hilbert scheme was known (under the name of Göttsche’s formula),
Beauville could deduce (4.1) from [35] and [248]
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4.2. Let us consider the first values of the numbers ng which can be read off from
the Yau–Zaslow formula (4.1)∑

g≥0

ngq
g = 1 + 24q + 324q2 + 3200q3 + 25650q4 + . . . .

As mentioned already, n1 = 24 should be interpreted as the number of singular fibres, all
of type I1, in a generic elliptic K3 surface.

Next, n2 = 324 should be the number of nodal rational curves in |H| for the generic
polarized (X,H) with (H)2 = 2, i.e. in a double plane

π : X //P2

ramified over a generic sextic curve C ⊂ P2 with H = π∗O(1). As H0(X,π∗O(1)) '
H0(P2,O(1)), all curves in |H| are double covers

π : C` // `

of some line ` ⊂ P2. Consider a point x ∈ C ∩ ` and let x̃ ∈ C` be its unique pre-image.
If the intersection C ∩ ` is transversal, then C` is smooth in x̃. So, in order to obtain a
rational and thus in particular a singular curve C` ∈ |H|, the line ` should be tangent to
at least one point x ∈ C.
Suppose now that C` is rational. Then the composition with its normalization P1 '

C̃` //C` // ` has two ramification points. As the map ramifies over each transversal
point of intersection x ∈ C ∩ `, there are at most two of those. Note that, in particular,
the 72 flexes do not lead to rational curves.8

So, we are looking for lines ` ⊂ P2 with at most two transversal points of intersection
with C and at least one that is not. Under the genericity assumption on C, these are
exactly the 324 bitangents to a generic sextic, i.e. lines ` ⊂ P2 that are bitangent to
two points x1, x2 ∈ C and have two further points of intersections x3, x4 ∈ C (which are
automatically transversal), see [234, Exer. IV.2.3]. As the pre-images x̃1, x̃2 ∈ C` are
nodes of C`, this proves that for generic C ⊂ P2 all rational curves in H = π∗O(1) on
the associated double plane π : X //P2 are nodal and there are 324 of them.9

The next case is that of a quartic X ⊂ P3 and rational curves in |OX(1)|. By Theorem
1.7, one knows that for a generic quartic all rational curves in this linear system are nodal
(with exactly three nodes) and by (4.1) that there are precisely 3200 of them. All this
seems to have been known classically, going back to Salmon, and can be verified by means
of the Gauss map

γ : X //X∗, x � // TxX.

8According to [234, IV.Exer. 2.3], the generic sextic C ⊂ P2 contains 72 flexes (or inflection points),
i.e. points x ∈ C such that the intersection multiplicity of TxC with C at x is at least three. Generically
only flexes of multiplicity three occur and a line ` = TxC ⊂ P2 of a flex is not tangent to C at any other
point.

9Recall that the degree of the discriminant divisor in |OP3(4)| is 108, see Section 17.1.4. Is there a
geometric interpretation for the curious equality 324 = 3 · 108?
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Generically, Cx := TxX ∩ X is a curve with a node at x ∈ Cx and which is smooth
elsewhere. Along a curve D ⊂ X, the curves Cx, x ∈ D, have generically two nodes and
along D the Gauss map γ is of degree two. In exactly 3 · 3200 points x ∈ X, for generic
choice of X ⊂ P3, the curve Cx has three nodes. Forgetting the points yields the 3200

nodal rational curves in |OX(1)|.

Remark 4.2. The irreducibility of the Severi variety, i.e. of the moduli space para-
metrizing (X,H,C ∈ |H|) consisting of a polarized K3 surface (X,H) ∈Md and a (nodal)
rational curve C, is conjectured in general. It has been proved for 1 ≤ g := d+ 1 ≤ 9 and
g = 11, see the paper [117] by Ciliberto and Dedieu. The case g = 2 is classical. For the
computation of the monodromy group in this case see Harris [230].

5. Density results

We conclude by mentioning two density results: One for rational curves, building upon
ideas of Bogomolov and Tschinkel, and another for points realizing the same rational
equivalence class.

5.1. The existence of infinitely many rational curves on K3 surfaces of Picard num-
ber one in particular proves that for all complex polarized K3 surfaces (X,H) ∈ Md in
the complement of a countable union of hypersurfaces, the union of all rational curves
(which can even be assumed to be linearly equivalent to nH for some n) is Zariski dense.
This is strengthened by the following theorem of Chen and Lewis [115].

Theorem 5.1. For (X,H) ∈Md(C) in the complement of a countable union of nowhere
dense subsets, the union of all rational curves in

⋃
|nH| is analytically dense.

The first step in the argument is an improvement of a technique of Bogomolov and
Tschinkel showing the existence of infinitely many rational curves on an elliptic K3 surface
with a non-torsion section, see Remark 1.6. Translating by a non-torsion section certainly
gives an infinite number of rational curves, which automatically form a Zariski dense
subset, but only if the non-torsion section hits the generic closed fibre in a sufficiently
generic point this set is also dense in the classical topology.
Instead of simply translating in the fibres, Chen and Lewis map a point p in a generic

fibre Xt to the point q for which OXt(q) ' H|Xt(−((H.Xt) − 1)p), where H is a given
ample line bundle. The existence of an elliptic K3 surface that is generic in this sense
is proved by a dimension argument on a degeneration. In order to get density on the
generic K3 surfaces, one rigidifies the rational curves on these elliptic K3 surfaces and
uses again the theory of stable maps.

5.2. Theorem 5.1 compares nicely with the following result of Mclean [383]. See
Chapter 12 for more on CH2(X).

Theorem 5.2. For a generic complex projective K3 surface X and an arbitrary point
x ∈ X, the set

{y | [x] = [y] ∈ CH2(X)}



5. DENSITY RESULTS 277

is analytically (and hence Zariski) dense in X.

Proof. For a general K3 surface X the Picard group Pic(X) is generated by an
ample divisor H. By Theorem 1.1, (ii) there exists a nodal rational curve in |H| and
hence by Proposition 2.1 a covering family of elliptic curves C //B. Since H generates
Pic(X), all curves Ct are in fact integral.
The construction works in families and one can therefore assume the existence of such

a family not only for a general polarized K3 surface (X,H) but in fact for a generic one.
Now use Theorem 1.7 to deduce the existence of an integral nodal rational curve in |2H|.
By applying Proposition 2.1 again, one finds another one-dimensional covering family
D //B′ of curves of geometric genus ≤ 1.
Let now x ∈ X be an arbitrary point on such a generic polarized K3 surface (X,H)

and choose one of the fibres, say D0, that contains x. A priori, D0 might be reducible,
so choose an irreducible component D ⊂ D0 that contains x. Since the normalization D̃
is either P1 or smooth elliptic, the set SD,x of points y ∈ D with [y] = [x] in CH2(X) is
analytically and hence Zariski dense in D. Here one uses that CH2(X) is torsion free by
Roitman’s Theorem 12.1.3.
Now choose for every y ∈ SD,x a curve y ∈ Cy and use as above that the set of points

z ∈ Cy with [y] = [z] in CH2(X) is analytically dense in Cy. A priori it might happen
that D = Cy. However, as the curves Cy are ample, we may choose them such that this is
not the case for most y. Then, since [y] = [x], this proves the assertion. Note that at this
point one uses the irreducibility of all curves Cy, since otherwise it could happen that D
is a component of one fibre C0 and thus Cy could be C0 independently of y.10 �

References and further reading:
Benoist’s talk in the Bourbaki seminar [57] contains a survey of parts of the material covered

in this chapter.
In [214, Part B] Green and Griffiths prove that K3 surfaces of low genus are not hyperbolic.

They outlined a completely geometric approach towards the existence of rational and elliptic
curves on K3 surfaces that relies on a detailed understanding of the dual surface. To my knowl-
edge, this has not been pursued any further. In [227, 228] Halic proposes a more geometric
approach to Chen’s result, see Theorem 1.7, (ii), on nodal (rational) curves on generic K3 sur-
faces.

Alternative proofs of the Yau–Zaslow formula (4.1) have been given by Bryan and Leung in
[87] and by Chen in [113]. In fact, in [87] the authors prove a generalization of (4.1) to higher
genus (but still curves in the primitive linear system |H|) conjectured by Göttsche [211]. It
is expected that for general (X,H) ∈ Md all rational curves C ∈ |nH| are nodal. Although
this has not been proved yet, an appropriate generalization of the Yau–Zaslow formula (4.1) for

10The result should hold without any condition on X and can be proved if [x] = cX by modifying
the above arguments, see [621, Lem. 2.3]. In fact, in [383] also x is assumed generic, but this can be
avoided by interchanging the role of the two families C and D as done here.



278 13. RATIONAL CURVES ON K3 SURFACES

Gromov–Witten invariants for non primitive classes, i.e. n > 1, has been proved by Klemm,
Maulik, Pandharipande, and Scheidegger [294], cf. the survey [482] and references therein.

There are related classical numerical problems. For example, Segre in [539] asks how many
lines can a quartic X ⊂ P3 contain? Of course, the very general quartic in characteristic zero
does not contain any line. It turns out that the maximal number of lines on an arbitrary smooth
quartic is 64, which is achieved for the Fermat quartic. See [72, 498] for more details and a
discussion of the possible configuration of these lines and Sections 3.2.6 and 17.1.4.

Questions and open problems:
It does not seem completely impossible to produce nodal rational curves in |nH| with n > 1

by an explicit construction à la Bogomolov and Mumford as in the proof of Theorem 1.1 and in
this way to provide a more direct argument for Theorem 1.7, (ii).

It seems likely that density of rational curves in elliptic surfaces as proved by Bogomolov and
Tschinkel in [69] continues to hold in positive characteristic, but details would need to be checked.

As mentioned in the introduction, Bogomolov apparently had asked back in 1981 whether
every Q̄-rational point of a K3 surface defined over a number field lies on a rational curve. There
does not seem to be much evidence for this, but attempts to disprove it have also failed, see for
example the first version of [30]. Of course, this would immediately imply Conjecture 12.2.5.

As a consequence of Lemma 17.2.6 one knows that all smooth rational curves on X × k̄, of
which there might be infinitely many, live over a finite extension K/k. In many cases, the degree
of K/k can be universally bounded. Is this still true for singular rational curves?



CHAPTER 14

Lattices

Apart from Section 3, this chapter should be seen mainly as a reference. We collect all
results from lattice theory that are used at some point in these notes. We try to give a
readable survey of the relevant facts and a general feeling for the techniques, but we have
often have to refer for details to the literature and for many things to Nikulin’s influential
paper [448]. Only the parts of lattice theory that are strictly relevant to the theory of
K3 surfaces are touched upon, in particular most of the lattices will be even and all will
be over Z. In Section 3 one finds, among others, a characterization of Picard lattices of
small rank and a lattice theoretic description of Kummer surfaces.
Besides Nikulin’s articles and earlier ones by Wall and Kneser, one could consult Dol-

gachev’s survey article [147], Serre’s classic [544], covering the classification of even,
unimodular lattices, and the textbooks [130, 159, 161, 300, 409], e.g. for the Leech
lattice and its relatives.

0.1. A lattice Λ is by definition a free Z-module of finite rank together with a
symmetric bilinear form

( . ) : Λ× Λ //Z,
which we will always assume to be non-degenerate. A lattice Λ is called even if

(x)2 := (x.x) ∈ 2Z

for all x ∈ Λ, otherwise Λ is called odd. The determinant of the intersection matrix with
respect to an arbitrary basis (over Z) is called the discriminant, disc Λ.
A lattice Λ and the R-linear extension of its bilinear form ( . ) give rise to the real

vector space ΛR := Λ ⊗Z R endowed with a symmetric bilinear form. The latter can
be diagonalized with only 1 and −1 on the diagonal, as we assumed that ( . ) is non-
degenerate. The signature of Λ is (n+, n−), where n± is the number of ±1 on the diagonal,
and its index is τ(Λ) := n+ − n−. The lattice Λ is called definite if either n+ = 0 or
n− = 0 or, equivalently, if τ(Λ) = ±rk Λ. Otherwise, Λ is indefinite.
One defines an injection of finite index

iΛ : Λ �
� // Λ∗ := HomZ(Λ,Z), x � // (x. ).

Alternatively, if Λ∗ is viewed as the subset of all x ∈ ΛQ of the Q-vector space ΛQ such
that (x.Λ) ⊂ Z, then iΛ is just the natural inclusion Λ �

� // Λ∗ �
� // ΛQ. The cokernel of

iΛ : Λ �
� // Λ∗ is called the discriminant group

AΛ := Λ∗/Λ

279
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of Λ, which is a finite group of order |disc Λ|. A lattice is called unimodular if iΛ defines an
isomorphism Λ ∼− // Λ∗ or, equivalently, if AΛ is trivial or, still equivalently, if disc Λ = ±1.
The minimal number of generators of the finite group AΛ also plays a role and will be
denoted

`(AΛ) = `(Λ).

Remark 0.1. It is an elementary but very useful observation that whenever disc Λ is
square free, then `(Λ) = 0 or 1. Indeed, AΛ is a finite abelian group and hence of the
form

⊕
Z/miZ. If disc Λ and hence |AΛ| =

∏
mi is square free, then the mi are pairwise

prime and, therefore, AΛ ' Z/|AΛ|Z.

The pairing ( . ) on Λ induces a Q-valued pairing on Λ∗ and hence a pairing AΛ ×
AΛ

//Q/Z. If the lattice Λ is even, then the Q-valued quadratic form on Λ∗ yields

qΛ : AΛ
//Q/2Z,

which gives back the pairing on AΛ. The finite group AΛ together with qΛ is called the
discriminant form of Λ

(AΛ, qΛ : AΛ
//Q/2Z).

A finite abelian group A with a quadratic form q : A //Q/2Z is called a finite quadratic
form. The index τ(A, q) ∈ Z/8Z of it is well-defined as the index τ(Λ) modulo 8 of any
even lattice Λ with (AΛ, qΛ) ' (A, q).1

Two lattices Λ and Λ′ are said to have the same genus, Λ ∼ Λ′, if Λ⊗Zp ' Λ′⊗Zp for
all prime p and Λ⊗R ' Λ′⊗R (all isomorphisms are assumed to be compatible with the
natural quadratic forms). The latter of course just means that Λ and Λ′ have the same
signature.
It is a classical result that there are at most finitely many isomorphism types of lattices

with the same genus, cf. [103, Ch. 9.4] or [300, Satz 21.3]. Moreover, due to [448, Cor.
1.9.4], one knows that two even lattices Λ and Λ′ have the same genus if their signatures
coincide and (AΛ, qΛ) ' (AΛ′ , qΛ′). In particular, for bounded |disc Λ| and rk Λ there
exist only finitely many isomorphism types of even lattices, see [103, Ch. 9].

0.2. For two lattices Λ1 and Λ2 the direct sum Λ1 ⊕ Λ2 shall always denote the
orthogonal direct sum, i.e. (x1 + x2.y1 + y2)Λ1⊕Λ2 = (x1.y1)Λ1 + (x2.y2)Λ2 . Clearly, there
exists an isomorphism AΛ1⊕Λ2 ' AΛ1 ⊕ AΛ2 which for even lattices is compatible with
the discriminant forms, i.e.

(AΛ1⊕Λ2 , qΛ1⊕Λ2) ' (AΛ1 , qΛ1)⊕ (AΛ2 , qΛ2).

A morphism between two lattices Λ1
//Λ is by definition a linear map that respects the

quadratic forms. If Λ1
� � // Λ has finite index, then one proves

(0.1) disc Λ1 = disc Λ · (Λ : Λ1)2,

1See e.g. [627, Cor. 1& 2]. This has two parts. Firstly, any (A, q) can be realized as the discriminant
form of an even lattice [625, Thm. 6], cf. Theorem 1.5. Secondly, two lattices Λ1 and Λ2 with isomorphic
discriminant forms are stably equivalent, i.e. there exist unimodular lattices Λ′1, Λ′2 such that Λ1 ⊕Λ′1 '
Λ2 ⊕ Λ′2, cf. Corollary 1.7. This result in its various forms is due to Kneser, Durfee, and Wall.
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e.g. by using the inclusions Λ1
� � // Λ �

� // Λ∗ �
� // Λ∗1.

An injective morphism Λ1
� � // Λ is called a primitive embedding if its cokernel is torsion

free. For example, the orthogonal complement Λ2 := Λ⊥1 ⊂ Λ of any sublattice Λ1
� � // Λ

is a primitive sublattice intersecting Λ1 trivially. Moreover, the induced embedding

Λ1 ⊕ Λ2
� � // Λ

is of finite index and in general not primitive, not even for primitive Λ1. More precisely,
as a consequence of (0.1) one finds

(0.2) disc Λ1 · disc Λ2 = disc Λ · (Λ : Λ1 ⊕ Λ2)2.

Two even lattices Λ1, Λ2 are called orthogonal if there exists a primitive embedding
Λ1
� � // Λ into an even unimodular lattice with Λ⊥1 ' Λ2.

To give a taste of the kind of arguments that are often used, we prove the following
standard result, cf. [448, Prop. 1.5.1, 1.6.1] or [159, Ch. 3.3], which in particular shows
that every even lattice Λ is orthogonal to Λ(−1), see Section 0.3, iv).

Proposition 0.2. Let Λ1,Λ2 be two even lattices.

(i) Then Λ1 and Λ2 are orthogonal if and only if (AΛ1 , qΛ1) ' (AΛ2 ,−qΛ2).
(ii) More precisely, a primitive embedding Λ1

� � // Λ into an even, unimodular lattice Λ

with Λ⊥1 ' Λ2 is determined by an isomorphism (AΛ1 , qΛ1) ' (AΛ2 ,−qΛ2).

Proof. As a first step one establishes for a fixed even lattice Λ′ a bijective correspon-
dence between finite index even overlattices Λ′ ⊂ Λ and isotropic subgroups H ⊂ AΛ′

{Λ′ ⊂ Λ | (Λ : Λ′) <∞} //oo {H ⊂ AΛ′ | isotropic}

given by (Λ′ ⊂ Λ) � // (Λ/Λ′ ⊂ Λ∗/Λ′ ⊂ Λ′∗/Λ′ = AΛ′). The inverse map is given by
sending H ⊂ AΛ′ to its pre-image under Λ′∗ //AΛ′ .
Check that H is isotropic if and only if the quadratic form on Λ∗ restricts to an integral

even form on Λ. Moreover, by (0.1) Λ is unimodular if and only if |H|2 = |AΛ′ |.
Next, with any primitive embedding Λ1 ⊂ Λ into an even unimodular lattice Λ such

that Λ⊥1 ' Λ2 one associates the finite index sublattice Λ′ := Λ1⊕Λ2 ⊂ Λ. The associated
isotropic subgroup is Λ/(Λ1 ⊕ Λ2) ⊂ AΛ1⊕Λ2 ' AΛ1 ⊕AΛ2 . The two projections

Λ/(Λ1 ⊕ Λ2) //AΛi ,

i = 1, 2, are injective, as both inclusions Λi ⊂ Λ are primitive. They are surjective if and
only if Λ is unimodular, as the canonical maps Λ∗ // //Λ∗i are surjective. Thus,

AΛ1

∼− // Λ/(Λ1 ⊕ Λ2) ∼− // AΛ2

changing the sign of the quadratic form. Conversely, the graph of any isomorphism
(AΛ1 , qΛ1) ' (AΛ2 ,−qΛ2) is an isotropic subgroup H ⊂ AΛ1⊕Λ2 which, therefore, gives
rise to a finite index overlattice Λ1 ⊕ Λ2 ⊂ Λ. Now, H being a graph of an isomorphism
immediately translates into primitivity of the embeddings Λi ⊂ Λ and unimodularity of
Λ. �
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For the discriminants of two orthogonal lattices one thus finds

(0.3) disc Λ1 = ±disc Λ2,

where the sign is the discriminant of Λ, and, using (0.2), |disc Λi| = (Λ : Λ1 ⊕ Λ2).

0.3. To set up notations and to recall some basic facts, we include a list of standard
examples of lattices that come up frequently in these lectures.

i) By 〈1〉, Z, or I1 one denotes the lattice of rank one with intersection matrix 1. The
direct sum 〈1〉⊕n is often denoted In. See Corollary 1.3 for the related notation In+,n− .
ii) The hyperbolic plane is the lattice

U :=

(
0 1

1 0

)
,

i.e. U ' Z2 = Z ·e⊕Z ·f with the quadratic form given by (e)2 = (f)2 = 0 and (e.f) = 1.
Clearly, discU = −1. Other common notations for U are II1,1 or simply H.

Example 0.3. The hyperbolic plane is special in many ways. For example, if U �
� // Λ

is an arbitrary (not necessarily primitive) embedding, then

Λ = U ⊕ U⊥.

Indeed, if for α ∈ Λ one defines α′ by α = (e.α)f + (f.α)e + α′, then α′ ∈ U⊥. The
same assertion holds for embeddings U⊕k �

� // Λ. See also Proposition 1.8.

iii) The E8-lattice is given by the intersection matrix

E8 :=



2 −1

−1 2 −1

−1 2 −1 −1

−1 2 0

−1 0 2 −1

−1 2 −1

−1 2 −1

−1 2


and is, therefore, even, unimodular, positive definite (i.e. n− = 0) of rank eight with
discE8 = 1. See also v) below.
iv) For any given lattice Λ the twist Λ(m) is obtained by changing the intersection form
( . ) of Λ by the integer m, i.e. Λ = Λ(m) as Z-modules but

( . )Λ(m) := m · ( . )Λ.

The discriminant of the twist is given by

disc Λ(m) = disc Λ ·mrk Λ,

which can be deduced from the exact sequence 0 //Λ/mΛ //AΛ(m)
//AΛ

// 0 of
groups. The latter also shows that, for example,

AU(m) ' (Z/mZ)2.
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We will frequently use 〈−1〉 := 〈1〉(−1), which is the rank one lattice with intersection
matrix −1, Z(m) := 〈1〉(m), and E8(−1), which is negative definite, unimodular and
even. Note that U(−1) ' U .
v) Lattices that are not unimodular play a role as well. Most importantly, the lattices
associated to the Dynkin diagrams An, Dn, E6, E7, and E8. Only the last one gives rise
to a unimodular lattice, which has been described above.
To any graph Γ with simple edges the lattice Λ(Γ) associated with Γ has a basis ei

corresponding to the vertices with the intersection matrix given by (ei.ej) = 2 if i = j,
(ei.ej) = −1 if ei and ej are connected by an edge and (ei.ej) = 0 otherwise. So, for
example, A1 ' 〈2〉.
In fact, the graphs of ADE type as drawn below are the only connected graphs Γ for

which the following holds: Two vertices ei, ej of Γ are connected by at most one edge and
the lattice Λ(Γ) naturally associated with Γ is positive definite.
Geometrically, lattices of ADE type occur as configurations of exceptional divisors of

minimal resolutions of rational double points. Recall that rational double points (or
simple surface singularities, or Kleinian singularities, etc.) are described explicitly by the
following equations:

An≥1 xy + zn+1

Dn≥4 x2 + y(z2 + yn−2)

E6 x2 + y3 + z4

E7 x2 + y(y2 + z3)

E8 x2 + y3 + z5

The exceptional divisor of the minimal resolution of each of these singularities is a curve∑
Ci with Ci ' P1, self-intersection (Ci)

2 = −2, and for Ci 6= Cj one has (Ci.Cj) = 0

or = 1. The vertices of the dual graph correspond to the irreducible components Ci and
vertices are connected by an edge if the corresponding curves Ci and Cj intersect. The
dual graph is depicted in each of the cases in the last column.
Alternatively, rational double points can be described as quotient singularities C2/G

by finite groups G ⊂ SL(2,C). For example, the An-singularity is isomorphic to the

singularity of the quotient by the cyclic group of order n generated by
(
ξn 0

0 ξ−1
n

)
with

ξn a primitive n-th root of unity, see [391, Ch. 4.6] for more details and references. The
lattice An can be realized explicitly as (1, . . . , 1)⊥ ⊂ In+1 = 〈1〉⊕n+1.
We also record the discriminant groups of lattices of ADE type, see [159]:

Λ An D2n D2n+1 E6 E7 E8

AΛ Z/(n+ 1)Z Z/2Z⊕ Z/2Z Z/4Z Z/3Z Z/2Z {0}
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vi) The K3 lattice
Λ := E8(−1)⊕2 ⊕ U⊕3

is an even, unimodular lattice of signature (3, 19) and discriminant −1, which contains

Λd := E8(−1)⊕2 ⊕ U⊕2 ⊕ Z(−2d),

see Example 1.11. The extended K3 lattice or Mukai lattice is

Λ̃ := E8(−1)⊕2 ⊕ U⊕4,

which is even, unimodular of signature (4, 20) and discriminant 1. Also the notations
II3,19 for Λ and II4,20 for Λ̃ are common, cf. Corollary 1.3.

vii) The Enriques lattice is the torsion free part H2(Y,Z)tf of H2(Y,Z) of an Enriques
surface Y . The universal cover X // // Y of any Enriques surface describes a K3 surface
X and there exists an isomorphism H2(X,Z) ∼− // Λ such that the covering involution
ι : X ∼− // X acts on Λ = E8(−1)⊕ E8(−1)⊕ U ⊕ U ⊕ U by

ι∗ : (x1, x2, x3, x4, x5) � // (x2, x1,−x3, x5, x4).

Thus, the invariant part is Λι ' E8(−2)⊕ U(2) and hence

H2(Y,Z)tf ' E8(−1)⊕ U ' II1,9.

See below for the notation IIn+,n− . Note that the Lefschetz fixed point formula shows
that the invariant part has to be of rank ten. The easiest way to show that the action ι∗

really is of the above form is by studying one particular Enriques surface and using that
there is only one deformation class.

1. Existence, uniqueness, and embeddings of lattices

In this section we recall some of the classical facts on unimodular lattices and their
generalizations. We cannot give complete proofs, but sometimes sketch ad hoc arguments
that may convey at least an idea of some of the techniques. The standard reference is
Nikulin’s [448], where one finds many more and stronger results. We restrict to those
parts that are used somewhere in these notes. In particular, the local theory is only
occasionally touched upon.

1.1. We begin with the classical result of Milnor concerning even, unimodular lat-
tices, cf. [409, Ch. II] or [544, Ch. V].

Theorem 1.1. Let (n+, n−) be given. Then there exists an even, unimodular lattice of
signature (n+, n−) if and only if n+ − n− ≡ 0 (8). If n± > 0, then the lattice is unique.

The key to this theorem is the description of the Grothendieck group of stable isomor-
phism classes of unimodular lattices. It turns out to be freely generated by 〈±1〉.

Corollary 1.2. Suppose Λ1,Λ2 are two positive definite, even, unimodular lattices of
the same rank. Then

Λ1 ⊕ U ' Λ2 ⊕ U.
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Proof. Indeed, Λi⊕U are both even, unimodular lattices of signature (rk Λi + 1, 1)

and by the theorem the isomorphism type of such lattices is unique. �

Corollary 1.3. Let Λ be an indefinite, unimodular lattice of signature (n+, n−).
(i) If Λ is even of index τ = n+ − n−, then τ ≡ 0 (8) and

Λ ' E⊕
τ
8

8 ⊕ U⊕n− and Λ ' E8(−1)⊕
−τ
8 ⊕ U⊕n+ ,

according to the sign of τ .
(ii) If Λ is odd, then

Λ ' 〈1〉⊕n+ ⊕ 〈−1〉⊕n− .

In the literature, also the notations In+,n− and IIn+,n− are used for an odd resp. even,
indefinite, unimodular lattice of signature (n+, n−). So, for example (see Section 0.3)

In+,n− ' 〈1〉⊕n+ ⊕ 〈−1〉⊕n− and IIn+,n− ' E
⊕n+−n−

8
8 ⊕ U⊕n− ,

for n+ − n− ≥ 0.

Example 1.4. i) For complex K3 surfaces this can be used to describe the singular
cohomology H2(X,Z) endowed with the intersection pairing as an abstract lattice, cf.
Proposition 1.3.5:

H2(X,Z) ' E8(−1)⊕2 ⊕ U⊕3.

ii) The middle cohomology of a smooth cubic Y ⊂ P5 is (see [238, Prop. 2.12]):

H4(Y,Z) ' I21,2 = 〈1〉⊕21 ⊕ 〈−1〉⊕2 ' E⊕2
8 ⊕ U⊕2 ⊕ 〈1〉⊕3.

If h ∈ H4(Y,Z) is the square of the class of a hyperplane section, then (h)2 = 3 and

h⊥ ' E⊕2
8 ⊕ U⊕2 ⊕A2.

One way to show this is to realize h as the vector (1, 1, 1) ∈ 〈1〉⊕3 ' Z⊕3, the orthogonal
complement of which in 〈1〉⊕3 is by definition the lattice A2. Alternatively, one can argue
that the lattice on the right hand side has discriminant form Z/3Z and, as h⊥ is indeed
even, Proposition 0.2 (or rather a version of it that also covers the odd lattice 〈h〉) shows
that it is orthogonal to 〈h〉 ' Z(3). However, any unimodular lattice of signature (21, 2)

is necessarily odd by Theorem 1.1 and hence must be isomorphic to I21,2.

These classical results are generalized to the non-unimodular case by the following

Theorem 1.5. Let (n+, n−) and a finite quadratic form (A, q) be given. Then there
exists an even lattice Λ of signature (n+, n−) and discriminant form (AΛ, qΛ) ' (A, q) if

`(A) + 1 ≤ n+ + n− and n+ − n− ≡ τ(A, q) (8).

If `(A) + 2 ≤ n+ + n− and n± > 0, then Λ is unique.

That every finite quadratic form is realized is a result due to Wall [625]. For the general
case see [448, Cor. 1.10.2&1.13.3]. Nikulin attributes parts of these results to Kneser,
but [298] is difficult to read for non-specialists.
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Remark 1.6. The uniqueness statement can be read as saying that any even, indefinite
lattice Λ with `(AΛ)+2 ≤ rk Λ is unique in its genus. In [448, Thm. 1.14.2] the condition
`(AΛ) + 2 ≤ rk Λ is only required at all primes p 6= 2 and if at p = 2 the equality
`((AΛ)2) = rk Λ holds, one requires that (AΛ, qΛ) splits off (as a direct summand) the
discriminant form of U(2) or of A2(2). A variant relaxing the condition at p 6= 2 is
provided by [448, Thm. 1.13.2], which is of importance for the classification of Néron–
Severi lattices of supersingular K3 surfaces, see Section 17.2.7.

The non-unimodular analogue of Corollary 1.2 is

Corollary 1.7. Suppose Λ1 and Λ2 are two even lattices of the same signature (n+, n−)

and with isomorphic discriminant forms (AΛ1 , qΛ1) ' (AΛ2 , qΛ2). Then

Λ1 ⊕ U⊕r ' Λ2 ⊕ U⊕r

for r ≥ max{(1/2)(`(AΛi) + 2− n+ − n−), 1− n±}. �

1.2. Concerning embeddings of lattices, we start again with the classical unimodular
case before turning to Nikulin’s stronger versions.

Proposition 1.8. For every even lattice Λ of rank r and every r ≤ r′ there exists a
primitive embedding

Λ �
� // U⊕r

′
.

For r < r′ the embedding is unique up to automorphisms of U⊕r′.

Proof. The following direct proof for the existence is taken from the article by
Looijenga and Peters [378, Sec. 2]. Denote by ei, fi, i = 1, . . . , r, the standard bases of
the r copies of U . Then define the embedding on a basis a1, . . . , ar of Λ by

ai
� // ei +

1

2
(ai.ai)fi +

∑
j<i

(aj .ai)fj .

An explicit and elementary (but lengthy) proof for the uniqueness can also be found in
[378] or [490, App. to Sec. 6.]. �

The result has direct geometric applications to the surjectivity of the period map for
Kummer surfaces, cf. Corollary 3.20. It is also crucial for the proof of the following
consequence, in which U⊕r′ is replaced by an arbitrary unimodular lattice.

Corollary 1.9. Let Λ be an even, unimodular lattice of signature (n+, n−) and let Λ1

be an even (not necessarily unimodular) lattice of signature (m+,m−). If m+ + m− ≤
min{n+, n−}, then there exists a primitive embedding

Λ1
� � // Λ.

If the inequality is strict, then the embedding is unique up to automorphisms of Λ.

Proof. Only the case 0 < n± needs a proof. Also, we may assume that τ :=

n+ − n− ≥ 0, i.e. n− = min{n+, n−}. Thus, Λ ' E
⊕ τ

8
8 ⊕ U⊕n− by Corollary 1.3. Then

apply Proposition 1.8 to Λ1 which yields a primitive embedding Λ1
� � // U⊕n− �

� // Λ. For
the uniqueness see [276]. �
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As a consequence of the existence part one obtains a result that is used in the description
of the moduli space of polarized K3 surfaces, see Section 6.1.1. In Section 4.1 we will see
that the assumption 1 < n± in the next corollary cannot be weakened, e.g. the assertion
does not hold for Λ = E8(−1)⊕3 ⊕ U .

Corollary 1.10. Let Λ be an even, unimodular lattice of signature (n+, n−) with 1 ≤
n±. Then for any d there exists a primitive ` ∈ Λ with (`)2 = 2d. If 1 < n±, then ` ∈ Λ

is unique up to automorphisms of Λ.2

Proof. Consider Λ1 := Z(2d), which is a lattice of signature (1, 0) resp. (0, 1), de-
pending on the sign of d. Then giving a primitive ` ∈ Λ with (`)2 = 2d is equivalent to
giving a primitive embedding Λ1

� � // Λ. The assertion follows thus directly from Corol-
lary 1.9.
So strictly speaking, only the case d 6= 0 follows from the proposition, but see [624,

Thm. 3] which also covers d = 0. �

Example 1.11. The following two examples explain the lattice theory behind a curious
relation between rationality of cubic fourfolds Y ⊂ P5 and K3 surfaces as suggested by
Hassett in [238]. In particular, (1.1) below allows one to compare periods of special cubic
fourfolds with periods of polarized K3 surfaces.
i) Let Λ ' H2(X,Z) be the K3 lattice and let ` ∈ Λ be the primitive class of a

polarization of degree (`)2 = 2d. Then

Λd := `⊥ ' E8(−1)⊕2 ⊕ U⊕2 ⊕ Z(−2d).

Indeed, due to the corollary we may assume that ` = e+df ∈ U in one of the three copies
of U and then use (e+ df)⊥ = Z · (e− df) ⊂ U .
ii) Using the notation of Example 1.4, we consider a primitive lattice

〈h, β〉 ⊂ H4(Y,Z) ' I21,2

of rank two and discriminant 2d. Then it was shown in [238, Prop. 5.2.2] that there
exists an ` ∈ Λ as in i) with

(1.1) 〈h, β〉⊥ ' `⊥(−1)

if and only if 2d is not divisible by 4, 9, or any odd prime p ≡ 2 (3).

Nikulin proves the following much stronger version of Corollary 1.9, see [448, Thm.
1.14.4].

Theorem 1.12. Let Λ be an even, unimodular lattice of signature (n+, n−) and Λ1 be
an even lattice of signature (m+,m−). If m± < n± and

(1.2) `(Λ1) + 2 ≤ rk Λ− rk Λ1,

2The assumption that Λ is unimodular cannot be dropped, but for lattices of the form Λ = U⊕2⊕Λ′

the orbit O(Λ) · ` of a primitive ` ∈ Λ is determined by (`)2 and the class (1/n)` ∈ AΛ, where (`.Λ) = nZ.
This is apparently due to Eichler [161, Ch. 10], but see [222, Prop. 3.3] for a proof in modern language.
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then there exists a primitive embedding Λ1
� � // Λ, which is unique up to automorphisms

of Λ.

Remark 1.13. i) In [448] the condition (1.2) is replaced by the corresponding local
condition for all p 6= 2 and if for p = 2 the equality `((Λ1)2) = rk Λ − rk Λ1 holds, one
requires qΛ1 to split off (as a direct summand) the discriminant form of U(2) or of A2(2).
ii) The assumption (1.2) clearly follows from the stronger

(1.3) rk Λ1 + 2 ≤ rk Λ− rk Λ1.

Note that the right hand side is just rk Λ⊥1 once the embedding has been found.
iii) In order to prove that a given primitive embedding Λ1

� � // Λ is unique, it is enough
to verify that Λ⊥1 contains a hyperbolic plane

U �
� // Λ⊥1 .

Indeed, if so, then by Example 0.3 Λ⊥1 = U ⊕ U⊥ and hence `(Λ⊥1 ) = `(U⊥) ≤ rkU⊥ =

rk Λ⊥1 − 2. However, `(Λ⊥1 ) = `(Λ1) by Proposition 0.2 and, therefore, (1.2) holds.
iv) Note that the assumption m± < n± cannot be weakened. For example, the embed-

ding U �
� // E8(−1)⊕3 ⊕ U is not unique, see Section 4.1.

Corollary 1.14. Let Λ be an even, unimodular lattice of signature (n+, n−) and assume
0 6= x ∈ Λ is primitive with (x)2 = 0. Then there exists an isomorphism Λ ' Λ′ ⊕U that
sends x to the first vector of the standard basis e, f of U .

Proof. Let us first prove this as a consequence of the general theory above assuming
n± > 1. Then the existence of a (unique) primitive embedding U �

� // Λ follows from
Theorem 1.12 or Corollary 1.9. For the direct sum decomposition use Example 0.3. To
conclude, apply Corollary 1.10 to find an automorphism of Λ that maps x to e ∈ U .
Now, assuming only n± ≥ 1 one argues as follows (and in fact more elementary): Since

Λ is unimodular, there exists a y ∈ Λ with (x.y) = 1. Then y′ := y − ((y)2/2)x still
satisfies (x.y′) = 1, but also (y′)2 = 0. Thus, U ∼− // 〈x, y′〉 via e � // x and f � // y′. For
the direct sum decomposition use again Example 0.3. �

It is also useful to know when an even lattice can be embedded at all in some unimodular
lattice. As a prototype, we state [448, Cor. 1.12.3]:

Theorem 1.15. Let Λ1 be an even lattice of signature (m+,m−). Then there exists a
primitive embedding Λ1

� � // Λ into an even, unimodular lattice Λ of signature (n+, n−)

if
(i) n+ − n− ≡ 0 (8)

(ii) m± ≤ n±
(iii) `(Λ1) < rk Λ− rk Λ1.

By Proposition 0.2, the existence of an embedding is in fact equivalent to the existence
of an even lattice Λ2 with signature (n+ −m+, n− −m−) and (AΛ1 , qΛ1) ' (AΛ2 ,−qΛ2).
Of course, if 0 < n±, then Λ is unique, cf. Corollary 1.3.
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Remark 1.16. We briefly explain the relation between the two Theorems 1.12 and
1.15. Assume (i), (ii), and (iii) in Theorem 1.15. If m± < n± (and hence 0 < n±) and
the stronger (1.2) instead of (iii) holds, then Theorem 1.12 can be used directly. If not,
then the assumptions of Theorem 1.12 hold for Λ1 and Λ⊕ U for any even, unimodular
lattice Λ of signature (n+, n−), the existence of which is due to Theorem 1.1. Moreover,
for two such lattices Λ and Λ′ one has Λ⊕ U ' Λ′ ⊕ U by Corollary 1.2. Now Theorem
1.12 implies the existence of a (unique) primitive embedding ϕ : Λ1

� � // Λ ⊕ U and to
conclude the proof of Theorem 1.15 one has to show that the projection into one of the
Λ′ with Λ⊕ U ' Λ′ ⊕ U yields an embedding Λ1

� � // Λ′.

Remark 1.17. The more precise version [448, Thm. 1.12.2] of the above theorem
replaces iii) by the weaker `(Λ1) ≤ rk Λ− rk Λ1 and adds conditions on the discriminant
at every p for which equality is attained, e.g. if equality holds at p = 2, i.e. `((Λ1)2) =

rk Λ − rk Λ1, then it suffices to assume that (AΛ1 , qΛ1) splits off the discriminant group
of 〈1〉(2). For most applications, but not quite for all, the above version will do.

The following is a very useful consequence of Theorem 1.15, see [448, Thm. 1.12.4].

Corollary 1.18. Let Λ1 be an even lattice of signature (m+,m−). Assume (n+, n−)

satisfies

(i) i) n+ − n− ≡ 0 (8)

(ii) m± ≤ n±
(iii) rk Λ1 ≤ 1

2(n+ + n−).

Then there exists a primitive embedding Λ1
� � // Λ into an even, unimodular lattice Λ of

signature (n+, n−).

Proof. Use `(Λ1) ≤ rk Λ1 ≤ (1/2)(n+ + n−) ≤ (n+ + n−) − rk Λ1. If at least one
of these inequalities is strict, Theorem 1.15 applies directly. For the remaining case see
[448]. �

2. Orthogonal group

Next, we collect some standard facts concerning the group of automorphisms O(Λ) of
a lattice Λ. So by definition O(Λ) is the group of all g : Λ ∼− // Λ with (g(x).g(y)) = (x.y)

for all x, y ∈ Λ. Clearly, O(Λ) is a discrete subgroup of the real Lie group O(ΛR) '
O(n+, n−). In particular, if Λ is definite, then O(ΛR) is compact and, therefore, O(Λ) is
finite.
The theory of automorphs of binary quadratic forms may serve as a motivation. In

modern terms, one considers a lattice Λ of rank two, which can also be thought of as a
quadratic equation ax2 +2bxy+ cy2 with a, b, c ∈ Z, and an automorph is nothing but an
element g ∈ O(Λ) (sometimes assumed to have det(g) = 1). Interestingly, O(Λ) can be
finite even for indefinite Λ. In fact, it is finite if and only if d := −disc Λ = b2−ac > 0, is a
square, which is equivalent to the existence of 0 6= x ∈ Λ with (x)2 = 0. The idea behind
this assertion is to link elements g ∈ O(Λ) to solutions of Pell’s equation x2 − dy2 = 1,
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which has a unique (up to sign) solution if and only if d is a square and otherwise has
infinitely many. See e.g. [103, Ch. 13.3].

Example 2.1. It is easy to check that

O(U) ' (Z/2Z)2.

Indeed, g ∈ O(U) is uniquely determined by the image g(e) of the first standard basis
vector, which has to be contained in {±e,±f}.

2.1. Let Λ be a lattice. A root of Λ, also called (−2)-class, is an element δ ∈ Λ with
(δ)2 = −2. The set of roots is denoted by ∆, so

∆ := {δ ∈ Λ | (δ)2 = −2}.

The root lattice of Λ is the sublattice R ⊂ Λ (not necessarily primitive) spanned by ∆.
For any δ ∈ ∆ one defines the reflection

sδ : x � // x+ (x.δ)δ

which is an orthogonal transformation, i.e. sδ ∈ O(Λ). Clearly, sδ = s−δ. The subgroup

W := 〈sδ | δ ∈ ∆〉 ⊂ O(Λ)

is called the Weyl group of Λ. See also the discussion in Section 8.2.3.
For Λ = U , the Weyl group is the proper subgroup Z/2Z ⊂ O(U) ' (Z/2Z)2 generated

by the reflection se−f : e � // f .

Theorem 2.2. Let Λ be the K3 lattice E8(−1)⊕2⊕U⊕3. Then any g ∈ O(Λ) with trivial
spinor norm can be written as a product

∏
sδi of reflections associated with (−2)-classes

δi ∈ ∆ ⊂ Λ.

For the notion of the spinor norm see Section 7.5.4. This is essentially a special case
of results applicable to a large class of unimodular lattices due to Wall [626, 4.7]. More
precisely, Wall proves that O(E8(−1)⊕m⊕U⊕n) is generated by reflections sδ with (δ)2 =

±2 for m,n ≥ 2. The result was later generalized to certain non-unimodular lattices by
Ebeling [158] and Kneser [299, Satz 4], which also contains the above stronger form
of Wall’s result only using (−2)-classes. Sometimes the condition det(g) = 1 is added,
which, however, can always be achieved by passing from g to sδ ◦ g for some (−2)-class δ.

Example 2.3. For a definite lattice Λ, e.g. with Λ(−1) of ADE type, the orthogonal
group O(Λ), and hence the Weyl group, is finite. For instance, the Weyl group of An(−1)

is the symmetric group Sn+1 and for the lattice E8(−1), which contains 240 roots, the
Weyl group is of order 214 · 35 · 52 · 7 = 4! · 6! · 8! and equals O(E8(−1)). The quotient
by its center, which is of order four, is a simple group. Similarly, E6(−1) and E7(−1)

contain 72 and 126, respectively, roots. See [130] for more details and for more examples
of root lattices and Weyl groups of definite lattices not of ADE type, see also Section 4.3.
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Note that frequently the inclusion W ⊂ O(Λ) is proper and even of infinite index. In
Section 15.2 one finds examples where Λ is NS(X) of a K3 surface X andW ⊂ O(NS(X))

is of finite index if and only if Aut(X) is finite, see Theorem 15.2.6. Even from a purely
lattice theoretic point of view it is an interesting question for which lattices the Weyl
group is essentially (i.e. up to finite index) the orthogonal group. For lattices of signature
(1, ρ− 1) see Theorem 15.2.10.

2.2. Any g ∈ O(Λ) naturally induces g∗ ∈ O(Λ∗) by g∗ϕ : x � //ϕ(g−1x). With this
definition g∗|Λ = g for the natural embedding Λ �

� // Λ∗. Hence, g induces an automor-
phism ḡ of AΛ. If Λ is even and, therefore, AΛ endowed with the discriminant form qΛ,
then ḡ respects qΛ. This yields a natural homomorphism

O(Λ) //O(AΛ),

which is often surjective due to the next result.

Theorem 2.4. Let Λ be an even indefinite lattice with `(AΛ) + 2 ≤ rk Λ. Then

O(Λ) // //O(AΛ)

is surjective. See [448, Thm. 1.14.2].

Observe that the assumption `(AΛ) + 2 ≤ rk Λ is the same as in Theorem 1.5 so that
Λ is determined by its signature and (AΛ, qΛ). The result is proved by first lifting to the
p-adic lattices [448, Cor. 1.9.6]. Those then glue due to a result by Nikulin [447, Thm.
1.2’].

Let us consider the situation of Proposition 0.2, i.e. let Λ1 ⊂ Λ be a primitive sub-
lattice of an even, unimodular lattice Λ with orthogonal complement Λ2 := Λ⊥1 . Using
(AΛ1 , qΛ1) ' (AΛ2 ,−qΛ2), one can identify O(AΛ1) ' O(AΛ2). This yields

(2.1) O(Λ1)
r1 // O(AΛ1) ' O(AΛ2) O(Λ2)

r2oo

with ri(gi) := ḡi.
For future reference we state the obvious

Lemma 2.5. If g ∈ O(Λ) preserves Λ1 and hence Λ2, then the two automorphisms
gi := g|Λi , i = 1, 2, satisfy ḡ1 = ḡ2 in (2.1). �

The converse is also true, due to the next result, see [448, Thm. 1.6.1, Cor. 1.5.2.].

Proposition 2.6. An automorphism g1 ∈ O(Λ1) can be extended to an automorphism
g ∈ O(Λ) if and only if ḡ1 ∈ Im(r2). If ḡ1 = id, then g1 can be lifted to g ∈ O(Λ) with
g|Λ2 = id.

Proof. Let us prove the second assertion. For this observe first that an element
y ∈ ΛQ = Λ∗Q = Λ1Q⊕Λ2Q = Λ∗1Q⊕Λ∗2Q that is contained in Λ∗1⊕Λ∗2 is in fact contained
in Λ if and only if its class ȳ ∈ AΛ1⊕AΛ2 is contained in the isotropic subgroup Λ/(Λ1⊕Λ2)

(cf. proof of Proposition 0.2). The given g1 ∈ O(Λ1) can be extended to g as asserted if
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and only if for any x = x1 +x2 ∈ Λ with xi ∈ Λ∗i ⊂ ΛiQ also y := g1(x1) +x2 is contained
in Λ. But ȳ = x̄ ∈ AΛ1 ⊕AΛ2 if ḡ1 = id. �

This has the following immediate consequence

Corollary 2.7. Let Λ be an even, unimodular lattice and ` ∈ Λ with (`)2 6= 0. Then

{g ∈ O(`⊥) | id = ḡ ∈ O(A`⊥)} = {g|`⊥ | g ∈ O(Λ), g(`) = `}. �

The corollary is relevant for moduli space considerations, see e.g. Section 6.3.2 where
it is applied to ` = e+ df ∈ U ⊂ E8(−1)⊕2 ⊕ U⊕3. The group on the right hand side is
Õ(Λd) with Λd = `⊥ in the notation there.

2.3. There is another kind of orthogonal transformations of lattices of the form
Λ⊕U with Λ even. Those play an important role in mirror symmetry of K3 surfaces and
so we briefly mention them here. The example one should have in mind is the K3 lattice
Λ = E8(−1)⊕2 ⊕ U⊕3. Then Λ ⊕ U can be thought of as the Mukai lattice H̃(X,Z) or
the usual cohomology H∗(X,Z) of a K3 surface X.
With e and f denoting the standard basis of the extra copy U (which is (H0⊕H4)(X,Z)

in the geometric example), one defines a ring structure on Λ⊕ U by

(λe+ x+ µf) · (λ′e+ y + µ′f) := (λλ′)e+ (λy + λ′x)− (λµ′ + λ′µ+ (x.y))f.

Of course, in the example this gives back the usual ring structure on H∗(X,Z).
Next, for any B ∈ Λ one defines exp(B) := e + B + (B.B)

2 f ∈ Λ ⊕ U and denotes
multiplication with it by the same symbol:

exp(B) : Λ⊕ U //Λ⊕ U.

A direct computation reveals

Lemma 2.8. The B-field shift exp(B) is an orthogonal transformation of Λ⊕ U , i.e.
exp(B) ∈ O(Λ⊕ U). �

According to Wall [626], one furthermore has

Proposition 2.9. Let Λ be an even, unimodular lattice of signature (n+, n−) with
n± ≥ 2. Then O(Λ⊕ U) is generated by the subgroups

O(Λ), O(U), and {exp(B) | B ∈ Λ}.

The result applies to the extended Mukai lattice and was used by Aspinwall and Mor-
rison in [25] to describe the symmetries of conformal field theories associated with K3
surfaces, see [250] for further references.

3. Embeddings of Picard, transcendental, and Kummer lattices

The above discussion shall now be applied to Picard and transcendental lattices of
K3 surfaces. The first question here is which lattices can be realized at all. Later we
discuss the case of Kummer surfaces and in particular the Kummer lattice containing all
exceptional curves.



3. EMBEDDINGS OF PICARD, TRANSCENDENTAL, AND KUMMER LATTICES 293

3.1. We start with results for small Picard numbers. As an immediate consequence
of Theorem 1.12 Morrison in [422] proves:

Corollary 3.1. Let N be an even lattice of signature (1, ρ − 1) with ρ ≤ 10. Then
there exists a complex projective K3 surface X with NS(X) ' N . Moreover, the primitive
embedding N �

� // H2(X,Z) is unique up to the action of O(H2(X,Z)).

Proof. Let Λ be the K3 lattice. Then by Theorem 1.12, or rather Remark 1.13, ii),
there exists a unique primitive embedding N �

� // Λ. Next, choose a Hodge structure of
K3 type on T := N⊥ and view it as a Hodge structure on Λ with N purely of type (1, 1).
Then by the surjectivity of the period map, Theorem 7.4.1, there exists a K3 surface X
together with a Hodge isometry H2(X,Z) ' Λ. Under this isomorphism N �

� // NS(X).
If now the Hodge structure on T is chosen sufficiently general, i.e. in the complenent of the
countable union

⋃
α∈T α

⊥ ∩D ⊂ D ⊂ P(TC) of proper closed subsets, then T 1,1 ∩ T = 0

and, therefore, N ' NS(X). Clearly, X is projective, as by assumption NS(X) ' N

contains a class of positive square, see Remark 8.1.3. �

The arguments also apply to negative definite lattices N of rank rkN ≤ 10, only that
then the K3 surface X is of course not projective. See Remark 3.7 for the case rkN = 11.

Remark 3.2. i) The realization problem is more difficult over other fields, even alge-
braically closed ones of characteristic zero. The rank one case for K3 surfaces over number
fields was settled by Ellenberg [166], cf. Proposition 17.2.15, but can also be deduced
from general existence result applicable to higher Picard rank, cf. Remark 17.2.16.
ii) This result definitely does not hold (in this form) in positive characteristic. For

example, the Picard number of a K3 surface over F̄p is always even, see Corollary 17.2.9.
However, if X is a K3 surface over Q̄ such that a lattice N as above embeds into NS(X),
then, as reduction modulo p is injective on the Picard group (see Proposition 17.2.10), it
also embeds into NS(Xp) of any smooth reduction Xp modulo p.

Corollary 3.3. For a complex projective K3 surface X of Picard number ρ(X) ≤ 10

the isomorphism type of its transcendental lattice T := T (X) (without its Hodge structure)
is uniquely determined by ρ(X) and its discriminant form (AT , qT ) ' (ANS(X),−qNS(X)).

Proof. Theorem 1.5 can be applied, as `(T ) + 2 = `(NS(X)) + 2 ≤ ρ(X) + 2 ≤ 12 ≤
rkT (X). �

Remark 3.4. Transcendental lattices of conjugate K3 surfaces have the same genus.
Recall that for a complex projective K3 surface X and any automorphism σ ∈ Aut(C)

the base change Xσ := X ×C,σ C is a again a K3 surface. Then Pic(X) ' Pic(Xσ), as
X ' Xσ as schemes and, as the Picard group of a K3 surface determines the genus of its
transcendental lattice, T (X) and T (Xσ) have indeed the same genus.
The converse holds for K3 surfaces with maximal Picard number, i.e. if T (X) and T (Y )

of two K3 surfaces have the same genus (or, equivalently, if Pic(X) and Pic(Y ) have the
same genus) and ρ(X) = 20, then X and Y are conjugate to each other (and consequently
Pic(X) ' Pic(Y )). This follows from Corollary 3.21 and results by Schütt and Shimada in
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[534, 551] showing that the transcendental lattices of conjugate K3 surfaces of maximal
Picard number account for all lattices in a given genus, cf. Remark 3.23.

