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EFFECTIVITY OF SEMI-POSITIVE LINE BUNDLES

F. ANELLA & D. HUYBRECHTS

Abstract. We review work by Campana–Oguiso–Peternell [COP10] and Verbitsky [Ver10]
showing that a semi-positive line bundle on a hyperkähler manifold admits at least one non-
trivial section. This is modest but tangible evidence towards the SYZ conjecture for hyper-
kähler manifolds.

1. Main theorem and motivation

1.1. Main theorem. The following result was first proved in the non-algebraic setting by
Campana–Oguiso–Peternell [COP10] and later, applying similar techniques, by Verbitsky [Ver10].

Theorem 1.1. Any semi-positive line bundle L on a compact hyperkähler manifold is Q-
effective, i.e. H0pX,Lmq ‰ 0 for some m ą 0.

A line bundle L, say on a compact Kähler manifold, is semi-positive if it admits a smooth
hermitian metric with semi-positive curvature. Warning: The term semi-positive is used with
different meaning in other contexts.

Clearly, any ample line bundle is semi-positive, as due to Kodaira’s theorem being ample
is equivalent to admitting a hermitian metric with positive curvature. Also, semi-positive line
bundles are nef. However, the converse is not true. There exist line bundles on projective
manifolds which are nef but not semi-positive, e.g. one finds in [Har70, Thm. I.10.5] Mumford’s
example of a nef line bundle that is not semi-ample and in [DPS01, Sec. 2.5] an example of
nef line bundles that is not semi-positive. However, the situation is expected to be better on
compact hyperkähler manifolds (or, more generally, on Calabi–Yau manifolds).

Conjecture 1.2. Any nef line bundle on a compact hyperkähler manifold is semi-ample, i.e.
some positive power Lm is globally generated, and, in particular, semi-positive.

There are two cases to be considered here: For a nef line bundle on a compact hyperkähler
manifold either qpLq ą 0 or qpLq “ 0, where q is the Beauville–Bogomolov quadratic pairing on
H2pX,Zq. In the first case, L is nef and big, X is projective [Huy99, Thm. 3.11], and, therefore,
L is semi-ample by the base-point free theorem [CKM88]. Hence, only the case of a nef line
bundle L with qpLq “ 0 needs to be dealt with and we shall restrict to this case in what follows.

This review was prepared in the context of the seminar organized by the ERC Synergy Grant HyperK, Grant
agreement ID 854361. The talk was delivered on April 16, 2021.
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Remark 1.3. The naive idea to approach Theorem 1.1 and Conjecture 1.2 is of course to
apply the hyperkähler Riemann–Roch formula χpLq “ ř

aiqpLqi, see [Huy99, Huy03a], which
for qpLq “ 0 reduces to χpLq “ n ` 1. The problem now is that we have a priori no control
over the higher cohomology groups HqpX,Lq as the usual vanishing results do not apply. In
fact, by applying a result of Matsushita [Mat05, Thm. 1.3] showing that Rjf˚OX » Ωj

Pn for a
Lagrangian fibration f : X //Pn, we know that in this case HqpX, f˚Opkqq » H0pPn,Ωq

Pnpkqq
for k ą 0 by Bott vanishing and Leray spectral sequence. Hence, HqpX, f˚Opkqq ‰ 0 for
k ą q ď n.

1.2. SYZ conjecture. Assume that L is a non-trivial semi-ample line bundle with qpLq “ 0

on a compact hyperkähler manifold X of dimension 2n. Then the linear system |Lm|, m " 0,
defines a Lagrangian fibration X // //B over a normal base B of dimension n.

As any compact hyperkähler manifold X with b2pXq ě 5 deforms to a compact hyperkähler
manifold X 1 that admits a nef line bundle of square zero, Conjecture 1.2 would thus confirm the
following version of the Stromminger–Yau–Zaslov (SYZ) conjecture for Calabi–Yau threefolds.

Conjecture 1.4. Every compact hyperkähler manifold is deformation equivalent to a compact
hyperkähler manifold with a Lagrangian fibration.

The conjecture has been verified for all known deformation types of compact hyperkähler
manifolds. This is obvious for those deformation equivalent to Hilbert schemes of K3 surfaces
or to generalized Kummer varieties. See [Rap07, Cor. 1.1.10], for those deformation equivalent
to the examples of O’Grady in dimension six and ten.

1.3. Notation. TypicallyX will denote a compact hyperkähler manifoldX of dimension 2n, i.e.
X is a simply-connected, compact Kähler manifold with H0pX,Ω2

Xq spanned by an everywhere
non-degenerate holomorphic two-form σ. The second cohomology H2pX,Zq is endowed with the
Beauville–Bogomolov form q which is of signature p3, b2pXq´3q and which satisfies qpαqn “ cX ¨ş
α2n for all classes α P H2pX,Zq and some positive rational number cX P Q, the Fujiki constant.

The square of a class α P H1,1pXq can alternatively be computed as qpαq “ ş
α2pσσ̄qn´1 (up to

a positive scaling factor not depending on α).

2. Preparation

We shall prepare the ground for the actual proof by recalling the main results and techniques
that go into it.

2.1. Hard Lefschetz theorem. The following result is due to Mourougane [Mou99, Thm.
2.6].1

1In [Mou99] one finds the dual statement, namely that HqpX,Ωp
X b F q �

� //Hd´ppX,Ωd´q
X b F q is injective.

Is there a typo in his result? Should he not assume F to be semi-negative?
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Proposition 2.1. Let L be a semi-positive line bundle on a compact Kähler manifold X of
dimension d with Kähler class ω. Then the product with ωq defines surjective maps

H0pX,Ωd´q
X b Lq // //HqpX,Ωd

X b Lq.
For L » OX , this is the content of the Hard Lefschetz theorem which, in fact, asserts the

bijectivity of the map. The techniques to prove the more general statement are similar.

If X is a hyperkähler manifold of dimension d “ 2n and so Ω2n
X » OX , one obtains surjections

H0pX,Ω2n´q b Lq // //HqpX,Lq.
This allows one to turn the non-vanishing of higher cohomology groups of L into the existence
of global sections of powers of L.

Remark 2.2. (i) The result fails if L is only assumed to be nef without having a semi-positive
metric, see [DPS01, Sec. 2.5] for an example. In this case, there is a variant of the above due to
Takegoshi [Tak97, Thm. 1] for nef line bundles and to Demailly–Peternell–Schneider [DPS01,
Thm. 2.1] for pseudo-effective line bundles: For a line bundle L on a compact Kähler manifold
X of dimension d with a singular hermitian metric h with semi-positive curvature current the
product with ωq defines a surjection

(2.1) H0pX,Ωd´q
X b Lb Iphqq // //HqpX,Ωd

X b Lb Iphqq,
where Iphq denotes the multiplier ideal sheaf.

(ii) Due to [Tak97, Thm. 2], for q ą n the morphism HqpX,Lb Iphqq //HqpX,Lq induced
by the inclusion LbIphq Ă L is the zero map for any nef line bundle L on a compact hyperkähler
manifold X of dimension 2n. In fact, according to another result of Verbitsky [Ver07, Thm.
1.6], one has HqpX,Lq “ 0, q ą n, for any nef and, more generally, for any pseudo-effective line
bundle L.

2.2. Finiteness of non-polar hypersurfaces. An integral hypersurface Y Ă X of a compact
complex manifold is called polar if there exists a meromorphic function f P KpXq that has
a pole along Y , i.e. Y is contained in the pole divisor pfq8 of f . On a projective manifold,
every integral hypersurface is polar. However, for general non-projective manifolds this fails,
but the following result was proved by Fischer–Forster [FF79] and in the case that KpXq “ C
by Krasnov [Kra75].

Proposition 2.3. A compact connected complex manifold X contains at most finitely many
integral hypersurfaces Y Ă X that are not polar. More precisely, the number of non-polar
hypersurfaces is bounded by h1,1pXq ` dimpXq ´ h1,0pXq.

For the proof one needs the following elementary but useful observation, see [Kra75, Prop.
1].
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Lemma 2.4. Let E be a vector bundle of rank r on X. Then the space of meromorphic sections
of E is of dimension at most r, i.e.

dimKpXqH0pX,E bKXq ď rkpEq,
where KX is the sheaf or rational (meromorphic) functions and KpXq “ H0pX,KXq is the
function field of X. In particular, if KpXq “ C, then for any vector bundle E one has
h0pX,Eq ď rkpEq.
Proof. Suppose there exist sections s1, . . . , sr`1 P H0pX,E b KXq linearly independent over
KpXq. Then there is a proper closed analytic subset such that all sections si are holomorphic
on its open complement U Ă X and such that (after renumbering) the sections s1, . . . , sr1
span the subspace xs1pxq, . . . , srpxqy Ă Epxq of constant (maximal) dimension r1 at every point
x P U . In particular, on U we can write (˚q sr “ řr1

i“1 ai ¨ si for certain holomorphic functions
ai P OXpUq.

It suffices to check that the ai are meromorphic functions which is a local question. Thus,
we may think of the si as vectors si “ psijqj“1,...,r of meromorphic functions and view paiq as
a solution of the system of linear equations (˚). Expressing paiq in terms of the adjoint matrix
and the vector psrjq proves that all ai are indeed meromorphic. �

Proof of proposition. We shall follow [Kra75] and assume KpXq “ C. This is the only case that
will be needed for Corollary 2.5 and its application later on. For the general case we refer to
[FF79].