Interchanging the role of NS(X) and T (X) in the two previous corollaries yields the
analogous statements for large Picard number. Again, as a consequence of Theorem 1.12
one obtains:

Corollary 3.5. Let T be an even lattice of signature (2, 20−ρ) with 12 ≤ ρ ≤ 20. Then
there exists a complex projective K3 surface X with T (X) ' T . Moreover, the primitive
embedding T (X) �

� // H2(X,Z) is unique up to the action of O(H2(X,Z)). �

And as an analogue of Corollary 3.3, one finds

Corollary 3.6. For a complex projective K3 surface X of Picard number 12 ≤ ρ(X)

the isomorphism type of N := NS(X) is uniquely determined by ρ(X) and its discriminant
form (AN , qN ). �

Remark 3.7. Clearly, similar results can be stated for other lattices. For example,
when N in Corollary 3.1 is of rank ρ = 11, but one knows in addition `(N) < 10, then the
assertion still holds. In fact, Morrison notes in [422, Rem. 2.11] that also every even lattice
of signature (1, 10) can be realized as NS(X). However, the embedding into H2(X,Z)

may not be unique. Similarly, if in Corollary 3.6 the Picard number ρ(X) < 12 but X
admits an elliptic fibration with a section, then the uniqueness is still valid. Indeed, by
Example 0.3 one has NS(X) ' U ⊕N ′ and hence `(NS(X)) = `(N ′) ≤ rkN ′ = ρ(X)− 2.

Corollary 3.8. If a complex projective K3 surface X satisfies 12 ≤ ρ(X), then there
exists an embedding U �

� // NS(X) and in fact

NS(X) ' U ⊕N ′.

In particular, there exists a (−2)-class δ ∈ NS(X) and, moreover and more precisely, X
admits an elliptic fibration with a section.

Proof. We follow Kovács in [325, Lem. 4.1] and apply Corollary 1.18 to Λ1 = T (X)

and Λ = E8(−1)⊕2 ⊕U⊕2. As indeed rkT (X) ≤ 10 = (1/2)rk Λ, there exists a primitive
embedding T (X) into some even, unimodular lattice of signature (2, 18). However, by
Corollary 1.3 one knows that Λ is the only such lattice. Hence, there exists a primitive
embedding

T (X) �
� // Λ �

� // Λ⊕ U ' H2(X,Z)

with U ⊂ T (X)⊥ ⊂ H2(X,Z). But `(T (X)) + 2 ≤ rkT (X) + 2 ≤ 12 ≤ ρ(X) =

rkH2(X,Z) − rkT (X) and hence by Theorem 1.12 the embedding T (X) �
� // H2(X,Z)

is unique up to automorphisms of the lattice H2(X,Z). Therefore, also the natural
embedding T (X) ⊂ H2(X,Z) has the property that there exists a hyperbolic plane
U ⊂ T (X)⊥ = NS(X). The direct sum decomposition follows from Example 0.3.
Eventually, let δ = e− f ∈ U ⊂ NS(X), which is a (−2)-class, and use Remark 8.2.13

for the existence of the elliptic fibration. Up to the action of the Weyl group and up to
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sign, the class e is realized as the fibre class of an elliptic fibration and, using (δ.e) = 1,
±δ is the class of a section.
If one is only after the (−2)-classes, one could use the existence of an embedding

T (X) ⊕ A1(−1) �
� // H2(X,Z) which exists according to Theorem 1.15 (or rather the

stronger version alluded to in Remark 1.17). �

Remark 3.9. As a consequence of Corollary 3.8 and of the density of the Noether–
Lefschetz locus, see Proposition 6.2.9 and Section 17.1.3, one concludes that elliptic K3
surfaces with a section are dense in the moduli space of (marked) K3 surfaces as well as
in the moduli space Md of polarized K3 surfaces.

3.2. The following is a result due to Mukai [427, Prop. 6.2] (up to a missing sign).

Corollary 3.10. Let X and X ′ be complex projective K3 surfaces with 12 ≤ ρ(X) =

ρ(X ′). Then any Hodge isometry ϕ : T (X) ∼− // T (X ′) (see Section 3.2.2) can be extended
to a Hodge isometry

ϕ̃ : H2(X,Z) ∼− // H2(X ′,Z).

Moreover, one can choose ϕ̃ such that there exists an isomorphism f : X ′ ∼− // X with
ϕ̃ = ±f∗.

Proof. The existence of ϕ̃ is a purely lattice theoretic question, for NS(X) = T (X)⊥

has trivial Hodge structure. Now, (1.3) in Remark 1.13 holds for T (X) and, hence, the
induced embedding T (X) ∼− // T (X ′) ⊂ H2(X ′,Z) can be extended to H2(X,Z) (as
abstract lattices H2(X,Z) and H2(X ′,Z) are of course isomorphic).
For the second one we need the Global Torelli Theorem. Due to Proposition 8.2.6 we can

modify any given extension ϕ̃ by reflections sδ for appropriate (−2)-classes δ ∈ NS(X),
such that ϕ̃ maps an ample class to an ample class (possibly after a further sign change)
and then Theorem 7.5.3 applies. Note that the reflections sδ do not alter ϕ. �

Remark 3.11. The conclusion also holds for smaller rank. For example, if X is an
elliptic K3 surface with a section, then the existence of a Hodge isometry T (X) ' T (X ′)

implies X ' X ′. Indeed, then NS(X) contains a hyperbolic plane spanned by the classes
of the fibre and of the section and, therefore, Remark 1.13, iii) applies.

In Chapter 16 we will be interested in derived equivalences between K3 surfaces. This
will require the following modification of the above, which turns out to work without any
restriction on the Picard number.
Recall that the Mukai lattice H̃(X,Z) is the lattice given by the Mukai pairing 〈 , 〉 on

H∗(X,Z) (see Definition 9.1.4) together with the Hodge structure of weight two defined
by

H̃1,1(X) = H1,1(X)⊕H0(X)⊕H4(X) and H̃2,0(X) = H2,0(X).

In particular, the transcendental lattice of H̃(X,Z) is just T (X) and as abstract lattices

H̃(X,Z) ' E8(−1)⊕2 ⊕ U⊕4.
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Corollary 3.12. Let X and X ′ arbitrary complex projective K3 surfaces. Then any
Hodge isometry ϕ : T (X) ∼− // T (X ′) can be extended to a Hodge isometry

ϕ̃ : H̃(X,Z) ∼− // H̃(X ′,Z).

Proof. Remark 1.13, iii) applies, as (H0 ⊕H4)(X,Z) is a hyperbolic plane and the
transcendental lattices of complex projective K3 surfaces are non-degenerate. �

3.3. We shall briefly discuss the Kummer lattice K which can be approached in two
ways. It was first studied in [490, App. to Sec. 5] and [446].
The geometric description of K goes as follows: Take an abelian surface A (or a two-

dimensional complex torus) and let X //A/ι be the minimal resolution of the quotient
by the standard involution ι : x � // − x, i.e. X is the Kummer surface associated with A,
see Example 1.1.3. The 16 exceptional curves P1 ' Ēi ⊂ X and their classes

ei := [Ēi] ∈ H2(X,Z)

span a lattice of rank 16 which is abstractly isomorphic to A1(−1)⊕16 ' 〈−2〉⊕16.

Definition 3.13. The Kummer lattice K is the saturation of 〈ei〉 ⊂ H2(X,Z), i.e. the
smallest primitive sublattice of H2(X,Z) that contains all classes ei:

〈−2〉⊕16 '
⊕

Z · ei ⊂ K ⊂ H2(X,Z).

Equivalently, K is the double orthogonal (
⊕
Z · ei)⊥⊥. Recall from Section 3.2.5 that

(
⊕
Z · ei)⊥ = π∗H

2(A,Z). Here, π : Ã //X is the projection from the blow-up in the
two-torsion points of A, which induces a natural inclution H2(A,Z) �

� // H2(Ã,Z).
An alternative and more algebraic description of the Kummer lattice is available. In-

deed, one can define K as the sublattice K ⊂
⊕
Q · ei spanned by the basis ei and

all elements of the form 1
2

∑
i∈W ei with W ⊂ F⊕4

2 a hyperplane. Here, the set {ei} is
identified with the set of two-torsion points of A which in turn is viewed as the F2-vector
(or rather affine) space (Z/2Z)⊕4.
In order to see that both definitions amount to the same lattice, one first observes that⊕

Z · ei ⊂ K ⊂ K∗ ⊂
⊕

Z · (ei/2) ⊂ H2(X,Q),

as (ei)
2 = −2. For the detailed argument we refer to [32, VIII. 4,5], [53, Exp. VIII], or

[490, Sec. 5].
Note that in particular the geometric description defines a lattice that is independent

of the abelian surface and that
⊕
Z · ei is the root lattice of K.

Proposition 3.14. The Kummer lattice satsfies the following conditions:
(i) The orthogonal complement K⊥ of K in H2(X,Z) is isomorphic to U(2)⊕3.
(ii) The inclusion

⊕
Z · ei ⊂ K has index 25.

(iii) The lattice K is negative definite with discK = 26.
(iv) The discriminant form satisfies qK ' q⊕3

U(2). In particular,

AK ' (Z/2Z)⊕6 and `(K) = 6.
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Proof. The geometric description of K yields i), for

π∗H
2(A,Z) '

(⊕
Z · ei

)⊥
⊂ H2(X,Z),

π∗H
2(A,Z) ' H2(A,Z)(2), and H2(A,Z) ' U⊕3, cf. Section 3.2.5.

Due to (0.3), (i) implies (iii), for clearly discU(2)⊕3 = −26 and discH2(X,Z) = −1.
Also (i) implies (iv), for qK ' −qK⊥ ' −q⊕3

U(2) = q⊕3
U(2). Use (0.1) and disc

⊕
Z · ei = 216

to deduce (ii) from (i). �

As another application of the general lattice theory outlined in Section 1.2 we state

Corollary 3.15. The primitive embeddings

K �
� // H2(X,Z) and K �

� // H∗(X,Z)

are unique up to isometries of H2(X,Z) ' E8(−1)⊕2⊕U⊕3 and H∗(X,Z) ' E8(−1)⊕2⊕
U⊕4, respectively.

Proof. The assertion for the embedding into the bigger lattice H∗(X,Z) follows
directly from Theorem 1.12. For the embedding into H2(X,Z) the finer version of it
alluded to in Remark 1.13, i) and the existence of U ⊂ K⊥ ⊂ H2(X,Z) have to be
used. �

See Example 4.8 for an embedding of the Kummer lattice into a distinguished Niemeier
lattice.

Remark 3.16. To motivate the next result, note that a K3 surface X that contains
16 disjoint smooth rational curves C1, . . . , C16 ⊂ X with (1/2)

∑
[Ci] ∈ NS(X) is in fact

a Kummer surface. (The existence of the square root is automatic, as we shall explain
below, see Remark 3.19.) Indeed, the existence of the root of O(

∑
Ci) can be used

to prove the existence of a double cover X̃ //X ramified over the
⋃
Ci ⊂ X. As the

branch locus is smooth, X̃ is smooth. The inverse images C̃i ⊂ X̃ of the curves Ci are 16

disjoint (−1)-curve and so can be blown-down X̃ //A to a smooth surface A. Using the
Kodaira–Enriques classification, one shows that A has to be a torus. See the arguments
in Example 1.1.3 and [32, VIII.Prop. 6.1] or [53, Exp. VIII].

The following result was first stated by Nikulin in [446].

Theorem 3.17. Let X be a complex K3 surface. Consider the following conditions:
(i) The surface X is isomorphic to a Kummer surface.
(ii) There exists a primitive embedding K �

� // NS(X).
(iii) There exists a primitive embedding T (X) �

� // U(2)⊕3.
Then (i) and (ii) are equivalent and imply (iii). If X is also projective, then the converse
holds as well.3

3As Matthias Schütt points out, (i) and (ii) are also equivalent for non-supersingular K3 surfaces in
char 6= 2. Indeed, the inclusion K

� � // NS(X) can be lifted to characteristic zero which is enough to
conclude.
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Proof. By the above discussion, (i) implies (ii). Since by Corollary 3.15 the em-
bedding K �

� // H2(X,Z) is unique up to automorphism, its orthogonal complement is
always isomorphic to U(2)⊕3. Taking orthogonal complements, one finds that (ii) implies
(iii).
Suppose a primitive embedding T (X) �

� // U(2)⊕3 is given. Choose an embedding
U(2)⊕2 � � // H2(X,Z) with orthogonal complement K. By Corollary 3.5, for which we
need X to be projective, the standard embedding T (X) ⊂ H2(X,Z) differs from the
composition

T (X) �
� // U(2)⊕3 � � // H2(X,Z)

by an isometry of H2(X,Z) and, therefore, also the former contains K in its orthogonal
complement, i.e. there exists a primitive embedding K �

� // T (X)⊥ = NS(X). So, (iii)
implies (ii).
The difficult part is to deduce (i) from the purely lattice theoretic statements (ii) or (iii).

We take a short cut by assuming the Global Torelli Theorem 7.5.3 and the surjectivity
of the period map for two-dimensional complex tori. Historically, of course, the Global
Torelli Theorem was first proved for Kummer surfaces, cf. [446] and the comments in
Section 7.6. So, suppose K ⊂ NS(X) ⊂ H2(X,Z). Again using the uniqueness of the
embedding, one finds an isomorphismK⊥ ' U(2)⊕3, which comes with the natural Hodge
structure of weight two onK⊥. Then there exists a complex torus A and a Hodge isometry
H2(A,Z)(2) ' U(2)⊕3 ' K⊥ (see Section 3.2.4) which can be extended to a Hodge
isometry H2(Y,Z) ' H2(X,Z), by Corollary 3.10. Here Y denotes the Kummer surface
associated with A. Therefore, X ' Y and, in particular, X is a Kummer surface. �

Example 3.18. The transcendental lattice of the Fermat quartic X ⊂ P3 defined by
x4

0 + . . . + x4
3 = 0 has been described as T (X) ' Z(8) ⊕ Z(8) (see Section 3.2.6) which

evidently embeds into U(2)⊕3. Hence, the corollary can be used to show that the complex
Fermat quartic X is indeed a Kummer surface, which suffices to deduce the result over
arbitrary algebraically closed fields. An explicit isomorphism, following Mizukami, has
been described in [271].

Remark 3.19. In [446] Nikulin also shows that a complex K3 surface is Kummer if
and only if there exist 16 disjoint smooth rational curves C1, . . . , C16 ⊂ X. Here is an
outline of the argument.4 In order to prove that (1/2)

∑
Ci ∈ NS(X), which is enough

by Remark 3.16, consider the lattice Λ′ :=
⊕
Z · [Ci] ⊂ H2(X,Z) and its saturation

Λ′ ⊂ Λ ⊂ H2(X,Z) which, due to the proof of Proposition 0.2, is determined by the
isotropic subgroup F`2 ' Λ/Λ′ ⊂ AΛ′ ' F16

2 . Using the exact sequence

0 //AΛ
//AΛ′/(Λ/Λ

′) //Λ′∗/Λ∗ ' F`2 // 0

and the inequality
`(AΛ) = `(AΛ⊥) ≤ rk Λ⊥ = 6,

one finds ` ≥ 5.

4...with thanks to Jonathan Wahl for explaining this to me.
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Similarly to the argument based on the Kodaira–Enriques classification in Remark 3.16,
one shows that |I| = 0, 8, or 16 for any subset I ⊂ {1, . . . , 16} with (1/2)

∑
i∈I [Ci] ∈

NS(X), see [446, Lem. 3]. An elementary result in coding theory then allows one to
identify Λ/Λ′ ⊂ AΛ′ ' F16

2 as the code D5 (for the notation and the result see [43]) which
by construction contains (1, . . . , 1) ∈ F16

2 ' AΛ′ , i.e. (1/2)
∑

[Ci] ∈ Λ ⊂ NS(X).

For the following consequences see Morrison’s [422] and for part i) also the paper by
Looijenga and Peters [378, Prop. 6.1]. Recall that a Kummer surface X associated with
a torus A satisfies ρ(X) = ρ(A) + 16 and if it is algebraic even ρ(X) ≥ 17.

Corollary 3.20. Let X be a complex projective K3 surface.
(i) Assume ρ(X) = 19 or 20. Then X is a Kummer surface if and only if

T (X) ' T (2)

for some even lattice T .
(ii) Assume ρ(X) = 18. Then X is a Kummer surface if and only if

T (X) ' T (2)⊕ U(2)

for some even lattice T of rank two.
(iii) Assume ρ(X) = 17. Then X is a Kummer surface if and only if

T (X) ' T (2)⊕ U(2)⊕2

for some even lattice T of rank one, i.e. T ' Z(2k).

Proof. The theorem shows that X is a K3 surface if and only if there exists a primi-
tive sublattice T ′ ⊂ U⊕3 with T (X) ' T ′(2). The three cases correspond to rkT (X) = 3

or 2, = 4, and = 5, respectively.
If rkT (X) = 3 or 2 and T (X) ' T (2), then use Proposition 1.8, to embed T into

U⊕3. Conversely, if X is the Kummer surface associated with the abelian surface A, then
T (X) ' T (A)(2).
If rkT (X) = 4 and T (X) ' T (2) ⊕ U(2), then by Proposition 1.8 there exists a

primitive embedding T �
� // U⊕2 and, therefore, an embedding T (X) �

� // U(2)⊕3. Thus,
by the theorem, X is isomorphic to a Kummer surface. Conversely, if X is a Kummer
surface associated with an abelian surface A and ρ(X) = 18, then T (X) ' T (A)(2)

and there exists a primitive embedding T (A) �
� // U⊕3. Now deduce from Theorem 1.5

applied to T (A) and T ⊕ U , where T := T (A)⊥(−1) �
� // U⊕3, that T (A) ' T ⊕ U .

The argument for rkT (X) = 5 is similar. �

3.4. The classification of complex K3 surfaces of maximal Picard number ρ(X) = 20

in terms of their transcendental lattices is particularly simple. This is a result due to
Shioda and Inose [565].

Corollary 3.21. The map that associates with a complex K3 surface X with ρ(X) = 20

its transcendental lattice T (X) describes a bijection

(3.1) {X | ρ(X) = 20} //oo {T | positive definite, even, oriented lattice, rkT = 2},
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where both sides are up to isomorphisms.

Proof. Clearly, by Hodge index theorem, T (X) of a K3 surface X with ρ(X) = 20

is a positive definite, even lattice of rank two. It comes with a natural orientation by
declaring real and imaginary part of a generator of T (X)2,0 to be positively oriented in
T (X)R, cf. Section 6.1.2.5

The map X � // T (X) is surjective by Corollary 3.5. To prove injectivity, suppose
there exists an isometry T (X) ' T (X ′) that respects the orientation. But then, due
to rkT (X) = rkT (X ′) = 2, the isometry is automatically compatible with the Hodge
structures. (The period domain D ⊂ P(TC) for each given lattice T consists of precisely
two points.) Due to Corollary 3.10, this Hodge isometry extends to a Hodge isometry
H2(X,Z) ' H2(X ′,Z) and, therefore, X ' X ′ by the Global Torelli Theorem 7.5.3.
(Note that due to Corollary 3.6 we knew already that NS(X) is determined by T (X).) �

Of course, the set on the right hand side of (3.1) can be identified with the set of
integral matrices of the form

(3.2)
(

2a b

b 2c

)
with ∆ := b2 − 4ac < 0 and a, c > 0

up to conjugation by matrices in SL(2,Z). The largest values of ∆ are −4 and −3, which
have been studied by Vinberg in [614].

Remark 3.22. The proof of the surjectivity in [565] is more explicit. For any T

given by a matrix as in (3.2) a K3 surface X with T (X) ' T is constructed as a double
cover of a Kummer surface associated with the abelian surface A = E1 × E2, where
Ei := C/(Z+ τiZ) with τ1 = (−b+

√
∆)/2a and τ2 = (b+

√
∆)/2.

Furthermore, in [273] Inose showed that X is birational to a quartoc surface given by
an explicit equation f(x0, . . . , x3) with coefficients algebraic over Q(j(E1), j(E2)).

Remark 3.23. If instead of the isomorphism type of the lattice T in (3.1) one considers
only its genus, then, as was shown independently by Schütt [534, Thm. 15] and Shimada
[551], on the right hand side one distinguishes the K3 surfaces S only up to conjugation.

Remark 3.24. Due to Corollary 3.20, those K3 surfaces X with ρ(X) = 20 for which
T (X) is of the form T (2) are actually Kummer surfaces. In other words, if T (X) is of
rank two, then X is a Kummer surface if and only if (α)2 ≡ 0 (4) for all α ∈ T (X).
Using this characterization of these so called extremal Kummer surfaces enables one

to prove density of complex projective Kummer surfaces, which was important in early
proofs of the Global Torelli Theorem, see Section 7.6.1. So, using the notation in Chapters
6 and 7, this can be phrased by saying that

P : {(X,ϕ) | X Kummer } //D

has a dense image..

5Observe that the lattice with the reversed orientation is realized by the complex conjugate K3
surface X̄.



4. NIEMEIER LATTICES 301

The proof proceeds in two steps:
i) The set of periods x ∈ D ⊂ P(ΛC) for which the corresponding positive plane P ⊂ ΛR

(see Proposition 6.1.5) is defined over Q and which has the property that (α)2 ≡ 0 (4)

for all α ∈ P ∩ Λ is dense in D. For the intriguing but elementary proof we refer to [53,
Exp. IX], [32, Ch. VIII], or [378, Sect. 6]. Compare this to similar density results, e.g.
Propositions 6.2.9 and 7.1.3.
ii) From this one immediately concludes: The set of marked K3 surfaces (X,ϕ) ∈ N in

the moduli space of marked K3 surfaces (see Section 7.2.1) for which X is a projective
Kummer surface (of maximal Picard number ρ(X) = 20) is dense in N .

Remark 3.25. A similar statement can be proved for the polarized case. For any
d > 0 the image of the set of marked polarized Kummer surfaces under

Pd : Nd
� � // Dd

is dense in Dd and hence Kummer surfaces are dense in Nd.
In [378, Rem. 6.5] the authors point out a gap in [490, Sect. 6]. However, if [378,

Thm. 2.4] is replaced by the stronger Theorem 1.12 or Remark 1.13 then this gap can be
filled and the arguments in [378] go through unchanged. Indeed, the above arguments
can be adapted to prove the density of rational periods in Dd ⊂ P(ΛdC) with the same
divisibility property. One needs the stronger lattice theory result to ensure that the
orthogonal complement α⊥ ⊂ Λd of an arbitrary class α ∈ Λd still contains a hyperbolic
plane, cf. proof of [378, Prop. 6.2]. Alternatively, one could use the density in Remark
3.24 combined with the density of abelian surfaces of fixed degree in the space of two-
dimensional tori, cf. [5].

4. Niemeier lattices

Books have been written on Niemeier lattices and the Leech lattice in particular. We
only highlight a few aspects that seem relevant for our purposes. For more information
the reader should consult e.g. [130].
As it fits better the applications to K3 surfaces, we adopt the convention that Niemeier

lattices are negative definite.

4.1. By definition a Niemeier lattice is an even, unimodular, negative definite lattice
N of rank 24. The easiest example is E8(−1)⊕3.

Corollary 4.1. Let N be a Niemeier lattice. Then

N ⊕ U ' E8(−1)⊕3 ⊕ U =: II1,25.

Conversely, if 0 6= w ∈ II1,25 is a primitive vector with (w)2 = 0, then there exists an
isomorphism II1,25 ' N ⊕ U with N a Niemeier lattice and such that w corresponds to
e ∈ U .

Proof. The isomorphism follows from the classification of indefinite lattices, see
Corollary 1.2 or 1.3. The second statement is a consequence of Corollary 1.14. �
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This gives, at least in principle, a way to construct all Niemeier lattices. It turns out
that there are exactly 24 primitive 0 6= w ∈ II1,25 with (w)2 = 0 up to the action of
O(II1,25), which eventually leads to a complete classification. Note that for w as above,
the corresponding Niemeier lattice is isomorphic to w⊥/〈w〉.
A list of all Niemeier lattices was first given by Niemeier. A more conceptual approach,

which in particular clarifies the role of the root lattices R, is due to Venkov [607]. See
also [130, Ch. 16] or [159, Ch. 3.4] for detailed proofs.

Theorem 4.2 (Niemeier, Venkov). There exist precisely 24 isomorphism classes of
Niemeier lattices N , each of which is uniquely determined by its root lattice R ⊂ N which
is either trivial or of rank 24.

As in Section 2.1, the root lattice R ⊂ N is the sublattice spanned by all (−2) classes,
so

R := 〈δ | δ ∈ N with (δ)2 = −2〉 ⊂ N.
Note that the root lattice can be trivial, i.e. R = 0. This is the case if and only if N
is the Leech lattice, see Section 4.4 for more on the Leech lattice. In fact, for all other
Niemeier lattices R ⊂ N is of finite index. Conversely, each Niemeier lattice, except for
the Leech lattice, can be seen as the minimal unimodular overlattice of the corresponding
root lattice.
The existence of the Leech lattice, i.e. of a Niemeier lattice without roots, can be shown

by a procedure that changes a Weyl vector in a way that forces the number of roots to
decrease.

Remark 4.3. The following is the list of the 24 root lattices R, or rather of R(−1),
can be found in [130, 320, 447]:6

0, A⊕24
1 , A⊕12

2 , A⊕8
3 , A⊕6

4 , A⊕4
6 , A⊕3

8 , A⊕2
12 , A24, D

⊕6
4 , D⊕4

6 , D⊕3
8 , D⊕2

12 , D24, E
⊕4
6 , E⊕3

8 ,

A⊕4
5 ⊕D4, A

⊕2
7 ⊕D

⊕2
5 , A⊕2

9 ⊕D6, A15 ⊕D9, A17 ⊕ E7, D10 ⊕ E⊕2
7 , D16 ⊕D8,

A11 ⊕D7 ⊕ E6

Due to the general classification, R is a direct sum of lattices of ADE type, see Section
0.3, but obviously not all of those that are of rank 24 also occur in the above list.

Later, for example, in Section 15.3.2, we will often explain arguments for the case of
the Niemeier lattice with root lattice A1(−1)⊕24.

Remark 4.4. The lattice II1,25 ' E8(−1)⊕3 ⊕U has signature (1, 25) and the general
theory of Section 8.2 applies. In particular, one can consider the positive cone C ⊂
II1,25⊗R (one of the two connected components of the set of all x with (x)2 > 0) and its
chamber decomposition.
A fundamental domain for the action of the Weyl group W of II1,25, i.e. one chamber
C0 ⊂ C, can be described in terms of Leech roots. A Leech root is a (−2)-class δ ∈ II1,25

such that (δ.e) = 1 for e ∈ U the first basis vector of the standard basis of U . Then

6The lattices are usually listed according to their Coxeter number, so that 0, the root lattice of the
Leech lattice, would be the last one in the list and A1(−1)⊕24 the penultimate.
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one chamber C0 consists of all x ∈ C ⊂ II1,25 ⊗ R with (x.δ) > 0 for all Leech roots δ.
The closure of every chamber, in particular of C0, contains precisely 24 primitive classes
0 6= wi ∈ II1,25 ∩ ∂C, i.e. 24 primitive square zero lattice elements are contained in the
boundary of C0. They give rise to 24 decompositions II1,25 ' Ni⊕U with the 24 Niemeier
lattices N0, . . . , N23.
A variant of the above allows one to write down a bijection between the set of all

primitive w ∈ II1,25 ∩ ∂C with w⊥/〈w〉 isomorphic to the Leech lattice N0 (see below)
and the set of chambers. It is given by

w � // Cw := {x | (x.δ) > 0 if (δ.w) = 1},

where on the right hand side all roots δ are considered, see [129]. Note that the chamber
decomposition of C is not rational polyhedral. For details and proofs see [76, 130].

4.2. The importance of Niemeier lattices in the theory of K3 surfaces becomes clear
by the following consequence of Nikulin’s Theorem 1.15. Note that in the application in
Section 15.3.2 in fact all Niemeier lattices occur, with the exception of the Leech lattice.

Corollary 4.5. Let Λ1 be a negative definite, even lattice with `(Λ1) < 24 − rk Λ1.
Then there exists a primitive embedding into a Niemeier lattice Λ1

� � // N . �

Sometimes, this version of the corollary is not quite sufficient, but the finer version
alluded to in Remark 1.17 usually is.

Example 4.6. Consider the Néron–Severi lattice NS(X) of a complex projective K3
surface. Then for every Niemeier lattice N there exists a primitive embedding

NS(X) �
� // N ⊕ U ' E8(−1)⊕3 ⊕ U ' II1,25.

This follows from Theorem 1.15, as NS(X) is even of signature (1, ρ(X)− 1) and

`(NS(X)) = `(T (X)) ≤ 22− ρ(X) < 26− ρ(X).

The possibility to embed NS(X) into II1,25 prompts the question how the chamber decom-
positions of the positive cones of the two lattices are related. Very roughly, although the
chamber decomposition of II1,25 is not rational polyhedral, it sometimes (under certain
conditions on the orthogonal complement NS(X)⊥ ⊂ II1,25) induces a rational polyhedral
decomposition of the ample cone.

Example 4.7. For a recent discussion of the following applications to embeddings of
Néron–Severi lattices see Nikulin’s [453].
i) Let Λ1 := NS(X) of a (non-projective) complex K3 surface X with negative definite

NS(X). In this case `(NS(X)) = `(T (X)) ≤ 22−ρ(X) < 24−ρ(X) and, therefore, there
exists a primitive embedding

NS(X) �
� // N

into some Niemeier lattice N .
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ii) For a complex projective K3 surface X the result can be applied to Λ1 := `⊥ ⊂
NS(X) for any ` ∈ NS(X) with (`)2 > 0. Again one checks `(`⊥) ≤ `(T (X)) + 1 ≤
22− rk `⊥ < 24− rk `⊥. So, there exists a primitive embedding

`⊥ �
� // N

into some Niemeier lattice N . In fact, by applying the corollary instead to Λ1 = `⊥ ⊕
A1(−1) one can exclude the Leech lattice (Kondō’s trick).
Note that in both cases the lattice spanned by (−2)-classes (in NS(X) or in `⊥, respec-

tively) becomes a sublattice of the root lattice of a Niemeier lattice.

Example 4.8. The Kummer lattice K, see Section 3.3, can be embedded

K �
� // N

into the Niemeier lattice N with root lattice A1(−1)⊕24. See [453, 586]. The existence
of a primitive embedding into one of the Niemeier lattices follows from Theorem 1.15.

4.3. The Niemeier lattice that is of special interest in the context of K3 surface is
the Niemeier lattice with root lattice R ' A1(−1)⊕24 ' 〈−2〉⊕24. It can be constructed
as the set N ⊂ RQ of all vectors of the form 1

2

∑
niei with ni ∈ Z and such that

(n̄1, . . . , n̄24) ∈ F24
2 is an element of the (extended binary) Golay code W ⊂ F24

2 , i.e.

W = N/R ⊂ R∗/R ' F24
2 .

By definition, the Golay code W is a 12-dimensional linear subspace with the property
that for all 0 6= w = (wi) ∈ W one has |{i | wi 6= 0}| ≥ 8. The subspace W can be
written down explicitly and it is unique up to linear coordinate change, see e.g. [130].

Remark 4.9. The only roots in this Niemeier lattice are the elements ±ei. Hence the
Weyl group of N is (Z/2Z)⊕24.

Viewing the symmetric group S24, as usual, as a subgroup of GL(F24
2 ), one defines the

Mathieu group as (see also Section 15.3.1)

M24 := {σ ∈ S24 | σ(W ) = W}.

It is a simple sporadic group of order

|M24| = 244.823.040 = 210 · 33 · 5 · 7 · 11 · 23.

Proposition 4.10. The orthogonal group O(N) of the Niemeier lattices N with root
lattice R = A1(−1)⊕24 is naturally isomorphic to

O(N) 'M24 n (Z/2Z)⊕24.

Proof. The groupS24n(Z/2Z)⊕24 acts naturally on the root lattice R = A1(−1)⊕24

by permutation of the basis vectors ei and sign change ei � // −ei. Also, as rkR = 24, any
g ∈ O(N) is determined by its action on the roots and thus O(N) �

� // S24n (Z/2Z)⊕24.
By definition of N in terms of R and the Golay code, the image is contained in M24 n



4. NIEMEIER LATTICES 305

(Z/2Z)⊕24 and, conversely, every element in M24 n (Z/2Z)⊕24 defines an orthogonal
transformation of N . �

For more comments and references concerning O(N)/W (N) for the other Niemeier
lattices N see Section 15.3.1.

4.4. There are various ways of constructing the Leech lattice N0. The easiest is
maybe the one due to Conway, see [130, Ch. 27], that describes

N0(−1) ⊂ II25,1 := E⊕3
8 ⊕ U ⊂ R25,1

as w⊥/Zw with w := (0, 1, . . . , 24, 70).
The Leech lattice does not contain any roots and so its Weyl group is trivial. The

orthogonal group O(N0) of the Leech lattice is called the Conway group Co0. The quotient
by its center Co1 := Co0/{±1} is a simple sporadic group of order

|Co1| = 4.157.776.806.543.360.000 = 221 · 39 · 54 · 72 · 11 · 13 · 23.

The Conway group contains a subgroup isomorphic to the Mathieu group M24, cf. [128].

References and further reading:
In papers by Sarti [519, 520] one finds explicit computations of Picard and transcendental

lattices of K3 surfaces with ρ = 19.
A K3 surface is a generalized Kummer surface if it is isomorphic to the minimal resolution

of the quotient A/G of an abelian surface (or a two-dimensional complex torus) A by a finite
group G. The possible groups G, all finite subgroups of SL(2,C), can be classified, cf. [188]: i)
cyclic groups of order 2, 3, 4, or 6, ii) binary dihedral groups (2, 2, n = 2, 3) (leading to a D4

and D5 singularity), and iii) binary tetrahedral group (leading to an E6-singularity). In positive
characteristic the list is slightly longer, see [282] or consult [70, Prop. 4.4]. For a classification
of general finite subgroups G ⊂ Aut(A) see Fujiki’s article [188]. In [59] Bertin studies the
analogue Kn of the Kummer lattice for G = Z/nZ, n = 3, 4, 6. Note that rkKn = 18 in all three
cases. It is proved that a K3 surface is the minimal resolution of A/G if and only if there exists
a primitive embedding Kn

� � // NS(X) (which is the analogue of Theorem 3.17). A description
of the generalized Kummer lattice in the remaining cases has been given by Wendland [631] and
Garbagnati [198].

Persson in [488] shows that a K3 surface is a ‘maximizing’ double plane if NS(X)Q is spanned
by effective curves H,E1, . . . , E19 with (H)2 = 2, (H.Ei) = 0, and H irreducible.

Coming back to Example 4.6, one finds bits on the relation between the positive cones in NS(X)

and II1,25, see [76, 552, 553], but I am not aware of a concise treatment of it in the literature.





CHAPTER 15

Automorphisms

Let X be a complex K3 surface or an algebraic K3 surface over a field k. By Aut(X)

we denote the group of all automorphisms X ∼− // X. An automorphism of a complex K3
surface is simply a biholomorphic map and an automorphism of an algebraic K3 surface
over k is an isomorphism of k-schemes.
Then Aut(X) has the structure of a complex Lie group or of an algebraic group, re-

spectively. However, as H0(X, TX) = 0, it is simply a discrete, reduced group. The same
argument also shows that for a K3 surface X over an algebraically closed field k the
automorphism group does not change under base change, i.e. Aut(X) ' Aut(X×kK) for
any field extension k ⊂ K. For the general theory of transformation groups of complex
manifolds see [304, Ch. III] and in the algebraic context [226, Sec. C.2].

There are two kinds of automorphisms, symplectic and non-symplectic ones. Section 1
treats the group Auts(X) of symplectic automorphisms, mostly for complex K3 surfaces,
and explains that at least for projective K3 surfaces the subgroup Auts(X) ⊂ Aut(X) is of
finite index. Section 2 describes Aut(X) of a complex K3 surface in terms of isometries
of the Hodge structure H2(X,Z). This allows one to classify K3 surfaces with finite
Aut(X) for which a classification of the possible NS(X) is also known. Mukai’s result on
the classification of all finite groups occurring as subgroups G ⊂ Auts(X) can be found
in Section 3. Concrete examples are constructed in the final Section 4.

1. Symplectic automorphisms

This first section collects a number of elementary observations on symplectic automor-
phisms, crucial for any further investigation.

Definition 1.1. An automorphism f : X ∼− // X of a K3 surface is called symplectic if
the induced action on H0(X,Ω2

X) is the identity, i.e. for a generator σ ∈ H0(X,Ω2
X) one

has f∗σ = σ.

Note that this definition makes sense for complex K3 surfaces as well as for algebraic
ones. One thinks of the two-form σ as a holomorphic or algebraic symplectic structure,
hence the name.
The subgroup of all symplectic automorphisms shall be denoted

Auts(X) ⊂ Aut(X).

Thanks to Giovanni Mongardi and Matthias Schütt for detailed comments on this chapter.
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Remark 1.2. For complex K3 surfaces, one can equivalently use the transcendental
lattice T (X), which by definition is the minimal sub-Hodge structure ofH2(X,Z) contain-
ing H2,0(X), see Section 3.2.2. As the natural inclusion H0(X,Ω2

X) ' H2,0(X) ⊂ T (X)C
is compatible with the action of f , one finds that f is symplectic if and only if f∗ = id

on T (X). Indeed, one direction is obvious and for the other use that for f symplectic
Ker((f∗ − id)|T (X)) ⊂ T (X) is a sub-Hodge structure containing H2,0(X), cf. Lemma
3.3.3.

Remark 1.3. The action of an automorphism f : X ∼− // X on the one-dimensional
space H0(X,Ω2

X) is linear. Therefore, if f is of finite order n, its action on H0(X,Ω2
X) is

given by multiplication by an n-th root of unity ζ ∈ k. Thus, as there are no non-trivial
p-th roots of unity in a field of characteristic char(k) = p > 0, any automorphism of order
p is in this case automatically symplectic.

1.1. Concerning the local structure of symplectic automorphisms of finite order
of a complex K3 surface the following elementary fact is useful (see also the proof of
Proposition 3.11 for a slightly stronger statement).

Lemma 1.4. Let X be a complex K3 surface. Assume f ∈ Auts(X) is of finite order
n := |f | and x ∈ X is a fixed point of f . Then there exists a local holomorphic coordinate
system z1, z2 around x such that f(z1, z2) = (λxz1, λ

−1
x z2) with λx a primitive n-th root

of unity.

Proof. The following argument has been taken from Cartan’s [102]. Consider a
small open ball around x = 0 ∈ U ⊂ C2. We first show that there are coordinates
(z1, z2) with f(z1, z2) = d0f · (z1, z2). Define g(y) := (1/n)

∑n
i=1(d0f)−i · f i(y) and

check d0g = (1/n)
∑n

i=1(d0f)−id0(f i) = id. Hence, (z1, z2) := g(y) can be used as local
coordinate functions around 0. Then note

g(f(y)) = (1/n)
n∑
i=1

(d0f)−i · f i+1(y)

= (d0f) ·

(
(1/n)

n∑
i=1

(d0f)−i−1 · f i+1(y)

)
= d0f · g(y).

Thus, with respect to the new coordinate system (z1, z2) = g(y), we can think of f as the
linear map d0f and, after a further linear coordinate change, f(z1, z2) = (λ1z1, λ2z2).
Now deduce from f ∈ Auts(X) that det(d0f) = 1, i.e. λx := λ1 = λ−1

2 , and from
|f | = n that λx is an n-th root of unity. If λkx = 1 for some k < n, then fk = id in
a neighbourhood of x and hence fk = id globally. Contradiction. Hence, every λx is a
primitive n-th root of unity. �

In particular, the fixed point set of a non-trivial symplectic automorphism of a complex
K3 surface consists of a finite set of reduced points. This does not hold any longer in
positive characteristic, see Remark 1.9.
Mukai in [428, Sec. 1] deduces from this the following result, see also [447, Sec. 5].



1. SYMPLECTIC AUTOMORPHISMS 309

Corollary 1.5. Let id 6= f ∈ Auts(X) be of finite order n := |f |. Then the fixed point
set Fix(f) is finite and non-empty. More precisely, 1 ≤ |Fix(f)| ≤ 8 and in fact

(1.1) |Fix(f)| = 24

n

∏
p|n

(
1 +

1

p

)−1

,

which in particular only depends on the order n.

Proof. The local description provided by the lemma shows that all fixed points are
isolated, i.e. Fix(f) is finite, and non-degenerate, as λx 6= 1 for all x ∈ Fix(f).
Thus, the Lefschetz fixed point formula for biholomorphic automorphisms (see [219, p.

426]) applies and reads in the present case∑
i

(−1)itr
(
f∗|Hi(X,O)

)
=

∑
x∈Fix(f)

det (id− dxf)−1

=
∑

x∈Fix(f)

1

(1− λx)(1− λ−1
x )

.

Here, the sum on the right hand side runs over the (finite) set Fix(f) of fixed points of f .
The sum on the left hand side equals 2, for H i(X,O) is one-dimensional for i = 0, 2 (and
trivial otherwise) and the symplectic automorphism f acts as id on H2(X,O). Hence
Fix(f) is non-empty. Since |λx| = 1, one has |1 − λ±1

x | ≤ 2 which immediately proves
2 ≥ (1/4)|Fix(f)|, i.e. |Fix(f)| ≤ 8.
If k is prime to n, then Fix(fk) = Fix(f). Therefore, also∑

x∈Fix(f)

1

(1− λkx)(1− λ−kx )
= 2

and hence ∑
x∈Fix(f)

1

ϕ(n)

∑
(k,n)=1

1

(1− λkx)(1− λ−kx )
= 2,

where ϕ(n) denotes the Euler function. For any primitive n-th root of unity λ one has1∑
(k,n)=1

1

(1− λk)(1− λ−k)
=
n2

12

∏
p|n

(
1− 1

p2

)

(see [428, Lem. 1.3]), which combined with ϕ(n) = n
∏
p|n

(
1− 1

p

)
yields (1.1). �

The above techniques already yield a weak version of Proposition 2.1:

Corollary 1.6. Let f : X ∼− // X be an automorphism of finite order of a complex K3
surface and assume that f∗ = id on H2(X,Z). Then f is the identity.

1This looks like a standard formula in number theory, which in [428] is deduced by Möbius inversion
from

∑n−1
i=1 ((1−λi)(1−λ−i))−1 = (n2−1)/12. Up to the factor (1/12) the right hand side is the Jordan

totient function J2. Curiously, the formula does not seem to appear in any of the standard number theory
books.
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Proof. By assumption, f is in particular symplectic and, hence, the lemma and the
previous corollary apply. If f 6= id, then the topological Lefschetz fixed point formula

(1.2)
∑

(−1)itr
(
f∗|Hi(X,Q)

)
= |Fix(f)|

(see [219, p. 421]) would yield the contradiction 24 = |Fix(f)| ≤ 8. �

Remark 1.7. Corollary 1.6 holds for automorphisms of K3 surfaces over an arbitrary
algebraically closed field k with singular cohomology replaced by étale cohomology, see
[507, Prop. 3.4.2]. See also Remark 2.2.

1.2. For the following see Nikulin’s [447, Sec. 5], where one also finds a discussion
of a number of special cases of finite, cyclic and non-cyclic, symplectic group actions.

Corollary 1.8. If f ∈ Auts(X) is of finite order n, then n ≤ 8.

Proof. Since f is symplectic, (H0⊕H2,0⊕H0,2⊕H4)(X) is contained in the invariant
part H∗(X,C)〈f〉 ⊂ H∗(X,C). Moreover, for any ample or Kähler class α ∈ H1,1(X)

the sum
∑n

i=1(f i)∗α is f -invariant and ample (resp. Kähler) and hence non-trivial.2

Together this shows dimH∗(X,C)〈f〉 ≥ 5. Next, viewing (1/n)
∑n

i=1(f i)∗ as a projector
onto H∗(X,C)〈f〉 one finds

n∑
i=1

tr((f i)∗|H∗(X,C)) = n · dimH∗(X,C)〈f〉,

which due to (1.2) can also be written as 24 +
∑n−1

i=1 |Fix(f i)| = n · dimH∗(X,C)〈f〉.
Hence, 24 +

∑n−1
i=1 |Fix(f i)| ≥ 5 · n, which together with (1.1) yields the result. Indeed,

for example, for n = p the inequality becomes 24 + (p − 1) 24
p+1 ≥ 5 · p, i.e. p ≤ 43/5.

One reduces the general case to n = p by passing to powers of f , but this part of the
argument is not particularly elegant and left to the reader. �

Combining Corollaries 1.5 and 1.8 one finds that only the following tuples (n, |Fix(f)|)
for symplectic automorphisms of finite order of a complex projective K3 surface can occur:

n 2 3 4 5 6 7 8
|Fix(f)| 8 6 4 4 2 3 2
ρ(X) ≥ 9 13 15 17 17 19 19

The table has been completed by a lower bound for the Picard number ρ(X), which
follows from T (X)C ⊂ H2(X,C)〈f〉 and the resulting inequality 24 +

∑n−1
i=1 |Fix(f i)| =

n ·dimH∗(X,C)〈f〉 ≥ n ·(2+rkT (X)+1) = n ·(25−ρ(X)). So, complex K3 surfaces with
symplectic automorphisms tend to have rather high Picard number. In fact, in Corollary
2.12 below we shall see that K3 surfaces of Picard rank ρ(X) = 1 essentially have no

2This is an observation of independent interest: For any symplectic automorphism f : X ∼− // X of
finite order there exists a Kähler class α and hence a hyperkähler structure determined by a hyperkähler
metric g (see Section 7.3.2) that is invariant under f . In particular, f then acts as a biholomorphic
automorphism on the twistor space X (α) // T (α) ' P1.
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automorphisms at all. See Section 4 for concrete examples of symplectic automorphisms
of finite order and more results on NS(X) in these cases.

Remark 1.9. Dolgachev and Keum in [150, Thm. 3.3] show that the above discussion
carries over to tame symplectic automorphisms. More precisely, for a K3 surface X
over an algebraically closed field k of characteristic p = char(k) > 0 and a symplectic
automorphism f ∈ Auts(X) of finite order n := |f | prime to p exactly the same values
for (n, |Fix(f)|) as recorded in the above table can (and do) occur.
For wild automorphisms, i.e. those f ∈ Aut(X) with p dividing the order of f , the

situation is more difficult. In [150, Thm. 2.1], however, it is proved that if there exists
an f ∈ Aut(X) of order p, then p ≤ 11 or, equivalently, for p > 11 no f ∈ Aut(X) exists
whose order is divisible by p.
If X admits a wild automorphism of order p = 11, then ρ(X) = 2, 12, or 22. Ac-

cording to Schütt [536] the generic Picard number really is ρ(X) = 2 in this case. In
[151] Dolgachev and Keum give an explicit example of an automorphisms of order 11

in characteristic 11, which then is automatically symplectic, provided by a hypersurface
of degree 12 in P(1, 1, 4, 6) with the automorphism given by translation (t0 : t1 : x :

y) � // (t0 : t0 + t1 : x : y), see also Oguiso’s [465].
It is maybe worth pointing out that in the wild case the fixed point set of a symplec-

tic automorphism is not necessarily discrete. See also the more recent article [290] by
Keum where all possible orders of automorphisms of K3 surfaces in characteristic > 3 are
determined.

1.3. We now attempt to explain the difference between Auts(X) and the full Aut(X).

Corollary 1.10. Let X be a complex K3 surface and f ∈ Aut(X).

(i) If X is projective, then there exists an integer n > 0 such that f∗n = id on T (X).
(ii) If X is not projective, then f∗ = id on T (X) or f∗ has infinite order on T (X).

Proof. The first assertion is an immediate consequence of Corollary 3.3.4. For
the second assertion choose a class α ∈ H2(X,Q) such that its (1, 1)-part is a Kähler
class. If f∗ has finite order n on T (X), then the (1, 1)-part of the finite sum h :=∑n

i=1(f i)∗(α) is still a Kähler class and its (2, 0)-part is f∗-invariant. However, if f∗ 6= id

on T (X), then there are no f∗-invariant (2, 0)-classes. Indeed, Ker((f∗−id)|T (X)) ⊂ T (X)

would contradict the minimality of T (X). Hence, h must be a rational Kähler class and,
therefore, X is projective. Alternatively, one can divide X by the action of the non-
symplectic f which gives either an Enriques surface or a rational surface, see Section 4.3
and [447]. In either case, the quotient and hence X itself would be projective. �

Example 1.11. It can indeed happen that a non-projective K3 surface X admits
automorphisms f : X ∼− // X such that f∗ does not act by a root of unity on H2,0(X) or,
equivalently, is not of finite order on T (X). One can use [639] to produce examples on
complex tori and then pass to the associate Kummer surface, cf. [319, Rem. 4.8].
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Remark 1.12. Essentially the same argument has been applied by Esnault and Srini-
vas in [171] to prove the following result, which we state only for K3 surfaces: Let (X,L)

be a polarized K3 surface over an algebraically closed field k and let f ∈ Aut(X). Then
the induced action f∗ on the largest f -stable subspace V ⊂ c1(L)⊥ ⊂ H2(X,Q`(2)),
` 6= char(k), has finite order. However, this does not seem to imply that on a projective
K3 surface in positive characteristic Corollary 1.10 still holds, i.e. that any automorphism
becomes symplectic after passing to some finite power.

Corollary 3.3.4 in fact describes the group of Hodge isometries of T (X) as a finite cyclic
group. Hence, Aut(X) of a complex projective K3 surface acts on T (X) via a finite cyclic
group, i.e. there exists a short exact sequence

(1.3) 1 //Auts(X) //Aut(X) // µm // 1,

where Auts(X) acts trivially and µm faithfully on T (X).

Remark 1.13. It is also interesting to consider the kernel of Aut(X) //O(NS(X))

which by Proposition 5.3.3 is finite for projective X. Using Proposition 2.1 below, it can
be identified, via its action on T (X), with a subgroup µn ⊂ µm. Then n = m if and only
if (1.3) splits. This is the case if NS(X) or, equivalently, T (X) is unimodular. It would be
interesting to write down an explicit example in the non-unimodular case where n 6= m.

If X is not projective, a similar exact sequence can be written down for any finite
subgroup G ⊂ Aut(X), but then automatically m = 1 due to Corollary 1.10, (ii).
But also for projective X, the possibilities for m are quite limited, see [447, Thm. 3.1,

Cor. 3.2].

Corollary 1.14. Let X be a complex projective K3 surface. The order of the cyclic
group µm in (1.3) satisfies

ϕ(m) ≤ rkT (X) = 22− ρ(X)

and in fact ϕ(m) | rkT (X). In particular, m ≤ 66.

Proof. Let f ∈ Aut(X) act on T (X) by a primitivem-th root of unity ζm. Then the
minimal polynomial Φm of ζm divides the characteristic polynomial of f∗ on T (X). Hence,
ϕ(m) = deg Φm ≤ rkT (X). In order to prove ϕ(m)|rkT (X), one simply remarks that all
irreducible subrepresentations of µm on T (X)Q are of rank ϕ(m). Indeed, otherwise for
some n < m there exists an α ∈ T (X) with fn∗(α) = α. Then pair α with H2,0(X), on
which fn acts non-trivially, to deduce the contradiction α ∈ H1,1(X,Z). In other words,
as a representation of µm one has T (X) ' Z[ζm]⊕r with r = rkT (X)/ϕ(m). The last
assertion follows from ϕ(m) > 21 for m > 66. �

Remark 1.15. In addition, it has been shown by Machida, Oguiso, Xiao, and Zhang
in [382, 635, 649] that for a given m a complex K3 surface X together with an auto-
morphism f ∈ Aut(X) of order m and such that f∗ = ζm · id on H2,0(X) with ζm an
m-primitive root of unity exists if and only if ϕ(m) ≤ 21 and m 6= 60.
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Example 1.16. In [317] Kondō proves more precise results for the case that NS(X) (or,
equivalently, T (X)) is unimodular. Then m divides 66, 44, 42, 36, 28, or 12 and actually
equals one of them if ϕ(m) = rkT (X). In the latter case, X is uniquely determined. In
[623] Vorontsov announced restrictions on m in the case that T (X) is not unimodular.
This was worked out by Oguiso and Zhang in [474], who furthermore, showed that again
X is uniquely determined if ϕ(m) = rkT (X). So, a complete classification of all complex
projective K3 surfaces with ϕ(m) = rkT (X) exists. Note that in [474] and elsewhere the
authors work with µm := Ker(Aut(X) //O(NS(X))).
For an explicit example of an automorphism with m = 66 see papers by Kondō and

Keum [317], [319, Ex. 4.9], or [290, Ex. 3.1]. The K3 surface is elliptic of Picard number
two, more precisely NS(X) ' U , and can be described by the Weierstrass equation
y2 = x3 + t12 − t.

2. Automorphisms via periods

Describing Aut(X) of a complex K3 surface in terms of the Hodge structure H2(X,Z)

is done in two steps. One first shows that the natural representation is faithful, i.e.
Aut(X) �

� // O(H2(X,Z)), and then describes the image in terms of the Hodge structure
(plus some additional data). As it turns out, up to finite index the group of all Hodge
isometries of H2(X,Z) is the semi-direct product of Aut(X) and the Weyl group W ,
cf. Section 8.2.3. As an application, we review results of Nikulin and Kondō on the
classification of complex projective K3 surfaces with finite automorphism group.

2.1. We begin with the faithfulness of the natural representation. The next result
is a strengthening of Corollary 1.6, see [53] or [490].

Proposition 2.1. Let f be an automorphism of a complex K3 surface X. If f∗ = id

on H2(X,Z), then f = id. In other words, the natural action yields an injective map

Aut(X) �
� // O(H2(X,Z)).