Applying d log, the sheaf of complexified Cartier divisors KX̊{OX̊ bZ C is identified with the
the quotient of Ω1

X Ă Ω1
X,log, where the latter sheaf is by definition locally generated by all

holomorphic one-forms and logarithmic one-forms d log f with f a local section of KX̊ . Taking
cohomology yields a long exact sequence

0 // H0pX,Ω1
Xq // H0pX,Ω1

X,logq // ClpXq bZ C // H1pX,ΩXq // ¨ ¨ ¨ .

Since H0pX,Ω1
X,logq Ă H0pX,Ω1

X b KXq and since we assume KpXq “ C, the lemma implies
dimCpClpXq bZ Cq ď h1pX,Ω1

Xq ` dimpXq ´ h0pX,Ω1
Xq. �

Corollary 2.5. If a compact complex manifold X contains infinitely many integral hypersur-
faces, then its algebraic dimension satisfies apXq ą 0, i.e. KpXq ‰ C. �

2.3. Sections of twists of vector bundles. Proposition 2.1 does not directly produce sections
of powers of L. For this one needs the following result due to Demailly–Peternell–Schneider
[DPS01, Prop. 2.15]

Proposition 2.6. Let L be a line bundle and E a vector bundle (or, more generally, a torsion
free sheaf) on a compact complex manifold X. Assume mi is an unbounded sequence of positive
integers such that H0pX,E b Lmiq ‰ 0.
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(i) Then there exists a line bundle M on X and an unbounded sequence m1i of positive
integers such that H0pX,M b Lm1iq ‰ 0.

(ii) There exist infinitely many integral hypersurfaces Y Ă X, and in particular KpXq ‰ C,
or L is Q-effective.

Proof. Let F Ă E be the coherent subsheaf of E generated by all homomorphisms L´mi //E.
By assumption, F is non-trivial, so F is a torsion free sheaf of positive rank r :“ rkpF q ą
0. Furthermore, we may assume that there exist integers n1, . . . , nr´1 (among the mi) and
an unbounded subsequence mj of mi for which there exist injections L´n1 ‘ ¨ ¨ ¨ ‘ L´nr´1 ‘
L´mj �

� //F .
Taking determinants yields non-trivial global sections sj P H0pX,M b Lm

1
j q, where M :“

detpF q and m1j :“ ř
ni `mj . This proves (i).

Let us turn to (ii). There is nothing to prove in the case that X is projective or weaker
that KpXq ‰ C. So we assume that X contains only finitely many integral hypersurfaces
Y1, . . . , YN Ă X. Then the zero loci Zpsjq Ă X as Weil divisors are in the convex hull of
the finitely many Yi, i.e. M b Lm

1
j P ř

Zě0 ¨ OpYiq. As the sequence m1j is unbounded, also
Lm

2
j P ř

Zě0 ¨OpYiq for an unbounded sequence m2j and, in particular, L is Q-effective. �

A priori, X could contain only one integral hypersurface Y Ă X and all sections of powers
of Lm are of the form sm for some s P H0pX,Lq with Zpsq “ Y . In other words, the above
result only ensures the existence of one non-trivial section of the line bundles Lm up to passing
to powers, which is not enough to make progress on Conjecture 1.2.

2.4. Cones on hyperkähler manifolds. We recall some basic notations and facts concerning
the various cones relevant for the arguments below.

The positive cone CX Ă H1,1pX,Rq of a compact hyperkähler manifold X is the connected
component of the open set of all classes α P H1,1pX,Rq with qpαq ą 0. It contains the Kähler
cone KX Ă CX of all Kähler classes as an open subcone. The closure of the Kähler cone
KX Ă CX , the nef cone, is the set of all classes α P CX with

ş
C α ě 0 for all rational curves

C Ă X, cf. [Huy03b, Prop. 3.2], and the open Kähler cone KX Ă CX is the set of all classes
α P CX with

ş
C α ą 0 for all rational curves C Ă X, cf. [Bou01, Thm. 1.2].

The birational Kähler cone BKX is by definition the union
ŤKX 1 of all Kähler cones of

birational compact hyperkähler manifolds X 1. Here, we use that any birational correspondence
X „ X 1 induces a natural Hodge isometry H2pX,Zq » H2pX 1,Zq, cf. [Huy03a, Prop. 25.14].
Clearly, BKX Ă CX and according to [Huy03a, Prop. 28.7] its closure BKX Ă CX , the modified
nef cone, is the set of all classes α P CX with qpα,Dq ě 0 for all uniruled divisors. Of course, it
suffices to test this for prime exceptional divisors, i.e. irreducible divisors D Ă X with qpDq ă 0.
Alternatively, BKX can be described as the dual of the pseudo-effective cone EX of all classes
α P H1,1pX,Rq that can be represented by a positive current, see [Huy03b, Cor. 4.6]. In
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particular, all effective divisors D Ă X define classes in EX . Note that in particular qpL,Dq ě 0

for any nef line bundle L and any effective divisor D Ă X.
According to Boucksom [Bou04, Thm. 4.8], any pseudo-effective class α P H1,1pX,Rq admits

a Zariski decomposition α “ P pαq ` Npαq, where P pαq P BKX and Npαq is the class of
an exceptional R-divisor, i.e. Npαq “ ř

aiDi with Di Ă X irreducible divisors such that
the matrix pqpDi, Djqq is negative definite. Furthermore, P pαq and Npαq are orthogonal, i.e.
qpP pαq, Npαqq “ 0. We shall need the Zariski decomposition only for divisor classes α P
H1,1pX,Zq and in this case P pαq and Npαq are in fact rational.

2.5. Stability of the tangent bundle. Due to existence of a Kähler–Einstein metric in each
Kähler class, the tangent bundle TX of a compact hyperkähler manifold X is µ-stable with
respect to any Kähler class ω P KX . In fact, stability holds with respect to all ω in the interior
of BKX , see also Section 5.1.

Proposition 2.7. Let X be a compact hyperkähler manifold and M Ă ΩbNX a line bundle in
some tensor power of its cotangent bundle. Then the dual M˚ is pseudo-effective.

Proof. In the projective case, the assertion is a consequence of a general result due to Campana–
Peternell [CP11, Thm. 0.1] showing that any torsion free quotient pΩ1

Xqbq // //F has a pseudo-
effective determinant detpFq unless X is uniruled.

Verbitsky [Ver10] gives an alternative argument relying on the observation that all tensor
powers ΩbNX of the cotangent bundle are µ-semistable with respect to any class in the birational
Kähler cone. More precisely, let α P BKX be a class corresponding to Kähler class ω1 P KX 1

on some birational model X 1 of X. Since X and X 1 are isomorphic in codimension one, the
inclusion M Ă ΩbNX carries over to an inclusion M 1 Ă ΩbNX 1 . To conclude use the stability of
ΩX 1 , which proves qpα,Mq “ qpω1,M 1q ď 0. Hence, qpα,M˚q ě 0 for all α P BKX , i.e. M˚ is
pseudo-effective. �

3. Proofs

In this section we present two proofs of the main theorem. The original of Campana–Oguiso–
Peternell [COP10] applies only to the case that the hyperkähler manifold is non-projective.
Verbitsky [Ver10] showed how to combine the original approach with Boucksom’s Zariski de-
composition to also cover the algebraic case. In the next section we will sketch a different
approach that reduces the projective case to the non-projective one.

3.1. Non-algebraic case. We follow the arguments in [COP10].

Proof. Assume L is a non-trivial nef line bundle on a non-projective compact hyperkähler mani-
fold X of dimension 2n and assume qpLq “ 0. Suppose H0pX,Lmq “ 0 for all m ą 0.
The Riemann–Roch formula [Huy99, Huy03a] simply states χpX,Lmq “ n ` 1. Thus, there
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exists an even number q ą 0 and an unbounded sequence mi of positive integers such that
HqpX,Lmiq ‰ 0. By virtue of Proposition 2.1 this implies H0pX,Ω2n´q

X b Lmiq ‰ 0.
Combining Corollay 2.5 and Proposition 2.6, we conclude that L is Q-effective, in which case

we are done, or KpXq ‰ C. For example, the former case holds if ρpXq “ 1. In the latter case,
the algebraic reduction [Uen75, Ch. 3] provides us with a diagram

X̃
π

{{

f̃

## ##
X

f
// B.

Here, X̃ is a compact complex manifold, B is smooth and projective of dimension at least one,
and π is birational. The pull-back f̃˚H of a very ample line bundle H on B can be written
as f̃˚H » π˚M bOp´Eq with E Ă X̃ effective, in fact π-exceptional but possibly trivial, and
M P PicpXq. This yields inclusions

H0pB,Hq � � //H0pX̃, f̃˚Hq � � //H0pX̃, π˚Mq » H0pX,Mq.
Since dimpBq ě 1, this shows that M is non-trivial and effective. In fact, as H is very ample,
we may assume that M admits two linearly independent sections with distinct zero divisors
D1, D2 Ă X without common irreducible components.

According to [Bou04, Prop. 4.2], for any two such divisorsD1, D2 Ă X we have qpD1, D2q ě 0.
Indeed, up to a positive scalar qpD1, D2q “

ş
D1XD2

pσσ̄qn´1 ě 0, since pσσ̄qn´1 is a positive form.
Applied to our situation this yields qpMq ě 0. On the other hand, since X is assumed to be
non-projective, the projectivity criterion [Huy99, Thm. 3.11] implies qpMq ď 0. Therefore,
qpMq “ 0. However, as the form q restricted to H1,1pX,Rq satisfies the Hodge index theorem,
every line bundle M on X with qpMq “ 0 is a rational multiple of L. As L was assumed
semi-positive (hence, nef) and M is effective, M is a positive rational multiple of L. Therefore,
L is Q-effective. �

3.2. Algebraic case. In fact, the following arguments taken from [Ver10] apply also to non-
algebraic hyperkähler manifolds and thus subsume the original proof in [COP10]