Proof. Let us first give an argument for the case thatX is projective. By assumption
f fixes one (and in fact every) ample line bundle L, i.e. f∗L ' L. However, as we have
seen, automorphisms of polarized K3 surfaces have finite order (see Proposition 5.3.3)
and hence Corollary 1.6 can be applied.
As mentioned in [53, Exp. IX], any f ∈ Aut(X) with f∗ = id deforms sideways, which

allows one to reduce to the projective case. If one wants to avoid deforming X, one shows
instead that f is of finite order and then applies again Corollary 1.6. To prove |f | <∞,
one either uses a general result due to Fujiki [187] and Lieberman [360] saying that the
group of components of Aut(X) of an arbitrary compact Kähler manifold X that fix
a Kähler class α ∈ H1,1(X,R) is finite or the following arguments more specific to K3
surfaces: Every Kähler class α ∈ KX ⊂ H1,1(X,R) is uniquely represented by a Ricci-flat
Kähler class ω, see Theorem 9.4.11. The uniqueness of ω (which is the easy part of the
Calabi conjecture) yields f∗ω = ω. Writing ω = g(I , ) with I the complex structure on
the underlying differentiable manifold M and viewing f as a diffeomorphism of M with
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f∗I = I yields f∗g = g, i.e. f can be seen as an isometry of the Riemannian manifold
(M, g). However, O(M, g) is a compact group, see [60] for references. Thus, the complex
Lie group of all f ∈ Aut(X) with f∗ = id (or, weaker, f∗α = α) is a subgroup of the
compact O(M, g). At the same time, it is discrete due to H0(X, TX) = 0 and hence finite.
The finiteness shows that any f with f∗ = id is of finite order. �

Remark 2.2. i) Of course, using the usual compatibility between singular and étale
cohomology one can show that for any K3 surface over a field k of char(k) = 0 also the
natural map

(2.1) Aut(X) �
� // O(H2

ét(X,Z`))

is injective for any prime `, see [507, Lem. 3.4.1].
ii) Note that Proposition 5.3.3 is valid in positive characteristic, i.e. any f ∈ Aut(X)

with f∗L ' L for some ample line bundle is of finite order. More precisely, the kernel of

(2.2) Aut(X) //O(NS(X))

is finite, cf. Remark 5.3.4. In [476] Ogus shows that (2.2) is in fact injective for super-
singular K3 surfaces, cf. Remark 2.5.
iii) By lifting to characteristic zero, Ogus also shows that for K3 surfaces over an

algebraically closed field k of char(k) = p > 2 the natural map

(2.3) Aut(X) //Aut(H2
cr(X/W ))

injective, see [475, 2. Cor. 2.5] and Section 18.3.2 for the notation. This was later used
by Rizov to prove injectivity of (2.1) in characteristic p and for ` 6= p. Of course, it is
enough to prove this for the finite subgroup of f ∈ Aut(X) with f∗L ' L and this is
precisely [507, Prop. 3.4.2]. See also Keum’s account of it [290, Thm. 0.4].
iv) Suppose X is a K3 surface over an algebraically closed field k. Then for any field

extension K/k base change yields an isomorphism

Aut(X) ' Aut(X ×k K).

This follows from H0(X, TX) = 0. A similar statement holds for line bundles and the
argument is spelled out in this case in the proof of Lemma 17.2.2.

2.2. The next step to understand Aut(X) completely is to characterize it as a
subgroup of H2(X,Z) purely in terms of the intersection pairing and the Hodge structure
on H2(X,Z). The following is the automorphism part of the Global Torelli Theorem, so
a special case of Theorem 7.5.3. The injectivity is just Proposition 2.1.

Corollary 2.3. For a complex K3 surface X the map f � // f∗ induces an isomorphism

Aut(X) ∼− // {g ∈ O(H2(X,Z)) | Hodge isometry with g(KX) ∩ KX 6= ∅}

of Aut(X) with the group of all Hodge isometries g : H2(X,Z) ∼− // H2(X,Z) for which
there exists an ample (or Kähler) class α ∈ H2(X,Z) with g(α) again ample (resp.
Kähler). �
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Note that a Hodge isometry g of H2(X,Z) maps one ample (or Kähler) class to an
ample (resp. Kähler) class if and only if it does so for every. Indeed, a Hodge isometry
that preserves the positive cone CX also preserves its chamber decomposition. Hence,
either a chamber and its image under g are disjoint or they coincide. Also, for projective
X this condition is equivalent to saying that g preserves the set of effective classes. See
Section 8.1.2 for a discussion of the ample cone.
Combined with the description of the ample cone in Proposition 8.5.5, this implies the

following result (cf. [574, Prop. 2.2]):

Corollary 2.4. The group Aut(X) of a complex projective K3 surface X is finitely
generated.

Proof. Consider the subgroup G ⊂ O(NS(X)) of all g ∈ O(NS(X)) preserving the
set ∆+ := {[C] | C ' P1} and such that g = id on ANS(X). This is an arithmetic group
and thus finitely generated [79]. We show that Auts(X) ' G and, as Auts(X) ⊂ Aut(X)

is of finite index (see Section 1.3), this is enough to conclude that also Aut(X) is finitely
generated.
Any f ∈ Auts(X) acts as identity on the discriminant ANS(X) = NS(X)∗/NS(X),

because this action coincides with the one on AT (X) under the natural isomorphism
ANS(X) ' AT (X), see Lemma 14.2.5. Furthermore, f∗ preserves the set ∆+, because
f∗[C] = [f−1(C)].
Conversely, every g ∈ G can be extended to an isometry of g̃ of H2(X,Z) that acts

as id on T (X), see Proposition 14.2.6. But then g̃ is a Hodge isometry which, due to
Corollary 8.1.7, preserves the ample cone. Therefore, g̃ = f∗ for some f ∈ Aut(X) by
Corollary 2.3 and in fact f ∈ Auts(X). In other words, Auts(X) is isomorphic to G and
thus finitely generated. �

Remark 2.5. i) In [367, Thm. 6.1] Lieblich and Maulik verified that the arguments
carry over to the case of positive characteristic. So, also for a K3 surface X over an
algebraically closed field of positive characteristic Aut(X) is finitely generated.
However, as there is no direct analogue of the Hodge structure on H2(X,Z) and as

automorphisms can in general not be lifted to characteristic zero, there is no explicit
description for Aut(X). However, it is known that the kernel of Aut(X) //O(NS(X))

is finite (see Remark 2.2) and its image has finite index in the subgroup preserving the
ample cone (cf. Theorem 2.6 and Remark 2.8). For supersingular K3 surfaces Ogus proved
that the image equals the subgroup of orthogonal transformations that not only respect
the ample cone, but also the two-dimensional kernel of c1 : NS(X) ⊗ k //H1(X,ΩX)

(which in this sense plays the role of the (2, 0)-part of the Hodge structure for complex
K3 surfaces).
ii) The result also holds true for non-projective complex K3 surfaces, as has been

observed by Oguiso in [470, Thm. 1.5].

2.3. Consider a complex K3 surface X and its Weyl group W ⊂ O(NS(X)), i.e. the
subgroup generated by all reflections s[C] with P1 ' C ⊂ X, cf. Sections 14.2.1 and 8.2.4.
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The following result was first stated by Pjateckĭı-Šapiro and Šafarevič in [490, Sec. 7]. A
sketch of the argument can be found in the proof of Theorem 8.4.2. It relies heavily on
Corollary 2.3.

Theorem 2.6. Let X be a complex projective K3 surface. Then the natural map
sending f to f∗ induces a homomorphism

Aut(X) //O(NS(X))/W

with finite kernel and finite cokernel.

Another way to phrase this is to say that

Auts(X)nW ⊂ O(NS(X))

is a finite index subgroup. As an immediate consequence one finds (see Corollary 8.4.7)

Corollary 2.7. The group of automorphisms Aut(X) of a complex projective K3 sur-
face is finite if and only if O(NS(X))/W is finite. �

Remark 2.8. Both, Theorem 2.6 and Corollary 2.7, hold for projective K3 surfaces
over algebraically closed fields of positive characteristic, see [367].
For non-projective K3 surfaces, however, the situation is different. As was mentioned

before, the quotient of Auts(X) ⊂ Aut(X) may contain elements of infinite order. So, a
priori, it could happen that the kernel of Aut(X) //O(NS(X))/W contains elements of
infinite order, just because NS(X) is too small, e.g. NS(X) = 0. Explicit examples can
presumably be found among those mentioned in Example 1.11.

2.4. It turns out that complex projective K3 surfaces with finite Aut(X) can be
classified. More precisely, their Picard lattices and the groups occurring as Aut(X) can
be (more or less) explicitly described. Due to Corollary 2.7, the question whether Aut(X)

is finite becomes a question on the lattice NS(X) and its Weyl group W ⊂ O(NS(X)).
In the following, we let W ⊂ O(N) be the Weyl group of a lattice N of signature

(1, ρ− 1), see Section 8.2.3.

Definition 2.9. By Fρ one denotes the set of isomorphism classes of even lattices N
of signature (1, ρ− 1) such that O(N)/W is finite.

The main result is the following theorem due to Nikulin. For the statement and its
proof see the relevant articles [449] and [450] by Nikulin. The second part of the result
is [450, Thm. 10.1.1].

Theorem 2.10. The set Fρ is empty for ρ ≥ 20 and non-empty but finite for 3 ≤ ρ ≤
19. Every N ∈ Fρ can be realized as N ' NS(X) of some K3 surface X.

Example 2.11. The cases ρ(X) = 1, 2 are rather easy and, in particular, the list of
possible lattices NS(X) is infinite in both cases.
i) If ρ(X) = 1, then the Weyl group is trivial and O(NS(X)) = {±1}. Hence, Aut(X)

is finite by Corollary 2.7, see also the more precise Corollary 2.12. Note that in particular
Z(2d) ∈ F1 for all d > 0.
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ii) If ρ(X) = 2, then according to [490, Sec. 7] (see also [196, Cor. 1]): Aut(X) is finite
if and only if there exists 0 6= α ∈ NS(X) with (α)2 = 0 or (α)2 = −2, see the discussion
in Sections 14.2, 8.3.2, and Example 8.4.9.

In [451] Nikulin carried out the classification for ρ(X) = 3, in particular |F3| = 26,
see also [454]. The case ρ(X) = 4 is due to Vinberg and was only published many years
later in [615], where it is also shown that |F4| = 14.
The case ρ(X) ≥ 5 is treated by Nikulin in [450], see also the announcement in his

earlier paper [449]. The most explicit form of this result can be found in [454, Thm. 1,
2]3, see also [319, Thm. 6.2]. From the explicit list given there one sees immediately that
Fρ is non-empty for all 1 ≤ ρ ≤ 19.
Note that the theorem in particular says that complex K3 surfaces with ρ(X) = 20

have infinite Aut(X), which was first shown by Shioda and Inose in [565, Thm. 5]. In
fact, a K3 surface X with ρ(X) = 20 is a rational double cover of a Kummer surface
Y associated with the product of two elliptic curves E1 × E2 (see Example 11.1.2 and
Remark 14.3.22) and often X itself is of this form. For Y , translation by a non-torsion
section of Y //P1 = E1/± is an automorphism of infinite order. The existence of a
non-torsion section follows from the Shioda–Tate formula, see Example 11.3.5. For the
description of Aut(X) for X with ρ(X) = 20 and small discriminant see the papers by
Borcherds and Vinberg [76, 614].
Similarly, for (Shioda) supersingular (or, equivalently, unirational) K3 surfaces, i.e. K3

surfaces with ρ(X) = 22 (see Section 18.3.5), the group Aut(X) is as well infinite, see
[274].
The following was first observed in [450, Cor. 10.1.3], see also [384, Lem. 3.7]. Note

that there is no analogue for this in positive characteristic or, at least, not over F̄p as
there the Picard number is always even (see Corollary 17.2.9).

Corollary 2.12. Let X be a complex projective K3 surface with Pic(X) ' Z ·H. Then

(2.4) Aut(X) =

{
{id} if (H)2 > 2

Z/2Z if (H)2 = 2.

Proof. By Corollary 3.3.5, any f ∈ Aut(X) acts as ±id on T (X). On the other
hand, f∗ = id on NS(X), for the pull-back of the ample generator H has to be ample. But
the action of f∗ on the discriminant groups AT (X) and on ANS(X) ' Z/(H)2Z coincide
under the natural isomorphism, cf. Lemma 14.2.5. For (H)2 6= 2 this excludes f∗ 6= id

on T (X). Hence, f∗ = id on H2(X,Z) and Proposition 2.1 yields the result.
If (H)2 = 2, then X is a double plane (see Remark 2.2.4) and the covering involution

i : X ∼− // X indeed acts as −id on T (X). For any other automorphism with f∗ = −id,
the above argument can be applied to the composition i ◦ f , which shows f = i. �

An explicit description of all the possible finite Aut(X) was eventually given by Kondō
in [318, Sec. 4], see also [316]. The final result should be read as saying that K3 surfaces

3Thanks to Jürgen Hausen for this reference.
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with finite Aut(X) are rather special. In particular, all the intriguing finite groups G ⊂
Auts(X) classified by Mukai, see Section 3, can only be realized on K3 surfaces X with
infinite Aut(X).

Theorem 2.13. Suppose Aut(X) of a complex projective K3 surface is finite. Then the
symplectic automorphism group Auts(X) ⊂ Aut(X) is isomorphic to one of the following
groups:

{1}, Z/2Z, or S3.

The two cases 15 ≤ ρ(X) and 9 ≤ ρ(X) ≤ 14 are treated separately, where the
lower bound for ρ(X) follows from the table in Section 1.2. For the first case one has
Auts(X) ' {1}, Z/2Z, or S3, whereas for the second Auts(X) ' {1} or Z/2Z. The result
as phrased by Kondō in [318] distinguishes instead between the two cases that the index
m of Auts(X) ⊂ Aut(X) satisfies m ≤ 2, in which case Aut(X) ' Auts(X)× Z/mZ, or
m > 2. In the course of the proof Kondō in particular notices that for K3 surfaces X
with finite Aut(X) the lattice NS(X) determines the group Aut(X).

Example 2.14. There are many explicit examples of K3 surfaces with finite automor-
phism groups in the literature. Galluzzi and Lombardo show in [195] that Aut(X) for

NS(X) with intersection matrix
(

2 d

d −2

)
with d ≡ 1 (2) is isomorphic to Z/2Z.

2.5. We conclude this section by reviewing some examples of K3 surfaces with
infinite automorphism groups.

i) In [628] Wehler considers a K3 surface X given as a complete intersection of the Fano
variety of lines F ⊂ P2×P2∗ on P2 with a hypersurface of type (2, 2). K3 surfaces of this
form come in an 18-dimensional family and for the general member NS(X) is of rank two

with intersection matrix
(

2 4

4 2

)
and Aut(X) = (Z/2Z) ∗ (Z/2Z).

The two generators correspond to the covering involutions σ1, σ2 of the projections
X // //P2 to the two factors. In particular, σ1, σ2 are not symplectic, but σ1 ◦ σ2 is
symplectic (and of infinite order). Compare this example to Corollary 2.12.

ii) In [195, Thm. 4] the result of Wehler is complemented by showing that Aut(X) '
(Z/2Z) ∗ (Z/2Z) for any K3 surface with NS(X) of rank two and intersection matrix(

2 d

d 2

)
with d > 1 odd. For a K3 surface with intersection form

(
2 d

d −2

)
on NS(X)

and d odd it is shown that Aut(X) ' Z/2Z, see [195, Thm. 3].

iii) According to Bini [61], any K3 surface with NS(X) ' Z(2nd)⊕ Z(−2n) with n ≥ 2

and d not a square, satisfies Aut(X) ' Z.

iv) A systematic investigation of the case ρ(X) = 2 was undertaken by Galluzzi, Lom-
bardo, and Peters in [196, Cor. 1]. In particular it is proved that the only infinite Aut(X)

that can occur are Z and (Z/2Z) ∗ (Z/2Z).
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v) In papers by Festi et al and Oguiso [176, 471] one finds an automorphism f of a
certain quartic X ⊂ P3 with ρ(X) = 2 which is of infinite order and without fixed points.
By Corollary 1.10, some finite power of it is also symplectic. Is f itself symplectic?

vi) As mentioned before, Aut(X) is infinite if ρ(X) = 20, see [565, Thm. 5]. In this
paper, Shioda and Inose also noted that there exist K3 surfaces with ρ(X) = 18 and
finite Aut(X). An earlier example can be found in [490, Sec. 7].

In view of Corollary 3.3.5 it seems reasonable to expect that in general automorphism
groups of K3 surfaces with odd Picard number should be easier to study, at least the
kernel of Aut(X) //O(NS(X)) is at most {±1}. See Shimada’s [552] for examples with
ρ(X) = 3.

3. Finite groups of symplectic automorphisms

The goal of this section is to convey an idea of the celebrated result by Mukai [428]
concerning finite groups realized by of symplectic automorphisms of K3 surfaces which
generalizes earlier results of Nikulin [447] for finite abelian groups. We first state the
result and discuss some of its consequences, and later provide the background for it and
present the main ingredients of its proof.
As was noted before, the list of finite groups occurring as Aut(X) or Auts(X) is rather

short, cf. Theorem 2.13. In particular, most of the interesting finite groups occurring as
subgroups of Auts(X) are subgroups of an infinite Auts(X).

Theorem 3.1 (Mukai). For a finite group G the following conditions are equivalent:
(i) There exists a complex (projective) K3 surface X such that G is isomorphic to a

subgroup of Auts(X).
(ii) There exists an injection G �

� // M23 into the Mathieu group M23 such that the
induced action of G on Ω := {1, . . . , 24} has at least five orbits.

There are exactly 11 maximal subgroups of finite groups acting faithfully and symplec-
tically on a complex (projective) K3 surface, i.e. that satisfy (i) or, equivalently, (ii). An
explicit list can be found in [428, Ex. 0.4] or [389, Sec. 4]. The orders of these maximal
groups are

(3.1) |G| = 48, 72, 120, 168, 192, 288, 360, 384, 960

(some appearing twice). They can all be realized on explicitly described K3 surfaces
(namely on quartics, complete intersections, and double covers) with the group action
given on an ambient projective space. The existence can also be proved via the Global
Torelli Theorem and the surjectivity of the period map, see Section 3.3 for comments. An
explicit list of all 79 non-trivial possible finite groups (without making the link to M23)
was given by Xiao in [636, Sec. 2], see also Hashimoto’s [236, Sec. 10.2].4

4The list has in fact 81 entries as it also records the discriminant of the invariant part of its action
which is not unique in exactly two cases, cf. [236, Prop. 3.8] and Remark 3.14.
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Example 3.2. The complex Fermat quartic has Picard number ρ(X) = 20 (cf. Section
3.2.6) and thus Aut(X) and Auts(X) are both infinite due to Theorem 2.10 or using the
Shioda–Inose structure [565, Thm. 5]. However, Auts(X) contains the maximal finite
subgroup (Z/4Z)2 o S4 of order 384. Here, (a, b, c, d) ∈ (Z/4Z)4 acts by [x0 : x1 : x2 :

x3] � // [ζax0 : ζbx1 : ζcx2 : ζdx3], where ζ is a primitive fourth root of unity. Of course,
this is effectively only an action of (Z/4Z)3 and imposing further a+ b+ c+ d = 0 yields
a symplectic action of (Z/4Z)2. The factor S4 acts by permutation of the coordinates.
See [428, Ex. 0.4] for more details.
In [469] Oguiso shows that this large finite group essentially characterizes the Fermat

quartic. For a discussion of the group of automorphisms of the polarized (X,O(1)) see
[323] and the references therein.

Remark 3.3. Using the analogue 0 //G0
//G // µm // 0 of (1.3) for an arbitrary

finite subgroup G ⊂ Aut(X) of a complex projective K3 surface X one finds |G| =

|G0| ·m. Corollary 1.14 together with |G0| ≤ 960 from (3.1) yields the a priori bound
|G| ≤ 960 · 66. However, in [636] Xiao shows the stronger inequality |G| ≤ 5760 by
combining ϕ(m)|(22 − ρ(Y )) for the minimal resolution Y //X/G0 (see Proposition
3.11) with ρ(Y ) ≥ rkLG0 + 1 (see (3.6) below).5 In [321] Kondō improved this to

|G| ≤ 3840

by excluding the case |G| = 5760. Moreover, he showed that a certain extension G

of Z/4Z by the group M20, which satisfies |G| = 3840, acts on the Kummer surfaces
associated with (C/(Z+ iZ))2.

Remark 3.4. In positive characteristic the situation is completely different. For exam-
ple, Kondō in [322] shows that any subgroup G ⊂M23 acting on Ω with three orbits can
be realized as a finite group of symplectic automorphisms of a (supersingular) K3 surface
(with Artin invariant one and over an appropriate prime p). Examples include M11 and
M22. Moreover, not every finite group of symplectic automorphisms can be realized as a
subgroup of M23.

For the proof of Theorem 3.1, we shall follow Kondō’s approach in [320], which is more
lattice theoretic than Mukai’s original proof. See also Mason’s [389] for a detailed and
somewhat simplified account of the latter. Only the main steps are sketched and in the
final argument we restrict to the discussion of only one out of the possible 23 Niemeier
lattices, see Section 14.4.

3.1. Let us begin with the necessary background on Mathieu groups and Niemeier
lattices, see also Section 14.4.

The Mathieu groups M11, M12, M22, M23, and M24 are the ‘first generation of the
happy family’ of finite simple sporadic groups. They were discovered by Mathieu in 1861

5I am sure it must be a purely numerical coincidence that 5760 also comes up in the second deno-
minator of

√
td = 1 + 1

24
c2 + 1

5760
(7c2

2 − 4c4) + . . . of a hyperkähler manifold.
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in [390], who did most of his work in mathematical physics.6 Only M23 and M24 are (so
far) relevant for K3 surfaces.
One way to define M24, which is a simple group of order

|M24| = 244.823.040 = 210 · 33 · 5 · 7 · 11 · 23,

is to start with the (extended binary) Golay code W ⊂ F24
2 . By definition, the Golay

code is a 12-dimensional linear subspace with the property that |{i | wi 6= 0}| ≥ 8 for all
0 6= w = (wi) ∈ W . The subspace W can be written down explicitly. It it is unique up
to linear coordinate change, see e.g. [130].
The symmetric groupS24 with its action on Ω := {1, . . . , 24} can be viewed as subgroup

of GL(F24
2 ) by permuting the vectors e1, . . . , e24 of the standard basis. Then one defines

M24 := {σ ∈ S24 | σ(W ) = W}.

It is known that M24 still acts transitively on Ω. In fact, it acts 5-transitively on Ω, i.e.
for two ordered tuples (i1, . . . , i5) and (j1, . . . , j5) of distinct numbers ik, jk ∈ Ω there
exists an σ ∈M24 with σ(ik) = jk, k = 1, . . . , 5.

Remark 3.5. Alternatively, M24 can be introduced as the automorphism group of the
Steiner system S(5, 8, 24). More precisely, a Steiner system S(5, 8, 24) is a subset of P(Ω)

consisting of subsets M ⊂ Ω (the blocks) with |M | = 8 and such that that any N ⊂ Ω

with |N | = 5 is contained in exactly one M ∈ S(5, 8, 24). Up to the action of S24 on
P(Ω), the Steiner system S(5, 8, 24) is unique and |S(5, 8, 24)| = 759. Then

M24 = {σ ∈ S24 | σ(S(5, 8, 24)) = S(5, 8, 24)}.

All Mathieu groups can be described in terms of Steiner systems. See [130, Ch. 3&10].

The Mathieu group M23 is now defined as the stabilizer of one element in Ω, say e24:

M23 := Stab(e24) ⊂M24.

Then M23 is a simple group of index 24 in M24 and thus of order

|M23| := 10.200.960 = 27 · 32 · 5 · 7 · 11 · 23.

Clearly, M23 acts 4-transitively on the remaining {1, . . . , 23}. Observe, that apart from
the prime factors 11 and 23 only prime factors p < 8 occur which are the only prime
orders of symplectic automorphisms of a complex K3 surface, see Section 1.1.7

The following observation, which may have triggered Mukai’s results in [428], is a
first sign of the intriguing relation between symplectic automorphisms of K3 surfaces
and groups contained in the sporadic group M23. Consider the permutation action of
M23 ⊂M24 ⊂ S24 on Q24 (instead of F24

2 ) and its character. Then one can compute that
for elements σ ∈M23 of order up to eight the trace χ(σ) := tr(σ) = |Ωσ| is given by (1.1).

6His obituary [157] contains timeless remarks on fashion in mathematics: ‘He was the champion of
a science that was out of fashion.’

7Curiously, 11 comes up as the order of an automorphism of a K3 surface in characteristic 11, but
23 does not according to Keum [290].
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The relation between the Mathieu group M23 and Niemeier lattices can be best exem-
plified by a result already stated in Section 14.4.3: The orthogonal group O(N) of the
Niemeier lattices N with root lattice R = A1(−1)⊕24 is naturally isomorphic to

(3.2) O(N) 'M24 n (Z/2Z)⊕24.

For all Niemeier latticesN the quotients O(N)/W (N) by the corresponding Weyl group
is known. For example, if the twist R(−1) of the root lattice R of a Niemeier lattice N
is not one of the following A⊕24

1 , A⊕12
2 , A⊕8

3 , A⊕4
8 , D⊕6

4 , A⊕4
5 ⊕ D4, E

⊕4
6 , A⊕4

6 , A⊕3
8 , then

O(N)/W (N) is of order at most eight or isomorphic to S4 and hence contained in M23.
See [320, Sec. 3] for details and references.

3.2. Let now X be a complex K3 surface. Then the same arguments used to prove
Corollary 1.8 also show

Lemma 3.6. For the invariant part H∗(X,C)G of a finite group G ⊂ Auts(X) one
has dimH∗(X,C)G ≥ 5 and

1

|G|
∑
f∈G
|Fix(f)| = dimH∗(X,C)G,

where by convention |Fix(id)| = 24.

Proof. Clearly, (H0⊕H4)(X) is invariant under G and, since G is symplectic, also
(H2,0⊕H0,2)(X) is. As G is finite, the sum α̃ =

∑
f∈G f

∗α is well-defined and non-trivial
for any Kähler (or ample) class α. This shows the first assertion. For the second consider
the linear projector α � // (1/|G|)

∑
f∗α onto H∗(X)G to show

|G| · dimH∗(X,C)G =
∑
f∈G

tr(f∗|H∗(X,C)) =
∑
f∈G
|Fix(f)|

by taking traces and applying the Lefschetz fixed point formula. �

The result is again not optimal, e.g. for X projective dimH∗(X,C)G ≥ 25− ρ(X), as
G acts trivially on T (X). The following lemma collects further elementary observations,
cf. [447].

Lemma 3.7. For a complex K3 surface X and a finite subgroup G ⊂ Auts(X), consider
the orthogonal complement

LG := (H2(X,Z)G)⊥.

(i) Then LG is negative definite and without (−2)-classes. Moreover, rkLG ≤ 19.
(ii) The group G acts trivially on the discriminant group ALG of LG.
(iii) The minimal number of generators of LG satisfies `(LG) ≤ 22− rkLG.

Proof. As G ⊂ Auts(X), one has T (X) ⊂ H2(X,Z)G and hence LG ⊂ T (X)⊥ ⊂
NS(X), cf. Section 3.3.1. If X is projective, one finds an invariant ample class α ∈
NS(X)G and, by Hodge index and using LG ⊂ α⊥ ⊂ NS(X), the lattice LG is negative
definite of rank ≤ 19. If X is not projective, one still finds an invariant Kähler class
α ∈ KX and, as (H2,0 ⊕ H0,2)(X)R ⊕ Rα is positive definite, LG is contained in the
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negative definite orthogonal complement of it. Once more, LG is negative definite of rank
≤ 19.
The lattice LG does not contain any effective classes, because those would intersect

positively with the invariant ample or Kähler class α. Since for a (−2)-class δ ∈ NS(X)

either δ or −δ is effective, this proves that LG does not contain any (−2)-classes.
As now LG is negative definite, H2(X,Z)G is non-degenerate. Indeed, if 0 6= x ∈

H2(X,Z)G with (x.y) = 0 for all y ∈ H2(X,Z)G, then x ∈ LG and hence (x)2 < 0. Thus,
Proposition 14.0.2 can be applied and shows that there exists a natural isomorphism

(3.3) ALG ' AH2(X,Z)G ,

which right away shows

`(ALG) = `(AH2(X,Z)G) ≤ rkH2(X,Z)G = 22− rkLG.

Moreover, by Lemma 14.2.5, (3.3) is compatible with the action of O(H∗(X,Z)). As G
acts trivially on H∗(X,Z)G, it also acts trivially on ALG . �

Corollary 3.8. There exists a primitive embedding

(3.4) LG ⊕A1(−1) �
� // N

into a Niemeier lattice N . Moreover, the action of G on LG extends by id on the ortho-
gonal complement of (3.4) to an action on N .

Proof. Apply Corollary 14.4.5 to Λ1 := LG ⊕A1(−1). The last lemma shows

(3.5) `(Λ1) = `(LG) + 1 ≤ 24− rk(LG ⊕A1(−1)).

So literally Corollary 14.4.5 only applies if for some reason `(H2(X,Z)G) < rkH2(X,Z)G,
but the finer version mentioned in Remark 14.1.17 always does, as due to the factor
A1(−1) the local conditions at odd primes p as well as at p = 2 are trivially satisfied.
This yields a primitive embedding LG ⊕A1(−1) �

� // N .
As the action of G on LG is trivial on ALG , it can be extended as desired due to

Proposition 14.2.6. �

Sketch of Proof of Theorem 3.1. We prove that (i) implies (ii). For the other
direction see Section 3.3. The Niemeier lattice N in Corollary 3.8 is not unique and a
priori all Niemeier lattices with the exception of the Leech lattice can occur. To give an
idea of the proof of Theorem 3.1 we pretend that N is the Niemeier lattice with root
lattice R = A1(−1)⊕24, see Section 14.4.3.
Then O(N) ' M24 n (Z/2Z)⊕24, see (3.2), which in particular yields an inclusion

G �
� // M24 n (Z/2Z)⊕24. Suppose there exists an element σ ∈ G with σ(ei) = −ei for

some i, then ei ∈ (NG)⊥ = LG. But LG does not contain any (−2)-class by Lemma
3.7. Hence, G �

� // M24. Clearly, the root that corresponds to A1(−1) in the direct sum
LG ⊕ A1(−1), which we shall call e24, is fixed by the action of G. Thus, G �

� // M23 =

Stab(e24). In order to conclude it remains to show that G has at least five orbits. For
this use rkNG ≥ 5, so that one can choose (the beginning of) a basis of NG

Q of the
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form e1 +
∑

i≥5 a1,iei, . . . , e5 +
∑

i≥5 a5,iei (after possibly permuting the ei). Then for
i 6= j ∈ {1, . . . , 5} the orbits of ei and ej are disjoint.
In the case that the Niemeier lattice in Corollary 3.8 is not the one with root lattice

A1(−1)⊕24 Kondō finds similar arguments. The important input is an explicit description
of O(N) in all 23 cases. The Leech lattice is excluded by the root in A1(−1) and, in fact,
one quickly reduces to nine of the Niemeier lattices, as the other ones have very small
automorphism group, so that the assertion becomes trivial. �

Remark 3.9. For generalizations of the result to finite groups of autoequivalences of
Db(X), see [259], it is worth pointing out that embedding LG⊕A1(−1), and not merely
LG, into some Niemeier lattice N is crucial for three reasons.
Firstly and on a purely technical level, the factor A1(−1) ensured that the local condi-

tions in Nikulin’s criterion hold when equality holds in (3.5), so that also in this case an
embedding (3.4) can be found.
Secondly, since G acts trivially on A1(−1) it ensures that not only G �

� // M24 but
indeed G �

� // M23 exists.
Thirdly, and maybe most importantly, from the extra A1(−1) one deduces that the

Niemeier lattice cannot be the Leech lattice N0 which does not contain any (−2)-class.
If one allowed the Leech lattice at this point, one would get an embedding G �

� // Co0 =

O(N0) into the Conway group Co0 which is a group of order |Co0| = 222 ·39 ·54 ·72 ·11·13·23

and thus much larger than M24.
For the generalization to finite groups of symplectic derived equivalences, see the com-

ments at the end of Chapter 16, it is useful to phrase the above discussion and in par-
ticular Theorem 3.1 in the more general situation of a finite subgroup G ⊂ O(H̃(X,Z))

with invariant part H̃(X,Z)G containing four positive directions (or, equivalently, with
negative definite orthogonal complement L̃G) and without (−2)-classes in L̃G. In the
case that G ⊂ Auts(X), the invariant part furthermore contains a hyperbolic plane U
(namely (H0 ⊕H4)(X,Z)), which eventually ensures the embedding into M23.

3.3. As mentioned before and as claimed by Theorem 3.1, all subgroups G ⊂ M23

acting with at least five orbits on Ω indeed occur as groups of symplectic automorphisms.
In his original paper [428], Mukai gives an explicit construction for each of the maximal
groups and in the appendix to Kondō’s paper [320] he describes a more abstract argument
that relies on the surjectivity of the period map. Here is a sketch of the latter.

In a first step, one writes down the eleven maximal groups G ⊂M23. For each of them
the action on Ω has exactly five orbits and those can be described explicitly. Then one
considers the natural action of G on the Niemeier lattice N with root lattice A1(−1)⊕24.
The invariant part NG is of rank five and, therefore, its orthogonal complement NG is a
negative definite lattice with rkNG = 19.
Next, and this is where most of the work is, one has to analyze the discriminant form

(A, q) := (ANG ,−qNG) to show that Theorem 14.1.5 can be applied to (n+, n−) = (3, 0)

and (A, q), which thus yields an even positive definite lattice Λ1 with rk Λ1 = 3 and
(AΛ1 , qΛ1) ' (A, q).
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Due to Proposition 14.0.2, the two lattices NG and Λ1 are orthogonal to each other
inside an even, unimodular lattice Λ, which then has signature (3, 19) and is, therefore,
isomorphic to the K3 lattice. Hence, there exists a finite index embedding

NG ⊕ Λ1 ⊂ E8(−1)⊕2 ⊕ U⊕3

with NG and Λ1 primitive.
The surjectivity of the period map (see Theorem 7.4.1) can be used to show that every

Hodge structure of weight two on Λ1 can be realized as the Hodge structure of a K3
surface. More precisely, for any 0 6= α ∈ Λ1R there exists a K3 surface X with an
isometry H2(X,Z) ' E8(−1)⊕2 ⊕ U⊕3 such that (H2,0 ⊕H0,2)(X)R ' α⊥ ⊂ Λ1R. If the
line R · α is not rational, then NS(X) ' NG and hence X is a non-projective K3 surface
of Picard number ρ(X) = 19. In this case, α (up to sign) is a Kähler class. Otherwise, X
is projective with ρ(X) = 20, but one might have to apply elements of the Weyl group
to make sure that α is Kähler, i.e. ample.
The action ofG onNG induces the trivial action on ANG and can, therefore, be extended

by idΛ1 to an action ofG onH2(X,Z), cf. Proposition 14.2.6. Thus, G is a group of Hodge
isometries. For ρ(X) = 19 the action of G on H2(X,Z) leaves invariant (H2,0⊕H0,2)(X)

and the Kähler class α. So the Global Torelli Theorem 7.5.3 or rather Corollary 2.3
applies and G can be interpreted as a subgroup of Auts(X).
In order to get an action of G on a projective K3 surface, one argues that any automor-

phism of a non-projective X that leaves invariant the Kähler class and acts as the identity
on (H2,0 ⊕H0,2)(X) is an automorphism of each of the fibres of the twistor family, see
Section 7.3.2. This takes care of the Weyl group action mentioned before for the case
that R · α is not rational.

Remark 3.10. i) It is curious to observe that for the existence result only the Niemeier
lattice N with root lattice A1(−1)⊕24 is involved, whereas in Corollary 3.8 a priori every
Niemeier lattice apart from the Leech lattice can occur.
So every LG can in fact be embedded into the particular Niemeier lattice N1 with root

lattice A1(−1)⊕24, but in order to embed LG⊕A1(−1) others are needed. In the derived
setting one rather uses embeddings into the Leech lattice, see Remark 3.9.
ii) The proof also shows that any of the finite groups occurring in Theorem 3.1 can

in fact be realized as a group of symplectic automorphisms acting on a K3 surface X of
maximal Picard number ρ(X) = 20. This can also be seen as a consequence of the fact
that automorphisms of polarized K3 surfaces specialize, see Section 5.2.3.

3.4. The starting point for Nikulin’s approach to the classification of finite abelian
groups of symplectic automorphisms, which was later extended by Xiao in [636] to the
non-abelian case, is the following proposition. It in particular shows that the set of finite
groups acting faithfully and symplectically on K3 surfaces is closed under quotients.

Proposition 3.11. Let X be a complex K3 surface and G ⊂ Auts(X) be a finite
subgroup. Then the quotient X/G has only rational double point singularities and its
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minimal desingularization
Y //X/G

is again a K3 surface. Moreover, if G ⊂ G′ is a normal subgroup of a finite G′ ⊂ Auts(X),
then G′/G acts symplectically on Y .

Proof. First, it is an easy exercise to generalize the proof of Lemma 1.4 to see that
for a fixed point x ∈ X of a finite G ⊂ Aut(X) there exists a local holomorphic coordinate
system (z1, z2) in which G acts linearly. If G is symplectic, then G ⊂ SL(2,C). The local
structure of C2/G for finite subgroups G ⊂ SL(2,C) is of course well known, see e.g. [32,
Ch. III]. In particular, the canonical bundle of the minimal resolution C̃2/G //C2/G is
trivial cf. Section 14.0.3, v). Globally, as ωX ' OX is G-invariant, this proves that Y has
trivial canonical bundle. In fact, Y has to be a K3 surface, as any holomorphic one-form
on Y would induce a holomorphic one-form on X. The second assertion is clear. �

Remark 3.12. In the situation of the proposition, let Ei ⊂ Y be the exceptional
curves, i.e. the irreducible curves contracted under Y //X/G. The lattice spanned by
their classes [Ei] ∈ H2(Y,Z) is a direct sum of lattices of ADE type, see Section 14.0.3.
Its saturation shall be called M ⊂ H2(Y,Z). Then for LG := (H2(X,Z)G)⊥ ⊂ NS(X)

one finds

(3.6) rkLG = rkM,

which is of course just the number of components Ei. See Whitcher’s account of it [632,
Prop. 2.4].
Note however, that LG and M are very different lattices. Indeed, by Lemma 3.7 the

former does not contain any (−2)-classes whereas the latter has a root lattice of the same
rank. According to [632, Thm. 2.1] and [197, Prop. 2.4] there is an exact sequence

M //H2(Y,Z) //H2(X,Z)G //H3(G,Z) // 0.

The idea of [447] and [636] is then to study the configuration of the singular points of
X/G to eventually get a classification of all possible finite G ⊂ Auts(X).

The following is the main result of Nikulin’s [447].

Theorem 3.13. There are exactly 14 non-trivial finite abelian(!) groups G that can
be realized as subgroups of Auts(X) of a complex K3 surface X. Moreover, the induced
action on the abstract lattice H2(X,Z) is unique up to orthogonal transformations.

Apart from the cyclic groups Z/nZ, 2 ≤ n ≤ 8 the list comprises the following groups:

(Z/2Z)2, (Z/2Z)3, (Z/2Z)4, (Z/3Z)2, (Z/4Z)4,

Z/2Z× Z/4Z, and Z/2Z× Z/6Z.

Remark 3.14. In principle at least, it is possible to describe abstractly the action of
all these 14 groups on the K3 lattice E8(−1)⊕2 ⊕ U⊕3. For the cyclic groups see the
article by Garbagnati and Sarti [199] and Section 4.1.
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For non-abelian groupsG ⊂ Auts(X) the uniqueness of the induced action on the lattice
H2(X,Z) was addressed by Hashimoto in [236]. It turns out that with the exception of
five groups (of which three are among the 11 maximal symplectic groups) the uniqueness
continues to hold also for non-abelian finite groups G ⊂ Auts(X). That the action for
non-abelian group actions might not be unique had been observed also in [632, 636].

4. Nikulin involutions, Shioda–Inose structures, etc.

In what follows we describe some concrete and geometrically interesting examples of
automorphisms of K3 surface and highlight further results in special situations. For proofs
and details we often refer to the original sources.

4.1. Let f : X ∼− // X be a symplectic automorphism of prime order p := |f |. Then
the invariant part H2(X,Z)〈f〉 and its orthogonal complement

L := (H2(X,Z)〈f〉)⊥

can be completely classified as abstract lattices. In fact, the action of f on the lattice
H2(X,Z) is independent of X itself (up to orthogonal transformation), cf. Theorem 3.13.
The explicit descriptions of H2(X,Z)〈f〉 and L can be found in papers by Garbagnati,

Sarti, and Nikulin [199, 447]. Let us look at the case p = 2 a bit closer.

A Nikulin involution on a K3 surface is a symplectic automorphism ι : X ∼− // X of order
two. According to Corollary 1.5 a Nikulin involution of a complex K3 surface has eight
fixed points x1, . . . , x8 ∈ X and the quotient X/〈ι〉 has therefore eight A1-singularities.
Thus, the minimal resolution Y //X/〈ι〉 has an exceptional divisor consisting of eight
(−2)-curves Ei ' P1.
By the table in Section 1.2, a K3 surface admitting a Nikulin involution has Picard

number ρ(X) ≥ 9. Moreover, the induced action ι∗ : H2(X,Z) ∼− // H2(X,Z) (which, as
an abstract isometry, is independent of X) satisfies

H2(X,Z)〈ι〉 ' E8(−2)⊕ U⊕3 and L ' E8(−2)

with L ⊂ NS(X).
In [203] van Geemen and Sarti show that NS(X) contains E8(−2)⊕Z(2d) as a sublattice

(with both factors primitive but not necessarily the sum) and that for general X, i.e.
ρ(X) = 9, one has:

(4.1) NS(X) ' E8(−2)⊕ Z(2d) or (NS(X) : E8(−2)⊕ Z(2d)) = 2.

The second case can only occur for d even. The summand Z(2d) corresponds to an ι-
invariant ample line bundle L. Although invariant, L might not descend to a line bundle
on the quotient X/〈ι〉 (due to the possibly non-trivial action of ι on the fibres of L over
the fixed points xi) and this is when NS(X) is only an overlattice of E8(−2) ⊕ Z(2d) of
index two. The article [203] also contains a detailed discussion of the moduli spaces of
K3 surfaces with Nikulin involution. This was generalized by Garbagnati and Sarti in
[199] to symplectic automorphisms of prime order p.
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Remark 4.1. The following sufficient criterion for the existence of a Nikulin involution
on a complex algebraic K3 surface is due to Morrison, see [422, Thm. 5.7]: If there exists
a primitive embedding

(4.2) E8(−1)⊕2 � � // NS(X),

then X admits a Nikulin involution. Furthermore, by [422, Thm. 6.3], (4.2) is equivalent
to the existence of a primitive embedding

(4.3) T (X) �
� // U⊕3.

Indeed, for example, any embedding (4.3) induces T (X) �
� // U⊕3 � � // Λ = E8(−1)⊕2 ⊕

U⊕3, which by Corollary 14.3.5 is unique and hence (4.2) exists. Note that the existence
of either of the two embeddings is equivalent to the existence of a Shioda–Inose structure,
i.e. a Nikulin involution with a quotient birationally equivalent to a Kummer surface.
Hence, by Proposition 14.1.8 a complex algebraic K3 surface admits a Shioda–Inose
structure if ρ(X) = 19 or 20.
As for an abelian surfaceH2(A,Z) ' U⊕3 (see Section 3.2.3), the existence of a Shioda–

Inose structure on X is also equivalent to the existence of a Hodge isometry T (X) ' T (A)

for some abelian surface A, see [422, Thm. 6.3].

4.2. Consider an elliptic K3 surface π : X //P1 with a section C0 ⊂ X. As usual,
for a smooth fibre Xt we consider the point of intersection of C0 with Xt as the origin of
the elliptic curve Xt. Assume now that there exists another section C ⊂ X, i.e. a non-
trivial element in MW(X), see Section 11.3.2. The intersection of C with Xt provides
another point xt ∈ Xt which may be torsion or not. We say that C is a torsion section
of order n if xt ∈ Xt ∩ C is a torsion point of order n for most geometric fibres Xt or,
equivalently, if C ∈ MW(X) is an element of order n.

Definition 4.2. To any section C ∈ MW(X) one associates

fC : X ∼− // X

by translating a point y ∈ Xt to xt + y ∈ Xt, where Xt ∩ C = {xt}.

A priori, fC is only a rational (or meromorphic) map, but as K3 surfaces have trivial
canonical class, it extends to an automorphism. Of course, the order of fC equals the
order of C ∈ MW(X) and, in particular, if xt ∈ Xt is of infinite order for one fibre Xt

then |fC | =∞.

Example 4.3. This provides probably the easiest way to produce examples of K3
surfaces with infinite Aut(X). Indeed, take the Kummer surface associated with E1×E2

and assume ρ(X) > 18, e.g. E1 ' E2. Its Mordell–Weil rank is positive due to the
Shioda–Tate formula 11.3.4, cf. Example 11.3.5, and, therefore, X //P1 = E1/± admits
a section C of of infinite order which yields an automorphism fC with |fC | = ∞. (A
section C like this can be described explicitly as the quotient of the diagonal ∆ ⊂ E×E.)

Lemma 4.4. The automorphism fC : X ∼− // X associated with a section C ∈ MW(X)

is symplectic.
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Proof. We sketch the argument in the complex case. It is enough to prove f∗Cσ = σ,
for some 0 6= σ ∈ H0(X,Ω2

X), in the dense open set of points x ∈ X contained in a smooth
fibre Xt. For the restriction σ|Xt ∈ H0(Xt,Ω

2
X |Xt) this amounts to show (f∗Cσ)|Xt = σ|Xt

in H0(Xt,Ω
2
X |Xt).

Now, let Xt ⊂ U be an open neighbourhood of the form U ' R1π∗CU/R1π∗ZU such
that C0 ∩ U is the image of the zero section of R1π∗CU . Then any point x ∈ Xt can
be extended to a flat section Cx ⊂ U which then by translation induces an isomorphism
fCx : U ∼− // U . Pulling back σ|U via fCx and then restricting back to Xt yields a holo-
morphic map

Xt
//H0(Xt,Ω

2
X |Xt), x

� // (f∗Cx(σ|U ))|Xt ,
which, as Xt is compact, has to be constant. Hence, f∗Ct(σ|U )|Xt ≡ f∗C0

(σ|U )|Xt = σ|Xt .
As C was not assumed to be flat, the section Cx associated with the intersection point

x ∈ C ∩ Xt might differ from C. Nevertheless, f∗Cx(σ|U )|Xt = f∗C(σ|U )|Xt . This is
perhaps best seen in local coordinates z1, z2 with C and Cx given by holomorphic maps
z1

� // (z1, g(z1)) and z1
� // (z1, gx(z1)), respectively. If σ = F (z1, z2) · dz1 ∧ dz2, then

f∗Cσ = F (z1, z2 + g(z1)) · dz1 ∧ dz2 and f∗Cxσ = F (z1, z2 + gx(z1)) · dz1 ∧ dz2. But of
course for x ∈ C ∩ Xt we have F (t, z2 + g(t)) = F (t, z2 + gx(t)). Hence, (f∗Cσ)|Xt =

(f∗Cx(σ|U ))|Xt = σ|Xt . �

Remark 4.5. The construction yields an injection

MW(X) �
� // Auts(X),

with its image clearly contained in the abelian part of Auts(X). The inclusion also allows
one to tie Cox’s computation of the order of elements in MW(X)tors, see Remark 11.3.11,
to Corollary 1.8. This shows that in characteristic zero MW(X)tors ' Z/nZ × Z/mZ
with m,n ≤ 8. In positive characteristic the upper bound has to be modified according
to Remark 1.9.

Remark 4.6. Combining the lemma with Lemma 1.4, one gets an alternative proof for
the fact that distinct sections C0, C1 of an elliptic fibration X //P1 that on the generic
fibre differ by torsion, do not intersect, see Remark 11.3.8. Indeed, if C1 is a torsion
section, them fC1 is a symplectic automorphism of finite order which has only isolated
fixed points. However, if C0 and C1 meet a closed fibre Xt in the same (automatically
smooth) point, then translation on this fibre is constant and, therefore, Xt would be
contained in Fix(fC1), which is absurd.

Example 4.7. To have at least one concrete example, consider an elliptic K3 surface
X //P1 described by an equation of the form y2 = x(x2 +a(t)x+b(t)). A zero section C0

can be given by x = z = 0 and a two-torsion section C by x = y = 0. The K3 surface X
with the associated involution fC : X ∼− // X has been studied by van Geemen and Sarti in
[203, Sec. 4] where fC is shown to be symplectic, because the quotient X/〈fC〉 turns out
to be a (singular) K3 surface. One also finds that in this case E8(−2)⊕ Z(2d) ⊂ NS(X)

in (4.1) is of index two.
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4.3. Here are the most basic examples of non-symplectic automorphisms of finite
order of complex K3 surfaces. Recall that due to Corollary 1.10 those can only exist on
projective K3 surfaces.

i) LetX //P2 be a double plane, i.e. a K3 surface given as the double cover of P2 ramified
over a (say smooth) sextic, see Example 1.1.3. The covering involution ι : X ∼− // X is
of order two and, since the generator of H0(X,Ω2

X) does not descend to P2, ι cannot be
symplectic.

ii) Let ι : X ∼− // X be a fixed point free involution of a K3 surface X over a field of
characteristic 6= 2. Then the quotient X̄ := X/〈ι〉 is an Enriques surface and every
Enriques surface can be constructed in this way. Due to Corollary 1.5, ι cannot be
symplectic and, therefore, H2,0(X̄) = 0. See Section 14.0.3 for a description of the
Enriques lattice H2(X̄,Z).

Of course, there exist non-symplectic automorphisms of higher order, but at least bi-
rationally their quotients are always of the above form. More precisely, using the classi-
fication of surfaces, one proves

Lemma 4.8. Let f : X ∼− // X be a non-symplectic automorphism of finite order. Then
X/〈f〉 is rational or birational to an Enriques surface. �

Remark 4.9. In [315] Kondō proves that any complex K3 surface cover X of an
Enriques surface Y , i.e. a K3 surface with a fixed point free involution, has infinite
Aut(X). However, Aut(Y ) might be finite.

As a special case of the results proved by Machida and Oguiso resp. Zhang in [382, 649],
based on similar arguments as in the symplectic case (see Section 1.1 and Remark 1.15),
we mention:

Lemma 4.10. If f : X ∼− // X is a non-symplectic automorphism of prime order p,
then p = 2, 3, 5, 7, 11, 13, 17, or 19.

The invariant part NS(X)〈f〉 = H2(X,Z)〈f〉 of non-symplectic automorphisms of prime
order p has been completely determined. For p = 2 this is due to Nikulin and the
classification was completed by Artebani, Sarti, and Taki in [14], which also contains a
detailed analysis of the fixed point sets. As it turns out, K3 surfaces with non-symplectic
automorphisms of finite order often also admit symplectic involutions, cf. [146, 200].

References and further reading:
Instead of automorphisms one could look at endomorphisms and, more precisely, at rational

dominant maps f : X //X. Recently, Chen [114] has shown that a very general complex pro-
jective K3 surface does not admit any rational endomorphism of degree > 1. In [138] Dedieu
studies an interesting link to the irreducibility of the Severi variety.
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The behavior of Aut(X) under deformations was addressed by Oguiso in [468]. In particular
it is shown that in any non-trivial deformation X // S of projective K3 surfaces the set {t ∈
S | |Aut(Xt)| =∞} is dense.

In [178] Frantzen classifies all finite G ⊂ Auts(X) all elements of which commute with a
non-symplectic involution with fixed points.

Symplectic and non-symplectic automorphisms of higher-dimensional generalizations of K3
surfaces provided by irreducible symplectic manifolds have recently attracted a lot of attention,
see e.g. [50, 71, 417].

The global structure of an infinite Aut(X) is not completely clear. Borcherds found an example
of a K3 surface for which Aut(X) is not isomorphic to an arithmetic group, see [76, Ex. 5.8] and
also [601, Ex. 6.3].

Automorphisms not only act on cohomology, but also on Chow groups. Standard results in
Hodge theory can be used to show that any non-symplectic f ∈ Aut(X) acts non-trivially on
CH2(X). The converse is more difficult, but for |f | <∞ it has been verified in [263, 258, 622].

For highly non-projective K3 surfaces X, namely those with ρ(X) = 0, one knows that Aut(X)

is either trivial or isomorphic to Z, see the survey by Macrì and Stellari [384]. More generally,
Oguiso showed in [470] that for any non-projective K3 surface X with NS(X) negative definite
either Aut(X) is finite or a finite extension of Z. If NS(X) is allowed to have an isotropic direction,
then Aut(X) is isomorphic to Zn, n ≤ ρ(X)− 1, up to finite index (almost abelian).

Liftability of groups of automorphisms from positive characteristic to characteristic zero has
been addressed in a paper by Esnault and Oguiso [170]. In particular, it is shown that there
exist special lifts of any K3 surface that essentially exclude all non-trivial automorphism from
lifting to characteristic zero.

It would be worth another chapter to talk about the dynamical aspects of automorphisms (and
more generally endomorphisms) of K3 surfaces. This started with the two articles by Cantat and
McMullen [100, 401], but see also [472] for recent progress and references.

Questions and open problems:
As far as I can see, the relation between Auts(X) and Aut(X) as discussed in Section 1.3 has

not yet been addressed in positive characteristic. In general, as mentioned repeatedly, there are
still a few open questions in positive characteristic and over non-algebraically closed fields.





CHAPTER 16

Derived categories

According to a classical result due to Gabriel [192] the abelian category Coh(X) de-
termines X. More precisely, if X and Y are two varieties over a field k and Coh(X) ∼− //

Coh(Y ) is a k-linear equivalence, then X and Y are isomorphic varieties. The situation
becomes more interesting when instead of the abelian category Coh(X) one considers its
bounded derived category Db(X). Then Gabriel’s theorem is no longer valid in general
and, in fact, there exist non-isomorphic K3 surfacesX and Y with equivalent bounded de-
rived categories. In this chapter we outline the main results concerning derived categories
of coherent sheaves on K3 surfaces. As the general theory of Fourier–Mukai transforms
has been presented in detail in various surveys and in particular in the two monographs
[33, 252], we look for ad hoc arguments highlighting the special features of K3 surfaces.