Proof. The first part of the proof is identical to the one in the non-algebraic case. From
Proposition 2.6 we deduce the existence of a line bundle M with H0pX,M b Lmiq ‰ 0 for
an unbounded sequence of positive integers. Since L is nef with qpLq “ 0, this implies qpM b
Lmi , Lq ě 0 and qpM,Lq ě 0. On the other hand, the line bundleM in the proof of Proposition
2.6 was constructed as the determinant M “ detpF q of a subsheaf F Ă E “ Ω2n´q

X and,
therefore, M Ă ΩbNX for some N . Then, Proposition 2.7 shows thatM˚ is pseudo-effective and,
hence, qpM,Lq ď 0, see Section 2.4. Therefore, qpM,Lq “ 0. In the case that ρpXq “ 2, we
can conclude already that M is a rational multiple of L and that, therefore, L is Q-effective.
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For ρpXq ą 2, we consider the Zariski decomposition of the pseudo-effective line bundle M˚

as P ` N with P contained in the closure of the birational Kähler cone and N exceptional
effective. In particular, qpP q ě 0 with qpP,Lq ą 0 unless P is a rational multiple of L and
qpNq ă 0 unless N “ 0. Then, 0 “ qpL,Mq “ qpL,P q ` qpL,Nq with both summands non-
negative and, therefore, both zero. Thus, the Zariski decomposition ofM˚ is of the form λL`N ,
with λ P Qě0. On the other hand, M b Lmi is effective for an unbounded sequence of positive
integers mi. Hence, pmi´ λqL can be written as the sum of the two effective divisors M bLmi

and N . Therefore, L itself is Q-effective. �

4. Semi-positivity under deformations

We will now show that alternatively the proof in the algebraic case can be reduced via
deformation to the non-algebraic case. The techniques are potentially relevant to make progress
on Conjecture 1.2.

First recall that for a smooth proper family X //∆ is of complex manifolds with central
fibre X “ X0 of Kähler type, all nearby fibres Xt are of Kähler type as well, i.e. for all t after
shrinking ∆ to an open neighbourhood of 0 P ∆. More precisely, if the Kähler class on X stays
of type p1, 1q on the nearby fibres, then it is Kähler there as well. This classical result is due
to Kodaira and Spencer [KS60]. Note that since the Kähler property is a combination of the
open condition that a real p1, 1q-form ω is positive and the closed condition dω “ 0, this is a
priori not clear. In the case of closed semi-positive forms ω, the corresponding statement fails.
Similarly, if α P H1,1pX,Rq is a nef class that stays of type p1, 1q on all the fibres Xt, as a class
on Xt it need not be nef, see [Mor92] for an example.

4.1. Degenerate twistor lines. We shall describe a one-parameter deformation of a compact
hyperkähler manifold endowed with a semi-positive isotropic p1, 1q-form, see [Ver15]. In the
following, we letX be a compact hyperkähler manifold of dimension 2n with a fixed holomorphic
two-form σ and a Ricci-flat Kähler form ω. Furthermore, we assume that η is a semi-positive
closed real p1, 1q-form with isotropic cohomology class rηs P H1,1pX,Rq, i.e. qprηsq “ 0. Note
that we also know

qprσsq “ 0, qprσs, rηsq “ 0 and qprσs ` rηsq “ 0.

Now, by virtue of Verbitsky’s description of the cohomology generated by H2pX,Rq, see [Bog96,
Ver96], these equalities imply

rηsn`1 “ 0 and prσs ` rηsqn`1 “ 0

in H2n`2pX,Rq. The semi-positivity of η implies that the same equalities hold on the level of
forms, see [Ver15, Sec. 3].

Lemma 4.1. Under the above assumptions, the following assertions hold true:

(i) ηn`1 “ 0.
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(ii) pσ ` ηqn`1 “ 0.
(iii) pσ ` ηqn ^ pσ̄ ` ηqn is a volume form.

Proof. We skip the proof. This is a point-wise statement which boils down to linear algebra. �

Of course, the same results hold for all positive multiples tη which will be used to define a
family of complex structures on X.

First recall that the kernel of the map σ : TCX // TCX
˚ naturally induced by the complex

two-form σ is the bundle of p0, 1q-vector fields T 0,1 Ă TCX. Copying this, one defines for the
closed two-forms

σt :“ σ ` t ¨ η
the bundle T 0,1

t Ă TCX as the kernel of the map induced by the complex two-form σt. Lemma
4.1, (iii) implies that T 0,1

t really is a complex vector bundle of dimension 2n and that TCX “
T 1,0
t ‘T 0,1

t , where T 1,0
t is the complex conjugate of T 0,1

t . This direct sum decomposition describes
an almost complex structure It on the differentiable manifold M underlying X.

Lemma 4.2. The almost complex structure It is integrable and σt is a holomorphic symplectic
form on pM, Itq. Furthermore, for all t the form η is of type p1, 1q with respect to It and η is
semi-positive for small t.