1. Derived categories and Fourier–Mukai transforms

We start with a brief recap of the main concepts of the theory of bounded derived
categories of coherent sheaves, but for a serious introduction the reader is advised to
consult one of the standard sources, e.g. [206, 610]. For more details on Fourier–Mukai
transforms see [252].

1.1. Let X be a smooth projective variety of dimension n over a field k. By Coh(X)

we denote the category of coherent sheaves on X, which is viewed as a k-linear abelian
category. Note that all Hom-spaces Hom(E,F ) for E,F ∈ Coh(X) are k-vector spaces of
finite dimension. The bounded derived category of X is by definition the bounded derived
category of the abelian category Coh(X):

Db(X) := Db(Coh(X)),

which is viewed as a k-linear triangulated category.
To be a little more precise, one first introduces the category Komb(X) of bounded

complexes E• = . . . //Ei−1 //Ei //Ei+1 // . . ., where Ei ∈ Coh(X) and Ei = 0 for
|i| � 0. Morphisms in Komb(X) are given by commutative diagrams

E•

ϕ
��

. . . // Ei−1

ϕi−1

��

// Ei //

ϕi��

Ei+1 //

ϕi+1

��

. . .

F • . . . // F i−1 // F i // F i+1 // . . .

333
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There exists a natural functor Komb(X) //Db(X) which identifies the objects of both
categories, so

Ob(Db(X)) = Ob(Komb(X)),

and, roughly, inverts quasi-isomorphisms.
Recall that a morphism of complexes ϕ : E• //F • is called a quasi-isomorphism (qis)

if the induced morphisms H i(ϕ) : H i(E•) //H i(F •) between the cohomology sheaves
are isomorphisms in all degrees i.
However, as an intermediate step in the passage from Komb(X) to Db(X) one con-

structs the homotopy category Kb(X). It has again the same objects as Komb(X), but

HomKb(X)(E
•, F •) = HomKomb(X)(E

•, F •)/∼,

where a homotopy ∼ between two morphisms of complexes ϕ,ψ : E• //F • is given by
morphisms hi : Ei //F i−1 with ϕi − ψi = hi+1 ◦ diE + di−1

F ◦ hi. It can be shown that a

morphism E• //F • in Db(X) is an equivalence class of roofs E• G•
ψoo ϕ // F • in

Kb(X) with ψ a quasi-isomorphism. Two roofs are equivalent if they can be dominated
by a third making all diagrams commutative in Kb(X) (so, up to homotopy only). Of
course, at this point a lot of details need to be checked. In particular, one has to define
the composition of roofs and show that it behaves well with respect to the equivalence of
roofs. In any case, the composition

Komb(X) //Kb(X) //Db(X)

identifies the objects of all three categories and, on the level of homomorphisms, one first
divides out by homotopy and then localizes quasi-isomorphisms.
What makes Db(X) a triangulated category is the existence of the shift

E• � //E•[1],

defined by E•[1]i = Ei+1 and diE[1] = −di+1
E , and of exact (or distinguished) triangles. A

triangle in Db(X) is given by morphisms E• //F • //G• //E•[1]. A triangle is exact
if it is isomorphic, in Db(X), to a triangle of the form

A•
ϕ // B•

τ // C(ϕ)
π // A•[1],

where C(ϕ) with C(ϕ)i := Ai+1 ⊕Bi is the mapping cone of a morphism ϕ in Komb(X)

and τ and π are the natural morphisms. Again, a number of things need to be checked to
make this a useful notion, e.g. that rotating an exact triangle E• //F • //G• //E•[1],
yields again an exact triangle F • //G• //E•[1] //F •[1] (with appropriate signs). The
properties of the shift functor and the collection of exact triangles in Db(X) can be turned
into the notion of a triangulated category satisfying axioms TR1-TR4.
To conclude this brief reminder of the construction of Db(X), recall that there exists a

fully faithful functor
Coh(X) �

� // Db(X)
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satisfying Exti(E,F ) ' HomDb(X)(E,F [i]). For this reason we also use the notation
Exti(E•, F •) := HomDb(X)(E

•, F •[i]) for complexes E• and F •.

1.2. For the following see also the discussion in Section 12.1.3.
The Grothendieck group K(Coh(X)) of the abelian category Coh(X) of, say a smooth

projective variety X, is defined as the quotient of the free abelian group generated by
all [E], with E ∈ Coh(X), divided by the subgroup generated by expressions of the form
[F ]− [E]− [G] for short exact sequences 0 //E //F //G // 0.
Similarly, the Grothendieck group K(Db(X)) of the triangulated category Db(X) is the

quotient of the free abelian group generated by all [E•], with E• ∈ Db(X), divided by
the subgroup generated by expressions of the form [F •]− [E•]− [G•] for exact triangles
E• //F • //G• //E•[1]. Note that [E•[1]] = −[E•] in K(Db(X)). Using the full
embedding Coh(X) �

� // Db(X) one obtains a natural isomorphism

K(X) := K(Coh(X)) ∼− // K(Db(X)),

the inverse of which is given by [E•] � //
∑

(−1)i[Ei].
The Euler pairing

χ(E•, F •) :=
∑

(−1)i dim Exti(E•, F •)

is well-defined for bounded complexes and, by using additivity for exact sequences, can
be viewed as a bilinear form χ( , ) on K(X). Note that Serre duality implies χ(E•, F •) =

(−1)nχ(F •, E• ⊗ ωX), where n = dim(X).
The numerical Grothendieck group (cf. Section 10.2)

N(X) := K(X)/∼

is defined as the quotient by the radical of χ( , ). This is well-defined, for if χ(E•, F •) = 0

for fixed E• and all F • then also χ(F •, E•) = (−1)nχ(E•, F • ⊗ ωX) = 0.

From now on our notation does not distinguish between sheaves F and complexes of
sheaves F • – both are usually denoted by just F .

1.3. For a smooth projective variety X of dimension n the composition

S : Db(X) ∼− // Db(X), E � //E ⊗ ωX [n]

is a Serre functor, i.e. for all complexes E and F there exist functorial isomorphisms

HomDb(X)(E,F ) ∼− // HomDb(X)(F,E ⊗ ωX [n])∗.

This, in particular, yields the more traditional form of Serre duality (cf. the discussion in
Section 9.1.2)

Exti(E,F ) ∼− // Extn−i(F,E ⊗ ωX)∗.

For a K3 surface X the Serre functor is isomorphic to the double shift:

S : E � //E•[2].
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Grothendieck–Verdier duality, a natural generalization of Serre duality, is crucial for
the following discussion of Fourier–Mukai functors, see [252, Sec. 3.4] for the formulation
and references.

Definition 1.1. Let X and Y be two smooth projective varieties over k and let P ∈
Db(X × Y ). Then the associated Fourier–Mukai transform

Φ := ΦP : Db(X) //Db(Y )

is the exact functor given as the composition of derived functors

E � //Lq∗E � //Lq∗E ⊗L P � //Rp∗(Lq
∗E ⊗L P),

where q and p denote the two projections to X and Y

Under our assumptions on X and Y , all functors are well-defined and indeed map
bounded complexes to bounded complexes. As all functors on the level of derived cate-
gories have to be considered as derived functors anyway, one often simply writes

ΦP(E) := p∗(q
∗E ⊗ P).

The kernel P can also be used to define a Fourier–Mukai transform in the other direction
Db(Y ) //Db(X), which, by abuse of notation, is also denoted ΦP .

Remark 1.2. For proofs and details of the following facts we refer to [252].
i) A Fourier–Mukai functor ΦP : Db(X) //Db(Y ) admits left and right adjoints which

can be described as Fourier–Mukai transforms

ΦPL
,ΦPR

: Db(Y ) //Db(X)

with
PL := P∗ ⊗ p∗ωY [dim(Y )] and PR := P∗ ⊗ q∗ωX [dim(X)].

Here, P∗ denotes the derived dual RHom(P,O).
ii) The composition of two Fourier–Mukai transforms

ΦP : Db(X) //Db(Y ) and ΦQ : Db(Y ) //Db(Z)

with P ∈ Db(X × Y ) and Q ∈ Db(Y × Z) is again a Fourier–Mukai transform

ΦR := ΦQ ◦ ΦP : Db(X) //Db(Z).

The Fourier–Mukai kernel R can be described as the convolution of P and Q:

R ' πXZ∗(π∗XY P ⊗ π∗Y ZQ),

where, for example, πXY denotes the projection X × Y × Z //X × Y .

In the following, X and Y are always smooth projective varieties over a field k. They
are called derived equivalent if there exists a k-linear exact equivalence

Db(X) ∼− // Db(Y ).

Recall that a functor between triangulated categories is exact if it commutes with shift
functors and maps exact triangles to exact triangles.
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Due to a result of Orlov, any k-linear exact equivalence is isomorphic to a Fourier–Mukai
transform ΦP (even for non-algebraically closed fields). This theorem has been improved
and generalized, see [99] for a recent survey and references. So, no information is lost
when restricting to the seemingly more manageable class of Fourier–Mukai transforms.

Remark 1.3. It seems that there is not a single example of an exact equivalence
Db(X) ∼− // Db(Y ) known that has been described without using the Fourier–Mukai
formalism.

1.4. To test whether a given exact functor is fully faithful it is often enough to
control the images of objects in a spanning class. A collection of objects Ω ⊂ Db(X) on
a K3 surface is called a spanning class if for all F ∈ Db(X) the following condition is
satisfied: If Hom(E,F [i]) = 0 for all E ∈ Ω and all i, then F ' 0.1

The following criterion due to Orlov (see [252, Prop. 1.49] for the proof and references)
is often the only method that allows one to decide whether a given functor is fully faithful.

Lemma 1.4. Let Φ: Db(X) //Db(Y ) be a Fourier–Mukai transform and let Ω ⊂
Db(X) be a spanning class. Then Φ is fully faithful if and only if Φ induces isomorphisms

Hom(E,F [i]) ∼− // Hom(Φ(E),Φ(F )[i])

for all E,F ∈ Ω and all i.

Example 1.5. Here are the three most frequent examples of spanning classes in Db(X).
i) The set Ω := {k(x) | x ∈ X closed} is a spanning class. Indeed, for any non-

trivial coherent sheaf F and a closed point x ∈ X in its support Hom(F, k(x)) 6= 0.
For complexes one argues similarly using a non-trivial homomorphism from the maximal
non-vanishing cohomology sheaf of F to some k(x).
ii) For any ample line bundle L on X, the set Ω := {Li | i ∈ Z} is a spanning class.

Indeed, Hom(Li, F ) 6= 0 for any non-trivial coherent sheaf F and i � 0. For complexes
one argues via the minimal non-vanishing cohomology sheaf of F .
iii) Let E ∈ Db(X) be any object and

E⊥ := {F | Hom(E,F [i]) = 0 for all i}.

It is easy to see that Ω = {E} ∪ E⊥ is a spanning class.

For the first example of a spanning class, the following result due to Bondal and Orlov
is a surprising strengthening of Lemma 1.4. However, for K3 surfaces one can often get
away without it.

Proposition 1.6. Let Φ: Db(X) //Db(Y ) be a Fourier–Mukai transform of smooth
projective varieties over an algebraically closed field k.
Then, Φ is fully faithful if and only if Hom(Φ(k(x)),Φ(k(x))) ' k for arbitrary closed

points x, y ∈ X and Exti(Φ(k(x)),Φ(k(y))) = 0 for x 6= y or i < 0 or i > dim(X).

1Due to Serre duality, the condition is equivalent to: If Hom(F,E[i]) = 0 for all E ∈ Ω and all i,
then F ' 0. This needs to be added if ωX is not trivial.
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In order to apply Lemma 1.4 directly, one would also need to ensure that the maps

(1.1) TxX ' Ext1(k(x), k(x)) //Ext1(Φ(k(x)),Φ(k(x)))

are isomorphisms for all x ∈ X. The map (1.1) compares first order deformations of k(x)

and of Φ(k(x)) via Φ. This point of view emphasizes that a Fourier–Mukai transform
ΦP defines an equivalence if P can be seen as a universal family of complexes on Y

parametrized by X and vice versa.
For later use note that for an equivalence Φ the isomorphisms (1.1) glue to an isomor-

phism between the tangent bundle and the relative Ext-sheaf:

(1.2) TX ∼− // Ext1q(P,P).

Similarly, one constructs an isomorphism OX ∼− // Ext0q(P,P). See [252, Ch. 11.1] for
details.
Typically, the hardest part in proving a given functor ΦP : Db(X) //Db(Y ) is an

equivalence is in proving that it is fully faithful. That the functor is then an equivalence
is often deduced from the following result, cf. [252, Cor. 1.56].

Lemma 1.7. Let Φ: Db(X) //Db(Y ) be a fully faithful Fourier–Mukai transform
which commutes with Serre functors, i.e. Φ ◦ SX ' SY ◦ Φ. Then Φ is an equivalence.

Proof. We sketch the main steps of the proof. To simplify notations, write G := ΦPL

and H := ΦPR
for the left and right adjoint of Φ. First, one shows that H(F ) = 0 implies

G(F ) = 0. Indeed, if H(F ) = 0, then Hom(E,H(F )) = 0 for all E ∈ Db(X). Using
adjunction twice, Serre duality, and the compatibility of Φ with SX and SY , one gets
Hom(G(F ), SX(E)) = 0 for all E and, therefore, by the Yoneda lemma G(F ) = 0.
Next, define full triangulated subcategories D1, D2 ⊂ Db(Y ) as follows. Let

D1 := Im(Φ) := {Φ(E) | E ∈ Db(X)} and D2 := Ker(H) := {F | H(F ) = 0}.

Using the adjunction morphism Φ ◦ H // id, every object F ∈ Db(Y ) can be put in
an exact triangle Φ(H(F )) //F //F ′ with H(F ′) = 0 (use id ' H ◦ Φ for fully
faithful Φ). However, then by the first step and adjunction Hom(F ′,Φ(H(F ))[1]) =

Hom(G(F ′), H(F )[1]) = 0 and thus F ' Φ(H(F )) ⊕ F ′. This eventually yields a direct
sum decomposition Db(Y ) ' D1 ⊕D2. Studying the induced decomposition of OY and
of all point sheaves k(y), y ∈ Y , one proves D2 = 0, i.e. Φ: Db(X) ∼− // Db(Y ). �

2. Examples of (auto)equivalences

Before attempting a classification of all Fourier–Mukai partners of a fixed K3 surface
X and a description of the group Aut(Db(X)) of autoequivalences of its derived category,
we prove one basic fact and describe a few important examples which form the building
blocks for both problems.
For the rest of the section, all K3 surfaces are assumed to be projective over a fixed

field k.
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2.1. Let us first show that derived categories of K3 surfaces cannot be realized by
any other type of varieties:

Proposition 2.1. Suppose X is a K3 surface and Y is a smooth projective variety
derived equivalent to X. Then Y is a K3 surface.

Proof. Any Fourier–Mukai equivalence Φ = ΦP : Db(X) ∼− // Db(Y ) commutes with
Serre functors, i.e. Φ◦SX ' SY ◦Φ. Hence, SY ' Φ◦SX ◦Φ−1. However, as SX is the shift
E � //E[2] and Φ commutes with shifts, also the Serre functor SY : F � //F ⊗ωY [dim(Y )]

is just F � //F [2]. Hence, ωY ' OY , dim(Y ) = 2 and, by Enriques classification, Y is
either a K3 or an abelian surface.
To exclude abelian surfaces, one uses the two spectral sequences, where as before p and

q denote the two projections.

(2.1) Eij2 = H i(X, Extjq(P,P))⇒ Exti+jX×Y (P,P)

and

(2.2) Eij2 = H i(Y, Extjp(P,P))⇒ Exti+jX×Y (P,P).

Writing Extjp(P,P) = Rjp∗(P∗⊗P), etc., they can be viewed as Leray spectral sequences
for the two projections.
From (2.1) one then deduces the exact sequence

0 //H1(X, Ext0q(P,P)) //Ext1
X×Y (P,P) //H0(X, Ext1q(P,P)) // . . . .

Using (1.2) and the assumption that X is a K3 surface, one finds H1(X, Ext0q(P,P)) '
H1(X,OX) = 0 and H0(X, Ext1q(P,P)) ' H0(X, TX) = 0. Hence, Ext1

X×Y (P,P) = 0.
Now using the analogous exact sequence obtained from (2.2) one finds H1(Y,OY ) =

H1(Y, Ext0p(P,P)) �
� // Ext1

X×Y (P,P) = 0 and hence H1(Y,OY ) = 0. Therefore, Y is
indeed a K3 surface.
Alternatively, one can use the induced isomorphism between singular or étale cohomol-

ogy (see Sections 3.1 and 4.3) to exclude Y from being an abelian surface. �

Definition 2.2. Let X be a K3 surface. Any K3 surface Y for which there exists a
k-linear exact equivalence Db(X) ' Db(Y ) is called a Fourier–Mukai partner of X. The
set of all such Y up to isomorphisms is denoted

FM(X) := {Y | Db(X) ' Db(Y )}/'.

Note that of course X ∈ FM(X) and so this set is never empty.

2.2. Recall the notion of moduli spaces of stable sheaves, see Section 10.2. Suppose
the moduli space MH(v) = MH(v)s of H-stable sheaves E with Mukai vector v(E) = v

is projective and two-dimensional. Then 〈v, v〉 = 0 and MH(v) is in fact a K3 surface,
see Corollaries 10.2.1 and 10.3.5. Assume furthermore that there exists a universal sheaf
E on MH(v)×X, i.e. that MH(v) is a fine moduli space.2

2For k algebraically closed, the moduli space is fine if there exists a v′ ∈ N(X) with 〈v, v′〉 = 1 and
H is generic, see Section 10.2.2.
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Proposition 2.3. The universal family E on MH(v)×X induces an exact equivalence

ΦE : Db(MH(v)) ∼− // Db(X).

Proof. We may assume that k is algebraically closed, cf. the discussion in Section
4.2. As both, X and MH(v) are smooth surfaces with trivial canonical bundle, it suffices
to show that ΦE is fully faithful, cf. Lemma 1.7. We want to apply Lemma 1.4 using the
spanning class Ω := {k(t) | t ∈MH(v)}.
For closed points t1 6= t2, the corresponding sheaves E1 := E|{t1}×X and E2 := E|{t2}×X

are non-isomorphic stable sheaves of the same Mukai vector v. Hence, Hom(E1, E2) =

0 = Hom(E2, E1) and by Serre duality Ext2(E1, E2) = 0. As χ(E1, E2) = −〈v, v〉 = 0,
also Ext1(E1, E2) = 0.
If t1 = t2 =: t and so E1 ' E2 =: E, one has Hom(E,E) = k and by Serre duality

Ext2(E,E) = k. Moreover, the induced map TtMH(v) ∼− // Ext1
X(E,E) is an isomor-

phism, see Proposition 10.1.11. �

One could also reverse the order of arguments by first proving Db(X) ' Db(MH(v))

under the assumption that MH(v) = MH(v)s is a projective surface and that a universal
family exists. Proposition 2.1 then would imply thatMH(v) is a K3 surface, cf. Corollary
10.3.5.

Example 2.4. Consider an elliptic K3 surface X //P1 and let Jd(X) //P1 be its
Jacobian fibration of degree d, see Section 11.4.2. As was explained there, Jd(X) '
MH(vd) for vd = (0, [Xt], d) and H generic. The moduli space MH(vd) = MH(vd)

s is fine
if there exists a vector v′ with 〈v, v′〉 = 1. The latter is equivalent to d and the index d0

(see Definition 11.4.3) being coprime. Hence,

Db(Jd(X)) ' Db(X)

for g.c.d.(d, d0) = 1.

2.3. Let us exhibit some standard Fourier–Mukai transforms before introducing
spherical twists, responsible for the rich structure of the group of autoequivalences of
derived categories of K3 surfaces.

i) For any morphism f : X // Y the direct image functor f∗ : Db(X) //Db(Y ) and the
pull-back f∗ : Db(Y ) //Db(X) (both derived) are Fourier–Mukai transforms with kernel
OΓf ∈ Coh(X × Y ), the structure sheaf of the graph Γf ⊂ X × Y .

ii) If L ∈ Pic(X), then Db(X) ∼− // Db(X), E � //L ⊗ E defines a Fourier–Mukai auto-
equivalence with Fourier–Mukai kernel ∆∗L. Here, ∆: X �

� // X×X denotes the diagonal
embedding.

iii) The shift functor Db(X) ∼− // Db(X), E � //E[1] is the Fourier–Mukai transform
with kernel O∆[1]. Similarly, the Serre functor for a K3 surface X is the Fourier–Mukai
transform with kernel O∆[2].
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Definition 2.5. An object E ∈ Db(X) on a K3 surface X is called spherical if

Exti(E,E) '
{
k if i = 0, 2

0 else.

Consider the cone of the composition of the restriction to the diagonal with the trace

PE := C

(
E∗ � E // (E∗ � E)|∆

tr // O∆

)
∈ Db(X ×X).

Definition 2.6. The spherical twist

TE : Db(X) ∼− // Db(X)

associated with a spherical object E ∈ Db(X) is the Fourier–Mukai equivalence with
kernel PE , i.e. TE := ΦPE .

The easiest argument to show that TE is indeed an equivalence uses the spanning class
{E} ∪ E⊥. It is straightforward to check that

TE(E) ' E[−1] and TE(F ) ' F for F ∈ E⊥,

from which the assumptions of Lemma 1.4 can be easily verified. This argument is due
to Ploog and simplifies the original one of Seidel and Thomas, see [252, Prop. 8.6] for
details and references. Note that due to Lemma 1.7 fully faithfulness of TE immediately
implies that it is an equivalence.

Example 2.7. i) Any line bundle L on a K3 surface X can be considered as a spherical
object in Db(X), for Ext1(L,L) ' H1(X,O) = 0. Note that the two autoequivalences,
TL and L⊗ ( ), associated with a line bundle L are different for all L.
ii) If P1 ' C ⊂ X is a smooth rational curve, then OC(`) considered as a sheaf on X,

or rather as an object in Db(X), is spherical for all `. Obviously, Exti(OC(`),OC(`)) is
one-dimensional for ` = 0, 2. The vanishing of Ext1 can be deduced from 〈v, v〉 = −2

for v = v(OC(`)) = (0, [C], ` + 1) (see below) or, more geometrically, by observing that
OC(`) really has no first order deformations.

The group of all k-linear exact autoequivalences of Db(X) up to isomorphisms shall be
denoted

Aut(Db(X)) := {Φ: Db(X) ∼− // Db(X) | k-linear, exact}/'.

2.4. Any Fourier–Mukai transform Φ: Db(X) //Db(Y ) induces a natural map

ΦK : K(X) //K(Y ), [F ] � // [Φ(F )].

For Φ = f∗ or Φ = L⊗ ( ) this is of course given by the push-forward f∗ : K(X) //K(Y )

and the tensor product with L, respectively. For the spherical twist Φ = TE one has

TKE [F ] = [F ]− χ(F,E) · [E],

i.e. TKE is the reflection associated with the (−2)-class [E] ∈ K(X).
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For an equivalence Φ, one has χ(E,F ) = χ(Φ(E),Φ(F )). Thus, the induced ΦK

descends to a homomorphism between the numerical Grothendieck groups

ΦN : N(X) //N(Y ).

To make this more explicit let us first show that N(X) with the induced pairing χ( , )

is isomorphic to the extended Néron–Severi group Z⊕NS(X)⊕ Z = NS(X)⊕ U with U
the hyperbolic plane. We use the Mukai vector to define a map

K(X) // Z⊕NS(X)⊕ Z,
[E] � // v(E),

where v(E) is the Mukai vector of E:

v(E) = (rk(E), c1(E), χ(E)− rk(E))

= (rk(E), c1(E), c1(E)2/2− c2(E) + rk(E)).

Recall, 〈v1, v2〉 for vi := (ri, `i, si) is the Mukai pairing (`1.`2) − r1s2 − s1r2, cf. Section
9.1.2. Thus, indeed

N(X) = K(X)/∼
∼− // Z⊕NS(X)⊕ Z ' NS(X)⊕ U

and we henceforth think of N(X) rather as N(X) = Z⊕NS(X)⊕ Z.
For a Fourier–Mukai equivalence Φ: Db(X) //Db(Y ) the induced homomorphism

ΦN : N(X) //N(Y )

sends v(E) to v(ΦP(E)). In this description the spherical twist TE acts again as the
reflection associated with the (−2)-class v(E) ∈ N(X):

(2.3) TNE : N(X) ∼− // N(X), v � // v + 〈v, v(E)〉 · v(E).

Using the multiplicative structure of N(X), one finds that the tensor product Φ = L⊗ ( )

acts by ΦN : v � // exp(`) · v, where exp(`) := ch(L) = (1, `, `2/2) for ` := c1(L). This is
an example of a B-field shift, cf. Section 14.2.3.

Corollary 2.8. Any equivalence Φ: Db(X) ∼− // Db(Y ) between K3 surfaces induces
an isometry of the extended Néron–Severi lattices

ΦN : N(X) ∼− // N(Y ).

In particular, ρ(X) = ρ(Y ). �

Using the Mukai vector of the Fourier–Mukai kernel of an arbitrary Fourier–Mukai
transform Φ: Db(X) //Db(Y ), one can define a homomorphism ΦN : N(X) //N(Y )

(cf. Proposition 3.2) without assuming Φ to be an equivalence. However, ΦN is in general
neither injective nor compatible with the Mukai pairing.

Corollary 2.9. Any (−2)-class in the numerical Grothendieck group N(X) of a K3
surface over an algebraically closed field can be realized (non-uniquely) as the Mukai vector
v(E) of a spherical object E ∈ Db(X).
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Proof. According to Remark 10.3.3, any (−2)-class δ = (r, `, s) ∈ N(X) with r > 0

can be realized as v(E) of a rigid simple bundle E. The case r < 0 follows by taking
v(E[1]) for v(E) = −δ. If r = 0, then after tensoring with a high power of an ample
line bundle one can assume s 6= 0. If v(E) = −(s, `, 0) (which is still a (−2)-class), then
v(TO(E)) = δ. Compare this to the arguments in the proof of Proposition 3.5. �

Remark 2.10. However, in general the usual Néron–Severi lattices NS(X) and NS(Y )

are not isomorphic. In fact, in [467] Oguiso shows that for any n > 0 there exist n derived
equivalent complex projective K3 surfacesX1, . . . , Xn with pairwise non-isometric Néron–
Severi lattices NS(X1), . . . ,NS(Xn). See also Stellari’s article [572].

Example 2.11. We come back to the Jacobian fibration Jd(X) //P1 of degree d of
an elliptic K3 surface X //P1. For g.c.d.(d, d0) = 1 we have noted in Example 2.4 that
Db(Jd(X)) ' Db(X) and, therefore, N(Jd(X)) ' N(X). In particular,

disc NS(X) = disc NS(Jd(X)),

confirming (4.6) in Section 11.4.2.

3. Action on cohomology

It is not surprising that for complex K3 surfaces more detailed information about
derived (auto)equivalences can be obtained from Hodge theory. As it turns out, by a
beautiful theorem combining work of Mukai and Orlov, whether two complex projective
K3 surfaces have equivalent derived categories is determined by their Hodge structures.
This is a derived version of the Global Torelli Theorem 7.5.3.

In this section we are mostly concerned with complex projective K3 surfaces. For results
over other fields see Section 4.

3.1. When the integral cohomology of a complex K3 surface X

H∗(X,Z) = H0(X,Z)⊕H2(X,Z)⊕H4(X,Z) ' H2(X,Z)⊕ U

is viewed with the Mukai pairing (cf. Section 9.1.2)

〈α, β〉 := (α2.β2)− (α0.β4)− (α4.β0)

and the cohomological grading is suppressed, it is denoted H̃(X,Z). It comes with a
weight-two Hodge structure defined by

H̃1,1(X) := H1,1(X)⊕ (H0 ⊕H4)(X) and H̃2,0(X) := H2,0(X),

which is in fact determined by H̃2,0(X) and the condition that H̃2,0(X) and H̃1,1(X) are
orthogonal with respect to the Mukai pairing.
Moreover, the numerical Grothendieck (or extended Néron–Severi) group can then be

identified as

N(X) ' H̃1,1(X) ∩ H̃(X,Z) = (H1,1(X) ∩H2(X,Z))⊕ (H0 ⊕H4)(X,Z)

and the Mukai vector v(E) of any complex E ∈ Db(X) can be written as v(E) =

(rk(E), c1(E), c1(E)2/2 − c2(E) + rk(E)) ∈ N(X) ⊂ H̃(X,Z). That v(E) is indeed
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an integral class can be deduced from the fact that the intersection pairing on H2(X,Z)

is even or by using c1(E)2/2− c2(E) + rk(E) = χ(E)− rk(E). As it turns out, this still
holds for objects on the product of two K3 surfaces, because of the following technical
lemma due Mukai, see [252, Lem. 10.6].

Lemma 3.1. For any complex P ∈ Db(X × Y ) on the product of two K3 surfaces X
and Y , the Mukai vector v(P) := ch(P)

√
td(X × Y ) ∈ H∗(X × Y,Q) is integral, i.e.

contained in H∗(X × Y,Z).

Proposition 3.2. Let ΦP : Db(X) ∼− // Db(Y ) be a derived equivalence between K3
surfaces X and Y . Then the cohomological Fourier–Mukai transform α � // p∗(q

∗α.v(P))

defines an isomorphism of Hodge structures

ΦH
P : H̃(X,Z) ∼− // H̃(Y,Z)

which is compatible with the Mukai pairing, i.e. ΦH
P is a Hodge isometry.

Proof. Since by the lemma v(P) is integral, ΦH
P maps H∗(X,Z) to H∗(Y,Z). Note

however that it usually does not respect the grading. Applying the same argument to its
inverse ΦPL

= ΦPR
and using that ΦH

O∆
= id, one finds that ΦH

P is an isomorphism of
Z-modules.
We have to prove that it preserves the Mukai pairing and the Hodge structures. As v(P)

is an algebraic class and thus v(P) ∈
⊕
H i,i(X × Y ), clearly ΦH

P (H2,0(X)) = H2,0(Y ).
As H̃1,1 ⊥ H̃2,0, it remains to verify the compatibility with the Mukai pairing, which
for classes in N(X) ⊂ H̃(X,Z) follows from χ(E,F ) = χ(Φ(E),Φ(F )). To prove it for
arbitrary classes in H̃(X,Z), it suffices to check that 〈ΦH

P (α), β〉 = 〈α,ΦH
P
−1

(β)〉, which
can be proved by using Φ−1

P = ΦPL
and applying the projection formula for the two

projections of X × Y on cohomology. See [252, Prop. 5.44] for details. �

Remark 3.3. The cohomological Fourier–Mukai transform ΦH
P : H̃(X,Z) ∼− // H̃(Y,Z),

α � // p∗(q
∗α.v(P)) does indeed extend ΦN

P : N(X) //N(Y ), v(E) � // v(ΦP(E)). This is
a consequence of the Grothendieck–Riemann–Roch formula applied to the projection
p : X × Y // Y , which shows ch(p∗(q

∗E ⊗P))td(Y ) = p∗(ch(q∗E ⊗P)td(X × Y )). Note
that the Grothendieck–Riemann–Roch formula is also used for the diagonal embedding
∆: X �

� // X ×X to show that ΦH
O∆

= id, which was used in the above proof.

Example 3.4. i) For a spherical twist TE : Db(X) ∼− // Db(X) the induced action on
cohomology is again just the reflection

THE = sv(E) : α � //α+ 〈α, v(E)〉 · v(E)

in the hyperplane orthogonal to the (−2)-class v(E) ∈ N(X) = H̃1,1(X,Z), cf. (2.3). In
particular, THO is the identity on H2(X,Z) and acts by (r, 0, s) � // (−s, 0,−r) on (H0 ⊕
H4)(X,Z). Another important example is the case E = OC(−1) with C ' P1. Then THE
is the reflection s[C], cf. Remark 8.2.10.
ii) The autoequivalence of Db(X) given by E � //L⊗E for some line bundle L acts on

cohomology via multiplication with exp(`) = (1, `, `2/2) ∈ H̃1,1(X,Z), where ` = c1(L).
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iii) Suppose a K3 surface X is isomorphic to a fine moduli space MH(v) = MH(v)s

of stable sheaves on Y and P = E is a universal family. For the induced equivalence
ΦE : Db(X) ∼− // Db(Y ) (see Proposition 2.3) one has ΦH

E (0, 0, 1) = v, because (0, 0, 1) =

v(k(t)) for any t ∈ X = MH(v)s.

3.2. Using the Global Torelli Theorem 7.5.3, the above proposition has been com-
pleted by Orlov in [480] to yield the following

Proposition 3.5. Two complex projective K3 surfaces X and Y are derived equivalent
if and only if there exists a Hodge isometry H̃(X,Z) ' H̃(Y,Z).

Proof. We copy the proof from [252, Sec. 10.2]. Only the ‘if’ remains to be veri-
fied. So suppose ϕ : H̃(X,Z) ∼− // H̃(Y,Z) is a Hodge isometry. It will be changed by
Hodge isometries induced by Fourier–Mukai equivalences until the classical Global Torelli
Theorem applies. We let v := (r, `, s) := ϕ(0, 0, 1).
i) Assume first that v = ±(0, 0, 1). As (0, 0, 1)⊥ = H2 ⊕ H4, the Hodge isometry ϕ

then induces a Hodge isometry H2(X,Z) ∼− // H2(Y,Z). Hence, X ' Y by the Global
Torelli Theorem 7.5.3 and, in particular, Db(X) ' Db(Y ).
ii) Next suppose r 6= 0. Changing ϕ by a sign if necessary, one can assume r > 0.

Then consider the moduli space M := MH(v)s of stable sheaves on Y with Mukai vector
v. As 〈v, v〉 = 〈(0, 0, 1), (0, 0, 1)〉 = 0, M is two-dimensional. Using that v is primitive
and choosing H generic, M is seen to be projective and hence a K3 surface, see Corollary
10.3.5. It follows from the existence of v′ := ϕ(−1, 0, 0) with 〈v, v′〉 = 1 that there exists
a universal sheaf E on Y ×M , see Section 10.2.2. By Proposition 2.3 the Fourier–Mukai
transform ΦE : Db(M) ∼− // Db(Y ) is an equivalence with ΦH

E (0, 0, 1) = v. Hence, for the
composition one finds ΦH

E
−1

(ϕ(0, 0, 1)) = (0, 0, 1). Therefore, X ' M by step i) and in
particular Db(X) ' Db(M) ' Db(Y ).
iii) If v = (0, `, s) with ` 6= 0, then compose ϕ first with the Hodge isometry exp(c1(L))

for some L ∈ NS(Y ) such that s + (c1(L).`) 6= 0 and then with the Hodge isometry
THOY , cf. Example 3.4. The new Hodge isometry satisfies the assumption of step ii). As
exp(c1(L)) is induced by the equivalence L⊗ ( ) and THOY by the spherical twist TOY , one
concludes also in this case that Db(X) ' Db(Y ). (Alternatively, one could try to use a
moduli space MH(v) for v = (0, `, s) with s 6= 0 and then argue as in ii), see Proposition
10.2.5. However, for the non-emptiness one would need to add hypotheses on ` as in
Theorem 10.2.7.) �

Remark 3.6. The proof actually reveals that for derived equivalent K3 surfaces X
and Y either X ' Y or X is isomorphic to a moduli space of stable sheaves of positive
rank on Y , i.e. X 'MHY (v)s. In [253] it has been shown that in the latter case X is in
fact isomorphic to a moduli space of µ-stable(!) vector bundles(!) on Y .

Using more lattice theory, the above result can also be stated as follows.

Corollary 3.7. Two complex projective K3 surfaces X and Y are derived equivalent
if and only if there exists a Hodge isometry T (X) ' T (Y ) between their transcendental
lattices.
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Proof. This has been stated already as Corollary 14.3.12. Here is the proof again.
Let ϕ : T (X) ∼− // T (Y ) be a Hodge isometry. We use Nikulin’s Theorem 14.1.12

and Remark 14.1.13, iii) to conclude that due to the existence of the hyperbolic plane
(H0 ⊕H4)(X,Z) in T (X)⊥ ⊂ H̃(X,Z), the two embeddings

T (X) �
� // H̃(X,Z) and T (X) ∼− // T (Y ) �

� // H̃(Y,Z)

into the two lattices H̃(X,Z) and H̃(Y,Z), which are abstractly isomorphic, differ by an
isometry, i.e. the isometry ϕ extends to an isometry ϕ̃ : H̃(X,Z) ∼− // H̃(Y,Z). Automat-
ically, ϕ̃ is also compatible with Hodge structures. �

Similar lattice theoretic tricks, e.g. using the existence of hyperbolic planes in the
orthogonal complement of the transcendental lattice, can be used to show that particular
K3 surfaces do not admit any non-trivial Fourier–Mukai partners.

Corollary 3.8. In the following cases, a K3 surface X does not admit any non-
isomorphic Fourier–Mukai partners, i.e.

FM(X) = {X}.

(i) X admits an elliptic fibration with a section,
(ii) ρ(X) ≥ 12,
(iii) ρ(X) ≥ 3 and disc NS(X) is square free.

Proof. (i) The Picard lattice NS(X) contains a hyperbolic plane U �
� // NS(X)

spanned by Xt and a section C0. Therefore, FM(X) = {X}, see Remark 14.3.11. Note,
however, that for elliptic K3 surfaces without a section the situation is of course different,
see Example 2.4.
(ii) Any Hodge isometry T (X) ∼− // T (Y ) extends to a Hodge isometry H2(X,Z) '

H2(Y,Z) and hence by the Global Torelli Theorem X ' Y . Compare this to Corollary
14.3.10.
(iii) By Remark 14.0.1, A(T (X)) is cyclic, i.e. `(T (X)) ≤ 1, and, therefore, by Theorem

14.1.12 the embedding T (X) �
� // H2(X,Z) is unique. �

Example 3.9. For a Kummer surface X associated with a complex abelian surface
one therefore has FM(X) = {X}. This observation can be used to prove that for two
complex abelian surfaces A and B and their associated Kummer surfaces X and Y one
has, Db(A) ' Db(B) if and only if X ' Y . See the articles by Hosono et al and Stellari
[243, 573] and the discussion in Section 3.2.5.

Proposition 3.10. Let X be a projective K3 surface over an algebraically closed field
k. Then X has only finitely many Fourier–Mukai partners, i.e.

|FM(X)| <∞.

Proof. We sketch the argument due to Bridgeland and Maciocia [85] for complex
projective K3 surfaces. For arbitrary fields see the article [369] by Lieblich and Olsson.
First recall that an equivalence Db(X) ' Db(Y ) induces (Hodge) isometries T (X) '

T (Y ) and N(X) ' N(Y ). From the latter one deduces that NS(X) and NS(Y ) have
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the same genus, so that there are only finitely many lattices realized as NS(Y ) with
Y ∈ FM(X), cf. Section 14.0.1. Hence, it is enough to show that for any K3 surface X
there are only finitely many isomorphism classes of K3 surfaces Y with Db(X) ' Db(Y )

and NS(X) ' NS(Y ). Now, H2(Y,Z) of such a Y sits in

T (X)⊕NS(X) ' T (Y )⊕NS(Y ) ⊂ H2(Y,Z) ⊂ (T (X)⊕NS(X))∗.

The isomorphism is a Hodge isometry and all inclusions are of finite index. Hence, since
the Hodge structure ofH2(Y,Z) is determined by the one on T (Y )⊕NS(Y ), there are only
finitely many Hodge structures that can be realized as H2(Y,Z). But the isomorphism
type of Y is determined by the Hodge structure H2(Y,Z) due to the Global Torelli
Theorem 7.5.3. �

Remark 3.11. Mukai applies the same techniques in [427] to prove special cases of
the Hodge conjecture for the product X×Y of two K3 surfaces X and Y . More precisely
he proves that any class in H2,2(X × Y,Q) that induces an isometry T (X)Q

∼− // T (Y )Q
is algebraic provided ρ(X) ≥ 11. In [452] Nikulin was able to weaken the hypothesis to
ρ(X) ≥ 5.

3.3. Analogously to the finer version of the Global Torelli Theorem 7.5.3, saying
that a Hodge isometry H2(X,Z) ∼− // H2(Y,Z) can be lifted to a (unique) isomorphism if
it maps a Kähler class to a Kähler class, one can refine the above technique to determine
which Hodge isometries ϕ : H̃(X,Z) ∼− // H̃(Y,Z) are induced by derived equivalences.
The first step, due to Hosono et al [244] and Ploog, is to show that for any ϕ there
exists a Fourier–Mukai equivalence ΦP : Db(X) ∼− // Db(Y ) with ΦH

P = ϕ ◦ (±idH2), cf.
[252, Cor. 10.2]. Here, −idH2 denotes the Hodge isometry of H̃(X,Z) that acts as id on
(H0 ⊕H4)(X,Z) and as −id on H2(X,Z).
For the next step, one needs to introduce the orientation of the positive directions of

H̃(X,Z). Recall that the Mukai pairing on H̃(X,Z) has signature (4, 20), in particular,
there exist four-dimensional real subspaces HX ⊂ H̃(X,R) with 〈 , 〉|H positive definite.
Although the space HX is not unique, orientations of, say HX ⊂ H̃(X,R) and of HY ⊂
H̃(Y,R), can be compared via isometries ϕ : H̃(X,Z) ∼− // H̃(Y,Z) using the orthogonal
projection ϕ(HX) ∼− // HY .
In fact, associated with an ample class ` ∈ H1,1(X,Z) there is a natural HX(`) ⊂

H̃(X,R) spanned by Re(σ), Im(σ), Re(exp(i`)), and Im(exp(i`)), where 0 6= σ ∈ H2,0(X)

and exp(i`) = (1, i`,−`2/2). Moreover, HX(`) comes with a natural orientation fixed by
the given ordering of the generators. It is straightforward to see that under orthogonal
projections these orientations of HX(`) and HX(`′) for two ample classes (or, more gener-
ally, classes `, `′ in the positive cone CX ⊂ H1,1(X,R)) coincide. We call this the natural
orientation of the four positive directions of H̃(X,Z).
Combining the above results with a deformation theoretic argument developed in [266]

one eventually obtains

Theorem 3.12. Let X and Y be complex projective K3 surfaces. For a Hodge isometry
ϕ : H̃(X,Z) ∼− // H̃(Y,Z) the following conditions are equivalent:
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(i) There exists a Fourier–Mukai equivalence ΦP : Db(X) ∼− // Db(Y ) with ϕ = ΦH
P .

(ii) The natural orientations of the four positive directions of H̃(X,Z) and H̃(Y,Z)

coincide under ϕ.

For X = Y this has the following immediate consequence.

Corollary 3.13. The image of the map

Aut(Db(X)) //Aut(H̃(X,Z)), Φ � //ΦH

is the subgroup Aut+(H̃(X,Z)) ⊂ Aut(H̃(X,Z)) of all orientation preserving Hodge
isometries of H̃(X,Z). �

3.4. Viewing Φ � //ΦH as a representation

ρ : Aut(Db(X)) // //Aut+(H̃(X,Z)),

the study of Aut(Db(X)) reduces to a description of Ker(ρ). First note that this kernel is
non-trivial. Apart from the double shift E � //E[2], also squares T 2

E of all spherical twists
TE are contained in Ker(ρ) (and usually not, and probably never, contained in Z[2]). Due
to the abundance of spherical objects (recall that all line bundles are spherical) Ker(ρ)

is a very rich and complicated group. A conjecture of Bridgeland [84] describes it as a
fundamental group. We state this conjecture in a slightly different form following [261,
Sec. 5].
First consider the finite index subgroup

Auts(D
b(X)) ⊂ Aut(Db(X))

of all Φ with ΦH = id on T (X). The fact that its quotient is a finite cyclic group is
based on the same argument that proves that Auts(X) ⊂ Aut(X) is of finite index, see
Section 15.1.3. Observe that all spherical twists TE as well as the equivalences L ⊗ ( )

are contained in Auts(D
b(X)).

Next let D ⊂ P(N(X)C) be the period domain as defined in Section 6.1.1. Note that,
as N(X) has signature (2, ρ(X)), this period domain has two connected components
D = D+ tD− which are interchanged by complex conjugation. Then let

D0 := D \
⋃
δ∈∆

δ⊥,

where ∆ := {δ ∈ N(X) | δ2 = −2}. Compare this to Remark 6.3.7. The discrete group

Õ(N(X)) := {g ∈ O(N(X)) | ḡ = id on N(X)∗/N(X)}

acts on the period domain D and preserves the open subset D0 ⊂ D. The quotient of
this action is considered as an orbifold or a stack [Õ(N(X))\D0]. The analogy with
the moduli space of polarized K3 surfaces as described in Section 6.4 (see in particular
Corollary 6.4.3 and Remark 6.3.7) is intentional and motivated by mirror symmetry.

Conjecture 3.14 (Bridgeland). For a complex projective K3 surface X there exists a
natural isomorphism

Auts(D
b(X))/Z[2] ' πst

1 [Õ(N(X))\D0].



4. TWISTED, NON-PROJECTIVE, AND IN POSITIVE CHARACTERISTIC 349

The advantage of this form of Bridgeland’s conjecture is that it describes the finite index
subgroup Auts(D

b(X)) ⊂ Aut(Db(X)) as the fundamental group of a smooth Deligne–
Mumford stack, which is very close to the fundamental group of a quasi-projective variety
and in particular finitely generated. In contrast, the original form of the conjecture in
[84] describes Ker(ρ) as a fundamental group of a complex manifold that is not quasi-
projective and, indeed, Ker(ρ) ⊂ Auts(D

b(X)) is a subgroup that is not finitely generated
anymore.

Remark 3.15. For ρ(X) = 1 the conjecture has recently been proved by Bayer and
Bridgeland [39]. In this case Kawatani [286] had shown that the conjecture is equivalent
to the statement that Ker(ρ) is the product of Z (the even shifts) and the free group
generated by all T 2

E with locally free spherical sheaves E.

4. Twisted, non-projective, and in positive characteristic

In this final section we consider K3 surfaces that are twisted or defined over fields
other than C or that are not projective. Most of what has been explained for complex
projective K3 surfaces still holds, or at least is expected to hold, for twisted projective
K3 surfaces and for projective K3 surfaces over arbitrary algebraically closed fields, but
non-projective complex K3 surfaces behave slightly differently.

4.1. Let X be a projective K3 surface and let Br(X) be its Brauer group. As
explained in the appendix, to any class α ∈ Br(X) one can associate the abelian cate-
gory Coh(X,α) of α-twisted sheaves. Its bounded derived category shall be denoted by
Db(X,α). Two twisted K3 surfaces (X,α) and (Y, β) are called derived equivalent if there
exists an exact linear equivalence Db(X,α) ' Db(Y, β). The Fourier–Mukai formalism
can be developed in the twisted context and, as proved by Canonaco and Stellari in [98],
any exact linear equivalence between twisted derived categories is of Fourier–Mukai type.

It is quite natural to consider twisted K3 surfaces even if one is a priori only interested
in untwisted ones. This was first advocated by Căldăraru in [94]. Suppose X is a K3
surface and v ∈ N(X) is a primitive Mukai vector with 〈v, v〉 = 0. For a generic ample
line bundle H the moduli space of stable sheaves MH(v) is a smooth projective surface
and in fact a K3 surface, see Corollary 10.3.5. However, MH(v) is in general not a fine
moduli space and, therefore, a priori not derived equivalent to X. The obstruction to
the existence of a universal family is a Brauer class α ∈ Br(MH(v)), see Section 10.2.2,
and an α�1-twisted universal sheaf onMH(v)×X exists. The analogous Fourier–Mukai
formalism then yields an equivalence

Db(MH(v), α−1) ∼− // Db(X),

see [94]. As non-fine moduli spaces do exist, one then is naturally led to also consider
twisted K3 surfaces. In fact, an untwisted K3 surface X usually has more truly twisted
Fourier–Mukai partners than untwisted ones. For example, in [381] Ma proved that a
K3 surface X (untwisted) with Pic(X) ' Z ·H with (H)2 = 2d is derived equivalent to
a twisted K3 surface (Y, β) with ord(β) = n if and only if n2|d, cf. Corollary 3.8.
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In order to approach derived equivalences of twisted complex K3 surfaces via Hodge
structures, as done before in the untwisted case, let us first identify the Brauer group
Br(X) of a complex K3 surface X with the subgroup

Br(X) ' H2(X,O∗X)tor ⊂ H2(X,O∗X) = H2(X,OX)/H2(X,Z)

of all torsion classes, cf. Section 18.1.2.
Via the exponential sequence, any class α ∈ Br(X) can thus be realized as the (0, 2)-

part of a class B ∈ H2(X,Q), which is unique up to NS(X)Q and H2(X,Z):

H2(X,Q) //Br(X), B � //αB.

Definition 4.1. The natural Hodge structure of weight two H̃(X,αB,Z) associated
with a twisted K3 surface (X,αB) is the Mukai lattice H̃(X,Z) with (p, q)-part given by

H̃p,q(X,αB) := exp(B) · H̃p,q(X).

Here, exp(B) := 1 + B + B2/2 ∈ H∗(X,Q) acts by multiplication on H̃(X,C) which,
as is straightforward to check, preserves the Mukai pairing. For the abstract version see
Section 14.2.3 and also [254] for a survey of various aspects of this construction and
further references.
More concretely, H̃2,0(X,αB) is spanned by

σ +B ∧ σ ∈ H2,0(X)⊕H4(X,C),

where 0 6= σ ∈ H2,0(X), and its orthogonal complement is

H̃1,1(X,αB) := (H̃2,0 ⊕ H̃0,2)(X,αB)⊥ ⊂ H̃(X,C).

Clearly, H̃2,0(X,αB) = H2,0(X) for B ∈ NS(X)Q. Also, multiplication with exp(B)

for B ∈ H2(X,Z) defines an isometry of Hodge structures H̃(X,Z) ' H̃(X,αB,Z).
Similarly, one finds that the isomorphism type of the Hodge structure H̃(X,αB,Z) only
depends on αB ∈ Br(X) ⊂ H2(X,O∗X) and not on the class B. So we shall simply write
H̃(X,α,Z) for the Hodge structure of weight two of a twisted K3 surface. Note that
the natural grading of H∗(X,Z) has been lost, so that in general H̃1,1(X,α,Z) does not
contain the (or in fact any) hyperbolic plane (H0 ⊕H4)(X,Z).
The following analogue of Proposition 3.5 was proved in [270]. Unlike the untwisted

version, the natural orientation of the four positive directions (cf. Section 3.3) H̃(X,R),
which via exp(B) is isometric to H̃(X,αB,R), does matter here.

Proposition 4.2. Two twisted complex projective K3 surfaces (X,α) and (Y, β) are
derived equivalent if and only if there exists a Hodge isometry H̃(X,α,Z) ' H̃(Y, β,Z)

respecting the natural orientation of the four positive directions.

Remark 4.3. i) Originally it was conjectured that also the analogue of Corollary 3.7
would hold for twisted K3 surfaces, but see [269, Rem. 4.10].
ii) The orientation of the four positive direction matters, as there is in general no Hodge

isometry of H̃(X,α,Z) similar to −idH2 in the untwisted case that would reverse it.
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iii) The analogue of Proposition 3.10 holds also in the twisted case. So, for a twisted
complex projective K3 surface (X,α ∈ Br(X)) there exist only finitely many isomor-
phism classes of twisted complex projective K3 surfaces (Y, β ∈ Br(Y )) with Db(X,α) '
Db(Y, β).

Remark 4.4. An untwisted K3 surface always admits spherical object, e.g. every line
bundle, even the trivial one, is an example. However, many twisted K3 surfaces do not.
In particular, on any twisted K3 surface (X,α) locally free α-twisted sheaves are all of
rank at least the order of α ∈ Br(X), see Remark 18.1.3. In this case, one expects the
group Aut(Db(X,α)) to be rather simple and in particular the kernel of

ρ : Aut(Db(X,α)) //Aut(H̃(X,α,Z))

should be spanned by [2]. That this is indeed the case has been proved in [265], which
in particular proves Conjecture 3.14 for all twisted K3 surfaces (X,α) with ∆ = ∅ or,
equivalently, D0 = D.

4.2. It was only in Section 3 that the K3 surfaces were assumed to be defined over
C. We shall now explain how one can reduce to this case if char(k) = 0. First of all, every
K3 surface X over a field k is defined over a finitely generated field k0, i.e. there exists a
K3 surface X0 over k0 such that X ' X0 ×k0 k. Similarly, if ΦP : Db(X) ∼− // Db(Y ) is a
Fourier–Mukai equivalence, then there exists a finitely generated field k0 such that X, Y ,
and P are defined over k0. It is not difficult to show that then the k0-linear Fourier–Mukai
transform ΦP0 : Db(X0) ∼− // Db(Y0) is an exact equivalence as well.
Suppose k0 is algebraically closed and E ∈ Db(X0×k0 k) is spherical. Then, as for line

bundles (see Lemma 17.2.2), there exists a spherical object E0 ∈ Db(X0) which yields
E after base change to k. Similarly, every automorphism f of X0 ×k0 k is obtained by
base change from an isomorphism f0 : X0

∼− // X0 over k0, see Remark 15.2.2. Since
analogous statements hold for smooth rational curves and for universal families of stable
sheaves, all autoequivalences described explicitly before are defined over the smaller al-
gebraically closed(!) field k0. In fact, as the kernel P of any Fourier–Mukai equivalence
ΦP : Db(X0×k0 k) ∼− // Db(Y0×k0 k) is rigid, i.e. Ext1(P,P) = 0 (see the proof of Propo-
sition 2.1), any Fourier–Mukai equivalence descends to k0. The details of the argument
are spelled out (for line bundles) in the proof of Lemma 17.2.2.
Hence, for a K3 surface X0 over the algebraic closure k0 of a finitely generated field

extension of Q and for any choice of an embedding k0
� � // C, which always exists, one

has

Aut(Db(X0 ×k0 k)) ' Aut(Db(X0)) ' Aut(Db(X0 ×k0 C)).