Proof. Due to the Newlander–Nirenberg theorem, it suffices to show that T 0,1
t is preserved

under the Lie bracket, i.e. rT 0,1
t , T 0,1

t s Ă T 0,1
t , cf. [Huy05, Sec. 2.6]. The standard formula for

the derivative of differential forms applied to v1, v2 P T 0,1
t and arbitrary v P TCX shows

0 “ pdσtqpv1, v2, vq “ v1pσtpv2, vqq ´ v2pσtpv1, vqq ` vpσtpv1, v2qq
´σtprv1, v2s, vq ` σtprv1, vs, v2q ´ σtprv2, vs, vq,

which by definition of T 0,1
t yields σprv1, v2s, vq “ 0 for all v P TCX and, therefore, rv1, v2s P T 0,1

t .
By construction, σt is of type p2, 0q on pM, Itq, closed since σ and η are closed, and non-

degenerate by Lemma 4.1, (iii). Hence, σt is a holomorphic symplectic form on pM, Itq. The
form η is of type p1, 1q with respect to It, for σnt ^ η “ pσ ` t ¨ ηqn ^ η “ 0 by Lemma 4.1, (ii).

The semipositivity of a smooth form can be checked point-wise and it is suffices to verify it
at a general point x P M , where we can assume η to be of maximal rank n.2 Now, choose a
family of forms αiptq, i “ 1, . . . , 2n, that are of type p1, 0q with respect to It, vary smoothly
with t, and form a basis of pT 1,0

t q˚ at x with respect to which η is diagonal, i.e. ηpxq “
i

ř
aiptq ¨ pαiptq ^ αiptqqpxq. By Lemma 4.1, (i) and the semipositivity of η with respect to

I0, the coefficients satisfy aip0q ě 0 and exactly n of them, say a1p0q, . . . , anp0q, are strictly

2This is oversimplifying things a little: There is such an open subset, but it may be open only in the analytic
topology. To make this rigorous one has to work with an analytically dense union of open subsets

Ť
Ui Ă M

such that on each Ui the rank ni of η is constant. Then ηni`1|Ui ‰ 0 but ηni |Ui “ 0. The rest of the argument
remains unchanged.
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positive. By continuity, a1ptq, . . . , anptq ą 0 for all small t and ηn`1 “ 0 then implies that we
still must have an`1ptq “ ¨ ¨ ¨ “ a2nptq “ 0 for those t. Hence, η is semi-positive for small t. �

Remark 4.3. It is possible to show that in fact η is semi-positive with respect to all It, t P C,
but we will not need this stronger statement.

Altogether the above describes a smooth family X //C of compact hyperkähler manifolds
Xt :“ pM, Itq, called degenerate twistor family, together with a constant closed real p1, 1q-form
η that is semi-positive for small t P ∆ Ă C.3 The central fibre X0 is the original compact
hyperkähler manifold X.

4.2. Semi-continuity. We apply the above construction to the case of a non-trivial semi-
positive line bundle L with qpLq “ 0. By assumption, c1pLq “ rηs for some semi-positive closed
real p1, 1q-form η. For example, if f : X //Pn is a Lagrangian fibration and L » f˚Op1q, then
any positive form η0 on Pn representing the hyperplane class c1pOp1qq P H2pPn,Zq induces a
semi-positive form η “ f˚η0 that represents c1pLq. The properties in Lemma 4.1, for example
ηn`1 “ 0, are obvious in this case. Note that in contrast to the uniqueness of Ricci-flat Kähler
forms in any given Kähler class, the form η satisfying the degenerate Monge–Ampère equation
η2n “ 0, or even ηn`1 “ 0, is certainly not unique.

Lemma 4.4. The degenerate twistor line X //C associated to a semi-positive form η represent-
ing c1pLq has the property that for very general t P C, the fibre Xt “ pM, Itq is non-projective.
Furthermore, the complex line bundle L is holomorphic with respect to all t P C and semi-positive
for small t P ∆.

Proof. As the first Chern class of the complex line bundle L satisfies qpc1pLq, σtq “ qprηs, rσsq`
t ¨ qprηs, rηsq “ 0, the line bundle L is holomorphic on all fibres XT . Since the non-trivial nef
class c1pLq is not orthogonal to any class in the positive cone CX , the very general fibre is not
projective.

On every fibre the class c1pLq is represented by the closed real p1, 1q-form η and any such
form is the curvature of a uniquely determined hermitian structure on L. Since for small t the
form η is still semi-positive, one finds that L is a semi-positive holomorphic line bundle on all
fibres Xt for small t. �

This allows one to show that the original result of Campana–Oguiso–Peternell [COP10] for
non-projective hyperkähler manifolds is enough to conclude the result for all hyperkähler mani-
folds, which gives an alternative proof of Verbitsky’s result [Ver10].