In this sense, for K3 surfaces over algebraically closed fields k with char(k) = 0 the
situation is identical to the case of complex K3 surfaces. Understanding the difference
between autoequivalences of Db(X0) and Db(X0×k0 k) for a non algebraically closed field
k0 is more subtle. It is related to questions about the field of definitions of line bundles
and smooth rational curves, cf. Lemma 17.2.2.
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In [240] Hassett and Tschinkel describe an example with Pic(X) ' Pic(X ×k0 k̄0)

admitting a spherical sheaf on X ×k0 k̄0 not descending to X. The paper is the first one
that studies this type of question systematically (for K3 surfaces). Special emphasis is
put on the question of (density of) rational points. For example, in the article one finds
an example of derived equivalent K3 surfaces Db(X) ' Db(Y ) for which |Aut(X)| < ∞
but |Aut(Y )| = ∞. The recent [22] contains examples of derived equivalent twisted K3
surfaces (X,α) and (Y, β) over Q with (X,α)(Q) = ∅, i.e. the Brauer class is non-trivial
in all Q-rational points, and (Y, β)(Q) 6= ∅ contrary to an expectation expressed in [240].

4.3. Let us complement the above by a brief discussion of the case of positive
characteristic. For the time being, there is only one paper that deals with this, namely
Lieblich and Olsson’s [369], to which we refer for details.
The following is [369, Thm. 5.1] which can be seen as a characteristic free version of

the first step of the proof of Proposition 3.5. Recall that N(X) ' Z ⊕ NS(X) ⊕ Z with
v(k(x)) = (0, 0, 1).

Proposition 4.5. Let Φ: Db(X) ∼− // Db(Y ) be a derived equivalence between K3
surfaces over an algebraically closed field k such that the induced map ΦN : N(X) ∼− //

N(Y ) satisfies ΦN (0, 0, 1) = ±(0, 0, 1). Then X ' Y .

Proof. As a first step we claim that Φ can be modified by autoequivalences of Db(Y )

such that the new ΦN respects the direct sum decomposition N = Z⊕NS⊕Z. For this,
one rearranges the arguments in the proof of Proposition 3.5: If ΦN (1, 0, 0) = (r, L, s),
then necessarily r = ±1 and after composing Φ with L∗ ⊗ ( ) or L⊗ ( ) one can assume
that ΦN (1, 0, 0) = ±(1, 0, 0). Then use that NS = (Z⊕ Z)⊥.
If k = C, then the Hodge isometry ΦH : H̃(X,Z) ∼− // H̃(Y,Z) of any Φ that respects

the decomposition N = Z⊕NS⊕Z restricts to a Hodge isometry H2(X,Z) ∼− // H2(Y,Z).
Hence, X ' Y by the Global Torelli Theorem 7.5.3.
Let now k be an arbitrary algebraically closed field k of characteristic zero. As X, Y ,

and the Fourier–Mukai kernel of Φ are described by finitely many equations, there exist
K3 surfaces X ′, Y ′ over the algebraic closure k′ of some finitely generated field k0 and
an equivalence Φ′ : Db(X ′) ∼− // Db(Y ′) such that its base change with respect to k′ ⊂ k

yields Φ: Db(X) ∼− // Db(Y ). Clearly, Φ′ still respects the decomposition N = Z⊕NS⊕Z.
Next choose an embedding k′ �

� // C. The base change Φ′C : Db(X ′C) ∼− // Db(Y ′C) of Φ′

still respects N = Z⊕NS⊕ Z and, therefore, X ′C ' Y ′C. But as both surfaces X ′ and Y ′

are defined over k′, also X ′ ' Y ′ and, therefore, X ' Y .
In the case of positive characteristic, one first modifies Φ further. By composing it

with spherical twists of the form TOC(−1) for (−2)-curves P1 ' C ⊂ X, one can assume
that ΦN maps an ample line bundle L on X to M with M or M∗ ample on Y , see
Corollary 8.2.9. For this one needs that TNOC(−1) is the reflection in the hyperplane
v(OC(−1))⊥ = (0, [C], 0)⊥, cf. Example 2.7. In characteristic zero, this step corresponds
to changing a Hodge isometry H2(X,Z) ∼− // H2(Y,Z) to one that maps the ample cone
to the ample cone up to sign.
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The technically difficult part, which we do not explain in detail, is a lifting argument,
that allows one to lift X and Y together with the Fourier–Mukai kernel P ∈ Db(X × Y )

to characteristic zero PK ∈ Db(XK ×YK). As being an equivalence is an open condition,
ΦPK : Db(XK) ∼− // Db(YK) is still an equivalence and it satisfies Φ(0, 0, 1) = ±(0, 0, 1).
Hence, XK ' YK and reducing back to k, while using [394], yields X ' Y . �

The following corresponds to [369, Thm. 1.2], which there was proved using crystalline
cohomology. For the sake of variety, we present a proof using étale cohomology (which
also takes care of the technical assumption char 6= 2).3

Proposition 4.6. Assume X and Y are K3 surfaces over a finite field Fq with equiv-
alent derived categories Db(X) ' Db(Y ). Then their zeta functions (see Section 4.4.1)
coincide

Z(X, t) = Z(Y, t)

and, in particular,
|X(Fq)| = |X(Fq)|.

Proof. By Orlov’s result, the assumed equivalence Φ: Db(X) ∼− // Db(Y ) is a Fourier–
Mukai transform. We let P ∈ Db(X × Y ) be its kernel. Its Mukai vector

v(P) ∈
⊕

H2k
ét (X̄ ×F̄q Ȳ ,Q`(k))

is invariant under the action of the Frobenius, as P is defined over Fq. Here, X̄ = X×Fq F̄q
and Ȳ = Y ×Fq F̄q.
Reasoning as for complex K3 surfaces with their singular cohomology, one finds that

ΦP induces an (ungraded) isomorphism

H0
ét(X̄,Q`)⊕H2

ét(X̄,Q`(1))⊕H4
ét(X̄,Q`(2))

' H0
ét(Ȳ ,Q`)⊕H2

ét(Ȳ ,Q`(1))⊕H4
ét(Ȳ ,Q`(2))

which is compatible with the Frobenius action.
If αi,j and βi,j denote the eigenvalues of the Frobenius action on H i

ét(X̄,Q`) and
H i
ét(Ȳ ,Q`), respectively, then the isomorphism shows

{α0,1,
α2,1

q
, . . . ,

α2,22

q
, α4,1} = {β0,1,

β2,1

q
, . . . ,

β2,22

q
, β4,1}.

But, clearly, α0,1 = β0,1 and α4,1 = β4,1 and hence {α2,j/q} = {β2,j/q}.
Conclude by using the Weil conjectures, see Theorem 4.4.1. �

Remark 4.7. Note that the same principle applies to derived equivalences for higher-
dimensional varieties X and Y over a finite field Fq. However, the induced identification
between various sets of eigenvalues of the Frobenius is not enough to conclude equality
of their zeta functions. This corresponds to the problem in characteristic zero that for
derived equivalent varieties X and Y one knows

∑
p−q=i h

p,q(X) =
∑

p−q=i h
p,q(Y ) for

all i but not whether the individual Hodge numbers satisfy hp,q(X) = hp,q(Y ).

3This proof was prompted by a question of Mircea Mustaţă.
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4.4. A complex K3 surface X is projective if and only if there exists a line bundle
L ∈ Pic(X) with (L)2 > 0, see Remark 1.3.4. A very general complex projective K3
surface has Pic(X) ' Z, whereas the very general complex (not assuming projectivity)
K3 surface has Pic(X) = 0. The category Coh(X) of a complex K3 surface Pic(X) = 0

seems to be much smaller than for a complex projective K3 surface, e.g. its numerical
Grothendieck group is

N(X) ' Z⊕ Z ' (H0 ⊕H4)(X,Z).

However, its Grothendieck group K(X) is in fact much bigger, due to the absence of
curves on X. Another way to look at this is to say that, although Pic(X) = 0, moduli
spaces of µ-stable vector bundles E with v(E) = v := (r, 0, s), in particular det(E) ' O,
still exist and are of dimension 〈v, v〉+ 2 = −2rs+ 2 as in the projective situation. They
contribute non-trivially to K(X).
However, as it turns out, Pic(X) = 0 has the bigger impact on the situation. So, it is

not hard to show that under this assumption OX is the only spherical object in Coh(X)

and in fact, up to shift, in Db(X). Thus, Bridgeland’s conjecture in particular suggests
that Aut(Db(X)) should be essentially trivial, which was indeed proved in [265].

Theorem 4.8. Let X be a complex K3 surface with Pic(X) = 0. Then

Aut(Db(X)) ' Z⊕ Z⊕Aut(X).

The first two factors of Aut(Db(X)) are generated by the shift functor and the spherical
shift TO. The group Aut(X) is either trivial or Z, see [384]. Note that the same tech-
niques were used in [265] to determine Aut(Db(X)) for the generic fibre of the generic
formal deformation of a projective K3 surface, which is the key to Corollary 3.13 and the
main result of [266].

Remark 4.9. It is worth pointing out that in the non-algebraic setting Gabriel’s the-
orem fails, i.e. the abelian category Coh(X) of a non-projective complex K3 surface does
not necessarily determine the complex manifold X. In fact, in [608] Verbitsky shows that
two very general non-projective complex K3 surfaces X and Y have equivalent abelian
categories Coh(X) ' Coh(Y ).

5. Appendix: Twisted K3 surfaces

It has turned out to be interesting to introduce the notion of twisted K3 surfaces. This
works in both, the algebraic and the analytic setting.

Definition 5.1. A twisted K3 surface (X,α) consists of a K3 surface X and a Brauer
class α ∈ Br(X).

The notion makes sense for arbitrary X and a general theory of sheaves on (X,α), so
called twisted sheaves, can be set up. This is of particular importance for K3 surfaces.
There are various ways of defining twisted sheaves and the abelian category Coh(X,α)

of those, but they all require an additional choice, either of an Azumaya algebra A, of a
Čech cycle representing α or a Gm-gerbe. The following is copied from [254].
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i) Choose a Čech cocycle {αijk ∈ O∗(Uijk)} representing α ∈ Br(X) with respect to an
étale or analytic cover {Ui} of X. Then an {αijk}-twisted coherent sheaf ({Ei}, {ϕij})
consists of coherent sheaves Ei on Ui and ϕij : Ej |Uij

∼− // Ei|Uij such that

ϕii = id, ϕji = ϕ−1
ij , and ϕij ◦ ϕjk ◦ ϕki = αijk · id.

Defining morphisms in the obvious way, {αijk}-twisted sheaves form an abelian category
and, as different choices of {αijk} representing α lead to equivalent categories, this is taken
as Coh(X,α).

ii) For any Azumaya algebra A representing α one can consider the abelian category
Coh(X,A) of A-modules which are coherent as OX -modules. To see that this category
is equivalent to the above, pick a locally free coherent α-twisted sheaf G and let AG :=

G ⊗ G∗, which is an Azumaya algebra representing α. For an α-twisted sheaf E (with
respect to the same choice of the cycle representing α), E⊗G∗ is an untwisted sheaf with
the structure of an AG-module. This eventually leads to an equivalence

Coh(X,AG) ' Coh(X,α).

iii) To Azumaya algebras A but also to Čech cocycles {αijk} representing a Brauer class
α one can associate Gm-gerbes over X, denotedMA andM{αijk}, respectively.
The gerbe MA associates with T //X the category MA(T ) whose objects are pairs

(E,ψ) with E a locally free coherent sheaf on T and ψ : End(E) ' AT an isomorphism of
OT -algebras, see [208, 403]. A morphism (E,ψ) // (E′, ψ′) is given by an isomorphism
E ∼− // E′ that commutes with the AT -actions induced by ψ and ψ′, respectively. It is
easy to see that the group of automorphisms of an object (E,ψ) is O∗(T ).
The gerbeM{αijk} associates with T //X the categoryM{αijk}(T ) whose objects are

collections {Li, ϕij}, where Li ∈ Pic(TUi) and ϕij : Lj |TUij
∼− // Li|TUij with ϕij ·ϕjk ·ϕki =

αijk, see [363]. A morphism {Li, ϕij} // {L′i, ϕ′ij} is given by isomorphisms Li ∼− // L′i
compatible with ϕij and ϕ′ij . For another construction of a gerbe associated to α see
[134].
Any sheaf F on a Gm-gerbe M //X comes with a natural Gm-action and thus de-

composes as F =
⊕
F k, where the Gm-action on F k is given by the character λ � // λk.

The category of coherent sheaves of weight k, i.e. with F = F k, on a Gm-gerbe M is
denoted Coh(M)k. There are natural equivalences

Coh(X,α) ' Coh(MA)1 ' Coh(M{αijk})1.

Moreover, Coh(X,α`) ' Coh(MA)` ' Coh(M{αijk})`, see [134, 154, 363] for more
details.

iv) A realization in terms of Brauer–Severi varieties has been explained in [642]. Sup-
pose E = ({Ei}, {ϕij}) is a locally free {αijk}-twisted sheaf. The projective bundles
πi : P(Ei) //Ui glue to the Brauer–Severi variety π : P(E) //X and the relative Oπi(1)

glue to a {π∗α−1
ijk}-twisted line bundle Oπ(1) on P(E). As for an {αijk}-twisted sheaf F
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the product π∗F ⊗Oπ(1) is naturally an untwisted sheaf, one obtains an equivalence

Coh(X,α) ' Coh(P(E)/X)

with the full subcategory of Coh(P(E)) of all coherent sheaves F ′ on P(E) for which the
natural morphism π∗π∗(F

′⊗ (π∗E⊗Oπ(1))∗) //F ′⊗ (π∗E⊗Oπ(1))∗ is an isomorphism.
Note that the bundle π∗E ⊗Oπ(1) can be described as the unique non-trivial extension
0 //OP(E)

// π∗E ⊗ Oπ(1) // TP(E)
// 0 and thus depends only on the Brauer–Severi

variety π : P(E) //X.

References and further reading:
We have noted in Remark 2.10 that |FM(X)| can be arbitrarily large. In fact even the number

of non-isometric Néron–Severi lattices realized by surfaces in FM(X) cannot be bounded. We
have also noted that under certain lattice theoretic conditions |FM(X)| = 1, cf. Corollary 3.8.
There are also results that give precise numbers, e.g. in [245, 467] Oguiso et al prove that
|FM(X)| = 2τ(d)−1 for a K3 surface with NS(X) ' Z · H such that (H)2 = 2d. Here, τ(d)

is the number of distinct primes dividing d. See also Stellari [572] for similar computations in
the case of ρ(X) = 2 and Ma [380] for an identification of FM(X) with the set of cusps of the
Kähler moduli space. For a polarized K3 surface (X,H) one can ask for the subset of FM(X) of
all Y that admit a polarization of the same degree (H)2. The analogous counting problem was
addressed by Hulek and Ploog in [247].

The discussion of Aut(Db(X)) in Section 3.4 is best viewed from the perspective of stability
conditions on Db(X), a notion that can be seen as a refinement of bounded t-structures on Db(X).
See the original paper by Bridgeland [84] or the survey [261].

In analogy to Mukai’s description of finite groups of symplectic automorphisms of a K3 surface
reviewed in Section 15.3 a complete description of all finite subgroups G ⊂ Auts(D

b(X)) fixing
a stability condition has been given in [259].

Triangulated categories that are quite similar to the bounded derived category Db(X) of a K3
surface also occur in other situations. Most prominently, for a smooth cubic fourfold Z ⊂ P5

the orthogonal complement AZ ⊂ Db(Z) of OZ , OZ(1), and OZ(2) is such a category. It has
been introduced by Kuznetsov in [343] and studied quite a lot, as it seems to be related to the
rationality question for cubic fourfolds. Although the Hodge theory of AZ has been introduced,
see [2, 262], and AZ is a ‘deformation of Db(X)’ , basic facts like the existence of stability
conditions on AZ , have not yet been established.

Questions and open problems:
It is not known whether for a spherical object E ∈ Db(X), or even for a spherical sheaf

E ∈ Coh(X) the orthogonal E⊥ contains non-trivial objects. If yes, which is expected, this
would be a quick way to show that T 2k

E is never a simple shift for any k 6= 0.
If ρ(X) = 1, then Mukai shows in [427] that any spherical sheaf E with rk(E) 6= 0 is in fact

a µ-stable vector bundle. One could wonder if for ρ(X) > 1 any spherical sheaf is µ-stable with
respect to some polarization. Is there a way to ‘count’ spherical vector bundles with given Mukai
vector v?
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It would be interesting to have an explicit example of two non-isomorphic K3 surfaces X and
Y over a field K with Db(X) ' Db(Y ) (over K) with XK̄ ' YK̄ . A related question is whether
Proposition 3.10 remains true over non-algebraically closed fields (of characteristic zero).

Of course, the main open problem in the area is Conjecture 3.14 for ρ(X) > 1.





CHAPTER 17

Picard group

As remarked by Zariski in [648], ‘The evaluation of ρ [the Picard number] for a given
surface presents in general grave difficulties’. This is still valid and to a lesser extent also
for K3 surfaces. The Picard number or the finer invariant provided by the Néron–Severi
lattice NS(X) is the most basic invariant of a K3 surface, from which one can often read
off basic properties of X, e.g. whether X admits an elliptic fibration or is projective. Line
bundles also play a distinguished role in the derived category Db(X), as the easiest kind
of spherical objects, and for the description of many other aspects of the geometry of X.
In this chapter we collect the most important results on the Picard group of a K3

surface. A number of results is sensitive to the ground field, whether it is algebraically
closed or of characteristic zero. Accordingly, we first deal in Section 1 with the case of
complex K3 surfaces, where the description of the Picard group reduces to Hodge theory,
which nevertheless may be complicated to fully understand even for explicitly given K3
surfaces. Later, in Section 2, we switch to more algebraic aspects and finally to the Tate
conjecture, the analogue of the Lefschetz theorem on (1, 1)-classes for finitely generated
fields. In the latter two parts we often refer to Chapter 18 on Brauer groups. These two
chapters are best read together.

1. . . . of complex K3 surfaces

We start out with a few recollections concerning the Picard group of complex K3
surfaces.

1.1. For any K3 surface X, complex or algebraic over an arbitrary field, the Picard
group Pic(X) is isomorphic to the Néron–Severi group NS(X). In other words, any line
bundle L on a K3 surface X that is algebraically equivalent to the trivial line bundle OX
is itself trivial, see Section 1.2. For projective K3 surfaces, a stronger statement holds:
Any numerically trivial line bundle is trivial. So, in this case

Pic(X) ' NS(X) ' Num(X),

see Proposition 1.2.4. For complex non-algebraic K3 surfaces the last isomorphism does
not hold in general, see Remark 1.3.4.
Let us now consider arbitrary complex K3 surfaces, projective or not. Then the Lef-

schetz theorem on (1, 1)-classes yields an isomorphism

Pic(X) ' NS(X) ' H1,1(X,Z) := H1,1(X) ∩H2(X,Z).

Thanks to François Charles and Matthias Schütt for detailed comments on this chapter.
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As h1,1(X) = 20, this in particular shows that

(1.1) Pic(X) ' Z⊕ρ(X) with 0 ≤ ρ(X) ≤ 20.

Moreover, as we shall see, every possible Picard number is attained by some complex K3
surface.
Complex K3 surfaces with maximal Picard number ρ(X) = 20 are sometimes called

singular K3 surfaces, although of course they are smooth as all K3 surfaces. In the
physics literature, they are also called attractive K3 surfaces, see e.g. [24]. As outlined
in Section 14.3.4, complex K3 surfaces with ρ(X) = 20 can be classified in terms of their
transcendental lattice.

Remark 1.1. If X is projective, then 1 ≤ ρ(X) and the Hodge index theorem asserts
that the usual intersection pairing on H2(X,Z) restricted to NS(X) is even and non-
degenerate of signature (1, ρ(X)− 1), cf. Proposition 1.2.4.
In general, the number of positive eigenvalues can never exceed one, but can very well

be zero. Even worse, there exist K3 surfaces such that NS(X) ' Z · L with (L)2 = 0,
e.g. elliptic K3 surfaces without any multisection, see Example 3.3.2, and so NS(X) is
degenerate with neither positive nor negative eigenvalues.

Remark 1.2. Also recall that every K3 surface X is Kähler, cf. Section 7.3.2, and that
X is projective if and only if there exists a line bundle L such that c1(L) is contained in
the Kähler cone KX or, a priori weaker but equivalent, that there exists a line bundle L
with c1(L) contained in the positive cone CX or simply satisfying (L)2 > 0.
Another sufficient condition for the projectivity of X is the existence of a line bundle

L with c1(L) ∈ ∂CX \ KX . Indeed, if L is not nef, then by Theorem 8.5.2 there exists a
(−2)-curve C with (C.L) < 0 and thus (Ln(−C))2 > 0 for n� 0.

1.2. It is rather difficult to decide which lattices of rank ≤ 20 can be realized as
NS(X). For any complex K3 surface X, the lattice NS(X) is even with at most one
positive eigenvalue and with at most one isotropic direction, which immediately leads to
the following rough classification

Proposition 1.3. Let X be a complex K3 surface. Then one of the following cases
occurs:
(i) sign NS(X) = (1, ρ(X) − 1), which is the case if and only if X is projective or,

equivalently, trdegK(X) = 2.
(ii) The kernel of NS(X) //Num(X) is of rank one and Num(X) is negative definite.

This is the case if and only if trdegK(X) = 1.
(iii) NS(X) is negative definite, which is the case if and only if K(X) ' C. �

The last assertion has been first observed by Nikulin in [447, Sec. 3.2]. For higher-
dimensional generalizations to hyperkähler manifolds see [97].

For the reader’s convenience we list the following results that have been mentioned in
other chapters already:
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i) Any even lattice N of signature (1, ρ − 1) with ρ ≤ 11 can be realized as NS(X), see
Corollary 14.3.1 and Remark 14.3.7.
ii) For a complex projective K3 surface X of Picard number ρ(X) ≥ 12 the isomorphism
type of N := NS(X) is uniquely determined by its rank ρ(X) and the discriminant group
(AN , qN ), see Corollary 14.3.6.
iii) The last fact in particular applies to the case of K3 surfaces with ρ(X) = 20. Then
the transcendental lattice T := T (X) is a positive definite, even lattice of rank two which
uniquely determines X up to conjugation, see Corollary 14.3.21 and Remark 14.3.4. The
discriminant group (AT , qT ) uniquely determines NS(X).
iv) If X is of algebraic dimension zero, i.e. K(X) ' C, then there exists a primitive
embedding NS(X) �

� // N into some Niemeier lattice, see Example 14.4.7.
v) If N is an even lattice of signature (1, ρ− 1) such that its Weyl group W (N) ⊂ O(N)

is of finite index, then N ' NS(X) for some K3 surface X, see Theorem 15.2.10.

1.3. Let f : X //S be a smooth proper family of complex K3 surfaces over a con-
nected base S, e.g. an analytic disk. Recall from Proposition 6.2.9 that the Noether–
Lefschetz locus

NL(X/S) ⊂ S
of all points t ∈ S with ρ(Xt) > ρ0 is dense if the family is not isotrivial (i.e. locally the
period map is non-constant). Here, ρ0 is the minimum of all Picard numbers ρ(Xt).
Let now S be simply connected and fix an isomorphism R2f∗Z ' Λ of local systems.

Then for 0 6= α ∈ Λ the locus {t | α ∈ H1,1(Xt)} is either S, empty, or of codimension
one. This process can be iterated. For any ρ ≥ ρ0 the set

S(ρ) := {t | ρ(Xt) ≥ ρ} ⊂ S

is a countable union of closed subsets of codimension ≤ ρ− ρ0.
For the universal family of marked K3 surfaces X //N (see Section 6.3.3), the picture

becomes very clean. In this case

N(20) ⊂ N(19) ⊂ . . . ⊂ N(1) = NL(X/N) ⊂ N

defines a stratification by countable unions of closed subsets with dimN(ρ) = 20 − ρ.
Moreover, N(ρ+ 1) \N(ρ) = {t | ρ(Xt) = ρ+ 1}. Applying Proposition 6.2.9 repeatedly
shows that N(20) ⊂ N(i) is dense for all 0 ≤ i ≤ 20.
Let α ∈ KX be a Kähler class and X (α) // T (α) ' P1 the associated twistor space, see

Section 7.3.2. A fixed isometry H2(X,Z) ' Λ induces a marking of the family and hence
a morphism T (α) �

� // N . For very general α ∈ KX , i.e. not contained in any hyperplane
orthogonal to a class 0 6= ` ∈ H1,1(X,Z), the twistor line is not contained in the Noether–
Lefschetz locus N(1) = NL(X/N) and so ρ(X (α)t) = 0 for all except countably many
t ∈ T (α).
The polarized case can be dealt with similarly. If X //Nd is the universal family of

marked polarized K3 surfaces (see Section 6.3.4), then Nd = Nd(1) and

Nd(20) ⊂ Nd(19) ⊂ . . . ⊂ Nd(1) = Nd
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with dimNd(ρ) = 20 − ρ. Again, Nd(2) is dense in Nd(1) = Nd and more generally
Nd(ρ+ 1) in N(ρ), ρ = 1, . . . , 19.

Remark 1.4. However, there exist examples of of families of K3 surfaces for which
the Picard rank does not jump as possibly suggested by the above. For example, there
exist one-dimensional families of K3 surfaces f : X //S for which ρ(Xt) ≥ ρ0 + 2 for
all t ∈ NL(X/S). For an explicit example see [466, Ex. 5], for which ρ0 = 18. This
phenomenon can be explained1 in terms of the Mumford–Tate group. Roughly, for any
family X //S that comes with an action of a fixed field K on the Hodge structures
given by the transcendental lattices T (Xt)Q, the Picard number ρ(Xt) can only jump by
multiples of [K : Q]. Indeed, T (Xt)Q is a vector space over K and hence dim T (Xt)Q =

dt · [K : Q]. Therefore ρ(Xt) = 22− dt · [K : Q].

1.4. The Néron–Severi lattice of a complex K3 surface X can be read off from its
period, but it is usually difficult to determine NS(X) or the period of X when X is given
by equations (even very explicit ones). There is no general recipe for doing this, but the
computations have been carried out in a number of non-trivial examples.

Kummer surfaces. For the Kummer surfaceX associated with a torus A, the existence
of the Kummer lattice K ⊂ NS(X), see Section 14.3.3, shows that ρ(X) ≥ 16. If A is
an abelian surface, then ρ(X) ≥ 17 and, in fact, for general A this is an equality. For
arbitrary A one has

ρ(X) = 16 + ρ(A).

For the Kummer surface X associated with a product E1 × E2 of elliptic curves this
becomes

(1.2) ρ(X) =


18 if E1 6∼ E2

19 if E1 ∼ E2 without CM
20 if E1 ∼ E2 with CM.

Also recall from the discussion in Section 14.3.3 that a complex K3 surface is a Kum-
mer surface if and only if there exists a primitive embedding of the Kummer lattice
K �
� // NS(X) or, slightly suprisingly, if and only if there exists 16 disjoint smooth ratio-

nal curves C1, . . . , C16 ⊂ X.

Quartics. Due to the discussion above, the very general complex quarticX ⊂ P3 satisfies
ρ(X) = 1 and in fact Pic(X) = Z · O(1)|X .
On the other hand, recall from Section 3.2.6 that the Fermat quartic X ⊂ P3, x4

0 +

. . .+ x4
3 = 0, has ρ(X) = 20. In fact, NS(X) is generated by lines ` ⊂ X and

NS(X) ' E8(−1)⊕2 ⊕ U ⊕ Z(−8)⊕ Z(−8).

The detailed computation has been carried out by Schütt, Shioda, and van Luijk in [538].

1as I learned from François Charles.
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The Fermat quartic is a member of the Dwork (or Fermat) pencil :

Xt ⊂ P3, x4
0 + . . .+ x4

3 − 4t
∏

xi = 0.

Note that Xt is smooth except for t4 = 1 and t =∞ (which at first glance is surprising as
the discriminant divisor in |OP3(4)| has degree 108 by [205, 13.Thm. 2.5]). Generically
one has ρ(Xt) = 19, but ρ(Xt) = 20 for an analytically dense set of countably many
points t ∈ P1. In fact, if ρ(Xt) = 20, then t ∈ P1(Q̄), see Proposition 2.14. The Néron–
Severi lattice of the very general Xt has been described by Bini and Garbagnati in [62],
e.g. its discriminant group is isomorphic to (Z/8Z)2 × Z/4Z. Using Section 14.3.3, one
can show that all Xt are Kummer surfaces, see [62, Cor. 4.3].
Kuwata in [339] studied quartics of the form

X = Xλ1,λ2 ⊂ P3, φ1(x0, x1) = φ2(x2, x3).

After coordinate changes one can assume that φi(x, y) = yx(y − x)(y − λix) with λi ∈
C\{0, 1}. If Ei, i = 1, 2, are the elliptic curves defined by t2 = φi(1, x), then the Kummer
surface associated with E1 × E2 is birational to the quotient of X by the involution
ι : (x0 : x1 : x2 : x3) � // (x0 : x1 : −x2 : −x3):

X/ι ∼ (E1 × E2)/±.

(So, X has a Shioda–Inose structure.) This allows one to use (1.2) to compute ρ(Xλ1,λ2).
In particular, ρ(Xλ1,λ2) ≥ 18. In [339, Prop. 1.4] it is proved that the number of lines
` ⊂ X is 16, 32, 48, or 64 depending on j(Ei).
In [73] Boissière and Sarti later showed that the vector space NS(Xλ)⊗Q of Xλ := Xλ,λ

is spanned by lines if and only if i) λ 6∈ Q̄; ii) λ ∈ {−1, 2, 1/2, e2πi/3, e−2πi/3}, or iii)
λ ∈ Q̄ \ {−1, 2, 1/2, e2πi/3, e−2πi/3} and ρ(Xλ) = 19. Furthermore, the lattice NS(Xλ) is
generated by lines only in case ii).
Explicit equations tend to have coefficients in Q or Q̄, but it was an open problem

for a long time (apparently going back to Mumford) whether there exists a quartic with
ρ(X) = 1 with algebraic coefficients. We come back to this in Section 2.6. Over larger
fields, quartics with ρ(X) = 1 can be found more easily. For example, the generic fibre of
the universal quartic X // |O(4)| is a K3 surface over Q(t1, . . . , t34) of geometric Picard
number one.
Double planes. The very general double plane X //P2, see Example 1.1.3, satisfies
ρ(X) = 1. This can either be deduced from a general Noether–Lefschetz principle for
cyclic coverings as e.g. in [90, 172] or from counting dimensions and realizing that the
family of double planes modulo isomorphisms is of dimension 19, as is the moduli space
M2 of polarized K3 surfaces of degree two.
If the branching curve of X //P2 consists of six general lines, the minimal resolution

of the double cover is a K3 surface of Picard number ρ(X) = 16. The exceptional curves
over the 15 double points of the double cover (over the 15 intersection points of pairs
of lines) span a lattice inside NS(X) isomorphic to Z(−2)⊕15. For some observations on
Picard groups of K3 surfaces appearing as minimal resolutions of singular double covers of



364 17. PICARD GROUP

P2 branched over a sextic, especially those with maximal Picard number 20, see Persson’s
article [488]. Using the density of K3 surfaces of maximal Picard number ρ(X) = 20 in
the moduli space M2 of polarized K3 surfaces of degree two, one concludes that there do
exist smooth double planes ramified over a smooth sextic with maximal Picard number.

Complete intersections. Recall from Example 1.1.3 that besides quartics the only
other non-degenerate complete intersection K3 surfaces are either complete intersections
of a quadric and a cubic in P4 or of three quadrics in P5. As for quartics and double
planes, the very general complete intersection K3 surface X satisfies ρ(X) = 1.
In [83] Bremner studies rational points on the hypersurface defined by u6

0 + u6
1 + u6

2 =

v6
0 + v6

1 + v6
2 by relating it to a particular intersection X = Q1 ∩ Q2 ∩ Q3 ⊂ P5 of three

quadrics. The Picard rank of this particular X (over C) is 19, see also [341].
Elliptic K3 surfaces. The description of the Néron–Severi lattice of an elliptic K3
surfaceX //P1 with a section can essentially be reduced to the description of its Mordell–
Weil group MW(X) via the short exact sequence

0 //A //NS(X) //MW(X) // 0,

where A is the subgroup generated by vertical divisors and the section, see Proposition
11.3.2.
For the general elliptic K3 surface with a section C0 there exists an isometry NS(X) ' U

that maps Xt and C0 + Xt to the standard generators of the hyperbolic plane U . The
Picard group of a general, in particular not projective, complex elliptic K3 surface is
generated by the fibre class, and so ρ(X) = 1 with trivial intersection form, i.e. NS(X) '
Z(0).

2. Algebraic aspects

Let now X be an algebraic K3 surface over an arbitrary field k. Then

Pic(X) ' NS(X) ' Num(X) ' Z⊕ρ(X) with 1 ≤ ρ(X) ≤ 22

is endowed with an even, non-degenerate pairing of signature (1, ρ(X)−1), see Proposition
1.2.4, Remark 1.3.7, and Section 2.2 below. Which lattices can be realized depends very
much on the field k. Moreover, the Néron–Severi lattice can grow under base change to
a larger field. We pay particular attention to finite fields and number fields.
Before starting, we mention in passing a characteristic p version of the injectivity

c1 : NS(X) �
� // H1,1(X) for complex K3 surfaces, see Section 1.3.3. As H1,1(X) and

also the de Rham cohomology H2
dR(X) are vector spaces over the base field, the first

Chern class must be trivial on p · NS(X). For a proof of the following statement, see
Ogus’ original in [475, Cor. 1.4] or the more concrete in [511, Sec. 7] or [604, Sec. 10].

Proposition 2.1. For any K3 surface over a field of characteristic p > 0 the first
Chern class induces an injection

c1 : NS(X)/p ·NS(X) �
� // H2

dR(X).
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Moreover, its image is contained in F 1H2
dR(X) and if X is not supersingular, it induces

an injection NS(X)/p ·NS(X) �
� // H1,1(X) = H1(X,ΩX).

2.1. For a field extension K/k base change yields the K3 surface XK := X ×k K
over K and for every line bundle L on X a line bundle LK on XK , the pull-back of L
under the projection XK

//X. By flat base change, H i(XK , LK) = H i(X,L) ⊗k K.
Using that L is trivial if and only if H0(X,L) 6= 0 6= H0(X,L∗) and similarly for LK ,
one finds that base change defines an injective homomorphism

(2.1) Pic(X) �
� // Pic(XK), L � //LK ,

which is compatible with the intersection pairing.

Lemma 2.2. If k is algebraically closed, then the base change map (2.1) is bijective.

Proof. Defining a line bundle M on XK involves only a finite number of equations.
Hence, we may assume that K is finitely generated over k and, therefore, can be viewed
as the quotient field of a finitely generated k-algebra A. Also, as k is algebraically closed,
any closed point t ∈ Spec(A) has residue field k(t) ' k. Localizing A with respect to
finitely many denominators if necessary, we may in fact assume thatM is a line bundle on
XA := X×kSpec(A) and thus can be viewed as a family of line bundles onX parametrized
by Spec(A).
Consider the classifying morphism f : Spec(A) //PicX for this family, see Section

10.1.1. The Picard scheme PicX of a K3 surface X is reduced and zero-dimensional,
as its tangent space at a point [L] ∈ PicX(k) = Pic(X) is Ext1(L,L) ' H1(X,O) = 0,
see Section 10.1.6. Thus, f is a constant morphism with image a k-rational point of PicX .
Therefore, M is a constant family and, in particular, M ' LK for some L ∈ Pic(X). �

In Section 16.4.2 the assertion of the lemma has been applied to the more general class
of spherical objects in the derived category Db(XK). The proof is valid in this broader
generality, replacing PicX be the stack of simple complexes.

Definition 2.3. The geometric Picard number of a K3 surface X over a field k is
ρ(Xk̄), where k̄ is the algebraic closure of k or, equivalently, ρ(XK) for any algebraically
closed field K containing k.

Clearly, any K3 surface X over k can be obtained by base change from a K3 surface X0

over some finitely generated field k0. By the lemma Pic(X) �
� // Pic(Xk̄) ' Pic(X0× k̄0).

If char(k) = 0, one can choose an embedding k0
� � // C, which yields an injection

Pic(X) �
� // Pic(X0 × k̄0) �

� // Pic(X0 × C).

In particular, in characteristic zero every K3 surface X satisfies ρ(X) ≤ 20 by (1.1).

Remark 2.4. For a purely inseparable extension K/k of degree [K : k] = q = pn

the cokernel of the base change map Pic(X) �
� // Pic(XK) is annihilated by pn and so

ρ(X) = ρ(XK). Indeed, if L is described by a cocycle {ψij}, then Lq is described by
{ψqij} which is defined on X and hence Lq is base changed from X.
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2.2. To study Pic(X) by cohomological methods one uses the usual isomorphism
Pic(X) ' H1(X,Gm). Then, for n prime to char(k) the Kummer sequence

0 // µn // Gm
( )n
// Gm // 0

induces an injection Pic(X) ⊗ Z/nZ �
� // H2

ét(X,µn). Applied to n = `m, for a prime
` 6= char(k), and taking limits yields injections

Pic(X) �
� // Pic(X)⊗ Z` �

� // H2
ét(X,Z`(1)).

This proves ρ(X) ≤ 22, which is a special case of a classical result due to Igusa [272].
As remarked earlier, see Remark 1.3.7, the Kummer sequence and the fact that Pic(X)

is torsion free also show that H1
ét(X,µn) ' k∗/(k∗)n. For separably closed k, this shows

H1
ét(X,µn) = 0 and by duality also H3

ét(X,µn) = 0.
For a finite Galois extension K/k with Galois group G the Hochschild–Serre spectral

sequence
Ep,q2 = Hp(G,Hq(XK ,Gm))⇒ Hp+q(X,Gm),

and Hilbert 90, i.e. H1(G,Gm) = 0, can be used to construct an exact sequence

0 //Pic(X) //Pic(XK)G //H2(G,K∗),

which in particular shows again the injectivity of Pic(X) //Pic(XK) in this situation.
It also shows

(2.2) Pic(X)⊗Q ∼− // Pic(XK)G ⊗Q,

for H2(G,K∗) is torsion, cf. [546]. In other words, Pic(X) ⊂ Pic(XK)G is a subgroup of
finite index.2

By Wedderburn’s theorem, see Remark 18.2.1, the Brauer group of a finite field is
trivial, i.e. H2(G,K∗) = 0. Therefore,

Pic(X) = Pic(XK)G

for extensions K/k of finite fields. Also, Pic(X) = Pic(XK)G whenever X(K) 6= ∅. See
Section 18.1.1 for further results relying on the Hochschild–Serre spectral sequence.

Remark 2.5. SupposeX is a K3 surface over a field k of characteristic zero, sufficiently
small to admit an embedding σ : k �

� // C. Then each such embedding yields a complex
K3 surface Xσ. If k is algebraically closed, then Pic(Xσ) ' Pic(X) and, in particular,
the isomorphism type of the lattice Pic(Xσ) is independent of σ. But what about the
transcendental lattice T (Xσ)? Clearly, the genus of T (Xσ) is also independent of σ, as
its orthogonal complement in H2(Xσ,Z) is Pic(Xσ) ' Pic(X). However, its isomorphism
type can change. See Remark 14.3.23.

2To have a concrete example for which the map is indeed not surjectve, consider the quadric x2
0 +

x2
1 + x2

2 over R and its base change XC ' P1
C. Then O(1) is Galois invariant, because O(2) descends, but

it is not linearizable.
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Lemma 2.6. Let X be a K3 surface over an arbitrary field k. Then there exists a finite
extension k ⊂ K such that Pic(XK) ' Pic(Xk̄) and, in particular, ρ(XK) = ρ(Xk̄).
Moreover, equality ρ(XK) = ρ(Xk̄) can be achieved with a universal bound on [K : k].

If char(k) = 0 and X(k)) 6= ∅ or if k is finite, the same holds for Pic(XK) ' Pic(Xk̄).

Proof. Indeed, Pic(X × k̄) is finitely generated and the defining equations for any
finite set of generators L1, . . . , Lρ ∈ Pic(X × k̄) involve only finitely many coefficients
which then generate a finite extension K/k.
If k is a field of characteristic zero or a finite field, then there exists a finite Galois

extension k ⊂ K such that Pic(XK) ' Pic(Xk̄). Now, the image of the action

ρ : G := Gal(K/k) //O(Pic(XK)) ⊂ GL(ρ(XK),Z)

is a finite subgroup and it is known classically that every finite subgroup of GL(n,Z)

injects into GL(n,F3). Therefore, |Im(ρ)| is universally bounded. Hence, for H := Ker(ρ)

also [KH : k] is universally bounded. If one assumes in addition that X(KH) 6= ∅ for
char(k) = 0, then Pic(XKH ) ' Pic(XK)H ' Pic(XK). Thus k ⊂ K ′ := KH is a finite
extension of universally bounded degree with Pic(XK′) ' Pic(Xk̄).
For arbitrary k, the same argument shows Pic(XK′) ⊗ Q ' Pic(Xk̄) ⊗ Q, cf. Remark

2.4, and hence ρ(XK′) = ρ(Xk̄). �

2.3. We follow Shioda [557] to describe the easiest example of a unirational K3
surface. Consider the Fermat quartic X ⊂ P3 over an algebraically closed field of charac-
teristic p = 3 defined by x4

0+. . .+x4
3 = 0 or, after coordinate change, by x4

0−x4
1 = x4

2−x4
3.

A further coordinate change y0 = x0−x1, y1 = x0 +x1, y2 = x2−x3, y3 = x2 +x3 turns
this into y0y1(y2

0 + y2
1) = y2y3(y2

2 + y2
3). Setting y3 = 1, y1 = y0u, and y2 = uv, one sees

that the function field of X is isomorphic to the function field of the affine variety given
by y4

0(1+u2) = v((uv)2 +1), which in turn can be embedded into the function field of the
variety defined by u2(t4 − v)3 − v + t12 with t3 = y0 (where one uses p = 3). Now switch
to coordinates s = u(t4− v), t, and v in which the equation becomes s2(t4− v)− v+ t12.
Thus, v can be written as a rational function in s and t. All together this yields an
injection K(X) �

� // k(s, t) which geometrically corresponds to a dominant rational map
P2 // // X.

A similar computation proves the unirationality of the Fermat hypersurface Y ⊂ P3 of
degree p + 1 over a field of characteristic p. For p ≡ 3 (4) the endomorphism [x0 : . . . :

x3] � // [x
(p+1)/4
0 : . . . : x

(p+1)/4
3 ] of P3 defines a dominant map Y //X and hence X is

unirational for all p ≡ 3 (4).
Contrary to the case of complex K3 surfaces, there exist K3 surfaces over fields of

positive characteristic with ρ(X) = 22. The Fermat quartic is such an example, which
was first observed by Tate in [588, 589]. It can also be seen as a consequence of the
following more general result due to Shioda. For more on these surfaces see Section 2.7
below.

Proposition 2.7. Let X be a unirational K3 surface over an algebraically closed field.
Then ρ(X) = 22.
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Proof. We follow Shioda [557] and show first more generally that for any dominant
rational map Y // // X between smooth surfaces one has b2(Y )−ρ(Y ) ≥ b2(X)−ρ(X).
First, by resolving the indeterminacies of the rational map by blowing up and using that
by the standard blow-up formulae for Pic and H2 the expression b2(Y ) − ρ(Y ) does
not change in the process, one reduces to the case of a dominant morphism π : Y //X.
Then use that π∗ : H2

ét(X,Q`(1)) �
� // H2

ét(Y,Q`(1)) is injective sending NS(X)⊗Q` into
NS(Y )⊗Q`. Moreover, the induced map (of Q`-vector spaces)

H2
ét(X,Q`(1))/NS(X)⊗Q` �

� // H2
ét(Y,Q`(1))/NS(Y )⊗Q`

is still injective, for π∗ ◦ π∗ = deg(π) · id.
Apply this general observation to Y = P2, for which b2(Y ) = ρ(Y ) = 1, and a unira-

tional K3 surface X. Then ρ(X) = b2(X) = 22. �

We leave it to the reader to check that the arguments also apply to uniruled K3 surfaces
and so the proposition and the following corollary hold true more generally. However, a
posteriori, one knows that uniruled K3 surfaces are in fact unirational.

Corollary 2.8. Unirational K3 surfaces satisfy the Tate Conjecture 3.1. �

Already in [588, 589] Tate mentions that the Fermat quartic over a field of charac-
teristic p ≡ 3 (4) has Picard number ρ = 22. In fact, both Shioda and Tate deal with
Fermat quartics over fields of characteristic p such that pn ≡ 3 (4) for some n (and Fermat
hypersurfaces of higher degree as well).

2.4. For K3 surfaces over algebraically closed fields, the Picard number satisfies
ρ(X) 6= 21. This has been observed by Artin in [16] and follows from the inequality
ρ(X) ≤ 22− 2h(X) for K3 surfaces of finite height, see Lemma 18.3.6 and also Remark
18.3.12. Thus, algebraic K3 surfaces over algebraically closed fields have Picard number

ρ = 1, 2, . . . , 19, 20, 22

and all values are realized over suitable algebraically closed fields. For non-algebraically
closed fields and even for finite fields also ρ = 21 is possible, see Remark 2.23.

For a K3 surface X over a finite field Fq the Galois group Gal(F̄q/Fq) is a cyclic group
generated by the Frobenius. By the Weil conjectures, cf. Section 4.4, the eigenvalues of
the induced action f∗ on H2

ét(X̄,Q`(1)) are of absolute value |αi| = 1. Moreover, as the
second Betti number of a K3 surface is even, α1 = . . . = α2k = ±1 for an even number
of the eigenvalues, see Theorem 4.4.1. After base change to a finite extension Fq′/Fq, we
may assume α1 = . . . = α2k = 1 (and no roots of unity among the αi>2k). Then the Tate
Conjecture 3.4 implies

Corollary 2.9. The Picard number of a K3 surface X over F̄p, p 6= 2, is always even,
i.e. ρ(X) ≡ 0 (2). �

Compare this to the statement that for complex K3 surfaces of odd Picard number,
automorphisms act as ±id on the transcendental lattice T (X), see Corollary 3.3.5.
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This simple corollary has turned out to have powerful consequences, e.g. for the exis-
tence of rational curves on complex K3 surfaces of odd Picard number, cf. Section 13.3.2.

2.5. Consider a flat proper morphism X // Spec(A) with A an integral domain.
Denote the generic point by η ∈ Spec(A), so its residue field k(η) is the quotient field
of A, and pick a closed point t ∈ Spec(A). Assume that the two fibres Xη and Xt

are K3 surfaces (over the fields k(η) and k(t), respectively). Taking the closure of Weil
divisors on Xη yields a homomorphism Pic(Xη) //Pic(X) which, when composed with
the restriction to the closed fibre Xt, yields the specialization homomorphism

sp: Pic(Xη) //Pic(Xt).

Passing to finite extensions of k(η) or, geometrically, finite integral coverings of Spec(A),
one obtains a specialization homomorphism between the geometric fibres Xη̄ := Xη×k(η)

and Xt̄ := Xt × k(t)

sp: Pic(Xη̄) //Pic(Xt̄).

Proposition 2.10. The specialization homomorphisms

sp: Pic(Xη)
� � // Pic(Xt) and sp: Pic(Xη̄)

� � // Pic(Xt̄)

are injective and compatible with the intersection product.

Proof. The intersection form can be expressed in terms of Euler–Poincaré charac-
teristics, see (2.1) in Section 1.2.1. As those stay constant in flat families, specialization
indeed preserves the intersection form. But if sp and sp are compatible with the inter-
section form, which is non-degenerate, then they are automatically injective. �

Consider the case of a trivial family X // Spec(A), i.e. A is a k-algebra and X ' X0×k
Spec(A) for some K3 surface X0 over k. Then for any t ∈ Spec(A) the residue field k(t) is
an extension of k andXη ' X0×kK, whereK = k(η) is the quotient field of A. Moreover,
the composition of pull-back and specialization Pic(X0) //Pic(Xη) //Pic(Xt) is nothing
but the base change map for the extension k ⊂ k(t). In particular, if k is algebraically
closed and t is a closed point (and so k(t) ' k), the injectivity of sp shows once more
that Pic(X0) //Pic(X0 ×k K) is bijective, cf. Lemma 2.2.

Remark 2.11. Geometrically, the proposition is related to the fact that for complex
K3 surfaces the Noether–Lefschetz locus is a countable union of closed subsets, see Sec-
tion 1.3. More arithmetically, the proposition is often applied to proper flat families
X // Spec(OK) over the integers of a number field K such that the generic fibre Xη is a
K3 surface over K ⊂ Q̄. Then for all but finitely many p ∈ Spec(OK) the reduction Xp

is a K3 surface over the finite field k(p) ⊂ F̄p and specialization defines an injection

sp: Pic(XQ̄) �
� // Pic(XF̄p).

Due to Corollary 2.9 this can never be an isomorphism if ρ(XQ̄) is odd and p 6= 2.
However, even when ρ(XQ̄) is even, the Picard number can jump for infinitely many
primes. This has been studied by Charles in [110].
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Remark 2.12. The obstructions to deform a line bundle L on a closed fibreXt sideways
to finite order are contained in the one-dimensional space H2(Xt,OXt). When these
obstructions vanish the line bundle deforms to a line bundle on the formal neighbourhood
of Xt ⊂ X, see [223] or [174, Ch. 8]. However, this does not necessarily imply the
existence of a deformation of L to a Zariski open neighbourhood, which usually requires
passing to a covering of Spec(A) or, alternatively, passing to a finite extension of k(η).
In particular, even for a geometric closed point t, the images of sp and sp in Pic(Xt) =

Pic(Xt̄) might be different.

Remark 2.13. It is not difficult to see that for X // Spec(A) over an algebraically
closed field of characteristic zero the cokernel of sp: Pic(Xη̄) //Pic(Xt) is torsion free.
Indeed, in this case the obstruction space H2(Xt,OXt) is divisible and therefore the
obstructions to deform L to finite order neighbourhoods vanish if and only if they do so
for an arbitrary non-trivial power Lk.
One also knows that for a K3 surface X over Q with good reduction at p 6= 2 the

cokernel of sp: Pic(XQ̄) //Pic(XF̄p) is torsion free. In [168, Thm. 1.4] Elsenhans and
Jahnel deduce this from a result of Raynaud [505], which applies to K3 surfaces over
discrete valuation rings of unequal characteristic and ramification index < p− 1.

2.6. We next shall discuss K3 surfaces defined over number fields. Clearly, any K3
surface X over Q̄ is isomorphic to the base change of a K3 surface defined over some
number field. It is however a non-trivial task to determine the number field or even its
degree.
The following is an observation going back to Shioda and Inose in [565]. For more

information on the field of definition k0 see Schütt [534] and Shimada [551].

Proposition 2.14. Let X be a K3 surface over an algebraically closed field k of charac-
teristic zero. If ρ(X) = 20, then X is defined over a number field, i.e. there exists a K3
surface X0 over a number field k0, an embedding k0

� � // k, and an isomorphism

X ' X0 ×k0 k.

Moreover, we may assume that base change yields Pic(X0) ∼− // Pic(X).

Proof. In [565] the assertion is reduced to Kummer surfaces via Remark 15.4.1,
but this can be avoided. It is enough to show that X can be defined over Q̄ for some
embedding Q̄ �

� // k. Consider a base L1, . . . , L20 of Pic(X). We may assume that X
and all Li are defined over a finitely generated integral Q̄-algebra A. In particular, X is
defined over the quotient field Q(A) of A. After spreading and localizing A if necessary,
one obtains a smooth family X // Spec(A) of K3 surfaces with line bundles L1, . . . ,L20.
Specialization yields injections

Pic(Xk̄) ' Pic(Xη̄)
� � // Pic(Xt)

for all closed points t ∈ Spec(A). Thus, X // Spec(A) is a smooth family of K3 surfaces of
maximal Picard number ρ = 20. However, the locus of polarized K3 surfaces of maximal
Picard number in characteristic zero is zero-dimensional. This can be seen by abstract
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deformation theory for (X ;L1, . . . ,L20)t or by first base changing to C and then applying
the period description, cf. Section 1.3.
Hence, there exists a K3 surface X0 over Q̄ such that all fibres Xt over closed points

t ∈ Spec(A) are isomorphic to X0. Hence, after localizing A further and finite étale base
change Spec(A′) // Spec(A) the two families X ×Spec(A) Spec(A′) and X0×Spec(A′) are
isomorphic.3 Therefore, the generic fibre Xη′ of the first one is isomorphic to X0×Q(A′).
Choosing an embedding Q(A′) �

� // k (which exists as k is algebraically closed) and base
changing to k eventually yields X ' Xη × k ' Xη′ × k ' X0 × k. �

In the moduli space Md of polarized K3 surfaces of degree 2d the set of points corre-
sponding to K3 surfaces with geometric Picard number at least two, i.e. the Noether–
Lefschetz locus, is a countable union of hypersurfaces, see Section 1.3. As the set Md(Q̄)

parametrizing K3 surfaces defined over Q̄ is countable it could a priori be contained in
the Noether–Lefschetz locus. That this is not the case was shown by Ellenberg [166] for
any d and for d = 2, 3, 4 by Terasoma in [595] (who proves existence over Q and not only
over some number field).

Proposition 2.15. For any d > 0 there exists a number field k and a polarized K3
surface (X,L) of degree 2d of geometric Picard number one over k.

Proof. Consider the moduli space M lev
d of polarized K3 surfaces (X,L) with a level

structure H2(X,Z/`NZ)p ' Λd ⊗ Z/`NZ and its natural projection

π : M lev
d

//Md,

which is a Galois covering with Galois group O(Λd ⊗ Z/`NZ). In Section 6.4.2 this was
constructed via period domains in the complex setting, but it exists over Q̄, as needed
here, and in fact over a number field, say k0/Q, over which it is still a Galois covering.
Next, pick a generically finite morphism Md

//P19 and assume for simplicity that the
composition

p : M lev
d

//Md
//P19

is a Galois covering with Galois group say G. By Hilbert’s irreducibility theorem there
exists a Zariski dense subset of points t ∈ P19(k0) with p−1(t) = {y} such that k(y)/k0 is
a Galois extension with Galois group G. Then for x := π(y) ∈Md and k := k(x), one has
Gal(k(y)/k) ' O(Λd⊗Z/`NZ). We simplify the discussion by assuming thatMd is a fine
moduli space, otherwise pass to some finite covering. Then x corresponds to a polarized
K3 surface (X,L) defined over k.
Consider the Galois representation ρ : Gal(Q̄/k) //O(H2

ét(XQ̄,Z`(1))p) and its image
Im(ρ)N in O(H2

ét(XQ̄, µ`N )p) ' O(Λd ⊗ Z/`NZ). As it contains Gal(k(y)/k), in fact
Im(ρ)N ' O(Λd ⊗ Z/`NZ).

3Compare this to the proof of Lemma 2.2. The role of PicX is here played by the moduli space Md.
The étale base change Spec(A′) // Spec(A) is necessary asMd only corepresents the moduli functor and
so M lev

d has to be used, cf. Section 6.4.2 and below.
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However, by an argument from p-adic Lie group theory, see [166, Lem. 3], one can show
that for N � 0 any closed subgroup of O(Λd ⊗ Z`) that surjects onto O(Λd ⊗ Z/`NZ)

is in fact O(Λd ⊗ Z`). Hence, Im(ρ) equals O(H2
ét(XQ̄,Z`(1))p)4 which is enough to

conclude that ρ(XQ̄) = 1. Indeed, otherwise ρ(Xk′) > 1 for some finite extension k′/k for
which ρ(Gal(Q̄/k′)) is, on the one hand, a finite index subgroup of O(H2

ét(XQ̄,Z`(1))p)

and, on the other hand, contained in the subgroup fixing c1(M) of a line bundle linearly
independent of L, which is not of finite index. �

Remark 2.16. It is possible to adapt the above arguments to prove that any lattice
that occurs as NS(X) of a complex algebraic K3 surface X can also be realized by a K3
surface over a number field or, equivalently, over Q̄.
The proposition and this generalization can also be deduced from a more general result

due to André in [8], where he studies the specialization for arbitrary smooth and proper
morphisms X // T of varieties over an algebraically closed field of characteristic zero. In
particular his results imply that there always exists a closed point t ∈ T with ρ(Xη̄) =

ρ(Xt) or, equivalently, for which sp: NS(Xη̄)
∼− // NS(Xt) is an isomorphism. See also the

article [398] by Maulik and Poonen which contains a p-adic proof of this consequence.

Remark 2.17. The proposition is a sheer existence result that does not give any
control over the number field k nor tells one how to explicitly construct examples. But
K3 surfaces over Q of geometric Picard number one of low degree have been constructed.
The first explicit example ever is due to van Luijk [606]. We briefly explain the main
idea of his construction.
A K3 surfaceX over Q can be described by equations with coefficients in Q. By clearing

denominators, these equations define a scheme over Z with generic fibre X. The closed
fibres are the reductions XFp of X modulo p. Specialization yields injective maps

sp: Pic(XQ̄) �
� // Pic(XF̄p)

for all primes p with XFp smooth, see Proposition 2.10. Of course, ρ(XQ̄) = 1 holds
if ρ(XF̄p) = 1, which however for p 6= 2 is excluded by Corollary 2.9. If ρ(XF̄p) = 2,
then either ρ(XQ̄) = 1 or Pic(XQ̄) �

� // Pic(XF̄p) is a sublattice of finite index dp with
d2
p = disc Pic(XQ̄)/disc Pic(XF̄p), see Section 14.0.2. For any two primes p 6= p′ with

good reduction XF̄p and XF̄p′ of Picard number two, this shows that

dp,p′ :=
disc Pic(XF̄p)

disc Pic(XF̄p′ )
=

(
dp′

dp

)2

4 More informally, the argument could be summarized as follows. As Md (over C) is constructed
as an open subset of the quotient of Dd by the orthogonal Õ(Λd) the monodromy on H2(X,Z)p is the
orthogonal group. Then use the relation between the monodromy group and the Galois group of the
function field of Md, see e.g. [230], to show that latter acts as Õ(Λd ⊗ Z`) on the cohomology of the
geometric generic fibre. Hilbert’s irreducibility theorem then ensures the existence of a K3 surface over
a number field with this property, cf. [595, Thm. 2].
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is a square. Thus, in order to prove ρ(XQ̄) = 1, it suffices to find two such primes for
which dp,p′ is not a square.
As by the Chinese remainder theorem any two smooth quartics over Fp and Fp′ with

p 6= p′ are reductions of a smooth quartic over Q, quartics seem particularly accessible.
There are two steps to carry this out. Firstly, by the Weil conjectures, see Theorem 4.4.1,
computing ρ(XF̄p) (or rather the rank of the Frobenius invariant part of H2

ét(XF̄p ,Z`(1)))
is in principle possible by an explicit count of points |X(Fpn)|. Note that the Tate
conjecture is not used here, because if the Frobenius invariant part of H2

ét(XF̄p ,Q`(1)) is
of dimension two, then either ρ(XF̄p) = 1, in which case we immediately have ρ(XQ̄) = 1,
or ρ(XF̄p) = 2. Secondly, one has to decide whether dp,p′ ∈ Q∗2. Fortunately, for this one
does not need a complete description of NS(XF̄p), which might be tricky. Indeed, due to
(0.1) in Section 14.0.2 it suffices to compute the discriminant of a finite index sublattice
in each of the two Néron–Severi lattices. This can often be achieved by exhibiting explicit
curves on the surfaces. Alternatively, following Kloosterman [296] one can use the Artin–
Tate conjecture 18.2.4 to conclude (using that |Br(XFq)| is a square, see Remark 18.2.8).
For explicit equations of quartics see van Luijk’s original article [606]. For an explicit

equation of a double plane see the articles by Elsenhans and Jahnel [167, 168]. In the
latter, reduction modulo one prime only is used based on the authors’ result that the
cokernel of the specialization map is torsion free, see Remark 2.13. None of the available
equations describing K3 surfaces over Q of geometric Picard number one is particularly
simple.

2.7. We next discuss K3 surfacesX over an algebraically closed field k with maximal
Picard number ρ(X) = 22. They are sometimes called Shioda supersingular K3 surfaces.
It is comparatively easy to show that a K3 surface of maximal Picard number ρ(X) = 22

is (Artin) supersingular, see Corollary 18.3.9. (The much harder converse had been open
for a long time as the last step in the proof of the Tate conjecture.)
As an immediate consequence of Proposition 11.1.3 one has

Corollary 2.18. Let X be a K3 surface over an algebraically closed field k. If ρ(X) =

22, then X admits an elliptic fibration. �

Note however, that not every such surface admits an elliptic fibration with a section,
as was observed by Kondō and Shimada in [324].
The following result is due to Artin [16], see also the article of Rudakov and Šafarevič

[511]. It predates the Tate conjecture, which can be used to cover supersingular K3
surfaces.

Proposition 2.19. Let X be a K3 surface over an algebraically closed field k of charac-
teristic p with ρ(X) = 22. Then there exists an integer 1 ≤ σ(X) ≤ 10, the Artin
invariant, such that

disc NS(X) = −p2σ(X).

Moreover, ANS(X) = NS(X)∗/NS(X) ' (Z/pZ)2σ(X).
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Proof. As ρ(X) = 22, the natural map NS(X)⊗Q` //H2
ét(X,Q`(1)), ` 6= p, is an

isomorphism and by Proposition 3.5 in fact

NS(X)⊗ Z` ∼− // H2
ét(X,Z`(1)).

Hence, disc NS(X) = ±pr and, by the Hodge index theorem, the sign has to be negative.
The hardest part is to show that pNS(X)∗ ⊂ NS(X) implying ANS(X) ' (Z/pZ)r, which

we skip here. In [16] this is deduced from a then still conjectural duality statement for
flat cohomology. In [475, 511] crystalline cohomology is used instead, cf. Section 18.3.2.
Note that in particular 0 ≤ r ≤ 22.
Next one proves that r is even, so r = 2σ(X). In [511] the natural inclusion NS(X)⊗

W (k) �
� // H2

cr(X/W (k)) is considered as a finite index inclusion of lattices over the Witt
ring W (k). Combining it with the appropriate version of the elementary (0.1) in Section
14.0.2 and the fact that the natural pairing on H2

cr(X/W (k)) is unimodular yields the
assertion. Artin’s proof in [16, Sec. 6] instead relies on the pairing on the Brauer group
Br(X0), see Remark 18.2.8, for the specialization X0 of X to a K3 surface over a finite
field.
Note that σ(X) = 0 if and only if NS(X) is unimodular. As there is no unimodular even

lattice of signature (1, 21), cf. Theorem 14.1.1, one has 1 ≤ σ(X). Similarly, σ(X) = 11

cannot occur, as then NS(X)(p−1) would be unimodular, even and of signature (1, 21).
Hence, 1 ≤ σ(X) ≤ 10. �

The proposition can be combined with a purely lattice theoretic result, cf. Corollary
14.3.6. For σ < 10 the following is a direct consequence of Nikulin’s Theorem 14.1.5. In
[475, Sec. 3] a more direct proof was given by Ogus, see also the survey [511, Sec. 1] by
Rudakov and Šafarevič for explicit descriptions.

Proposition 2.20. For any prime number p > 2 and any integer 1 ≤ σ ≤ 10, there
exists a unique lattice Np,σ with the following properties:

(i) The lattice Np,σ is even and non-degenerate;
(ii) The signature of Np,σ is (1, 21);
(iii) The discriminant group of Np,σ is isomorphic to (Z/pZ)2σ. �

The lattice Np,σ is often called the Rudakov–Šafarevič lattice.

Corollary 2.21. Let X be a supersingular K3 surface over an algebraically closed field
k of characteristic p > 2. Then

NS(X) ' Np,σ,

where σ = σ(X) is the Artin invariant of X. �

We refer to the original sources [511] for results in the case p = 2. The following result
is due to Kondō and Shimada [324].

Corollary 2.22. If σ + σ′ = 11, then Np,σ is isomorphic to N∗p,σ′(p).
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Proof. One has to show that N∗p,σ′(p) satisfies the conditions (i)-(iii) above. First
of all, N∗p,σ′(p) is a lattice, as pN∗p,σ′ ⊂ Np,σ′ , and it clearly is non-degenerate of signature
(1, 21). Moreover, if A is the intersection matrix of Np,σ′ , then the one of N∗p,σ′(p) is
pA−1 and, hence, discN∗p,σ′(p) = −p2σ. Then, as p(pA−1)−1 = A is an integral matrix,
the discriminant group of N∗p,σ′(p) is isomorphic to (Z/pZ)2σ. For p 6= 2 the lattice is
obviously even. See [324] for the case p = 2. �

Remark 2.23. Ogus in [475, 476] proved that a supersingular K3 surface with Artin
invariant σ(X) = 1 is unique up to isomorphisms.5 In [535] Schütt shows that this
surface has a model over Fp with Picard number 21.

3. Tate conjecture

Together with the Hodge conjecture and the Grothendieck standard conjectures, the
general Tate conjecture is one of the central open questions in algebraic geometry. If true,
it would allow one to read off the space of algebraic cycles modulo homological equivalence
of a variety over a finitely generated field from the Galois action on its cohomology. In
this sense, it is an arithmetic analogue of the Hodge conjecture. We shall only state the
case of degree two. Although it is the arithmetic analogue of the well-known Lefschetz
theorem on (1, 1)-classes, it is wide open for general smooth projective varieties.

Conjecture 3.1 (Tate conjecture in degree two). Let X be a smooth projective variety
over a finitely generated field k. Denote by ks its separable closure and let G := Gal(ks/k).
Then for all prime numbers ` 6= char(k) the natural cycle class map induces an isomor-
phism

(3.1) NS(X)⊗Q` ∼− // H2
ét(X × ks,Q`(1))G.

It has also been conjectured by Tate (attributed to Grothendieck and Serre), see [588,
592], that the action of G is semi-simple, which is sometimes formulated as part of the
Tate conjecture.

Remark 3.2. Let k′/k be a finite Galois extension in ks. If (3.1) holds for X × k′,
then it holds for X as well. Indeed, for G′ := Gal(ks/k

′) and using (2.2) one has:

NS(X)⊗Q` // H2
ét(X × ks,Q`(1))G

(NS(X × k′)⊗Q`)Gal(k′/k) ∼ //
(
H2
ét(X × ks,Q`(1))G

′
)Gal(k′/k)

A similar argument works when k′/k is just separable. Eventually, this proves that the
Tate conjecture is equivalent to

NS(X × ks)⊗Q` ∼− //
⋃
H2
ét(X × ks,Q`(1))H ,

where the union is over all open subgroups H ⊂ G.

5Ogus also proved a Torelli type theorem, cf. Section 18.3.6. See also [511].
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Remark 3.3. It is known for a product X = Y1 × Y2 that the Tate conjecture (in
degree two) for X is equivalent to the Tate conjecture for the two factors. Moreover,
the Tate conjecture holds for a variety X if it can be rationally dominated by a variety
for which it holds, see [592, Thm. 5.2] or [602, Sec. 12]. Thus, for example, the Tate
conjecture holds for all varieties that are dominated by a product of curves (DPC). As
mentioned already at the end of Chapter 4, there are no K3 surfaces that are known not
to be DPC.
For elliptic K3 surfaces X //P1 over finite fields, the Tate conjecture for X is equi-

valent to the function field analogue of the Birch–Swinnerton-Dyer conjecture for the
generic fibre E = Xη, see [593, 602] or Remark 18.2.9 for more details and a more
general version.

3.1. K3 surfaces, as abelian varieties, have always served as testing ground for
fundamental conjectures. This was the case for the Weil conjectures and is certainly also
true for the Tate conjecture. For many K3 surfaces the Tate conjecture had been verified
in the early eighties, but the remaining cases have only been settled recently. Due to the
effort of many people (see below for precise references), one now has:

Theorem 3.4. The Tate conjecture holds true for K3 surfaces in characteristic p 6= 2.

3.2. In characteristic zero, the Tate conjecture for K3 surfaces follows from the
Tate conjecture for abelian varieties proved by Faltings and the Lefschetz theorem on
(1, 1)-classes. This is a folklore argument, see [7, Thm. 1.6.1] or [592, Thm. 5.6], which
we reproduce here. For number fields the proof is due to Tankeev [581], who proves a
Lie algebra version of Tate’s conjecture asserting that NS(X × ks) ⊗ Q` is the part of
H2
ét(X × ks,Q`(1)) invariant under the Lie algebra of the Galois group.
First, choose an embedding k �

� // C. Then any K3 surface X over k induces a complex
K3 surfaceXC. The Kuga–Satake construction induces an embedding of Hodge structures

(3.2) H2(XC,Q(1)) �
� // End(H1(KS(XC),Q)).

Here, KS(XC) is the Kuga–Satake variety associated with the Hodge structureH2(XC,Z),
cf. Section 4.2.6. Recall that it is not known whether this correspondence really is always
algebraic, cf. Conjecture 4.2.11, but this is not needed for the argument here. As the
Hodge structures are polarized, (3.2) can be split by a morphism of Hodge structures
π : End(H1(KS(XC),Q)) // //H2(XC,Q(1)).
In fact, the Kuga–Satake variety KS(XC) is obtained by base change KS(X) = A×k C

from an abelian variety A over k (up to some finite extension), see Proposition 4.4.3.
Then, similar to (3.2), there exists a Galois invariant inclusion

(3.3) H2
ét(X × ks,Q`(1)) �

� // End(H1
ét(A× ks,Q`)),

see Remark 4.4.5. Moreover, (3.2) and (3.3) are compatible via the natural comparison
morphisms

H2(XC,Q(1)) �
� // H2

ét(X × ks,Q`(1))
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and

End(H1(AC,Q)) �
� // End(H1

ét(A× ks,Q`)).

Now take α ∈ H2
ét(X × ks,Q`(1))G and consider its image f ∈ End(H1

ét(A × ks,Q`))
under (3.3), which due to Faltings’ result [173, Ch. VI] can be written as a Q`-linear
combination f =

∑
λifi of endomorphisms of A × ks. In particular, the fi are actually

Hodge classes in End(H1(AC,Q)). Their projections π(fi) ∈ H1,1(XC,Q) are algebraic
by the Lefschetz theorem on (1, 1)-classes and they remain of course algebraic when
considered as classes in H2

ét(X × ks,Q`(1)). But then α =
∑
λiπ(fi) is a Q`-linear

combination of algebraic classes and hence contained in NS(X × k′) ⊗ Q` ⊂ H2
ét(X ×

ks,Q`(1)) for some finite extension k′/k, see Lemma 2.6. However, α as a cohomology
class is G-invariant and hence also as a class in NS(X×k′)⊗Q` contained in the invariant
part NS(X)⊗Q` = (NS(X × k′)⊗Q`)Gal(k′/k).
The Tate conjecture in characteristic zero, together with the Lefschetz theorem on

(1, 1)-classes, at least morally implies the Mumford–Tate conjecture, see Theorem 3.3.11.

3.3. So most of the attention focused on K3 surfaces over finite fields, in which the
Galois invariant part of H2

ét(X̄,Q`(1)) is just the eigenvalue one eigenspace

H2
ét(X̄,Q`(1))f

∗−id ⊂ H2
ét(X̄,Q`(1))

of the Frobenius. For the notation and the definition of the Frobenius action see Section
4.4.1.

Proposition 3.5. For a smooth projective surface X over a finite field Fq the following
conditions are equivalent:

(i) NS(X)⊗Q` ∼− // H2
ét(X × ks,Q`(1))f

∗−id (Tate conjecture).
(ii) NS(X)⊗ Z` ∼− // H2

ét(X × ks,Z`(1))f
∗−id (Integral Tate conjecture).

(iii) rk NS(X) = −ords=1Z(X, q−s). (See Section 4.4.1.)
(iv) The Brauer group Br(X) is finite (Artin conjecture).

In particular, the Tate conjecture for surfaces is independent of ` 6= p.

Proof. Clearly, (ii) implies (i) and by the Weil conjectures −ords=1Z(X, q−s) equals
the dimension of the (generalized) eigenspace to the eigenvalue q of the action of the
Frobenius on H2

ét(X̄,Q`), see Section 4.4.1. Hence, (iii) implies (i). Moreover, one also
knows that the action of the Frobenius is semi-simple on the generalized eigenspace for
the eigenvalue q, cf. Remark 4.4.2.
Let us prove that (i) implies (iii) for which we follow Tate’s Bourbaki article [593,

p. 437], cf. [592, Sec. 2] and [602, Lect. 2, Prop. 9.2]. To shorten the notation, set
H := H2

ét(X × ks,Q`(1)), N := NS(X)⊗Q`, and let

HG := {α | f∗α = α} and HG := H/{f∗α− α | α ∈ H}
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be the invariant resp. coinvariant part of the Galois action. First observe that the non-
degenerate pairing H ×H //Q` given by Poincaré duality naturally leads to an isomor-
phism HG

∼− // Hom(HG,Q`). Next, check that the composition

N
c // // HG // HG

∼ // Hom(HG,Q`) �
� c∗ // Hom(N,Q`)

is the map induced by the non-degenerate intersection pairing on N . Here, c is the cycle
class map, which is in fact bijective by assumption. Eventually use that the natural map
HG //HG is injective if and only if the generalized eigenspace is just HG.
That (i) also implies the a priori stronger condition (ii) follows from the fact that the

quotient of the inclusion

Pic(X)⊗ Z` �
� // H2

ét(X,Z`(1)) ' H2
ét(X̄,Z`(1))G

is the Tate module T`Br(X), which is free. See (1.8) in Section 18.1.1 and also Remark
18.2.3 and the proof of Lemma 18.2.5. The equivalence of (i) (or (ii) or (iii)) with (iv) is
proved in Section 18.2.2. Eventually note that (iii) (and (iv)) is independent of ` and so
are all other statements. �

Remark 3.6. i) For varieties over arbitrary finitely generated fields, Tate in [588]
points out that if the conjecture holds true for one ` 6= p and the action of the Frobenius
is semi-simple, then the Tate conjecture holds true for all ` 6= p. Over finite fields this is
due to the fact that the Zeta function does not depend on `, as seen above. For varieties
over arbitrary fields the proof is more involved.
ii) For K3 surfaces over finite fields the Frobenius action can be shown to be semi-simple

directly, see Remark 4.4.2. In fact, for K3 surfaces over arbitrary finitely generated field
k the action of the Galois group Gal(ks/k) on H2

ét(X × ks,Q`(1)) is semi-simple. This
follows from the analogous statement for abelian varieties, see [173], and the Galois
invariant embedding (3.3).

First attempts to prove the Tate conjecture for K3 surfaces go back to Artin and
Swinnerton-Dyer in [20], where it is proved for K3 surfaces over finite fields admitting
an elliptic fibration with a section. In [16] Artin proved the conjecture for supersingular
elliptic K3 surfaces. In [512] Rudakov, Zink, and Šafarevič treated the case of K3 surfaces
with a polarization of degree two in characteristic ≥ 3. Nygaard in [460] proved the Tate
conjecture for ordinary K3 surfaces over finite fields, i.e. for those of height h(X) = 1, see
Section 18.3.1. This was in [461] extended by Nygaard and Ogus to all K3 surfaces of
finite height, i.e. h(X) < 11, over finite fields of characteristic ≥ 5. So it ‘only’ remained
to verify the conjecture for (non-elliptic) supersingular K3 surfaces.
This was almost thirty years later addressed by Maulik in [396], who eventually proved

the Tate conjecture for supersingular K3 surfaces over finite fields k (or rather Artin’s
conjecture) with a polarization of degree d satisfying 2d+ 4 < char(k). In [108] Charles
built upon Maulik’s approach and removed the dependence of the characteristic on the
degree (and also avoiding the reduction of the supersingular case to the case of elliptic K3
surfaces dealt with in [20]). Eventually only p ≥ 5 had to be assumed. An independent
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approach was pursued by Madapusi Pera [385] who proved Theorem 3.4 for all K3 surfaces
in characteristic 6= 2.

We do not go into details of any of these proofs, but recommend Benoist’s Bourbaki
survey [57] for a first introduction. Note that all recent proofs of the Tate conjecture rely
on the Kuga–Satake construction to some extent. The proofs in [396, 108] deal only with
the remaining supersingular K3 surfaces, whereas in [385] there is no need to distinguish
between supersingular and non-supersingular K3 surfaces. The more recent paper of
Charles [109] contains another approach, in spirit closer to the paper by Artin and
Swinnerton-Dyer. See Section 18.2.3 for more information. Note that in order to prove
the Tate conjecture over arbitrarily finitely generated fields in positive characteristic, it
is indeed enough to prove it for finite fields, see [57, Prop. 2.6].

3.4. An immediate consequence of the Tate conjecture is that the Picard number
of a K3 surface over a finite field is always even, see Corollary 2.9. Here is another
consequence

Corollary 3.7. Let X be a K3 surface over an algebraically closed field of characteristic
≥ 3. Then X is supersingular if and only if ρ(X) = 22.

Proof. Since ρ(X) ≤ 22−2h(X) for K3 surfaces of finite height, see Lemma 18.3.6,
any K3 surfaces of maximal Picard number ρ(X) = 22 has to be supersingular. For the
converse assume that X is defined over a finite field Fq. Using the arguments in the proof
of Theorem 18.3.10, one finds that the action of the Frobenius on H2

ét(X × F̄q,Q`(1)) is
of finite order and after passing to a certain finite extension Fqr we can even assume it is
trivial. Hence by the Tate conjecture NS(X)⊗Q` ' H2

ét(X × F̄q,Q`(1)) and, therefore,
ρ(X) = 22.
In order to reduce to the case of finite fields one has to show that the specialization

(see Proposition 2.10) for a family of K3 surfaces over a finite field with supersingular
geometric generic fibre is not only injective but that the Picard number stays in fact
constant. For this one has to use that the Brauer group of the generic fibre is annihilated
by a power of p, which again relies on the Tate conjecture. See [16, Thm. 1.1] for
details. �

In [368] Lieblich, Maulik, and Snowden observed that the Tate conjecture for K3
surfaces over finite fields is equivalent to the finiteness of these surfaces. Due to the usual
boundedness results, the set of isomorphism classes of polarized K3 surfaces (X,H) over
a fixed finite field Fq and with fixed degree (H)2 is finite. Using the Tate conjecture, the
main result of [368] becomes the following

Proposition 3.8. There exist only finitely many isomorphism types of K3 surfaces
over any fixed finite field of characteristic p ≥ 5.

In [109] Charles reversed the argument and proved the finiteness of K3 surfaces over a
finite field. According to [368] this then implies the Tate conjecture. See Section 18.2.3
for a rough outline of these approaches.
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References and further reading:
André in [7, Lem. 2.3.1] provides some information which power of a Galois invariant line

bundle on XK descends to X itself, cf. Section 2.2.
In [606] van Luijk also shows that the set of quartic K3 surfaces over Q of geometric Picard

number one and with infinitely many rational points is in fact dense in the moduli space of
quartics.

In [580, Thm. 3.3] Tankeev proves an analogue of the Tate conjecture for the generic fibre of
one-dimensional families X //C of complex projective K3 surfaces under certain conditions on
the stable reduction at some point of C.

Zarhin studies in [645] the action of the Frobenius on the ‘transcendental part’ of H2
ét(X ×

ks,Q`(1)), i.e. the orthogonal complement of the invariant part, and proves that for ordinary K3
surfaces the characteristic polynomial is irreducible. In [646] he builds upon Nygaard’s work
and proves that for ordinary K3 surfaces X the Tate conjecture holds true for all self-products
X×. . .×X in all degrees(!). This is somewhat surprising as the Hodge conjecture for self-products
of complex K3 surfaces is not known in such generality. For the square X×X the results actually
show that the Galois invariant part of H4

ét((X×X)×ks,Q`(2)) is spanned by products of divisor
classes on the two factors, graphs of powers of the Frobenius, and the trivial classes X×x, x×X.

Questions and open problems:
The results of Ellenberg and van Luijk leave one question open: Are there K3 surfaces of

geometric Picard number one defined over Q of arbitrarily high degree? If the condition on the
Picard number is dropped, the existence becomes easy. More generally, one could ask which
lattices NS(XQ̄) can be realized by K3 surfaces X defined over Q. A related conjecture by
Šafarevič [513] asks whether for any d there exist only finitely many lattices N realized as
NS(X × k̄) of a K3 surface X defined over a number field k of degree ≤ d. It is relatively easy to
prove that there are only finitely many such lattices of maximal rank 20.



CHAPTER 18

Brauer group

The Brauer group of a K3 surface X, complex or algebraic, is an important invariant
of the geometry and the arithmetic of X. Quite generally, for an arbitrary variety (or
scheme, or complex manifold, etc.) the Brauer group can be seen as a higher degree
version of the group Pic(X) of isomorphism classes of invertible sheaves L on X, which
can be cohomologically is described as Pic(X) ' H1(X,Gm) or Pic(X) ' H1(X,O∗X).
Similarly, the Brauer group Br(X), for example of a K3 surface, is geometrically de-

fined as the set of equivalence classes of sheaves of Azumaya algebras over X and coho-
mologically identified as Br(X) ' H2(X,Gm) in the algebraic setting and as Br(X) '
H2(X,O∗X)tors in the analytic. However, contrary to Pic(X), the Brauer group is a torsion
abelian group. Its formal version leads to the notion of the height.

In the following, cohomology with coefficients in Gm or µn always means étale coho-
mology. For a variety X over a field k we denote by X̄ the base change X ×k ks to a
separable closure of ks/k

1. General theory: arithmetic, geometric, formal

For general information on Brauer groups of schemes see Grothendieck’s original [225],
Milne’s account [403, Ch. IV], or the more recent notes of Poonen [492]. Here, we shall
first briefly sketch the main facts and constructions. The analytic theory is less well
documented. We concentrate on those aspects that are strictly necessary for the purpose
of these notes.

1.1. Algebraic and arithmetic. To define the Brauer group of a scheme X let
us first recall the notion of an Azumaya algebra over X, which by definition is an OX -
algebra A that is coherent as an OX -module and étale locally isomorphic to the matrix
algebra Mn(OX). Note that by definition an Azumaya algebra is associative but rarely
commutative. The fibre A(x) := A⊗k(x) at every point x ∈ X is a central simple algebra
over k(x).1

By the Skolem–Noether theorem, any automorphism of the k-algebra Mn(k) is of the
form a � // g · a · g−1 for some g ∈ GLn(k), i.e. Aut(Mn(k)) ' PGLn(k). Hence, the

Thanks to François Charles and Christian Liedtke for comments and discussions.
1Recall that a central simple k-algebra (always finite-dimensional in our context) is an associative

k-algebra with centre k and without any proper non-trivial two-sided ideal. It is known that a k-algebra
A is a central simple algebra if and only if there exists a Galois extension k′/k with A ⊗k k′ ' Mn(k′)

for some n > 0.

381
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usual Čech cocycle description yields a bijection between the set of isomorphism classes
of Azumaya algebras and the first étale cohomology of PGLn := GLn/Gm:

(1.1) {A | Azumaya algebra of rank n2} ' H1
ét(X,PGLn).2

Unlike GLn, étale cohomology of PGLn differs from its cohomology with respect to the
Zariski topology, i.e. an étale PGLn-bundle is usually not Zariski locally trivial.
An Azumaya algebra is called trivial if it is isomorphic to End(E) for some locally free

sheaf E and two Azumaya algebras A1 and A2 are called equivalent, A1 ∼ A2, if there
exist locally free sheaves E1 and E2 such that

A1 ⊗ End(E1) ' A2 ⊗ End(E2)

as Azumaya algebras.

Definition 1.1. The Brauer group of X is the set of equivalence classes of Azumaya
algebras:

Br(X) := {A | Azumaya algebra}/∼
with the group structure on Br(X) given by the tensor product A1 ⊗A2.

Note that for the opposite algebra Ao there exists a natural isomorphism

A⊗OX A
o ∼− // EndOX (A), a1 ⊗ a2

� // (a � // a1 · a · a2)

which makes Ao the inverse of A in Br(X).

Remark 1.2. Due to Wedderburn’s theorem, any central simple k-algebra is a matrix
algebra Mn(D) over a uniquely defined division k-algebra D. As Mn(D) ' Mn(k)⊗k D,
one has Mn(D) ∼ D and so [D] = [Mn(D)] ∈ Br(k). Note that, Mn(D) ∼ Mn(D′) if and
only if D ' D′. See [297, Ch. II] or [1, Tag 074J].

Remark 1.3. There are two numerical invariants attached to a class α ∈ Br(X), its
period and its index. The period (or exponent) per(α) is by definitions the order of α as
an element in the group Br(X), whereas the index ind(α) of α is the minimal

√
rk(A) of

all Azumaya algebras A representing α. For X = Spec(k) the index equals the minimal
degree of a Galois extension k′/k such that αk′ = 0, see [542, Thm. 10].
Due to (1.5) below, the period always divides the index

per(α) | ind(α).

Moreover, it is known that their prime factors coincide. Classically it is also known that
in general per(α) 6= ind(α), see e.g. Kresch’s example of a three-dimensional variety in
characteristic zero in [327], and the notorious period-index problem asks under which
conditions per(α) = ind(α). For function fields of surfaces and for surfaces over finite
fields this has been addressed by de Jong [135] and Lieblich [364]. In particular, per(α) =

ind(α) for Brauer classes α ∈ Br(X) with per(α) prime to q on K3 surfaces over Fq. Also
note that for complex K3 surfaces one always has per(α) = ind(α), see [268].

2See [403, IV Prop. 1.4] for the generalization of the Skolem–Noether theorem to Azumaya algebras
over arbitrary rings which is needed here.
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The cohomological Brauer group of an arbitrary scheme X is the (torsion part of the)
étale cohomology

Br′(X) := H2(X,Gm)tors.

The two Brauer groups can be compared via a natural group homomorphism

(1.2) Br(X) //Br′(X),

which is constructed by means of the short exact sequence

(1.3) 0 //Gm //GLn //PGLn // 0,

the bijection (1.1), and the induced boundary operator3

(1.4) H1(X,GLn) // H1
ét(X,PGLn)

δn // H2(X,Gm).

Indeed, using that PGLn = GLn/Gm ' SLn/µn, one finds a factorization

δn : H1
ét(X,PGLn) //H2(X,µn) //H2(X,Gm)

which in particular shows that

(1.5) Im(δn) ⊂ H2(X,Gm)[n].

The first arrow in (1.4) can be interpreted as the map that sends a locally free sheaf
E to End(E), which implies that (1.2) is injective, see [403, IV.Thm. 2.5] for details.
Grothendieck in [225] proved the surjectivity of (1.2) for curves and regular surfaces, but
(1.2) is in fact an isomorphism, so

Br(X) ∼− // Br′(X),

for any quasi-compact and separated X with an ample line bundle. The result is usually
attributed to Gabber but the only available proof is de Jong’s [134].

Example 1.4. i) It is not hard to show that for an arbitrary field k the natural map
(1.2) yields an isomorphism

Br(k) := Br(Spec(k)) ∼− // H2(Spec(k),Gm) ' H2(Gal(ks/k), k∗s).

In particular, all groups involved are torsion. See [546, Ch. X.5].
ii) More generally, H2(X,Gm) is torsion if X is regular and integral. Indeed, in this

case the restriction to the generic point of X defines an injection

Br(X) �
� // Br(K(X)),

see [403, IV.Cor. 2.6], and the latter group is torsion. So, in all cases relevant to us

Br(X) ' H2(X,Gm).

3The standard reference for non-abelian cohomology of sheaves like PGLn is [208].
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Let X be a variety over an arbitrary field k. Then for any n prime to char(k) the exact
Kummer sequence 0 //µn //Gm //Gm //0 yields a short exact sequence

(1.6) 0 //H1(X,Gm)⊗ Z/nZ //H2(X,µn) //Br(X)[n] // 0.

If X is proper, then this in particular shows that

|Br(X)[n]| <∞.

Example 1.5. For a K3 surface X and n prime to the characteristic, the vanishing
of H1(X̄, µn) (see Remark 1.3.7), the Kummer sequence, and Poincaré duality imply
Br(X̄) ⊗ Z/nZ ⊂ H3

ét(X̄, µn) = 0, so the prime to p torsion part of Br(X̄) is a divisible
group.

For finite fields one even expects Br(X) to be finite altogether, due to the very general
(and widely open in this generality)

Conjecture 1.6 (Artin). For any proper scheme X over Spec(Z) the Brauer group
Br(X) is finite.

A more precise form in the case of smooth projective surfaces over finite fields is given
by the Artin–Tate Conjecture 2.4. As the conjecture assumes properness over Spec(Z), it
does not apply to varieties over number fields and, indeed, the Brauer group of a number
field itself is large, see Remark 2.1 and Section 2.4.

For a prime ` 6= char(k) one defines the Tate module as the inverse limit

(1.7) T`Br(X) := limoo −Br(X)[`n],

which is a free Z`-module. Taking limits and using that the inverse system NS(X) ⊗
(Z/`nZ) satisfies the Mittag-Leffler condition, one deduces from (1.6) the short exact
sequence

(1.8) 0 //Pic(X)⊗ Z` //H2
ét(X,Z`(1)) // T`Br(X) // 0,

which bears a certain resemblance to the finite index inclusion NS(X)⊕T (X) ⊂ H2(X,Z)

for a complex projective K3 surface, cf. Remark 1.10 and Section 3.3.
Let now X be proper and geometrically integral over an arbitrary field k with separable

closure ks/k and let X̄ := X ×k ks. Note that Pic(X̄)⊗ Z` ' NS(X̄)⊗ Z`, as the kernel
of Pic(X̄) //NS(X̄) is an `-divisible group. The short exact sequence (1.8) for X̄ is a
sequence of G := Gal(ks/k)-modules and the Tate conjecture predicts that NS(X)⊗Q` '
H2
ét(X̄,Q`(1))G if k is finitely generated, cf. Section 17.3 and Section 2.2 below for the

relation to the finiteness of Br(X).
The Brauer groups of k, X, and X̄ are compared via the Hochschild–Serre spectral

sequence4

(1.9) Ep,q2 = Hp(k,Hq(X̄,Gm))⇒ Hp+q(X,Gm).

4. . .which is the usual spectral sequence associated with the composition of two functors. In the
present case use that for a sheaf F on X the composition of F � // F (X̄) with M � //MG equals F (X).
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Using Hilbert 90, i.e. H1(k,Gm) = 0, it yields an exact sequence:

(1.10) Pic(X) �
� // Pic(X̄)G //Br(k) //Br1(X) //H1(k,Pic(X̄)) //H3(k,Gm).

Here, by definition Br1(X) := Ker
(
Br(X) //Br(X̄)G

)
, which is part of a natural filtra-

tion
Br0(X) ⊂ Br1(X) ⊂ Br(X)

with Br0(X) := Im (Br(k) //Br(X)). Then there exist inclusions

(1.11) Br1(X)/Br0(X) �
� // H1(k,Pic(X̄))

(which is an isomorphism if H3(k,Gm) = 0, e.g. for all local and global fields) and

(1.12) Coker
(
Br(X) //Br(X̄)G

) � � // H2(k,Pic(X̄)).

Classes in Br1(X) are called algebraic and all others, i.e. those giving non-trivial classes
in Br(X)/Br1(X) ' Im(Br(X) //Br(X̄)), transcendental.
Clearly, if X(k) 6= ∅, then (see also [441, App. I] for a direct proof):

(1.13) Br(k) �
� // Br(X) and Pic(X) ∼− // Pic(X̄)G.

1.2. Analytic. For a complex possibly non-algebraic K3 surface or more generally a
compact complex manifold X, the definition of Br(X) as the group of equivalence classes
of Azumaya algebras on X translates literally, replacing étale topology by the classical
topology. However, the cohomological Brauer group, defined as

Br′(X) := H2(X,O∗X)tors,

is strictly smaller than H2(X,O∗X) (unless completely trivial), in contrast to the étale
cohomology group H2(X,Gm)tors = H2(X,Gm).
As in the algebraic setting, the Brauer group and the cohomological Brauer group can

be compared by means of a long exact sequence. The relevant short exact sequence, the
analytic analogue of (1.3), is

0 //O∗X //GLn //PGLn // 0,

which yields
H1(X,GLn) //H1(X,PGLn) //H2(X,O∗X)

and consequently a natural injective homomorphism Br(X) �
� // Br′(X). As in the alge-

braic setting, this morphism is expected to be an isomorphism in general, i.e.

Br(X) ∼− // Br′(X),

which has been proved in [268] for arbitrary complex K3 surfaces.

Example 1.7. To get a feeling for certain torsion parts of Br(X), we mention a result
of van Geemen [605]. For the generic double plane X //P2 branched over a smooth
sextic C ⊂ P2 there exists a short exact sequence

0 // Jac(C)[2] //Br(X)[2] //Z/2Z // 0.
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For a complex K3 surface X, the exponential sequence 0 //Z //OX //O∗X // 0 in-
duces a long exact sequence (cf. Section 1.3.2)

0 //H1(X,O∗X) //H2(X,Z) //H2(X,OX) //H2(X,O∗X) // 0.

As H1(X,O∗X) ' Pic(X) ' Z⊕ρ(X) and H2(X,Z) ' Z⊕22, one finds that H2(X,O∗X) '
C/Z⊕22−ρ(X) and so

(1.14) Br(X) ' Br′(X) = H2(X,O∗X)tors ' (Q/Z)⊕22−ρ(X).

This is a divisible group, which could also be deduced from the exact Kummer sequence
0 // µn //O∗X //O∗X // 0 as in the algebraic setting.
Note that the composition Q //OX //O∗X yields a surjection

H2(X,Q) // //Br′(X) ' Br(X), B � //αB

and it can indeed be useful to represent a Brauer class by a lift in H2(X,Q), cf. Section
16.4.1.
Thinking of Br(X) as a geometric replacement for the transcendental part T (X) of the

Hodge structure associated with X can be made more precise as follows: Lifting a class
α ∈ Br(X) to a class B ∈ H2(X,Q), i.e. α = αB, and using the intersection product on
T (X) ⊂ H2(X,Z) yields an isomorphism

Br(X) ∼− // Hom(T (X),Q/Z).

This holds more generally for all X with H3(X,Z) = 0 and Br(X) ' Br′(X).

Remark 1.8. Note that only for ρ(X) = 20 the group H2(X,O∗X) has a reasonable
geometric structure, namely that of a complex elliptic curve. In fact, in this case X is a
double cover of a Kummer surface associated with a product E1 ×E2 of two CM elliptic
curves E1, E2 isogenous to H2(X,O∗X), see Remark 14.3.22.

Remark 1.9. In case X is a projective complex K3 surface, there is the algebraic
Brauer group H2(X,Gm) and the analytic one H2(X,O∗X)tors. They are isomorphic

H2(X,Gm) ' H2(X,O∗X)tors,

which can either be seen by comparing Azumaya algebras in the étale and analytic topol-
ogy or by comparing the two cohomology groups directly, see Remark 11.5.13.

Remark 1.10. For a K3 surface X over an arbitrary algebraically closed field k, e.g.
k = F̄p, one has by (1.8)

T`Br(X) ' Z⊕22−ρ(X)
` ,

as in this case H2
ét(X,Z`(1)) is of rank 22. In the complex case, this can be also deduced

from (1.14) above.
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1.3. Formal. Contrary to the case of the Picard group, the Brauer group (of a K3
surface) cannot be given the structure of an algebraic group, as over a separably closed
field it is torsion and divisible. However, its ‘formal completion’ can be constructed as a
formal group scheme. This was made rigorous by Artin and Mazur in [19]. The result
relies on Schlessinger’s theory of pro-representable functors of which we briefly recall the
basic features. See the original articles [17, 524] or [235], but the most suitable account
for our purpose is [174, Ch. 6]. For K3 surfaces, the formal Brauer group is a smooth
one-dimensional formal group which in positive characteristic allows one to introduce the
height as an auxiliary invariant.

Let us briefly review the classical theory of the Picard functor in the easiest case of a
smooth projective variety X over a field k. The Picard functor is the sheafification (which
is only needed when X comes without a k-rational point) of the contravariant functor

PicX : (Sch/k)o // (Ab), S � //Pic(XS)/∼.

Here, XS := X × S with the second projection p : XS
//S and L ∼ L′ if there exists

a line bundle M on S with L ' L′ ⊗ p∗M . Alternatively, one could introduce directly
PicX(S) as H0(S,R1p∗Gm). Compare Sections 10.1.1 and 11.4.1.
The Picard functor is represented by a scheme PicX , cf. [80, 174]. The connected

component containing the point that corresponds to OX is a projective k-scheme Pic0
X .

The Zariski tangent space of PicX at a point corresponding to a line bundle L on Xk′ is
naturally isomorphic toH1(Xk′ ,OXk′ ), cf. Proposition 10.1.11. Although the obstruction
space H2(X,OX) need not be zero in general, it is not for a K3 surface, the Picard scheme
is smooth if char(k) = 0. In this case, Pic0

X is an abelian variety of dimension h1(X,OX).

Example 1.11. For a K3 surface X over an arbitrary field k, PicX is zero-dimensional
and reduced. In particular, Pic0

X consists of just one k-rational reduced point which
corresponds to OX . Other points of PicX might not be k-rational, but they are all
reduced. Compare Sections 10.1.6 and 17.2.1.

Let k be any field and denote by (Art/k) the category of local Artin k-algebras. A
deformation functor is a covariant functor

F : (Art/k) // (Sets)

such that F (k) is a single point.
A deformation functor is pro-representable if there exists a local k-algebra R with

residue field k ' R/m and finite-dimensional Zariski tangent space (m/m2)∗ such that
F ' hR, i.e. there are functorial (in A ∈ (Art/k)) bijections

F (A) ' Mork-alg(R,A).

Note that if F ' hR, then also F ' hR̂, for the m-adic completion R̂ of R. Hence, if F
is pro-representable at all, it is pro-representable by a complete local k-algebra R.
To understand F , one needs to study whether objects defined over some Artinian ring

A, i.e. elements in F (A), can be lifted to bigger Artinian rings A′ // //A, and if at all, in
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how many ways. It usually suffices to consider small extensions, i.e. for which the kernel
I of the quotient A′ // //A in (Art/k) satisfies mA′ · I = 0.
A tangent-obstruction theory for a deformation functor F consists of two finite-dimensio-

nal k-vector spaces T1 and T2 such that for any small extension I //A′ //A in (Art/k)

there exists an exact sequence of sets

(1.15) T1 ⊗k I //F (A′) //F (A) // T2 ⊗k I

which is assumed to be left exact for A = k and which implicitly assumes that T1 ⊗k I
acts transitively on the fibres of F (A′) //F (A). Note that a tangent-obstruction theory
need not exist and when it does, T2 is not unique. Recall that the functor F is formally
smooth if F (A′) //F (A) is surjective for all A′ //A. Therefore, if F admits a tangent-
obstruction theory with T2 = 0, then F is formally smooth. Also, if F ' hR, then
T1 ' F (k[x]/x2) is isomorphic to the Zariski tangent space (m/m2)∗ and R is smooth if
T2 = 0. One of the main results of [524] is the following one, which we phrase in the
language of [174] that replaces Schlessinger’s conditions (H1)-(H4) by the condition on
the tangent-obstruction theory.

Theorem 1.12 (Schlessinger). A deformation functor F is pro-representable if and
only if F admits a tangent-obstruction theory for which the sequence (1.15) is left exact
for all small extensions I //A′ //A.

If the deformation functor takes values in the category of abelian groups (Ab), then
under the same assumptions Schlessinger’s theory yields a complete local k-algebra R
such that the formal spectrum Spf(R) has a group structure.

i) Let us test this for the formal completion of the Picard functor (using that Pic(A) is
trivial)

P̂icX : (Art/k) // (Ab), A � //Ker (Pic(XA) //Pic(X)) .

The restriction Pic(XA) //Pic(X) is part of an exact sequence

//H1(X, 1 +OX ⊗k mA) //Pic(XA) //Pic(X) //H2(X, 1 +OX ⊗k mA) //

induced by the short exact sequence 0 // 1 + OX ⊗k mA
//O∗XA //O∗X // 1. So, in

fact, for complete X

P̂icX(A) = H1(X, 1 +OX ⊗k mA) ' H1(X,OX)⊗k mA.

Since (the sheafification of) the global Picard functor PicX on (Sch/k)o is representable
by a scheme PicX , the formal completion Spf(ÔPicX ,0) of PicX at the origin (or rather
the complete k-algebra ÔPicX ,OX ) pro-represents P̂icX .
But Schlessinger’s theory can in fact be applied to P̂icX directly. A tangent-obstruction

theory in this case is given by T1 := H1(X,OX) and T2 := H2(X,OX). Indeed, for a
complete variety X the short exact sequence

(1.16) 0 // 1 +OX ⊗k I //O∗XA′
//O∗XA // 1

associated with a small extension I //A′ //A yields (1.15).
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For a K3 surface, H1(X,OX) = 0 and hence PicX consists of isolated reduced points.
In particular, P̂icX is formally smooth and, in fact, pro-representable by Spf(k).
ii) The local approach works equally well for the functor described by the Brauer group
of a variety X. Consider

B̂rX : (Art/k) // (Ab), A � //Ker (Br(XA) //Br(X)) .

Note that in this case one cannot hope to represent the global version on (Sch/k),
but Schlessinger’s local theory applies to B̂rX . A tangent-obstruction theory is this
time provided by T1 := H2(X,OX) and T2 := H3(X,OX). Indeed, by using the long
cohomology sequence associated with (1.16) one finds

//H2(X,OX)⊗k I // B̂rX(A′) // B̂rX(A) //H3(X,OX)⊗k I // .

Moreover, H2(X,OX)⊗k I // B̂rX(A′) is injective if and only if P̂icX(A′) // P̂icX(A)

is surjective. This immediately yields the following consequence of Theorem 1.12.

Corollary 1.13. Let X be a complete variety over an arbitrary field k.
(i) If P̂icX is formally smooth, then B̂rX is pro-representable.
(ii) If B̂rX is pro-representable, then its Zariski tangent space is naturally isomorphic

to H2(X,OX).
(iii) If H3(X,OX) = 0, then B̂rX is formally smooth. �

If B̂rX is pro-representable by a complete k-algebra R, one writes B̂rX for the formal
group Spf(R) and calls it the formal Brauer group of X.

Remark 1.14. Assume char(k) = 0. Then the exponential map exp: OX ⊗k mA
∼− //

1 +OX ⊗k mA yields an isomorphism of group functors H2(X,OX)⊗k mA
∼− // B̂rX(A).

As then

B̂rX(A) ' Homk(H
2(X,OX)∗,mA) ' Homk-alg(S

∗H2(X,OX)∗, A),

this shows directly
B̂rX ' Spf

(
Ŝ∗H2(X,OX)∗

)
.

However, in positive characteristic the situation is different.

As H3(X,OX) = 0 for a K3 surface X and the discrete and reduced PicX is obviously
smooth, the general theory applied to K3 surfaces becomes the following

Corollary 1.15. Let X be a K3 surface over an arbitrary field k. Then B̂rX is pro-
representable by a smooth, one-dimensional formal group B̂rX ' Spf(R). �

2. Finiteness of Brauer group

This section is devoted to finiteness results and conjectures for Brauer groups of K3
surfaces over finitely generated fields k. Most of the results hold in broader generality,
but, due to the vanishing of various cohomology groups of odd degree, the picture is often
simpler for K3 surfaces. The case char(k) = 0, for which number fields provide the most
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interesting examples, is discussed in Section 2.4. For the case char(k) > 0 (in fact, mostly
finite fields and their algebraic closure) see Section 2.2.

2.1. We shall however begin by recalling basic facts on the Brauer group of the
relevant base fields.

Remark 2.1. o) Separably closed fields have trivial Brauer groups.
i) Brauer groups of local fields are known to be:

Br(R) ' Z/2Z, Br(C) = 0, and Br(k) ' Q/Z

for non-archimedean local fields k, i.e. finite extensions of Qp or Fq((T )), where the
isomorphism is given by the Hasse invariant, see e.g. [408, Ch. IV].
ii) For any global field k, i.e. a finite extension of Q or Fq(T ), there exists a short exact

sequence

(2.1) 0 //Br(k) //
⊕

Br(kν) //Q/Z // 0.

It shows in particular that the Brauer group of a number field is big. That (2.1) is exact
follows from the cohomological part of local and global class field theory, see e.g. [104].
iii) By Wedderburn’s theorem, Br(k) = 0 for any finite field k = Fq, see e.g. [408, 546].

In fact, in this case Hq(k,Gm) = 0 for all q ≥ 1, see [1, Tag 0A2M].
iv) If k0 is algebraically closed and trdeg(k/k0) = 1, then Br(k) = 0 (Tsen’s theorem).

See [546, Ch. X.7], [408, Ch. IV] or [1, Tag 03RD].

Of course, the arithmetic information of k encoded by Br(k) disappears when passing to
X̄ = X×k ks, i.e. the composition Br(k) //Br(X) //Br(X̄) induced by the Hochschild–
Serre spectral sequence (1.9) is trivial, simply because it factors through Br(k) //Br(ks).

Here is the first general finiteness result:

Lemma 2.2. For any K3 surface X over an arbitrary field the groups

(2.2) H1(k,Pic(X̄)) and Br1(X)/Br0(X)

are finite.

Proof. There exists a finite Galois extension k′/k such that NS(X̄) ' NS(X ×k k′),
see Lemma 17.2.6. Hence, the action of G = Gal(ks/k) on NS(X̄) factors over a finite
quotient G/H. The Hochschild–Serre spectral sequence yields an exact sequence

0 //H1(G/H,NS(X̄)) //H1(G,NS(X̄)) //H0(G/H,H1(H,NS(X̄))).

However, H1(H,NS(X̄)) = Hom(H,NS(X̄)) = 0, as NS(X̄) ' Z⊕ρ(X̄) is a torsion free
trivial H-module and H is profinite. Then use that Hq(G′, A) is finite for any finitely
generated G′-module A over a finite group G′ and q > 0, see [104, Ch. IV].
For the second assertion use the inclusion (1.11). �
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The two groups in (2.2) coincide if H3(k,Gm) = 0.5

Remark 2.3. Coming back to the exact sequence (1.8), note that the finitely gener-
ated free Z`-module T`Br(X) is trivial if and only if the `-primary part Br(X)[`∞] :=⋃

Br(X)[`n] of Br(X), is finite, which is equivalent to

Pic(X)⊗ Z` ∼− // H2
ét(X,Z`(1))

and also to
Pic(X)⊗Q` ∼− // H2

ét(X,Q`(1)).

2.2. Let us now consider the case of finite fields. The following conjecture is moti-
vated by the conjecture of Birch and Swinnerton-Dyer for elliptic curves, see [593] and
Remark 2.9 below.

Conjecture 2.4 (Artin–Tate conjecture). Let X be a smooth geometrically connected
projective surface over a finite field k = Fq. Then Br(X) is finite and

(2.3)
|Br(X)| · |disc NS(X)|
qα(X) · |NS(X)tors|2

· (1− q1−s)ρ(X) ∼ P2(q−s)

for s // 1.

Here, α(X) := χ(X,OX)− 1 + dim Pic0(X) and

P2(t) = det(1− f∗t | H2
ét(X̄,Q`)) =

b2(X)∏
i=1

(1− αit),

where X̄ := X × F̄q and f∗ denotes the action of the Frobenius. By the Weil conjecture,
see Section 4.4.1, one knows that αi ∈ Q̄ with |αi| = q (for all embeddings Q̄ �

� // C)
and NS(X)⊗Q` is contained in the Galois invariant part of H2

ét(X̄,Q`(1)). So, we may
assume that α1 = . . . = αρ(X) = q and (2.3) becomes

(2.4)
|Br(X)| · |disc NS(X)|

|NS(X)tors|2
= qα(X) ·

b2(X)∏
i=ρ(X)+1

(1− αiq−1).