Corollary 4.5. Assume any semi-positive line bundle on a non-projective hyperkähler manifold
X is Q-effective. Then the same also holds for projective hyperkähler manifolds.

3There is a minor technical issue here. The parameter t above was assumed to be real and positive. Either,
Lemma 4.1 has to be adapted in (iii) to say that pσ ` tηqn ^ pσ̄ ` t̄ηqn is a volume form or the family is first
constructed just over Rą0 X∆ Ă C and then extended from there.
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Proof. Indeed, as explained above, any compact hyperkähler manifold X with a semi-positive
line bundle L with qpLq “ 0 can be realized as the central fibre of a degenerate twistor family
X //C. The very general fibre Xt is non-projective and [COP10] thus applies to L considered
as a semi-positive line bundle on Xt. Therefore, L is Q-effective on the very general fibre Xt,
t P ∆, and, by semi-continuity, the same holds for the central fibre. �

5. Open questions

Besides the two conjectures stated in the introduction, there are a number of related questions
that seem approachable.

5.1. Stability of the tangent bundle. Due to the existence of a hyperkähler (and hence
Kähler–Einstein) metric on a hyperkähler manifold X, the tangent bundle TX is µ-stable. In
fact, TX is µ-stable with respect to every Kähler class and, as explained in Section 2.5, with
respect to the generic class in the birational Kähler cone.

Question 5.1. Is the tangent bundle TX of a hyperkähler manifold µ-stable with respect to any
class in the positive cone?

This would subsume Proposition 2.7 and would allow one to conclude the stronger statement
that the line bundle M constructed in the proof of Proposition 2.6 and used in the two proofs
in Section 3 is contained in the closure of the positive cone.

5.2. Elliptic and parabolic hyperkähler manifolds. The paper [COP10] discusses the pos-
sibilities for the algebraic dimension apXq “ trdegKpXq of a compact hyperkähler manifold and
how the algebraic dimension is related to the intersection form on the Néron–Severi group. We
only touch upon one aspect here.

Question 5.2. Assume X is a compact hyperkähler manifold of algebraic dimension zero, i.e.
KpXq “ C. Is the Beauville–Bogomolov form q on NSpXq » H1,1pX,Zq negative definite?

Following [COP10], X is called elliptic if q is negative definite on NSpXq. It is known that
elliptic hyperkähler manifolds satisfy KpXq “ C. The above question is the converse.

Similarly, X is called parabolic if q on NSpXq is semi-negative definite with one isotropic
direction and hyperbolic if it has signature p1, ρpXq ´ 1q. By the Hodge index theorem and the
projectivity criterion for hyperkähler manifolds, the latter is equivalent to X being projective.
The analogue of Question 5.2 in the parabolic case is the conjecture that X is parabolic if and
only if apXq “ n. According to [COP10, Thm. 3.6], any non-algebraic compact hyperkähler
manifold satisfies apXq ď n, so that the cases 0 ă apXq ă n would need to be excluded.

12
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THE LOOIJENGA–LUNTS–VERBITSKY ALGEBRA AND VERBITSKY’S
THEOREM

ALESSIO BOTTINI

Abstract. In these notes we review some basic facts about the LLV Lie algebra. It is a
rational Lie algebra, introduced by Looijenga–Lunts and Verbitsky, acting on the rational
cohomology of a compact Kähler manifold. We study its structure and describe one irreducible
component of the rational cohomology in the case of a compact hyperkähler manifold.

1. Introduction

1.1. Let V “À
kPZ Vk be a finite dimensional graded vector space over a field F of characteristic

0, and denote by h the operator:
h|Vk “ k ¨ id.

Definition 1.1. Let e : V // V be a degree 2 endomorphism. We say e has the Lefschetz
property if

ek : V´k // Vk

is an isomorphism.

Remark 1.2. The degree two operators with the Lefschetz property form a Zariski open subset
of End2pV q.
Theorem 1.3 (Jacobson–Morozov, [?, Theorem 3]). An operator e has the Lefschetz property
if and only if there exists a unique degree ´2 endomorphism f : V // V such that

re, f s “ h.

Moreover, if L Ă EndpV q is a semisimple Lie subalgebra and e, h P L, then f P L.
We say that the triple pe, h, fq is an sl2-triple, the reason is that we can define a representation

sl2pFq //EndpV q of the Lie algebra sl2pFq on the vector space V as follows
˜

0 1

0 0

¸
� // e,

˜
1 0

0 ´1

¸
� // h,

˜
0 0

1 0

¸
� // f.

In the rest of these notes, we will mostly be interested in the graded rational vector space
V “ H˚pX,QqrN s, where X is a compact Kähler manifold of dimension N . Here rms indicates

This review was prepared in the context of the seminar organized by the ERC Synergy Grant HyperK, Grant
agreement ID 854361. The talk was delivered on April 23, 2021.
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the shift by m, so that V0 “ HN pX,Qq. To any class a P H2pX,Qq we can associate the
operator in cohomology obtained by taking cup product

ea : H˚pX,Qq //H˚pX,Qq, ω � // a.ω.