Note that for a K3 surface NS(X)tors = 0 and α(X) = 1 and so in this case (2.4) reads

(2.5) |Br(X)| · |disc NS(X)| = q ·
22∏

i=ρ(X)+1

(1− αiq−1).

In any case, the left hand side of (2.4) is clearly non-zero, which shows that the Artin–
Tate conjecture implies the (degree two) Tate conjecture 17.3.1 saying rk NS(X) =

−ords=1Z(X, q−s) or, equivalently,

(2.6) NS(X)⊗Q` ' H2
ét(X̄,Q`(1))G,

5One could try to prove finiteness of Coker(Br(X) // Br(X̄)G) and H2(k,Pic(X̄)) in a similar way,
but H2(H,NS(X̄))G coming up in the spectral sequence is a priori not finite. However, see Theorem 2.10
and Remark 2.11.
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where G = Gal(k̄/k) ' Ẑ. See Proposition 17.3.5.
To prove the converse, namely that the Tate conjecture (2.6) implies the Artin–Tate

conjecture (2.3) one needs the following

Lemma 2.5. Let X be a smooth geometrically connected projective surface over a
finite field k = Fq and ` 6= p. Then Br(X)[`∞] is finite if and only if NS(X) ⊗ Q` '
H2
ét(X̄,Q`(1))G. Moreover, if the finiteness holds for one ` 6= p, then it holds for all

` 6= p.

Proof. For the proof compare Tate’s survey [592]. To simplify the exposition we
shall assume that X is a K3 surface.
As k = Fq, one knows that Hp(G,Λ) = 0 for any finite G(' Ẑ)-module Λ and p 6= 0, 1,

see [546, Ch. XIII.1]. Thus, by the Hochschild–Serre spectral sequence (cf. (1.9)) for µ`n ,
there exists a short exact sequence

0 //H1(k,H1(X̄, µ`n)) //H2(X,µ`n) //H2(X̄, µ`n)G // 0.

As H1(X̄, µ`n) is the `n-torsion part of NS(X̄), it is trivial for K3 surfaces. Therefore,

NS(X)⊗ Z` �
� // H2

ét(X,Z`(1)) ' H2
ét(X̄,Z`(1))G.

Hence, by Remark 2.3,

(2.7) NS(X)⊗ Z` ' H2
ét(X̄,Z`(1))G

if and only if the Tate module T`Br(X) is trivial, which is equivalent to |Br(X)[`∞]| <∞.
As observed earlier, (2.7) is equivalent to NS(X)⊗Q` ' H2

ét(X,Q`(1)) ' H2
ét(X̄,Q`(1))G,

which due to Proposition 17.3.5 is independent of `.6 �

Next combine 0 //NS(X)⊗ Z/`Z //H2(X,µ`) //Br(X)[`] // 0, see (1.6), with the
isomorphism H2(X,µ`) ' H2(X̄, µ`)

G. If one could now show that the Tate conjecture
NS(X) ⊗ Z` ∼− // H2

ét(X̄,Z`(1))G automatically yields isomorphisms NS(X) ⊗ Z/`Z '
H2(X̄, µ`)

G for most `, the finiteness of all (or, equivalently, of one) Br(X)[`∞] as in the
lemma would imply the finiteness of the whole Br(X). This part is quite delicate and Tate
in [593] uses the compatibility of the intersection pairing on NS(X) and the cup-product
H2(X,µ`)×H3(X,µ`) //Z/`Z (see Remark 2.8) to show that this indeed holds, proving
simultaneously the equation (2.3) up to powers of p. The p-torsion part was later dealt
with by Milne in [402], using crystalline, flat and Witt vector cohomology.7

Theorem 2.6 (Tate). The Tate Conjecture 17.3.1 implies the Artin–Tate Conjecture
2.4. More precisely, if NS(X)⊗Q` ' H2

ét(X̄,Q`(1))G for one ` 6= p, then Br(X) is finite
and (2.3) holds.

6Note that historically Tate’s Bourbaki article [593] precedes Deligne’s proof of the Weil conjectures.
However, for K3 surfaces the independence follows at once from Z(X, t) = P2(X, t)−1 and, for arbitrary
surfaces, Weil’s conjecture for abelian varieties suffices to conclude.

7Tate in [593] writes: The problem . . . for ` = p should furnish a good test for any p-adic cohomology
theory, . . .
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This allows one to confirm the Artin–Tate conjecture in the easiest case, namely for
ρ(X̄) = 22, e.g. for unirational K3 surfaces (see Proposition 17.2.7). Indeed, then au-
tomatically Br(X) is finite. In any case, as the Tate conjecture has been proved for K3
surfaces, see Section 17.3.3, one has

Corollary 2.7. The Artin–Tate Conjecture 2.4 holds for all K3 surfaces over finite
fields. �

Remark 2.8. The proof of the Theorem 2.6 involves a certain alternating pairing
Br(X)×Br(X) //Q/Z, which is defined by lifting α, β ∈ Br(X)[n] to classes inH2(X,µn),
projecting one to H3(X,µn) via the natural boundary operator, and then using the cup-
product to H5(X,µ⊗2

n ) ' Z/nZ. The kernel consists of the divisible elements, see [593,
Thm. 5.1] and [402, Thm. 2.4]. So, once the Artin–Tate conjecture has been confirmed,
the pairing is non-degenerate. Moreover, |Br(X)| is then a square or twice a square. The
latter can be excluded due to work of Liu, Lorenzini, and Raynaud [374].

Remark 2.9. The famous Birch–Swinnerton-Dyer conjecture, see [633], has a function
field analogue. Consider for example an elliptic K3 surface X //P1 over a finite field Fq
with generic fibre E over the function field K = Fq(T ). The Weierstrass model X̄ //P1,
see Section 11.2.2, has only integral closed fibres X̄t, which are either smooth elliptic or
rational with one ordinary double point or one cusp. The function L(E, s) of the elliptic
curve E over K counts the number of rational points on the closed fibres:

L(E, s) :=
∏

Xt smooth

(1− atq−st + q1−2s
t )−1 ·

∏
Xt singular

(1− atq−st )−1.

Here, qt is the cardinality of the residue field of t ∈ P1, i.e. k(t) ' Fqt ; at := qt + 1 −
|Xt(k(t))| if Xt is smooth; at = ±1 if X̄t has an ordinary double point with rational or
irrational tangents, respectively; and at = 0 if X̄t has a cusp. The Birch–Swinnerton-Dyer
conjecture then asserts (for an arbitrary non-constant elliptic curve over a function field)
that

rkE(K) = ords=1L(E, s).

Recall from Section 11.2.3 that the group of K-rational points E(K) of the generic
fibre can also be interpreted as the Mordell–Weil group MW(X) of the elliptic fibration
X //P1. The Shioda–Tate formula, Corollary 11.3.4, expresses the rank of MW(X) as

rk MW(X) = ρ(X)− 2−
∑
t

(rt − 1).

On the other hand, the Weil conjectures for X (see Section 4.4) and for the various fibres
of X //P1 lead to a comparison of L(E, s) and the Zeta function of X:

ords=1L(E, s) = −ords=1Z(X, q−s)− 2−
∑
t

(rt − 1),

see for example [602, Lect. 3.6] for details. Therefore,

rkE(K)− ords=1L(E, s) = ρ(X) + ords=1Z(X, q−s),
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which shows that the Birch–Swinnerton-Dyer conjecture for the elliptic curve E over
the function field K is equivalent to the Tate conjecture (and hence to the Artin–Tate
conjecture) for the K3 surface X (use Proposition 17.3.5). Compare this to Remark
17.3.3.
This can be a pushed a bit further to show that the Birch–Swinnerton-Dyer conjecture

for elliptic curves over function fields K(B) of arbitrary curves B over Fq implies the
Tate conjecture for arbitrary K3 surfaces. Indeed, by Corollary 13.2.2 any K3 surface is
covered by an elliptic surface X̃ //X. As above, the Birch–Swinnerton-Dyer conjecture
for the generic fibre of the elliptic fibration X̃ //B implies the Tate conjecture for X̃.
However, it is known that the Tate conjecture for any surface rationally dominating X
implies the Tate conjecture for X itself, see [592, Thm. 5.2] or [602, Sec. 12].

2.3. We now sketch the main ideas of the paper [20] by Artin and Swinnerton-Dyer,
proving the Tate conjecture for elliptic K3 surfaces with a section,8 explain how similar
ideas have been used by Lieblich, Maulik, and Snowden in [368] to relate the Artin–Tate
conjecture to finiteness results for K3 surfaces over finite fields and, at the end, briefly
touch upon Charles’s more recent approach [109] to the Tate conjecture relying on similar
ideas. We suppress many technical subtleties but hope to convey the main ideas.

i) Let X0
//P1 be an elliptic K3 surface and assume that T`Br(X0), ` 6= p, is not trivial.

Due to the exact sequence (1.8), one can then choose a class α ∈ H2
ét(X0,Z`(1)) that is

orthogonal to NS(X0) ⊗ Z` �
� // H2

ét(X0,Z`(1)) with respect to the intersection pairing
and projects onto a non-trivial class (αn) ∈ T`Br(X0). We may assume that αn ∈ Br(X0)

has order dn := `n and `αn = αn−1.
Now useX(X0) ' Br(X0), see Section 11.5.2.9 Thus, every αn ∈ Br(X0) gives rise to

an elliptic K3 surface
Xn := Xαn

//P1

over k with Jacobian fibration J(Xn) ' X0. As hinted at in Remark 11.5.9, the index of
Xn

//P1, i.e. the minimal positive fibre degree of a line bundle on Xn, equals dn.
On each of the Xn one constructs a distinguished multisection Dn of fibre degree dn,

by using Jdn(Xn) ' J(Xn) ' X0 and the given zero-section of X0
//P1. A crucial

observation in [20] then says that (Dn)2 ≡ (α)2 (dn). This is a central point in the
argument and it is proved in [20] by lifting to characteristic zero and studying elliptic
fibrations from a differentiable point of view. As a consequence, changing Dn by a fibre
class, one finds a divisor Ln on Xn with positive (Ln)2 bounded independently of n.
Using the action of the Weyl group, we may assume that Ln is big and nef, cf. Corollary
8.2.9 (observe that we may assume that NS(Xn) ' NS(X̄n)). However, due to the
boundedness results for (quasi)-polarized K3 surfaces, see Section 5.2.1 and Theorem

8In [16] Artin explains how to use this to cover also supersingular K3 surfaces. Then [20] applies
and shows ρ(J(X̄)) = 22. But ρ(X̄) = ρ(J(X̄)) and, therefore, also ρ(X̄) = 22, which proves the Tate
and hence the Artin–Tate conjecture.

9As noted there already, the simplifying assumption that the ground field is algebraically closed is
not needed and everything works in our situation of K3 surfaces over a finite field k = Fq.
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2.2.7, up to isomorphisms there exist only finitely many (quasi-)polarized K3 surfaces
(X,L) of bounded degree (L)2 over any fixed finite field. Hence, infinitely many of the
elliptic fibrations Xn

//P1 are actually defined on the same K3 surface X.
In [20] the argument concludes by observing that up to the action of Aut(X) there

exist only finitely many elliptic fibrations on any K3 surface, see Proposition 11.1.3.
Alternatively, one could use (4.5) in Section 11.4.2 showing that

|disc NS(Xn)| = d2
n · |disc NS(X0)|

(reflecting the equivalence Db(Xn) ' Db(X0, αn), see Remarks 11.4.9 and 11.5.9), which
of course excludes Xn and Xm from being isomorphic to each other for all n 6= m.

ii) In [368] Lieblich, Maulik, and Snowden follow a similar strategy to relate finiteness of
the Brauer group of a K3 surface over a finite field and finiteness of the set of isomorphism
classes of K3 surfaces over a given finite field (not fixing the degree). Suppose X0 is
an arbitrary K3 surface defined over a finite field k = Fq with T`Br(X0) 6= 0. As
above, there exists a non-trivial class (αn) ∈ T`Br(X0) with αn of order dn := `n. If
X0 comes without an elliptic fibration, it is a priori not clear how to associate with the
(infinitely many) classes αn ∈ Br(X0) K3 surfaces defined over the given field. However,
the isomorphism J(Xn) ' X0 from above can also be expressed by saying that X0 is
the non-fine moduli space of stable sheaves with Mukai vector (0, [Xnt], dn) on Xn, see
Section 11.4.2. Furthermore, αn can be viewed as the obstruction to the existence of a
universal family on Xn ×X0, see Section 16.4.1.
Reversing the role of the two factors, Xn can be considered as a fine moduli space of

stable αn-twisted sheaves on X0. And this now works also in the non-elliptic case as
well. More specifically, in [368] for any αn a Mukai vector vn is found for which the
moduli space Xn := M(vn) of stable αn-twisted sheaves on X0 is fine, projective and of
dimension two (and hence a K3 surface). The general theory then yields equivalences

Db(Xn) ' Db(M(vn)) ' Db(X0, αn).

If, now, one assumes that there exist only finitely many K3 surfaces over the fixed finite
field k, then infinitely many of the Xn have to be isomorphic to a fixed K3 surface, say,
X. However, then Db(X) ' Db(X0, αn) for infinitely many Brauer class, which in [368]
is excluded by lifting to characteristic zero and then using a finiteness result in [269].
Alternatively, one could use the isometry N(Xn) ' N(X) ' N(X0, αn), deduced from
the derived equivalence, to conclude that |disc NS(Xn)| = d2

n · |disc NS(X0)| and, thus, to
exclude isomorphisms between the Xn’s for different n.
So, in order to prove the Artin–Tate conjecture this way, it remains to prove that there

exist only finitely many K3 surfaces (of a priori unbounded degree) over any given finite
field. The authors of [368] also show that, conversely, this finiteness is implied by the
Artin–Tate conjecture.

iii) The approach was more recently refined by Charles in [109]. In order to obtain finite-
ness without a priori bounding the degree of the K3 surfaces, four-dimensional moduli
spaces M(v) of stable sheaves are used. As ρ(M(v)) = ρ(X) + 1, this provides more
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freedom to choose an appropriate polarization of bounded degree. So, once again, start-
ing with a non-trivial (αn) ∈ T`Br(X0) one constructs infinitely many K3 surfaces Xn

for which the four-dimensional moduli spaces have bounded degree and of which, there-
fore, one cannot have infinitely many over a fixed finite field if Matsusaka’s theorem were
known in positive characteristic. The numerical considerations are quite intricate and
Charles has again to resort to the Kuga–Satake construction, as the birational geometry
of the four-dimensional irreducible symplectic varieties is not well enough understood in
order to deduce from the existence of a class of bounded degree also the existence of
a (quasi)-polarization of bounded degree for which one would need certain results from
MMP that are not available in positive characteristic.

2.4. To conclude this section, let us briefly touch upon the case of K3 surfaces over
number fields. The Brauer group of a K3 surface over a number field k is certainly not
finite due to the exact sequence NS(X̄)G //Br(k) //Br(X), see (1.10), and Remark 2.1.
However, up to Br(k) certain general finiteness results for K3 surfaces in characteristic
zero have been proved by Skorobogatov and Zarhin in [570].

Proposition 2.10. Let X be a K3 surface over a finitely generated field k of charac-
teristic zero. Then Br(X̄)G, Br(X)/Br1(X), and Br1(X)/Br0(X) are finite groups.

Proof. As Br(X)/Br1(X) is a subgroup of Br(X̄)G and Br1(X)/Br0(X) is finite
due to Lemma 2.2, only the finiteness of Br(X̄)G needs to be checked.
Due to the Tate conjecture (in characteristic zero, see Section 17.3.2) NS(X) ⊗ Z` '

H2
ét(X̄,Z`(1))G and hence Br(X̄)G[`∞] is finite. As for K3 surfaces over finite fields, one

concludes that then Br(X̄)G itself is finite. Indeed, one shows that NS(X) ⊗ Z/`Z ∼− //

H2(X̄, µ`)
G for most `, which is enough to conclude. This part is easier than in the case

of positive characteristic, as one can use the comparison to singular cohomology and the
transcendental lattice. �

Remark 2.11. i) In [571] the authors extend their result to finitely generated fields
in positive characteristic p 6= 2 and prove that the non p-torsion part of Br(X)/Br0(X)

is finite.
ii) Artin’s Conjecture 1.6 predicts finiteness of Br(X) for any proper scheme over

Spec(Z). The Tate conjecture proves it for K3 surfaces over Fq and, as was explained to
me by François Charles, this proves it for any projective family with generic fibre a K3
surface over an open subset of Spec(OK) for any number field K.

3. Height

For a K3 surface X the formal Brauer group B̂rX is a smooth one-dimensional formal
group which can be studied in terms of its formal group law. Basic facts concerning
formal group laws are recalled and then used to define the height, which is a notion that
is of interest only in positive characteristic and that can alternatively be defined in terms
of crystalline cohomology. Roughly, K3 surfaces in positive characteristic behave like
complex K3 surfaces as long as their height is finite. Those of infinite height, so called
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supersingular K3 surfaces, are of particular interest. Some of their most fundamental
properties are discussed. For example, for a long time supersingular K3 surfaces were the
only K3 surfaces for which the Tate conjecture had not been known.

3.1. A formal group structure on Spf(R) is given by a morphism R //R⊗̂kR of
k-algebras. If Spf(R) is smooth of dimension one and an isomorphism of k-algebras
R ' k[[T ]] is chosen, then the morphism is given by the image of T which can be thought
of as a power series F (X,Y ) ∈ k[[X,Y ]] ' R⊗̂kR in two variables. In fact, F (X,Y ) is a
formal group law. In particular,

F (X,F (Y, Z)) = F (F (X,Y ), Z) and F (X,Y ) = X + Y + higher order terms.

Example 3.1. i) The formal completion of the additive group Ga = Spec(k[T ]) is
described by Ĝa = Spf(k[[T ]]) with the formal group law

F (X,Y ) = X + Y.

ii) The formal completion of the multiplicative group Gm = Spec(k[t, t−1]) is described
by Ĝm = Spf(k[[T ]]), t = 1 + T , with the formal group law

F (X,Y ) = X + Y +XY.

After choosing Gi ' Spf(k[[T ]]), a morphism between two smooth one-dimensional
formal groups G1

//G2, with formal group laws F1 and F2, can be represented by a
power series f(T ) satisfying

(f ⊗ f)(F2(X,Y )) = F1(f(X), f(Y )).

This allows one to speak of isomorphisms of formal groups and to prove that in char-
acteristic zero any smooth one-dimensional formal group is in fact isomorphic to Ĝa, cf.
Remark 1.14.

If char(k) = p > 0, formal group laws can be classified according to their height. For
this, consider multiplication by [m] : G //G or its associated power series [m](T ) which
can recursively be determined by [m+1](T ) = F ([m](T ), T ). One then shows that [p](T )

is either zero or of the form

[p](T ) = aT p
h

+ higher order terms

with a 6= 0. The two cases correspond to [p] : G //G being trivial or having as its kernel
a finite group scheme of order ph. The height of a smooth one-dimensional formal group
G is then defined as

h(G) :=

{
∞ if [p](T ) = 0

h if [p](T ) = aT p
h

+ . . . , a 6= 0.

Over a separably closed field k of characteristic p > 0, the height h(G) of a smooth
one-dimensional formal group G determines G up to isomorphisms, see e.g. [351]:

G1 ' G2 if and only if h(G1) = h(G2).
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Moreover, all positive integers h = 1, 2, . . . and ∞ can be realized.

Example 3.2. i) In Example 3.1 one finds

h(Ĝa) =∞ and h(Ĝm) = 1.

ii) For an elliptic curve E over a separably closed field and its formal completion Ê at
the origin, either

h(Ê) = 2 or h(Ê) = 1.

In the first case, which is equivalently described by E[pr] = 0 for all r ≥ 1, the curve E is
called supersingular. In the second case, when E[pr] ' Z/prZ, it is called ordinary. See
e.g. [566] for details why the height, which a priori is defined in terms of the action of
the Frobenius, can be read off from the p-torsion points, cf. Section 3.4.

Definition 3.3. The height h(X) of a K3 surface X defined over a separably closed
field k of characteristic p > 0 is defined as the height

h(X) := h(B̂rX)

of its formal Brauer group. A K3 surface X is called supersingular (or Artin supersingu-
lar) if h(X) =∞, i.e. B̂rX ' Ĝa, and ordinary if h(X) = 1, i.e. B̂rX ' Ĝm.

Example 3.4. Consider the Fermat quartic X ⊂ P3 defined by
∑
x4
i = 0 in charac-

teristic p > 2. Then

h(X) =

{
∞ if p ≡ 3(4)

1 if p ≡ 1(4).

The discriminant of NS(X) in the two cases are −64 (as in characteristic zero, see Section
3.2.6) and −p2, respectively. Shioda’s argument in [561] uses that the Fermat quartic is
a Kummer surfaces associated with a product of two elliptic curves, see Example 14.3.18.

3.2. For any perfect field k of characteristic p > 0, letW = W (k) be its ring of Witt
vectors, which is a complete DVR with uniformizing parameter p ∈ W , residue field k,
and fraction field K of characteristic zero. So, for example, W (Fp) ' Zp = limoo −Wn(Fp)
with Wn(Fp) = Z/pnZ and, in general, W (k) = limoo −Wn(k). The Frobenius morphism
F : k // k, a � // ap lifts to the Frobenius F : W (k) //W (k) (by functoriality), which is
a ring homomorphism and thus induces an automorphism of the fraction field.
Consider the ring K{T}, which is the usual polynomial ring K[T ] but with T · λ =

F (λ)·T for all λ ∈ K. An F -isocrystal consists of a finite-dimensional vector space V over
K with a K{T}-module structure. In other words, V comes with a lift of the Frobenius
F : V // V such that F (λ ·v) = F (λ) ·F (v) for λ ∈ K and v ∈ V . The standard example
of an F -isocrystal is provided by

Vr,s := K{T}/(T s − pr),

which is of dimension s and slope r/s. The Frobenius action on Vr,s is given by left-
multiplication by T .
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If k is algebraically closed, then any irreducible F -isocrystal is isomorphic to Vr,s with
(r, s) = 1, for example Vmr,ms ' V ⊕mr,s . Moreover, due to a result of Dieudonné and
Manin [386] any F -isocrystal V with bijective F is a direct sum of those. One writes

(3.1) V '
⊕

Vri,si

with slopes r1/s1 < . . . < rn/sn. The Newton polygon of an F -isocrystal V , which
determines it uniquely, is the following convex polygon with slopes ri/si:

• (r1, s1)

• (r1 + r2, s1 + s2)

• (r1 + r2 + r3, s1 + s2 + s3)

The height h(V ) of an F -isocrystal V is the dimension of the subspace of slope strictly
less than one: V[0,1) :=

⊕
ri/si<1 Vri,si . One defines h(V ) =∞ if this space is zero.

For the F -isocrystals we are interested in, Poincaré duality holds, i.e. they are endowed
with a non-degenerate pairing V × V //K satisfying (Fx.Fy) = pd(x.y), where later
d = 1 for elliptic curves and d = 2 for K3 surfaces. This leads to the condition

∑
ri =

(d/2)
∑
si. For d = 2 one checks that in the decomposition (3.1) the pairing can be

non-trivial only between Vr,s and Vr′,s′ with r/s+ r′/s′ = 2.

Let X be a smooth projective variety over an algebraically closed field k of characteris-
tic p > 0. Assume that there exists a lift to a smooth proper morphism π : X // Spf(W ).
Then the crystalline cohomology H∗cr(X/W ) of X can be computed via the de Rham co-
homology. More precisely, if H∗dR(X/W ) denotes the relative de Rham cohomology of π,
then there exists an isomorphism of (finite type) W -modules H∗cr(X/W ) ' H∗dR(X/W ).
The Frobenius of k first lifted to W can then be further lifted to a homomorphism
F ∗H∗dR(X/W ) ∼− // H∗dR(X/W ). On the generic fibre, it yields a semi-linear endomor-
phism of

H∗cr(X) := H∗dR(X/W )⊗W K,

which in each degree defines an F -isocrystal equipped with Poincaré duality. As above,
the F -isocrystals H i

cr(X) are uniquely described by their Newton polygons and they are
independent of the chosen lift π : X // Spf(W ) (if there is one at all). The Frobenius
action on H∗cr(X) is not induced by any Frobenius action on X , which usually does not
exist, but by functoriality. See Mazur’s introduction [400] for more details.10

Remark 3.5. For a K3 surface X, the cohomology H2
cr(X/W ) is torsion free. Hence,

(3.2) c1 : NS(X) �
� // H2

cr(X/W ).

10For a K3 surface X, the W -modules Hi
dR(X/W ) are free of rank 1, 0, 22, 0, 1 for i = 0, 1, 2, 3, 4,

respectively, and the Hodge spectral sequence Ep,q1 = Hq(X ,ΩpX/W ) ⇒ Hp+q
dR (X/W ) degenerates. The

latter is an immediate consequence of the vanishing H0(X,ΩX) = 0, see Section 9.5, as was observed by
Deligne [141].
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is injective. Indeed, H2
cr(X/W )⊗ k ' H2

dR(X) and then use Proposition 17.2.1.

The Newton polygon of a variety X, i.e. of H∗cr(X), can be compared to the Hodge
polynomial of X encoding the Hodge numbers hp,q(X). For an elliptic curve E and a K3
surface X the Hodge polygons (in degree one and two, respectively) encode the Hodge
numbers h0,1(E) = h1,0(E) = 1 and h0,2(X) = 1, h1,1(X) = 20, and h2,0(X) = 1,
respectively. They look like this:

•
(1, 0)

• (2, 1)

•
(1, 0)

• (21, 20)

•
(22, 22)

A famous conjecture of Katz, proved by Mazur [400], asserts that the Newton polygon
of a variety X always lies above the Hodge polygon of X. For an elliptic curve E this
leaves the following two possibilities:

h(E) = 1

•
(1, 0)

• (2, 1)

h(E) = 2

• (2, 1)•

For a K3 surface the following three are in principle possible:

h(X) =∞

•
(22, 22)

h(X) = h

• (h, h− 1)

• (22− h, 21− h)

•
(22, 22)

• (11, 10)

•
(22, 22)

However, using Remark 3.5, the last one can be excluded. Indeed, as the Frobenius
pull-back acts by multiplication by p on NS(X), there exist non-trivial classes in H2

cr(X)

on which the Frobenius acts by multiplication by p. This immediately proves:

(3.3) h(X) =∞ or h(X) = 1, . . . , 10,

where h(X) here is defined as the height of the F -isocrystal H2
cr(X) (which below will be

shown to coincide with h(B̂rX)). More precisely, the argument proves

Lemma 3.6. For any non-supersingular K3 surface X defined over an algebraically
closed field of characteristic p > 0, Picard number and height of X can be compared via:

(3.4) ρ(X) ≤ b2(X)− 2h(X) = 22− 2h(X).
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This should be regarded as the analogue of

ρ(X) ≤ b2(X)− 2h0,2(X)

for a smooth complex projective variety. The latter follows from Hodge decomposition
H2(X,C) = H0,2(X)⊕H1,1(X)⊕H2,0(X), h2,0(X) = h0,2(X), and ρ(X) ≤ h1,1(X).

3.3. We have encountered two definitions of the height h(X) of a K3 surface X in
positive characteristic, as the height h(B̂rX) of the formal Brauer group of X and as the
height of the F -isocrystal H2

cr(X). These two notions coincide, but this is a non-trivial
fact due to Artin and Mazur [19] and we can only give a rough sketch of the arguments
that prove it.
Firstly, Dieudonné theory establishes an equivalence

DK : { formal groups/k with h <∞} ∼− // { F -isocrystals with V = V[0,1)}

by sending a formal group G first to the W -module DG := Hom(G, ĈW ) of all formal
group scheme maps and then to DKG := DG⊗WK. Here, ĈW is the formal group scheme
representing A � // limoo −CW (A/mn

A) with CW (A) the group of A-valued Witt covectors,
cf. [177]. The K{T}-module structure on DG is induced by the natural one on ĈW .
This equivalence is compatible with the notion of heights on the two sides, which on

the right hand side is just the dimension. For example, DĜm ' W and so DKĜm is the
trivial F -isocrystal K = V0,1 and indeed h(Ĝm) = 1 = h(V0,1). Note that DK applied to
the formal group Ĝa (which is not p-divisible or, equivalently, has h(Ĝa) =∞) yields the
infinite-dimensional K[[T ]].
To compare the two definitions of h(X), Artin and Mazur in [19] find an isomorphism

(3.5) DKB̂rX ' H2
cr(X)[0,1).

Using their more suggestive notation Φ2(X,Gm) := B̂rX , the first step towards (3.5)
consists of proving a series of isomorphisms

DB̂rX ' DΦ2(X,Gm) ' DΦ2(X, Ĝm) ' H2
ét(X,DĜm) ' H2

ét(X,WOX).

The last isomorphism is a sheaf version for DĜm ' W , where WOX denotes the sheaf
of Witt vectors. Witt vector cohomology can be compared to crystalline cohomology by
the Bloch–Illusie (or slope) spectral sequence

Ep,q1 = Hq(X,WΩp
X)⇒ Hp+q

cr (X/W ).

The spectral sequence is compatible with the Frobenius action (appropriately defined on
the left hand side) and yields in particular an isomorphism

(3.6) H2(X,WOX)⊗W K ' H2
cr(X)[0,1).

We recommend Chambert–Loir’s survey [107] for more details and references, see also
Liedtke’s notes [370]. To conclude the discussion, one finds that indeed

(3.7) h(B̂rX) = h(H2
cr(X)).
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3.4. Katsura and van der Geer in [604] derive from (3.6) a rather concrete descrip-
tion of the height as

(3.8) h(X) = min{n | 0 6= F : H2(X,WnOX) //H2(X,WnOX)}.

Here, F is the usual Frobenius action. This description covers the supersingular case, as
in this case F = 0 on H2(X,WOX) can be shown to imply F = 0 on all H2(X,WnOX).
This approach fits well with the comparison of ordinary and supersingular elliptic curves

based on the Hasse invariant . For an elliptic curve E in characteristic p > 0, the absolute
Frobenius E //E induces an action F : H1(E,OE) //H1(E,OE). By definition, the
Hasse invariant of E is zero if this map is zero and it is one if it is bijective. Then it is
known that E is supersingular if and only if its Hasse invariant is zero, or equivalently

h(E) = 1 if and only if F : H1(E,OE) ∼− // H1(E,OE).

See for example [234, IV.Exer. 4.15]. For a K3 surface X, a very similar statement
describes ordinary K3 surfaces:

h(X) = 1 if and only if F : H2(X,OX) ∼− // H2(X,OX).

However, in order to distinguish between the remaining cases h(X) = 2, . . . , 10,∞ one
has to consider the action on H2(X,WnOX), n = 2, . . . , 10.
The height can be used to stratify the moduli space of polarized K3 surfaces. We

continue to assume k algebraically closed of characteristic p > 0 and consider the moduli
stack Md, p - 2d, of polarized K3 surfaces (X,L) of degree (L)2 = 2d over k, see Chapter
5. Using the formal group law for B̂rX , Artin showed in [16] that h(X) ≥ h is a closed
condition of codimension ≤ h − 1. This remains valid in the case h = ∞ if one sets
h = 11. Applying (3.8), van der Geer and Katsura give an alternative proof of this fact
which in addition endowes the set of polarized K3 surfaces (X,L) of height h(X) ≥ h

with a natural scheme structure. We summarize these results by the following

Theorem 3.7. For h = 1, . . . , 10,

Mh
d := {(X,L) | h(X) ≥ h} ⊂Md

is empty or a closed substack of dimension dim Mh
d = 20−h which is smooth outside the

supersingular locus. The supersingular locus

M∞d := {(X,L) | h(X) =∞} ⊂Md

is of dimension dim M∞d = 9.

Remark 3.8. Although, Picard number and height are intimately related via the
inequality (3.4), their behavior as a function on Md is very different. Whereas h(X) ≥ h
is a closed condition, the condition ρ(X) ≥ ρ is not, it rather defines a countable union
of closed sets.
As ρ(X) ≤ 22 − 2h for (X,H) ∈ Mh

d , one in particular has ρ(X) ≤ 2 on M10
d (which

for k = F̄p is equivalent to ρ(X) = 2, see Corollary 17.2.9). However, many more (X,H)

not contained in M10
d satisfy ρ(X) ≤ 2, in fact the general one should have this property.
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Also note the slightly counterintuitive behavior of ρ(X) onM10
d , which satisfies ρ(X) ≤ 2

on the open set M10
d \M∞d ⊂M10

d , but jumps to ρ(X) = 22 on M∞d , see below. It is also
a remarkable fact that over the nine-dimensional M∞d the Picard number stays constant,
which in characteristic zero is excluded by Proposition 6.2.9, see also Section 17.1.3.
Related to this, recall that for K3 surfaces in characteristic zero the maximal Picard

number is ρ(X) = 20 and that these surfaces are rigid, see Section 17.1.3. In positive
characteristic, the maximal Picard number is ρ(X) = 22 and surfaces of this type are not
rigid.

Artin [16] also explored the possibility to extend the stratification

(3.9) M∞d ⊂M10
d ⊂ . . . ⊂M2

d ⊂M1
d = Md

obtained in this way by taking the Artin invariant of supersingular K3 surfaces into ac-
count. Recall from Section 17.2.7 that disc NS(X) = −p2σ(X) for a supersingular K3
surface X with the Artin invariant σ(X) satisfying 1 ≤ σ(X) ≤ 10. As the discrimi-
nant goes down under specialization (use (0.1) in Section 14.0.2), σ(X) ≤ σ is a closed
condition. Defining M∞,σd := {(X,H) | h(X) =∞, σ(X) ≤ σ}, yields a stratification

(3.10) M∞,1d ⊂ . . . ⊂M∞,10
d .

Combining both stratification (3.9) and (3.10), one obtains a stratification

M∞,1d ⊂ . . . ⊂M∞,10
d = M∞d ⊂M10

d ⊂ . . .M2
d ⊂M1

d = Md.

For a detailed analysis of this filtration see the article [164] by Ekedahl and van der Geer.
Ogus in [477] shows in addition that the singular locus of Mh

d is contained in M∞,h−1
d .

Already in [561] Shioda proves that all values h(X) = 1, . . . , 10,∞ and 1 ≤ σ(X) ≤ 10

are actually realized in every characteristic p > 2.

3.5. We conclude with a few remarks on supersingular K3 surfaces. First, using an
argument from Section 17.3.4, we prove

Corollary 3.9. Assume X is a Shioda supersingular K3 surface, i.e. ρ(X) = 22, then
X is (Artin) supersingular. In particular, any unirational K3 surface is supersingular.

Proof. As h(X) is positive, (3.4) implies the first assertion. For the second use
Proposition 17.2.7. �

The converse was conjectured by Artin [16] and finally proved by Maulik, Charles, and
Madapusi Pera. As the Tate conjecture had previously been proved for K3 surfaces of
finite height, this finished the proof of the Tate conjecture for K3 surfaces. See also the
discussion in Section 17.3.3 and Corollary 17.3.7.

Theorem 3.10. Let X be a K3 surface over an algebraically closed field of character-
istic p > 2. Then

h(X) =∞ if and only if ρ(X) = 22.
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Proof. We recommend Benoist’s Bourbaki talk [57] for an overview. Let us explain
how the ‘only if’ is implied by the Tate conjecture.11 So, assume that X is a K3 surface
over a finite field Fq with h(X̄) = ∞, i.e. B̂rX̄ ' Ĝa. It is difficult to extract from the
description of the formal Brauer group B̂rX̄ any information on Br(X) directly. Instead,
one uses the alternative description of h(X̄) as the height of the F -isocrystal H2

cr(X̄),
which in this case says that some power of the action of (1/p)F on H2

cr(X̄) is trivial.
Finally, one uses that the eigenvalues of the Frobenius action on H2

cr(X̄) and H2
ét(X̄,Q`)

coincide, a general result due to Katz and Messing [284]. Therefore, some power of
f∗ : H2

ét(X̄,Q`(1)) //H2
ét(X̄,Q`(1)) is trivial and, hence, after passing to a finite exten-

sion Fqr the Galois action on H2
ét(X̄,Q`(1)) is trivial. The Tate conjecture then implies

NS(X × Fqr)⊗Q` ' H2
ét(X̄,Q`(1)), which yields ρ(X̄) = 22. �

The proof shows that in the context of the Tate conjecture the formal Brauer group
plays the role of a supporting actor, morally but not factually explaining the role of the
(geometric) Brauer group.

Remark 3.11. Artin also developed an approach to reduce the Tate conjecture for
supersingular K3 surfaces to the case of supersingular elliptic K3 surfaces. His [16, Thm.
1.1] asserts that for a connected family of supersingular K3 surfaces the Picard number
stays constant. Thus, if the locus M∞d of supersingular K3 surfaces can be shown to be
irreducible (or at least connected) or if every component parametrizes at least one elliptic
K3 surface, then the Tate conjecture for supersingular K3 surfaces would be implied by
the elliptic case. This idea, going back to [512], has been worked out by Maulik in
[396], where he shows that every component contains a complete curve, proving the Tate
conjecture for all K3 surfaces of degree 2d with p > 2d+ 4.

Remark 3.12. The proof of Corollary 3.9 actually shows that already ρ(X) ≥ 21

implies that X is supersingular. But according to the theorem, supersingular implies
ρ(X) = 22. Hence, for all K3 surfaces over an algebraically closed field k

ρ(X) 6= 21.

Recall that for complex K3 surfaces this follows immediately from ρ(X) ≤ 20. See also
Section 17.2.4.

Remark 3.13. It is not difficult to see that a K3 surface X with ρ(X) = 22 over a
separably closed field k of characteristic p has no classes of `n torsion in Br(X) for ` 6= p.
Indeed, by the usual Kummer sequence there exists an exact sequence

NS(X)⊗ Z/`nZ //H2
ét(X,µ`n) //Br(X)[`n] // 0.

As H3
ét(X,µ`) = 0, the maps H2

ét(X,µ`n) //H2
ét(X,µ`n−1) are surjective and by Propo-

sition 17.3.5 NS(X)⊗ Z` ∼− // H2
ét(X,Z`(1)). Hence, NS(X)⊗ Z/`nZ // //H2

ét(X,µ`n) is
surjective and, therefore, Br(X)[`n] = 0. Of course, if k = F̄p and if one is willing to

11As mentioned before, Artin (with Swinnerton–Dyer) had proved the result for supersingular elliptic
K3 surfaces. Using that any K3 surface with ρ(X) ≥ 5 is actually elliptic (see Proposition 11.1.3), it is
enough to argue that h(X) =∞ implies ρ(X) ≥ 5.
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accept the Artin–Tate conjecture, then (2.5) applied to a model of X over any finite field
Fq immediately yields that Br(X) is p-primary.

Remark 3.14. We have seen that a unirational K3 surface over an algebraically closed
field always has maximal Picard number ρ(X) = 22. The converse of this assertion
has been proved by Liedtke in [371]. See also Lieblich’s articles [365, 366] for further
information. This had been checked earlier for various special cases, for example by
Shioda in [559] for Kummer surfaces.
The upshot is that for K3 surfaces over an algebraically closed field of positive charac-

teristic all three concepts of supersingular are equivalent:

X is unirational ⇐⇒ h(X) =∞⇐⇒ ρ(X) = 22.

3.6. Due to the lack of space, the beautiful work of Ogus [475, 476], proving a
Global Torelli theorem for supersingular K3 surfaces, cannot be discussed here. We
recommend Liedtke’s notes [370] for an introduction. The final result is that two super-
singular K3 surface X and X ′ are isomorphic if and only if there exists an isomorphism
of W -modules

H2
cr(X/W ) ' H2

cr(X
′/W )

which is compatible with the Frobenius action and the intersection pairing. Compare
Remark 17.2.23.

References and further reading:
Formal completion of Chow has been studied by Stienstra [576]. In the supersingular case the

Artin invariant enters its description.
The group Br(X)/Br1(X) ' Im(Br(X) //Br(X̄)G) can indeed be non-trivial and classes in

this group have been used by Hassett and Várilly-Alvarado to construct examples of K3 surfaces
over number fields for which the Hasse principle fails. In [239] one finds examples of effective
bounds on the order

|Br(X)/Br0(X)| = |Br1(X)/Br0(X)| · |Br(X)/Br1(X)|.

The Brauer–Manin obstruction, which has not been discussed in these notes, is based upon the
sequence (2.1). See [239] for references.

In [604, Thm. 15.1] the class [Mh
d ] ∈ CHh−1(Md) is expressed as a multiple of ch−1

1 (π∗ωX/Md
).

In [164] this was extended to the smaller strata M∞,σd .
Lieblich in [366] proves that the supersingular locus M∞d is rationally connected.





Bibliography

[1] The Stacks Project. http://stacks.math.columbia.edu, 2014. 93, 382, 390
[2] N. Addington and R. Thomas. Hodge theory and derived categories of cubic fourfolds. Duke Math.

J., 163(10):1885–1927, 2014. 356
[3] A. Altman and S. Kleiman. Compactifying the Picard scheme. II. Amer. J. Math., 101(1):10–41,

1979. 224
[4] K. Amerik and M. Verbitsky. Morrison–Kawamata cone conjecture for hyperkähler manifolds. 2014.

arXiv:1408.3892. 166
[5] S. Anan’in and M. Verbitsky. Any component of moduli of polarized hyperkähler manifolds is dense

in its deformation space. 2010. arXiv:1008.2480. 301
[6] Y. André. Mumford–Tate groups of mixed Hodge structures and the theorem of the fixed part.

Compositio Math., 82(1):1–24, 1992. 118
[7] Y. André. On the Shafarevich and Tate conjectures for hyper-Kähler varieties. Math. Ann.,

305(2):205–248, 1996. 56, 59, 77, 78, 79, 84, 91, 376, 380
[8] Y. André. Pour une théorie inconditionnelle des motifs. Inst. Hautes Études Sci. Publ. Math.,

83:5–49, 1996. 78, 372
[9] M. Aprodu. Brill–Noether theory for curves on K3 surfaces. In Contemporary geometry and topology

and related topics, pages 1–12. Cluj Univ. Press, Cluj-Napoca, 2008. 174
[10] E. Arbarello, M. Cornalba, and P. Griffiths. Geometry of algebraic curves. Volume II, volume 268

of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Heidelberg, 2011. With a
contribution by J. Harris. 265, 266

[11] E. Arbarello, M. Cornalba, P. Griffiths, and J. Harris. Geometry of algebraic curves. Vol. I, volume
267 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, New York, 1985. 22, 174

[12] E. Artal Bartolo, H. Tokunaga, and D.-Q. Zhang. Miranda–Persson’s problem on extremal elliptic
K3 surfaces. Pacific J. Math., 202(1):37–72, 2002. 238

[13] M. Artebani, J. Hausen, and A. Laface. On Cox rings of K3 surfaces. Compositio Math., 146(4):964–
998, 2010. 162, 166

[14] M. Artebani, A. Sarti, and S. Taki. K3 surfaces with non-symplectic automorphisms of prime order.
Math. Z., 268(1-2):507–533, 2011. With an appendix by S. Kondō. 330
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[152] I. Dolgachev and S. Kondō. Moduli of K3 surfaces and complex ball quotients. In Arithmetic and

geometry around hypergeometric functions, volume 260 of Progr. Math., pages 43–100. Birkhäuser,
Basel, 2007. 97, 123

[153] R. Donagi and D. Morrison. Linear systems on K3-sections. J. Differential Geom., 29(1):49–64,
1989. 175

[154] R. Donagi and T. Pantev. Torus fibrations, gerbes, and duality. Mem. Amer. Math. Soc.,
193(901):vi+90, 2008. With an appendix by D. Arinkin. 235, 355

[155] S. Donaldson. Polynomial invariants for smooth four-manifolds. Topology, 29(3):257–315, 1990. 139
[156] S. Donaldson. Scalar curvature and projective embeddings. I. J. Differential Geom., 59(3):479–522,

2001. 97
[157] P. Duhem. Émile Mathieu, his life and works. Bull. Amer. Math. Soc., 1(7):156–168, 1892. 321
[158] W. Ebeling. The monodromy groups of isolated singularities of complete intersections, volume 1293

of Lecture Notes in Math. Springer-Verlag, Berlin, 1987. 290
[159] W. Ebeling. Lattices and codes. Advanced Lectures in Mathematics. Friedr. Vieweg & Sohn Braun-

schweig, revised edition, 2002. A course partially based on lectures by F. Hirzebruch. 279, 281, 283,
302

[160] D. Edidin. Notes on the construction of the moduli space of curves. In Recent progress in intersection
theory (Bologna, 1997), Trends Math., pages 85–113. Birkhäuser Boston, 2000. 95

[161] M. Eichler. Quadratische Formen und orthogonale Gruppen, volume 63 of Grundlehren der Math-
ematischen Wissenschaften. Springer-Verlag, Berlin, second edition, 1974. 279, 287

[162] L. Ein and R. Lazarsfeld. Stability and restrictions of Picard bundles, with an application to the
normal bundles of elliptic curves. In Complex projective geometry (Trieste, 1989/Bergen, 1989),
volume 179 of Lond. Math. Soc. Lecture Note Ser., pages 149–156. Cambridge Univ. Press, 1992.
177

[163] T. Ekedahl. Foliations and inseparable morphisms. In Algebraic geometry, Bowdoin, 1985
(Brunswick, Maine, 1985), volume 46 of Proc. Sympos. Pure Math., pages 139–149. Amer. Math.
Soc., Providence, RI, 1987. 180

[164] T. Ekedahl and G. van der Geer. Cycle classes on the moduli of K3 surfaces in positive characteristic.
Selecta Math. (N.S.), 21(1):245–291, 2015. 403, 405

[165] F. El Zein. Introduction à la théorie de Hodge mixte. Actualités Mathématiques. Hermann, Paris,
1991. 59, 100

[166] J. Ellenberg. K3 surfaces over number fields with geometric Picard number one. In Arithmetic of
higher-dimensional algebraic varieties (Palo Alto, CA, 2002), volume 226 of Progr. Math., pages
135–140. Birkhäuser Boston, 2004. 293, 371, 372



414 BIBLIOGRAPHY

[167] A. Elsenhans and J. Jahnel. On the computation of the Picard group for K3 surfaces. Math. Proc.
Cambridge Philos. Soc., 151(2):263–270, 2011. 373

[168] A. Elsenhans and J. Jahnel. The Picard group of a K3 surface and its reduction modulo p. Algebra
Number Theory, 5(8):1027–1040, 2011. 370, 373

[169] A. Elsenhans and J. Jahnel. Examples of K3 surfaces with real multiplication. LMS J. Comput.
Math., 17(suppl. A):14–35, 2014. 59

[170] H. Esnault and K. Oguiso. Non-liftability of automorphism groups of a K3 surface in positive
characteristic. 2014. arXiv:1406.2761. 331

[171] H. Esnault and V. Srinivas. Algebraic versus topological entropy for surfaces over finite fields. Osaka
J. Math., 50(3):827–846, 2013. 312

[172] J. Esser. Noether–Lefschetz-Theoreme für zyklische Überlagerungen. Essen: Univ. Essen, Fach-
bereich Mathematik und Informatik, 1993. 363

[173] G. Faltings, G. Wüstholz, F. Grunewald, N. Schappacher, and U. Stuhler. Rational points. Aspects
of Mathematics, E6. Friedr. Vieweg & Sohn, Braunschweig, third edition, 1992. 220, 377, 378

[174] B. Fantechi, L. Göttsche, L. Illusie, S. Kleiman, N. Nitsure, and A. Vistoli. Fundamental algebraic
geometry, Grothendieck’s FGA explained, volume 123 of Mathematical Surveys and Monographs.
Amer. Math. Soc., Providence, RI, 2005. 85, 91, 186, 189, 193, 224, 225, 370, 387, 388

[175] B. Fantechi, L. Göttsche, and D. van Straten. Euler number of the compactified Jacobian and
multiplicity of rational curves. J. Algebraic Geom., 8(1):115–133, 1999. 274

[176] D. Festi, A. Garbagnati, B. van Geemen, and R. van Luijk. The Cayley–Oguiso automorphism of
positive entropy on a K3 surface. J. Mod. Dyn., 7(1):75–97, 2013. 319

[177] J.-M. Fontaine. Groupes p-divisibles sur les corps locaux. Société Mathématique de France, Paris,
1977. Astérisque, No. 47-48. 401

[178] K. Frantzen. Classification of K3 surfaces with involution and maximal symplectic symmetry. Math.
Ann., 350(4):757–791, 2011. 331

[179] R. Friedman. A degenerating family of quintic surfaces with trivial monodromy. Duke Math. J.,
50(1):203–214, 1983. 123

[180] R. Friedman. Global smoothings of varieties with normal crossings. Ann. of Math. (2), 118(1):75–
114, 1983. 122

[181] R. Friedman. A new proof of the global Torelli theorem for K3 surfaces. Ann. of Math. (2),
120(2):237–269, 1984. 97, 113, 123, 141

[182] R. Friedman. On threefolds with trivial canonical bundle. In Complex geometry and Lie theory
(Sundance, UT, 1989), volume 53 of Proc. Sympos. Pure Math., pages 103–134. Amer. Math. Soc.,
Providence, RI, 1991. 137

[183] R. Friedman. Algebraic surfaces and holomorphic vector bundles. Universitext. Springer-Verlag,
New York, 1998. 19, 167, 188, 209

[184] R. Friedman and J. Morgan. Smooth four-manifolds and complex surfaces, volume 27 of Ergebnisse
der Mathematik und ihrer Grenzgebiete (3). Springer-Verlag, Berlin, 1994. 17, 19, 125, 207, 213,
229, 233, 237

[185] R. Friedman and D. Morrison. The birational geometry of degenerations: an overview. In The
birational geometry of degenerations (Cambridge, Mass., 1981), volume 29 of Progr. Math., pages
1–32. Birkhäuser, Boston, Mass., 1983. 121, 122

[186] R. Friedman and F. Scattone. Type III degenerations of K3 surfaces. Invent. Math., 83(1):1–39,
1986. 122

[187] A. Fujiki. On automorphism groups of compact Kähler manifolds. Invent. Math., 44(3):225–258,
1978. 313

[188] A. Fujiki. Finite automorphism groups of complex tori of dimension two. Publ. Res. Inst. Math.
Sci., 24(1):1–97, 1988. 305



BIBLIOGRAPHY 415

[189] T. Fujita. On polarized manifolds whose adjoint bundles are not semipositive. In Algebraic geometry,
Sendai, 1985, volume 10 of Adv. Stud. Pure Math., pages 167–178. North-Holland, Amsterdam,
1987. 28

[190] W. Fulton. Intersection theory, volume 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3).
Springer-Verlag, Berlin, second edition, 1998. 239, 240, 241, 243

[191] W. Fulton and R. Pandharipande. Notes on stable maps and quantum cohomology. In Algebraic
geometry–Santa Cruz 1995, volume 62 of Proc. Sympos. Pure Math., pages 45–96. Amer. Math.
Soc., Providence, RI, 1997. 267

[192] P. Gabriel. Des catégories abéliennes. Bull. Soc. Math. France, 90:323–448, 1962. 333
[193] C. Galati and A. Knutsen. Seshadri constants of K3 surfaces of degrees 6 and 8. Int. Math. Res.

Not. IMRN, 17:4072–4084, 2013. 37
[194] F. Galluzzi. Abelian fourfold of Mumford-type and Kuga–Satake varieties. Indag. Math. (N.S.),

11(4):547–560, 2000. 79
[195] F. Galluzzi and G. Lombardo. On automorphisms group of some K3 surfaces. Atti Accad. Sci.

Torino Cl. Sci. Fis. Mat. Natur., 142:109–120 (2009), 2008. 318
[196] F. Galluzzi, G. Lombardo, and C. Peters. Automorphs of indefinite binary quadratic forms and K3

surfaces with Picard number 2. Rend. Semin. Mat. Univ. Politec. Torino, 68(1):57–77, 2010. 317,
318

[197] A. Garbagnati. Symplectic automorphisms on Kummer surfaces. Geom. Dedicata, 145:219–232,
2010. 326

[198] A. Garbagnati. On K3 surface quotients of K3 or abelian surfaces. 2015. arXiv:1507.03824. 305
[199] A. Garbagnati and A. Sarti. Symplectic automorphisms of prime order on K3 surfaces. J. Algebra,

318(1):323–350, 2007. 97, 326, 327
[200] A. Garbagnati and A. Sarti. On symplectic and non-symplectic automorphisms of K3 surfaces. Rev.

Mat. Iberoam., 29(1):135–162, 2013. 330
[201] B. van Geemen. Kuga–Satake varieties and the Hodge conjecture. In The arithmetic and geometry

of algebraic cycles (Banff, AB, 1998), volume 548 of NATO Sci. Ser. C Math. Phys. Sci., pages
51–82. Kluwer Acad. Publ., Dordrecht, 2000. 43, 44, 55, 59, 67, 69

[202] B. van Geemen. Real multiplication on K3 surfaces and Kuga–Satake varieties. Michigan Math. J.,
56(2):375–399, 2008. 54, 56, 59, 79

[203] B. van Geemen and A. Sarti. Nikulin involutions on K3 surfaces. Math. Z., 255(4):731–753, 2007.
97, 327, 329

[204] G. van der Geer and T. Katsura. Note on tautological classes of moduli of K3 surfaces. Mosc. Math.
J., 5(4):775–779, 972, 2005. 97

[205] I. Gelfand, M. Kapranov, and A. Zelevinsky. Discriminants, resultants and multidimensional de-
terminants. Modern Birkhäuser Classics. Birkhäuser Boston Inc., 2008. 363

[206] S. Gelfand and Y. Manin. Methods of homological algebra. Springer Monographs in Mathematics.
Springer-Verlag, Berlin, second edition, 2003. 242, 333

[207] J. Giansiracusa. The diffeomorphism group of a K3 surface and Nielsen realization. J. Lond. Math.
Soc. (2), 79(3):701–718, 2009. 139, 140

[208] J. Giraud. Cohomologie non abélienne, volume 179 of Grundlehren der Mathematischen Wis-
senschaften. Springer-Verlag, Berlin-New York, 1971. 355, 383

[209] M. Gonzalez-Dorrego. (16, 6) configurations and geometry of Kummer surfaces in P3. Mem. Amer.
Math. Soc., 107(512):vi+101, 1994. 19

[210] L. Göttsche. The Betti numbers of the Hilbert scheme of points on a smooth projective surface.
Math. Ann., 286(1-3):193–207, 1990. 205

[211] L. Göttsche. A conjectural generating function for numbers of curves on surfaces. Comm. Math.
Phys., 196(3):523–533, 1998. 277



416 BIBLIOGRAPHY

[212] L. Göttsche and D. Huybrechts. Hodge numbers of moduli spaces of stable bundles on K3 surfaces.
Internat. J. Math., 7(3):359–372, 1996. 205

[213] H. Grauert. On the number of moduli of complex structures. In Contributions to function theory
(Internat. Colloq. Function Theory, Bombay, 1960), pages 63–78. Tata Institute of Fundamental
Research, Bombay, 1960. 107

[214] M. Green and P. Griffiths. Two applications of algebraic geometry to entire holomorphic mappings.
In The Chern Symposium 1979, pages 41–74. Springer-Verlag, New York, 1980. 277

[215] M. Green, P. Griffiths, and K. Paranjape. Cycles over fields of transcendence degree 1. Michigan
Math. J., 52(1):181–187, 2004. 248, 249

[216] M. Green and R. Lazarsfeld. Special divisors on curves on a K3 surface. Invent. Math., 89(2):357–
370, 1987. 175

[217] P. Griffiths. Periods of integrals on algebraic manifolds: Summary of main results and discussion
of open problems. Bull. Amer. Math. Soc., 76:228–296, 1970. 122, 142

[218] P. Griffiths, editor. Topics in transcendental algebraic geometry, volume 106 of Annals of Mathe-
matics Studies, Princeton, NJ, 1984. Princeton University Press. 100

[219] P. Griffiths and J. Harris. Principles of algebraic geometry. Wiley-Interscience [John Wiley & Sons],
New York, 1978. 46, 59, 163, 309, 310

[220] P. Griffiths and J. Harris. On the variety of special linear systems on a general algebraic curve.
Duke Math. J., 47(1):233–272, 1980. 174

[221] V. Gritsenko, K. Hulek, and G. Sankaran. The Kodaira dimension of the moduli of K3 surfaces.
Invent. Math., 169(3):519–567, 2007. 97

[222] V. Gritsenko, K. Hulek, and G. Sankaran. Abelianisation of orthogonal groups and the fundamental
group of modular varieties. J. Algebra, 322(2):463–478, 2009. 287

[223] A. Grothendieck. Fondements de la géométrie algébrique. [Extraits du Séminaire Bourbaki, 1957–
1962.]. Secrétariat mathématique, Paris, 1962. 84, 91, 193, 370

[224] A. Grothendieck. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes
de schémas IV. Inst. Hautes Études Sci. Publ. Math., 32:361, 1967. 96

[225] A. Grothendieck. Le groupe de Brauer. III. Exemples et compléments. In Dix Exposés sur la Co-
homologie des Schémas, pages 88–188. North-Holland, Amsterdam, 1968. 233, 234, 381, 383

[226] A. Grothendieck. Technique de descente et théorèmes d’existence en géométrie algébrique. II. Le
théorème d’existence en théorie formelle des modules. In Séminaire Bourbaki, Vol. 5, pages Exp.
No. 195, 369–390. Soc. Math. France, Paris, 1995. 307

[227] M. Halic. A remark about the rigidity of curves on K3 surfaces. Collect. Math., 61(3):323–336,
2010. 277

[228] M. Halic. Some remarks about curves on K3 surfaces. In Teichmüller theory and moduli problem,
volume 10 of Ramanujan Math. Soc. Lect. Notes Ser., pages 373–385. Ramanujan Math. Soc.,
Mysore, 2010. 277

[229] A. Harder and A. Thompson. The geometry and moduli of k3 surfaces. 2015. arXiv:1501.04049.
122

[230] J. Harris. Galois groups of enumerative problems. Duke Math. J., 46(4):685–724, 1979. 276, 372
[231] J. Harris and I. Morrison.Moduli of curves, volume 187 of Graduate Texts in Mathematics. Springer-

Verlag, New York, 1998. 265, 266
[232] R. Hartshorne. Residues and duality, volume 20 of Lecture Notes in Math. Springer-Verlag, Berlin,

1966. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64. With
an appendix by P. Deligne. 11

[233] R. Hartshorne. Ample subvarieties of algebraic varieties, volume 156 of Lecture Notes in Math.
Springer-Verlag, Berlin, 1970. Notes written in collaboration with C. Musili. 7, 9, 23, 144



BIBLIOGRAPHY 417

[234] R. Hartshorne. Algebraic geometry, volume 52 of Graduate Texts in Mathematics. Springer-Verlag,
New York, 1977. 8, 9, 10, 11, 13, 22, 23, 28, 30, 32, 35, 73, 144, 179, 180, 201, 202, 207, 209, 210,
225, 239, 246, 275, 402

[235] R. Hartshorne. Deformation theory, volume 257 of Graduate Texts in Mathematics. Springer-Verlag,
New York, 2010. 90, 108, 387

[236] K. Hashimoto. Finite symplectic actions on the K3 lattice. Nagoya Math. J., 206:99–153, 2012. 319,
327

[237] B. Hassett. Rational curves on K3 surfaces. Lecture notes. 255, 263
[238] B. Hassett. Special cubic fourfolds. Compositio Math., 120(1):1–23, 2000. 285, 287
[239] B. Hassett, A. Kresch, and Y. Tschinkel. Effective computation of Picard groups and Brauer–

Manin obstructions of degree two K3 surfaces over number fields. Rend. Circ. Mat. Palermo (2),
62(1):137–151, 2013. 405

[240] B. Hassett and Y. Tschinkel. Rational points on K3 surfaces and derived equivalence. 2014.
arXiv:1411.6259. 122, 352

[241] N. Hitchin, A. Karlhede, U. Lindström, and M. Roček. Hyper-Kähler metrics and supersymmetry.
Comm. Math. Phys., 108(4):535–589, 1987. 132

[242] E. Horikawa. Surjectivity of the period map of K3 surfaces of degree 2. Math. Ann., 228(2):113–146,
1977. 113

[243] S. Hosono, B. Lian, K. Oguiso, and S.-T. Yau. Kummer structures on K3 surface: an old question
of T. Shioda. Duke Math. J., 120(3):635–647, 2003. 346

[244] S. Hosono, B. Lian, K. Oguiso, and S.-T. Yau. Autoequivalences of derived category of a K3 surface
and monodromy transformations. J. Algebraic Geom., 13(3):513–545, 2004. 347

[245] S. Hosono, B. H. Lian, K. Oguiso, and S.-T. Yau. Fourier–Mukai partners of a K3 surface of Picard
number one. In Vector bundles and representation theory (Columbia, MO, 2002), volume 322 of
Contemp. Math., pages 43–55. Amer. Math. Soc., Providence, RI, 2003. 206, 356

[246] R. Hudson. Kummer’s quartic surface. Cambridge Mathematical Library. Cambridge Univ. Press,
1990. With a foreword by W. Barth, Revised reprint of the 1905 original. 19

[247] K. Hulek and D. Ploog. Fourier–Mukai partners and polarised K3 surfaces. In Arithmetic and
geometry of K3 surfaces and Calabi–Yau threefolds, volume 67 of Fields Inst. Commun., pages
333–365. Springer-Verlag, New York, 2013. 356

[248] D. Huybrechts. Compact hyperkähler manifolds: basic results. Invent. Math., 135(1):63–113, 1999.
112, 129, 134, 205, 274

[249] D. Huybrechts. Compact hyperkähler manifolds. In Calabi–Yau manifolds and related geometries
(Nordfjordeid, 2001), Universitext, pages 161–225. Springer-Verlag, Berlin, 2003. 141, 204

[250] D. Huybrechts. Moduli spaces of hyperkähler manifolds and mirror symmetry. In Intersection theory
and moduli, ICTP Lect. Notes, XIX, pages 185–247 (electronic). Abdus Salam Int. Cent. Theoret.
Phys., Trieste, 2004. 135, 292

[251] D. Huybrechts. Complex geometry. Universitext. Springer-Verlag, Berlin, 2005. 43, 44, 59, 163, 181,
182

[252] D. Huybrechts. Fourier–Mukai transforms in algebraic geometry. Oxford Mathematical Mono-
graphs. The Clarendon Press Oxford University Press, Oxford, 2006. 202, 333, 336, 337, 338,
341, 344, 345, 347

[253] D. Huybrechts. Derived and abelian equivalence of K3 surfaces. J. Algebraic Geom., 17(2):375–400,
2008. 345

[254] D. Huybrechts. The global Torelli theorem: classical, derived, twisted. In Algebraic geometry–
Seattle 2005. Part 1, volume 80 of Proc. Sympos. Pure Math., pages 235–258. Amer. Math. Soc.,
Providence, RI, 2009. 350, 354

[255] D. Huybrechts. Chow groups of K3 surfaces and spherical objects. J. Eur. Math. Soc. (JEMS),
12(6):1533–1551, 2010. 253



418 BIBLIOGRAPHY

[256] D. Huybrechts. A note on the Bloch–Beilinson conjecture for K3 surfaces and spherical objects.
Pure Appl. Math. Q., 7(4, Special Issue: In memory of Eckart Viehweg):1395–1405, 2011. 254

[257] D. Huybrechts. A global Torelli theorem for hyperkähler manifolds [after M. Verbitsky], Séminaire
Bourbaki, Exposé 1040, 2010/2011. Astérisque, 348:375–403, 2012. 125, 129, 131, 134

[258] D. Huybrechts. Symplectic automorphisms of K3 surfaces of arbitrary finite order. Math. Res. Lett.,
19(4):947–951, 2012. 254, 331

[259] D. Huybrechts. On derived categories of K3 surfaces and Mathieu groups. 2013. arXiv:1309.6528.
324, 356

[260] D. Huybrechts. Curves and cycles on K3 surfaces. Algebraic Geometry, 1(1):69–106, 2014. With an
appendix by C. Voisin. 251, 253

[261] D. Huybrechts. Introduction to stability conditions. In Moduli spaces, volume 411 of Lond. Math.
Soc. Lecture Note Ser., pages 179–229. Cambridge Univ. Press, 2014. 348, 356

[262] D. Huybrechts. The K3 category of a cubic fourfold. 2015. arXiv:1505.01775. 356
[263] D. Huybrechts and M. Kemeny. Stable maps and Chow groups. Doc. Math., 18:507–517, 2012. 254,

267, 331
[264] D. Huybrechts and M. Lehn. The geometry of moduli spaces of sheaves. Cambridge Mathematical

Library. Cambridge Univ. Press, second edition, 2010. 167, 168, 170, 172, 173, 176, 189, 193, 196,
197, 198, 199, 200, 201, 202, 203, 204, 206, 229

[265] D. Huybrechts, E. Macrì, and P. Stellari. Stability conditions for generic K3 categories. Compositio
Math., 144(1):134–162, 2008. 351, 354

[266] D. Huybrechts, E. Macrì, and P. Stellari. Derived equivalences of K3 surfaces and orientation. Duke
Math. J., 149(3):461–507, 2009. 347, 354

[267] D. Huybrechts and M. Nieper-Wißkirchen. Remarks on derived equivalences of Ricci-flat manifolds.
Math. Z., 267(3-4):939–963, 2011. 17, 204

[268] D. Huybrechts and S. Schröer. The Brauer group of analytic K3 surfaces. Int. Math. Res. Not.,
50:2687–2698, 2003. 382, 385

[269] D. Huybrechts and P. Stellari. Equivalences of twisted K3 surfaces. Math. Ann., 332(4):901–936,
2005. 350, 395

[270] D. Huybrechts and P. Stellari. Proof of Căldăraru’s conjecture. Appendix: “Moduli spaces of twisted
sheaves on a projective variety” by K. Yoshioka. In Moduli spaces and arithmetic geometry, vol-
ume 45 of Adv. Stud. Pure Math., pages 31–42. Math. Soc. Japan, Tokyo, 2006. 350

[271] E. Ieronymou, A. Skorobogatov, and Y. Zarhin. On the Brauer group of diagonal quartic surfaces.
J. Lond. Math. Soc. (2), 83(3):659–672, 2011. With an appendix by P. Swinnerton-Dyer. 298

[272] J. Igusa. Betti and Picard numbers of abstract algebraic surfaces. Proc. Nat. Acad. Sci. U.S.A.,
46:724–726, 1960. 366

[273] H. Inose. Defining equations of singular K3 surfaces and a notion of isogeny. In Proceedings of
the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977), pages 495–502.
Kinokuniya Book Store, Tokyo, 1978. 300

[274] H. Ito. On automorphisms of supersingular K3 surfaces. Osaka J. Math., 34(3):713–724, 1997. 317
[275] B. Iversen. Cohomology of sheaves. Universitext. Springer-Verlag, Berlin, 1986. 17
[276] D. James. On Witt’s theorem for unimodular quadratic forms. Pacific J. Math., 26:303–316, 1968.

286
[277] U. Jannsen.Mixed motives and algebraic K-theory, volume 1400 of Lecture Notes in Math. Springer-

Verlag, Berlin, 1990. With appendices by S. Bloch and C. Schoen. 245
[278] J.-P. Jouanolou. Théorèmes de Bertini et applications, volume 42 of Progr. Math. Birkhäuser Boston

Inc., 1983. 31
[279] D. Kaledin, M. Lehn, and C. Sorger. Singular symplectic moduli spaces. Invent. Math., 164(3):591–

614, 2006. 199, 205, 206



BIBLIOGRAPHY 419

[280] A. Kas. Weierstrass normal forms and invariants of elliptic surfaces. Trans. Amer. Math. Soc.,
225:259–266, 1977. 213, 216

[281] T. Katsura. On Kummer surfaces in characteristic 2. In Proc. Int. Sympos Algebraic Geom. (Kyoto
Univ., 1977), pages 525–542, Tokyo, 1978. Kinokuniya Book Store. 8

[282] T. Katsura. Generalized Kummer surfaces and their unirationality in characteristic p. J. Fac. Sci.
Univ. Tokyo Sect. IA Math., 34(1):1–41, 1987. 305

[283] N. Katz. Review of `-adic cohomology. In Motives (Seattle, WA, 1991), volume 55 of Proc. Sympos.
Pure Math., pages 21–30. Amer. Math. Soc., Providence, RI, 1994. 74

[284] N. Katz and W. Messing. Some consequences of the Riemann hypothesis for varieties over finite
fields. Invent. Math., 23:73–77, 1974. 404

[285] Y. Kawamata. On the cone of divisors of Calabi–Yau fiber spaces. Internat. J. Math., 8(5):665–687,
1997. 153, 159, 161

[286] K. Kawatani. A hyperbolic metric and stability conditions on K3 surfaces with ρ = 1. 2012.
arXiv:1204.1128. 349

[287] S. Keel and S. Mori. Quotients by groupoids. Ann. of Math. (2), 145(1):193–213, 1997. 83, 89, 96,
193

[288] G. Kempf, F. Knudsen, D. Mumford, and B. Saint-Donat. Toroidal embeddings. I. Lecture Notes
in Mathematics, Vol. 339. Springer-Verlag, Berlin-New York, 1973. 121

[289] J. Keum. A note on elliptic K3 surfaces. Trans. Amer. Math. Soc., 352(5):2077–2086, 2000. 228,
238

[290] J. Keum. Orders of automorphisms of K3 surfaces. 2012. arXiv:1203.5616v8. 311, 313, 314, 321
[291] V. Kharlamov. Topology, moduli and automorphisms of real algebraic surfaces. Milan J. Math.,

70:25–37, 2002. 141
[292] F. Kirwan. Moduli spaces of degree d hypersurfaces in Pn. Duke Math. J., 58(1):39–78, 1989. 97
[293] S. Kleiman. The standard conjectures. In Motives (Seattle, WA, 1991), volume 55 of Proc. Sympos.

Pure Math., pages 3–20. Amer. Math. Soc., Providence, RI, 1994. 73
[294] A. Klemm, D. Maulik, R. Pandharipande, and E. Scheidegger. Noether–Lefschetz theory and the

Yau–Zaslow conjecture. J. Amer. Math. Soc., 23(4):1013–1040, 2010. 278
[295] R. Kloosterman. Classification of all Jacobian elliptic fibrations on certain K3 surfaces. J. Math.

Soc. Japan, 58(3):665–680, 2006. 238
[296] R. Kloosterman. Elliptic K3 surfaces with geometric Mordell–Weil rank 15. Canad. Math. Bull.,

50(2):215–226, 2007. 224, 373
[297] A. Knapp. Advanced algebra. Cornerstones. Birkhäuser Boston Inc., 2007. 382
[298] M. Kneser. Klassenzahlen indefiniter quadratischer Formen in drei oder mehr Veränderlichen. Arch.

Math. (Basel), 7:323–332, 1956. 285
[299] M. Kneser. Erzeugung ganzzahliger orthogonaler Gruppen durch Spiegelungen. Math. Ann.,

255(4):453–462, 1981. 290
[300] M. Kneser.Quadratische Formen. Springer-Verlag, Berlin, 2002. Revised and edited in collaboration

with Rudolf Scharlau. 279, 280
[301] A. Knutsen and A. Lopez. A sharp vanishing theorem for line bundles on K3 or Enriques surfaces.

Proc. Amer. Math. Soc., 135(11):3495–3498, 2007. 36
[302] S. Kobayashi. First Chern class and holomorphic tensor fields. Nagoya Math. J., 77:5–11, 1980. 183
[303] S. Kobayashi. Differential geometry of complex vector bundles, volume 15 of Publications of the

Math. Soc. of Japan. Princeton University Press, 1987. Kanô Memorial Lectures, 5. 181, 182
[304] S. Kobayashi. Transformation groups in differential geometry. Classics in Mathematics. Springer-

Verlag, Berlin, 1995. Reprint of the 1972 edition. 307
[305] K. Kodaira. On compact analytic surfaces. II, III. Ann. of Math. (2) 77 (1963), 563–626; ibid.,

78:1–40, 1963. 212, 229



420 BIBLIOGRAPHY

[306] K. Kodaira. On the structure of compact complex analytic surfaces. I. Amer. J. Math., 86:751–798,
1964. 107, 125

[307] K. Kodaira. On homotopy K3 surfaces. In Essays on Topology and Related Topics (Mémoires dédiés
à Georges de Rham), pages 58–69. Springer-Verlag, New York, 1970. 17

[308] K. Kodaira. Complex manifolds and deformation of complex structures, volume 283 of Grundlehren
der Mathematischen Wissenschaften. Springer-Verlag, New York, 1986. With an appendix by D.
Fujiwara. 106

[309] K. Koike, H. Shiga, N. Takayama, and T. Tsutsui. Study on the family of K3 surfaces induced from
the lattice (D4)3 ⊕ 〈−2〉 ⊕ 〈2〉. Internat. J. Math., 12(9):1049–1085, 2001. 79

[310] J. Kollár. Rational curves on algebraic varieties, volume 32 of Ergebnisse der Mathematik und ihrer
Grenzgebiete (3). Springer-Verlag, Berlin, 1996. 90, 180, 244, 267

[311] J. Kollár. Quotient spaces modulo algebraic groups. Ann. of Math. (2), 145(1):33–79, 1997. 83
[312] J. Kollár. Non-quasi-projective moduli spaces. Ann. of Math. (2), 164(3):1077–1096, 2006. 90
[313] J. Kollár and N. Shepherd-Barron. Threefolds and deformations of surface singularities. Invent.

Math., 91(2):299–338, 1988. 123
[314] J. Kollár et al. Flips and abundance for algebraic threefolds, volume 211 of Astérisque. Soc. Math.

France, Paris, 1992. 179
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[320] S. Kondō. Niemeier lattices, Mathieu groups, and finite groups of symplectic automorphisms of K3
surfaces. Duke Math. J., 92(3):593–603, 1998. With an appendix by S. Mukai. 302, 320, 322, 324
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lattice, 219, 221, 222, 281, 324
discriminant, 281
Weyl group, 288

singularity, 27, 213, 281, 324
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ample cone, 21, 141–144, 147, 148, 150–152,
158, 313, 350
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under deformation, 163

Artin conjecture, 233, 373, 380, 392
Artin invariant, 318, 369, 398
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symplectic, 346

automorphism, 305, 349
action on cohomology, 88, 126, 311
action on transcendental lattice, 309, 311
action on twistor space, 308
fixed point, 306
liftable to char. zero, 329

non-symplectic, 328
order, 328

of finite order, 306
of polarized K3 surface, 81, 88–90
symplectic, 252, 305, 308, 317, 354
fixed point, 308
order, 309

tame, 309
automorphism group, 156, 305, 306, 311, 352
not arithmetic, 329
discrete, 305
finite, 89, 158, 159, 288, 314, 316
finitely generated, 313
in positive characteristic, 309, 312
infinite, 100, 160, 261, 316
of abelian surface, 303
of double plane, 315, 316
of general K3 surface, 315
symplectic, 157, 305, 316, 317
abelian, 324

under base change, 305, 312, 349
under derived equivalence, 349

Azumaya algebra, 353, 377, 381

B-field, 382
B-field shift, 124, 348
as orthogonal transformation, 290

Baily–Borel theorem, 80, 100, 101, 109
Beauville–Bogomolov form, 202
Beauville–Voisin class, 249
Beauville–Voisin ring, 249, 251
Betti number, 14, 129, 395
under deformation, 123

big cone, 164
Birch–Swinnerton-Dyer conjecture, 233, 243,

372, 387, 389
Bloch filtration, 252
Bloch–Bĕılinson conjecture, 243, 251, 256
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Bloch–Illusie spectral sequence, 397
Bogomolov inequality, 168, 174, 180, 197
Bogomolov–Mumford theorem, 250, 257, 276
Brauer class, 378
as obstruction, 227, 233
transcendental, 381

Brauer group, 347, 377
p-primary, 400
algebraic versus analytic, 382
cohomological, 379, 381
equals Tate–Šafarevič group, 231
finite n-torsion, 380
finiteness, 380, 385
for ρ = 22, 400
formal, 385
Dieudonné module, 397
height, 394

no n-torsion, 400
of field, 386
of function field, 379
of moduli space, 195, 204
pairing, 388
Tate module, 374, 380, 387, 391
torsion, 380

Brauer–Manin obstruction, 401
Brauer–Severi variety, 353
Brill–Noether
general, 169, 251
locus, 172
number, 171, 172, 251

Calabi conjecture, 110, 123, 129, 177, 181, 311
canonical bundle formula
for blow-up, 7
for branched covering, 7, 179
for elliptic fibration, 207, 230

category fibred in groupoids (CFG), 91
chamber, 146, 157, 293, 313
chamber structure, 146, 293
for II1,25, 301

chamber structurel, 146
Chern class, 189
first, 89, 189, 237, 238, 245
in CHi, 241
in étale cohomology, 14, 362
in crystalline cohomology, 370, 395
in de Rham cohomology, 185, 360
second, 249

Chern numbers, 10
Chow group, 237

dimension, 242
divisible, 239
formal completion, 401
infinite dimensional, 242
Kimura finite-dimensional, 249, 252
torsion, 248
torsion free, 239
trivial over F̄p, 248, 249
under base change, 244, 245

Clifford algebra, 59
Clifford group, 60
Clifford index, 173
complete intersection, 6, 11, 17, 87, 95, 316,

317, 360
cone, 141
circular, 141
dual, 149, 151
polyhedral, 141, 149, 151
positive, 300

cone conjecture, 156
for hyperkähler, 164

connection
Chern, 179
Gauss–Manin, 104
Hermite–Einstein, 179
hermitian, 179

constant cycle curve, 251
Conway group, 303, 322
order, 303

Cox ring, 163
cubic fourfold, 16, 283, 285
derived category, 354
lattice, 283

curve
(−2)-curve, 21, 32, 144, 208, 313, 324
as spherical object, 339
finiteness, 151, 159

1-connected, 22, 27
2-connected, 28
arithmetic genus, 20
big and nef, 22
elliptic
family, 263, 275
primitive, 31

geometric genus, 20
hyperelliptic, 20, 24, 29, 176
rational, 21, 144, 168, 176, 177, 249–251
density, 274
existence, 257, 275
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infinitely many, 254, 262, 268
nodal, 256, 257, 262–265, 267, 268, 272

stable, 264
sum of rational, 261

cycle, 237
degree, 238

deformation
complete, 105
equivalence, 123, 124
functor, 383, 384
of curve, 262
of K3 surface, 105, 134, 183
of line bundle, 366
of line bundle on elliptic fibres, 224
of polarized K3 surface, 106, 184
of stable map, 263
universal, 105, 109, 125, 266
of polarized K3 surface, 110

degree
of sheaf, 173
of cycle, 238
of polarized K3 surface, 32

Deligne torus, 43
Deligne–Mumford stack, 81, 82, 89–91, 93, 94,

114, 115, 347
as global quotient, 95

density
of elliptic K3 surfaces, 293

derived category, 139, 166, 200, 240, 322, 331
of cubic fourfold, 354
of Jacobian fibration, 227
under base change, 349

derived equivalence
between K3 surfaces, 337, 343
between twisted K3 surfaces, 348
under base change, 354

Dieudonné theory, 397
diffeomorphism group, 134, 137
connected components, 137

diffeomorphism type, 15
discriminant, 277
discriminant form, 278, 291
of Kummer lattice, 294

discriminant group, 277, 313, 320
of ADE lattice, 281

divisor
vertical, 217

double plane, 7, 24, 57, 69, 71, 111, 138, 186,
206, 219, 236, 303, 328, 359

automorphism group, 315, 316
Brauer group, 381
over Q, 369
rational curves, 270, 273
with ρ = 20, 360

DPC, 77, 372
Dwork pencil, 359
Dynkin diagram, 209, 281

effective cone, 149–151, 159, 261
elementary transformation, 236
Chern classes, 170
is µ-stable, 175
is locally free, 170
is simple, 171

elliptic curve
CM, 358
isogeneous, 358
Newton polygon, 396
ordinary, 394
supersingular, 394
torsion, 222

elliptic fibration, 205, 255, 261, 292
discriminant, 214
extremal, 219
finitely many, 206
isotrivial, 215
section, 212, 292
semistable, 211
torsion section, 326

endomorphism field, 52
CM or RM, 52
of Hodge structure, 49
RM, 76

endomorphism of general K3 surface, 328
Enriques surface, 179, 282, 309, 328
equivalence
linear, 237
numerical, 8, 355
of period points, 128
rational, 237, 242

Euler number, 14, 211, 216, 230
Euler pairing, 167
exponential sequence, 13, 106, 382

Faltings’ theorem, 373
Fermat quartic, 6, 15, 206, 253, 276
automorphisms, 318
height, 394
is elliptic, 30
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is Kummer, 7, 17, 296
line, 358
Picard lattice, 49, 358, 363, 394
transcendental lattice, 49
unirational, 253, 363

finiteness
of K3 surfaces
over finite field, 375, 391
over number field, 376

formal group law, 393
for Ĝa, Ĝm, 393
height, 393

Fourier–Mukai partner, 204
again K3 surface, 337
finitely many, 344
Jacobian fibration as, 338
moduli space as, 338
number of, 341, 354
of Kummer surface, 344
transcendental lattice, 343
unique, 344

Fourier–Mukai transform, 148, 334
adjoint, 334
for twisted varieties, 347
fully faithful, 335
on cohomology, 341
on numerical Grothendieck group, 340

Frobenius, 72, 369, 373, 394, 400
semi-simple, 373

Fujita conjecture, 26, 34
fundamental domain, 141, 156
of orthogonal group, 158
of Weyl group, 300
rational polyhedral, 157

fundamental group, 15

Göttsche’s formula, 272, 275
genus
of lattice, 278
of polarized K3 surface, 32

gerbe, 353
GIT-quotient, 86, 194
GIT-stable, 86, 191, 194
Global Torelli Theorem, 11, 45, 80, 111–113,

115, 127, 133, 137, 138, 158, 161, 162, 293,
298, 312, 317, 323, 341, 344, 345, 350

derived, 46, 343
for curves, 44, 45
for Kummer surfaces, 111, 138, 139, 296
for polarized K3 surfaces, 45

for supersingular K3 surfaces, 401
via function field, 139

Golay code, 302, 319
Green’s conjecture, 173
Griffiths transversality, 103
Grothendieck group, 237, 333, 352
filtration, 241
finitely generated, 243
numerical, 193, 333, 341, 352
equals extended Néron–Severi group, 340
in cohomology, 341

of category, 240, 252
of lattices, 282
of variety, 240

Grothendieck–Verdier duality, 207
groupoid, CFG, 91
representable, 93

happy family, 318
Hasse invariant, 398
of elliptic curve, 398
of K3 surface, 398

Hasse principle, 401
height
canonical, 221
of Ĝa, Ĝm, 393
of elliptic curve, 394
of formal Brauer group, 394
of formal group law, 393
of isocrystal, 395
of K3 surface, 375, 394

height stratification, 398
Hermite–Einstein metric, 177, 179, 180
Hesse pencil, 205, 210, 215
Hilbert irreducibility, 367
Hilbert polynomial, 35, 82, 112, 187, 189, 193
reduced, 189

Hilbert scheme
of K3 surfaces, 83, 84, 88, 112
of points, 16, 164, 201–203, 272

Hochschild–Serre spectral sequence, 362, 380,
386, 388

Hodge class, 38, 45
Hodge conjecture, 40, 371
for product of abelian surfaces, 70
for product of K3, 40, 376
Kuga–Satake, 68, 70, 71

Hodge decomposition, 102, 104
Hodge filtration, 39
Hodge group, 53
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commutative, 54
Hodge index theorem, 9, 13, 28, 141, 197, 208,

221, 297, 320, 356, 370
Hodge isometry, 40, 45, 110, 111, 115, 127, 133,

136, 162, 291, 293, 296, 310–312, 323,
342–345, 348, 350

of abelian surfaces, 47
of Jacobian fibration, 226
of Kummer surface, 48
of moduli space, 201, 203
of Mukai lattice, 343
of transcendental lattice, 46, 51, 157, 293,
298, 343, 345

of twisted K3 surfaces, 348
orientation preserving, 346, 348

Hodge number, 10, 11, 14, 396, 397
under deformation, 123
under derived equivalence, 351

Hodge polygon, 396
Hodge structure, 37
complex conjugate, 39
direct sum, 38
dual, 38
via Deligne torus, 43

exterior product, 39
irreducible, 38, 46
isogeny, 37
Kuga–Satake, 62
morphism, 39
of K3 type, 44, 61, 65, 76, 98, 201
of Kähler manifold, 40, 102
of moduli space, 201
of torus, 110
polarization, 40
polarized, 40, 46, 98
sub-, primitive, 45
Tate, 38
via Deligne torus, 43

Tate twist, 38
tensor product, 38
via Deligne torus, 42
weight one, 43, 61, 66
weight two, 44, 66

Hodge–Frölicher spectral sequence, 14
Hodge–Riemann pairing, 41
hyperbolic plane, 280
orthogonal group, 288

hyperkähler manifold, 126, 139, 202, 356
hyperkähler metric, 109

index
of Brauer class, 378
of elliptic fibration, 224, 226

intersection form, 7, 13
for line bundles, 7
on Chow, 238, 249
on cohomology, 15

intersection pairing, 7, 8, 14, 40, 42, 50, 67, 72,
201, 282, 356, 361, 374

isocrystal, 394

Jacobian
of elliptic curve, 223
of elliptic fibration, 223
as Fourier–Mukai partner, 338

relative, 272
Jacobian fibration, 390
again K3 surface, 225
as moduli space, 225, 236
derived category, 227, 391
Euler number, 230
Hodge structure, 226
Picard group, 226, 391

Jordan–Hölder filtration, 190

K3 lattice, 97, 282, 283, 285
K3 surface
algebraic, 11, 12, 49
is projective, 5

attractive, 356
cohomology
étale, 16, 72, 362, 400
crystalline, 370
de Rham, 360
singular, 15
Witt vector, 388

complex, 12
is algebraic if..., 14

conjugate, 291
defined by quadrics, 34
diffeomorphic, 124
dominable, 255
DPC, 77, 372
elliptic, 17, 31, 149, 158, 182, 186, 205, 250,
255, 261, 273, 276, 356, 360, 372, 374, 400
density, 293
general, 211
logarithmic transform, 15

general, 256, 262
generic, 256



440 INDEX

homotopy, 15
lift to characteristic zero, 75, 184
non-hyperbolic, 255, 275
non-projective, 5, 11, 323, 355, 360
automorphisms, 329

of degree
2, 7, 139
4, 6, 29
6, 6
8, 16
10, 16, 17
12, 16, 17
14, 16
2, 4, . . . , 18, 17
≤ 24, 95

ordinary, 374, 376, 394, 398
over F̄p, 248, 255, 364
over Q̄, 243, 251, 256, 260, 268, 270, 271,
276, 365

over number field, 276, 291
polarized, 32, 79, 82, 169
deformation, 110

projective, 5, 142, 161
quasi-polarized, 33, 81, 390
Shioda supersingular, 369
simply connected, 125
singular, 356
supersingular, 32, 246, 253, 271, 312, 313,
318, 374, 390
ρ = 22, 375

supersingular (Shioda), 399
twisted, 352
unirational, 32, 186, 400
ρ = 22, 182, 363
supersingular, 399

uniruled, 177
Kähler class, 161, 311, 312
invariant, 309, 321
very general, 357

Kähler cone, 110, 127, 130, 131, 137, 139, 147,
160, 161, 312, 356

under deformation, 163
Weyl group of, 162

Kähler metric, 110, 129
Ricci-flat, 180, 311

Kähler–Einstein metric, 177, 180
Kawamata–Viehweg vanishing, 22
Keel–Mori theorem, 81, 94, 191, 265
Kobayashi–Hitchin correspondence, 177, 180

Kodaira dimension
of moduli space, 95

Kodaira’s table, 211
Kodaira–Ramanujam vanishing, 23, 26
Kodaira–Spencer map, 104, 195
Kuga–Satake class, 68, 372
absolute, 77

Kuga–Satake construction, 55, 61, 71, 95, 372,
392

infinitesimal, 66
motivic nature, 76
relative, 117
via Deligne torus, 62

Kuga–Satake variety, 63, 70
by base change, 372
dimension, 63
field of definition, 67
of abelian surface, 69
of double plane, 71
of Kummer surface, 70
polarization, 61, 64

Kulikov model, 119
Kummer lattice, 48, 294, 358
embedding into Niemeier lattice, 302
generalized, 303
primitive embedding, 295
unique, 295

Kummer sequence, 16, 362, 380, 400
Kummer surface, 6, 7, 12, 33, 47, 70, 71, 111,

138, 139, 250, 284, 294, 309, 326, 358
characterization, 295, 296
dense, 138, 298
dominable, 255
generalized, 303
Hodge structure, 48, 295
no Fourier–Mukai partner, 344
singular, 17
to E1 ×E2, 205, 210, 215, 218, 257, 264, 298,
315, 318, 326, 359, 382

to Jac(C), 235, 254
transcendental lattice, 295
with ρ = 17, 297
with ρ = 18, 297
with ρ = 19, 297
with ρ = 20, 68, 297, 298, 315, 318

lattice
coinvariant, 320
definite, 277
embedding, 284
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even, 277
finiteness, 278
genus, 278
indefinite, 277
Niemeier, 299
odd, 277
orthogonal, 279, 284
orthogonal group, 287
orbit, 285, 286

primitive embedding
in Niemeier lattice, 301

Rudakov–Šafarevič, 370
twist, 280
unimodular, 278
classification, 282

Leech lattice, 300, 303, 321, 323
orthogonal group, 322

Lefschetz fixed point formula, 72, 282, 307, 320
Lefschetz theorem, 14, 40, 50, 355, 373
level structure, 93, 114, 115, 367
line bundle
ample, 8, 21, 142, 312
L2 is base point free, 25
L3 is very ample, 25

as spherical object, 338
base point free, 27
big and nef, 22, 26, 32, 149, 169, 390
hyperelliptic, 24
nef, 22, 30, 142
Lk is base point free, 31

not torsion, 10
numerically trivial, 8
primitive, 31, 32, 79
semiample, 31, 34
very ample, 34

linear system, 19
base locus, 19
contains smooth curve, 28
fixed part, 19, 27
mobile part, 19, 27
only fixed parts, 32
projectively normal, 24

Local Torelli Theorem, 105, 109, 111, 113, 125
for Kummer surfaces, 105

marking, 103, 109, 126, 127, 357
Mathieu group, 317, 321
order, 302, 319

Matsusaka’s big theorem, 35, 392
Matsusaka–Mumford theorem, 87, 94

Miyaoka–Yau inequality, 180
moduli functor
as groupoid, CFG, 81
corepresented, 188, 191
of polarized K3 surfaces, 79
as groupoid, CFG, 91, 92
as stack, 92

of sheaves, 188
moduli space, 188
coarse, 80, 85, 86, 90, 112, 113, 188, 191, 192
fine, 109, 110, 188, 192
not separated, 188
of hypersurfaces, 86
of lattice polarized K3 surfaces, 95, 121, 259
of marked K3 surfaces, 109, 126
Hausdorff reduction, 126
not Hausdorff, 111, 126

of polarized K3 surfaces, 80, 86, 88, 90, 112,
268, 367
as algebraic space, 80
as DM stack, 91, 93, 115
as orbifold, 114
as quasi-projective variety, 80, 113
height stratification, 401
irreducible, 95
Kodaira dimension, 95
not smooth, 114
supersingular locus, 398, 401
with level structure, 114, 367

of quasi-polarized K3 surfaces, 81, 95, 114
cohomology, 121
Picard group, 121

of sheaves, 191, 225
as Fourier–Mukai partner, 200
birational, 204
Brauer group, 195, 204
derived category, 200, 204
Hodge structure, 201
is K3 surface, 200
non-empty, 194, 197, 198
Picard number, 391
relative, 191
symplectic resolution, 204
symplectic structure, 196
tangent bundle, 195
two-dimensional, 199, 201
zero-dimensional, 198

of stable curves, 264
of stable maps, 265
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tangent space, 192, 194
moduli stack
of polarized K3 surfaces, 92
as DM stack, 93, 94

monodromy, 134, 135
quasi-unipotent, 120

monodromy group, 135, 137, 368
`-adic algebraic, 54
algebraic, 116
big, 75
finite index, 116
of elliptic fibration, 216
versus Mumford–Tate group, 116

Mordell–Weil group, 158, 218, 255, 326, 360,
389

finitely generated, 218
of elliptic curve, 233
rank, 222, 236
torsion, 220, 222, 327

Mordell–Weil lattice, 220, 222
Mori cone, 150
circular, 154
locally polyhedral, 151

Mukai lattice, 167, 282, 290, 293
Mukai pairing, 167, 201, 282
Mukai vector, 167, 193, 196, 225, 391
in Chow, 249
in cohomology
is integral, 342

in extended Néron–Severi group, 340
non-primitive, 204
of spherical object, 251
primitive, 196

Mumford–Tate conjecture, 54, 373
Mumford–Tate group, 53, 358
versus monodromy group, 116

Murre decomposition, 247

Néron model, 216, 222
Néron–Severi group, 8, 13, 131, 269, 314
extended, 340
finitely generated, 8
of Jacobian, 227, 341
specialization
is injective, 291

via exponential sequence, 13
Néron–Severi lattice, 141, 355
embedding, 290
primitive embedding
unique, 290

Nakai–Moishezon–Kleiman criterion, 21, 142
nef cone, 141, 142, 149, 150, 152, 156–158, 160,

162
boundary, 143, 144
boundary of, 151
closed, 143
effective, 142, 156
locally polyhedral, 148, 151
rational polyhedral, 154, 160
under deformation, 163

Newton polygon, 395, 396
Nielsen realization problem, 138
Niemeier lattice, 295, 318, 323, 357
classification, 300
orthogonal group, 302, 320
root lattice, 300, 302, 320, 323

Nikulin involution, 325
Noether formula, 11
Noether theorem, 20, 25
Noether–Lefschetz divisors
generate Picard group, 121

Noether–Lefschetz locus, 101, 106, 269, 365
density, 106, 357

non-isotrivial family, 102, 106, 357

obstruction class
to deformation, 183, 192
to existence of universal sheaf, 195, 391
to lift, 183

orthogonal group, 145
arithmetic subgroup, 100, 108
torsion free, 100

commensurable subgroup, 100
fixing polarization, 108, 116, 368
generators, 290

orthogonal transformation
as product of reflections, 288

Pell’s equation, 155, 287
period
of Brauer class, 378

period domain, 97, 126
arithmetic quotient, 101, 113
as Grassmannian, 98
as tube domain, 98
connected component, 99
discrete group action, 100
quotient, 368
(not) Hausdorff, 100, 108
by torsion free group, 101
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quasi-projective, 101, 109
period map, 103, 126, 259, 266
covering map, 132
generic injectivity, 133
global, 107, 109, 111
image, 112
surjectivity, 110, 132, 162, 163, 222, 291, 317,
322
for Kummer surfaces, 48, 284, 295
for tori, 47

Picard functor, 187, 223, 383
Picard group, 8, 13, 314, 355
Galois invariant, 362, 380
of moduli space, 121
specialization, 107, 365, 368
is injective, 291
torsion free cokernel, 366

torsion free, 10, 182, 362
under base change, 193, 361
finite, 363
inseparable, 361

via exponential sequence, 13
Picard lattice, see also Néron–Severi lattice
Picard number, 8, 14, 67, 308, 397
22ρ = 22, 182
ρ = 0, 130, 161, 314, 329, 360
autoequivalences, 352
automorphism group, 352

ρ = 1, 163, 171, 174, 256, 258, 314, 354, 369
autoequivalences, 347
automorphism group, 314, 315
Fourier–Mukai partners, 354
over Q̄, 367

ρ ≥ 1, 127
ρ = 2, 151, 154, 160, 259, 271, 311, 316, 354,
369
automorphism group, 314
Fourier–Mukai partners, 354

ρ ≥ 2, 262
ρ = 3, 315
ρ ≥ 3, 154, 261
ρ = 4, 271, 315
ρ ≤ 4, 154
ρ ≥ 5, 155, 182, 206
ρ ≥ 9, 325
ρ ≤ 10, 185, 290
ρ = 11, 292
ρ ≤ 11, 154, 357
ρ ≥ 11, 292

ρ ≥ 12, 206, 292, 293, 344, 357
ρ = 16, 360
ρ ≥ 16, 49
ρ = 17, 297
ρ ≥ 17, 297, 358
ρ = 18, 297, 317, 358
ρ = 19, 71, 222, 297, 303, 323, 358
ρ ≥ 19, 326
ρ < 20, 163
ρ = 20, 54, 67, 71, 219, 222, 291, 297, 298,
314, 318, 323, 357, 358, 382, 399
over Q̄, 366

ρ ≤ 20, 14, 292, 356
ρ ≤ 21, 14
ρ = 21, 364, 371
ρ 6= 21, 400
ρ < 22, 245, 246
ρ = 20, 399
ρ = 22, 32, 182, 253, 315, 363, 369, 375, 400
ρ ≤ 22, 16, 360
even, 14, 51, 271, 291, 364
geometric, 361, 365
in family, 106, 358, 365, 375
odd, 270

Picard scheme, 83, 91, 187, 192, 193, 198, 203,
222, 383

Picard–Lefschetz, 136
polarization, 32, 79, 196
generic, 203

positive cone, 9, 21, 127, 130, 132, 141, 144,
148, 156, 161, 313, 345, 356

potential density, 255
pseudo-polarization, see also quasi-polarization

quartic, 6, 15, 29, 33, 95, 123, 125, 201, 236,
250, 252, 317, 358

ρ = 1, 359
ρ = 2, 317
as moduli space, 201
degree of discriminant, 273, 359
GIT-stable, 86
line, 276, 359
over Q, 369, 376
rational curves, 274
universal, 244

quasi-polarization, 33, 81, 95, 112, 114, 121,
149

Quot-scheme, 191
quotient
as algebraic space, 87, 191
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categorical, 85, 87, 112
good, 90
of K3 surface, 323
slice of, 90

quotient stack, 92

Ramanujam’s lemma, 27
reflection, 32, 60, 135, 145, 288, 313
regulator, 221
Riemann–Roch theorem, 166, 167, 200
for line bundles, 8, 9, 21, 142, 148, 187
for sheaves, 10

root, 145, 288
Leech, 300
positive, 145

root lattice, 288
of Niemeier lattice, 320

Rudakov–Šafarevič lattice, 370

S-equivalence, 190
Selmer group, 232
semistable degeneration, 119
Serre duality, 9, 23, 166, 193, 196, 333, 335, 338
Serre functor, 166, 333, 336
Seshadri constant, 35
Severi variety, 274, 328
sheaf
degree, 173
polystable, 180
pure, 189
reflexive hull, 165, 174
rigid, 169, 198, 251
simple, 168, 169, 174
spherical, 251
stable, 196
torsion free, 165, 189
twisted, 194, 352, 391

Shioda–Inose structure, 205, 219, 318, 326, 359
Shioda–Tate formula, 211, 218, 389
signature, 277
simple singularity, 214
Skolem–Noether theorem, 377
slope
of isocrystal, 394
of sheaf, 173, 190

spanning class, 335
spherical object, 251, 338, 361
orthogonal of, 354
realizing (−2)-class, 340
under base change, 349

spherical sheaf, 186, 350
is µ-stable, 354

spherical twist, 201, 236, 339
on cohomology, 342
on extended Néron–Severi group, 340

Spin group, 61
orthogonal representation, 61, 66

spinor norm, 135, 288
spread, 74, 268, 361, 366
stability
µ-stability, 173, 189
condition, 354
GIT-stability, 191, 194
of sheaves, 189

stable map, 265
rigid, 266

Steiner system, 319
sub-Hodge structure, 45
symmetric product, 191, 201, 238, 242
symplectic structure, 305
algebraic, 5
as residue, 6
on Hilbert scheme, 202
on K3 surface, 5
on moduli space, 196
real, 139, 164

tangent bundle
of Hilbert scheme, 88
of K3 surface, 5
is µ-stable, 176, 181
is simple, 168
symmetric powers, 181

of Kähler manifold, 180
of moduli space, 195
of period domain, 97

tangent-obstruction theory, 384
Tate conjecture, 55, 73, 185, 271, 371, 388
for DPC, 372
for elliptic, 372, 374, 390, 400
for product, 371, 376
for supersingular, 374, 399
for unirational, 364
integral, 373
over function field, 376

Tate–Šafarevič group, 230, 390
analytic, 233
equals Brauer group, 231
torsion, 231
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transcendental lattice, 45, 67, 68, 70, 157, 306,
309

= NS(X)⊥, 49
embedding, 291
endomorphism
cyclic, 51

Hodge isometry, 293
of conjugate K3 surface, 291, 362
of Fourier–Mukai partner, 343
of K3 with ρ = 20, 297
of Kummer surface, 295
primitive embedding
unique, 292, 293

versus Brauer group, 382
triangulated category, 240
bounded t-structure, 252

trope, 17
tube domain, 99
twistor line, 128
generic, 128, 131, 132

twistor space, 11, 130, 162, 308, 323, 357

universal family, 83, 91, 93, 109, 113, 114, 116,
195, 357

obstruction, 347
universal sheaf, 194, 195, 227, 233, 337, 343
twisted, 194, 347

variety, 5
irreducible symplectic, 35, 76, 139, 202, 252,
392

vector bundle
on P1, 187
rigid, 169, 251
simple, 171

vector field, 11, 14, 168, 176, 178, 179, 182, 305
vertical divisor, 217
VHS, 74, 102, 117, 118

wall, 146
Wedderburn theorem, 362, 378, 386
Weierstrass equation
for elliptic curve, 212
for elliptic K3 surface, 213, 214, 216

Weierstrass normal form, 17
Weil conjectures, 71, 73, 364, 369, 387, 389
for abelian variety, 76

Weil operator, 40, 42
Weil–Châtelet group, 228

Weyl group, 146, 148, 156, 159, 162, 288, 289,
292, 311, 313, 323, 357

of ADE lattice, 288
of Néron–Severi lattice, 314
of Niemeier lattice, 302, 320
transitive action, 147

Witt ring, 183, 370, 394

Yau–Zaslow formula, 256, 272, 275

Zariski decomposition, 34, 164
Zariski lemma, 207, 210
Zeta function, 72, 351, 373, 388
independence, 374
under derived equivalence, 351
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An, Dn, En ADE lattices, Dynkin diagrams.
Ãn, D̃n, Ẽn extended Dynkin diagrams.
A(E) Atiyah class.
(AΛ, qΛ) discriminant form of even lattice Λ.
Amp(X) ample cone.
Aut(X), Auts(X) group of (symplectic) automorphisms.
Aut(Db(X)), Auts(D

b(X)) group of (symplectic) exact equivalences.
Aut(H̃(X,Z)) group of Hodge isometries.
Br(X), Br(X)[n], Br(X)[`∞] Brauer group of X, n-torsion part, `-primary part.
B̂rX formal Brauer group.
Bs(L) base locus of line bundle L.
CX positive cone.
Ce
X effective positive cone.
cX ∈ CH2(X) Beauville–Voisin class.
χ(E,F ) Euler pairing.
CH∗(X) Chow ring.
Cl(V ), Cl±(V ) Clifford algebra.
CSpin(V ) Clifford group.
Co0, Co1 Conway groups.
Coh(X) abelian category of coherent sheaves.
D ⊂ P(ΛC) period domain.
Db(X) = Db(Coh(X)) derived category of coherent sheaves.
Db(X,α) derived category of twisted coherent sheaves.
Def(X) base of universal deformation.
∆, ∆P , ∆+ set of (positive) roots.
∆(E) discriminant of sheaf E or elliptic curve E.
Diff(X) diffeomorphism group.
disc Λ discriminant of lattice Λ.
exp(B) B-field shift.
E8 E8-lattice.
F, f Frobenius.
fC symplectic automorphism associated with a section.
Fix(f) fixed point set of automorphism f .
FM(X) set of isomorphism classes of Fourier–Mukai partners.
Ga, Gm additive, multiplicative group.
Grpo(2,V) Grassmannian of positive planes.
h(X) height of X.
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H̃(X,Z) Mukai lattice.
H1,1(X,Z) = H1,1(X) ∩H2(X,Z).
H∗(X,Q)p primitive cohomology.
H∗cr(X/W ) crystalline cohomology.
Hdg(V ) Hodge group of Hodge structure V .
Hilb, HilbP , Hilbn(X) Hilbert schemes.
In, II, III, IV, I

∗
n, II

∗, III∗, IV∗ singularity type of fibres of elliptic fibration.
In+,n− , IIn+,n− odd/even unimodular lattice of signature (n+, n−).
JH(E) graded object of Jordan–Hölder filtration.
J(X), Jd(X) Jacobian fibration (of degree d) of elliptic X // P1.
K Kummer lattice.
K(X) = K(Coh(X)) Grothendieck group.
K(X) function field of X.
KX Kähler cone.
K(T ) endomorphism ring of Hodge structure T .
KS(V ) Kuga–Satake variety.
ks separable closure of k.
LG orthogonal complement of invariant part.
Λ a lattice, often the K3 lattice.
Λd = `⊥ for polarized K3 surface (X, `) with (`)2 = 2d.
Λ(n) twist of lattice Λ.
`(Λ) number of generators of discriminant AΛ of lattice Λ.
µ(E) slope.
Mon(X) subgroup of O(H2(X,Z)) generated by monodromies.
MT(V ) Mumford–Tate group of Hodge structure V .
MW(X) Mordell–Weil group of elliptic fibration X // P1.
Md moduli functor, stack of polarized K3 surfaces.
M23, M24 Mathieu groups.
Md moduli space of polarized K3 surfaces.
M lev
d moduli space of polarized K3 surfaces with level structure.

M(v), M(v)s moduli space of (semi) stable sheaves with Mukai vector v.
N , Nd moduli spaces of marked (polarized) K3 surfaces (X,ϕ), (X,L, ϕ).
Nd(ρ) ⊂ Nd . . . with ρ(X) ≥ ρ.
N0 Leech lattice, Niemeier lattice without roots.
Np,σ Rudakov–Šafarevič lattice.
N(X) numerical Grothendieck group.
Nef(X) nef cone.
Nefe(X) effective nef cone.
NL(X/S) Noether–Lefschetz locus.
NS(X) Néron–Severi lattice.
Num(X) divisor group modulo numerical equivalence.
NE(X) Mori cone.
O(Λ) orthogonal group of lattice Λ.
O+(Λ) ⊂ O(Λ) subgroup preserving orientation of positive directions.
Õ(Λd) orthogonal group fixing a class e+ df .
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P : S // P(ΛC) period map.
P (E,m), p(E,m) (reduced) Hilbert polynomial.
Pic(X) Picard group.
ΦP Fourier–Mukai transform with kernel P.
ΦKP ,Φ

N
P ,Φ

H
P action of Fourier–Mukai transform on K(X), N(X), H∗(X).

ϕ(n) Euler function.
QuotP Quot-scheme.
ρ(g, r, d) Brill–Noether number.
ρ(X) Picard number.
R(X) ⊂ CH∗(X) Beauville–Voisin subring.
sδ, s[C] reflection in δ⊥, [C]⊥.
sign Λ signature of lattice Λ.
Spin(V ) Spin group.
sp: Pic(Xη) //Pic(Xt) specialization morphism.
X(E),X(X) Tate–Šafarevič group of elliptic curve, elliptic K3 surface.
σ(X) Artin invariant of supersingular K3 surface.
TE spherical twist.
T (X) transcendental lattice.
T (F ) torsion of sheaf F .
TW , T (α) twistor line to positive three-space, Kähler class.
T`Br(X) Tate module of Brauer group.
TX tangent bundle (of K3 surface).
U hyperbolic plane.
V (1) Tate twist of Hodge structure V .
v(E), vCH(E) Mukai vector.
W Weyl group.
(X,H), (X,L) polarized K3 surface.
Z(n) Tate twist or twist of trivial rank one lattice.
Z(X, t) Zeta function.
( . ) intersection pairing.
〈 , 〉 Mukai pairing.
(α)2 = (α.α).
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