The operator h becomes
h|HkpX,Qq :“ pk ´Nqid.

From Theorem 1.3 we see that if ea has the Lefschetz property (for example if a is a Kähler
class), there is an operator fa of degree ´2 that makes pea, h, faq an sl2-triple. Moreover, the
map

f : H2pX,Qq 99K End´2pH˚pX,Qqq,
that sends a to the operator fa is defined on a Zariski open subset and rational.

Remark 1.4. If a P H1,1pX,Qq is Kähler, it follows from standard Hodge theory that every-
thing can be defined at the level of forms. The dual operator is fa “ ˚´1ea˚, where ˚ is the
Hodge star operator. The sl2-action preserves the harmonic forms, so it induces an action on
cohomology.

Definition 1.5 ([?, ?]). Let X be a compact Kähler manifold. The total Lie algebra gtotpXq
of X is the Lie algebra generated by the sl2-triples

pea, h, faq,
where a P H2pX,Qq is a class with the Lefschetz property.

The following is a general result about this Lie algebra for compact Kähler manifolds. Denote
by φ the pairing on H˚pX,Cq given by

φpα, βq “ p´1qq
ż

X
α.β,

if α has degree N ` 2q or N ` 2q ` 1.

Proposition 1.6 ([?, Proposition 1.6]). The Lie algebra gtotpXq is semisimple and preserves
φ infinitesimally. Moreover, the degree-0 part gtotpXq0 is reductive.

1.2. Now let X be a compact hyperkähler manifold of complex dimension 2n. In this case, the
Lie algebra gtotpXq is also called the Looijenga-Lunts-Verbitsky Lie algebra. It is well known
that for each hyperkähler metric g on X we get an action of the quaternion algebra H on the
real tangent bundle TX. This means that we have three complex structures I, J,K such that

(1.1) IJ “ ´JI “ K.

To each of these complex structures we can associate a Kähler form ωI :“ gpIp´q,´q, ωJ :“
pJp´q,´q, ωK :“ gpKp´q,´q and a holomorphic symplectic form σI “ ωJ ` iωK , σJ “ ωK `
iωI , σK “ ωI ` iωJ .
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Definition 1.7. The charateristic 3-plane F pgq of the metric g is

F pgq :“ xrωIs, rωJ s, rωKsy “ xrωIs, r<σIs, r=σIsy Ă H2pX,Rq.
Definition 1.8 ([?]). Denote by gg Ă EndpH˚pX,Rqq the Lie algebra generated by the sl2-
triples pea, h, faq where a P F pgq.
Remark 1.9. This Lie algebra is generated by the three sl2-triples associated to the classes
rωIs, rωJ s, rωKs. Indeed, from the discussion in the following section we will see that the subal-
gebra generated by these three sl2-triples is semisimple. From the Jacobson-Morozov Theorem
and the linearity of e : H2pX,Rq // EndpH˚pX,Rqq we conclude that it contains every sl2-triple
pea, h, faq with a P F pgq.

2. The algebra associated to a metric

2.1. In this section we study the smaller algebra gg and its action on cohomology. These
results are due to Verbitsky [?], see also [?].

We start with a general algebraic construction. Let H be the quaternion algebra. As a real
vector space it is generated by 1, I, J,K, where I, J,K satisfy the relations (1.1). We denote
by H0 the pure quaternions, i.e. the linear combinations of I, J,K.

Let V be a left H-module, equipped with an inner product

x´,´y : V ˆ V //R,

and assume that I, J,K act on V via isometries. The H-action gives three complex structures
I, J,K on V , satisfying the relations (1.1). Consider the forms

ωI “ xIp´q,´y,

ωJ “ xJp´q,´y,

ωK “ xKp´q,´y
and the holomorphic symplectic forms σI “ ωJ ` iωK , σJ “ ωK ` iωI , σK “ ωI ` iωJ .
Remark 2.1. Note that the operators eλ for λ “ ωI , ωJ , ωK have the Lefschetz property; the
dual operator is given by fλ “ ˚´1eλ˚, where ˚ is the Hodge star operator on Λ‚V ˚ induced by
the inner product.

Definition 2.2. Let gpV q Ă EndpŹ‚ V ˚q be the Lie algebra generated by the sl2-triples

peλ, h, fλqλ“ωI ,ωJ ,ωK
,

where h is the shifted degree operator.
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In particular, this definition makes sense for the rank one module H equipped with the
standard inner product. This gives a Lie algebra gpHq Ă EndpŹ‚H˚q. We denote by gpHq0
the degree-0 component of gpHq (here the degree is viewed as an endomorphism of the graded
vector space). It is a Lie subalgebra, and we denote it by gpHq10 :“ rgpHq0, gpHq0s its derived
Lie algebra.

Theorem 2.3. With the above notation we have the following.

(1) There is a natural isomorphism gpV q » gpHq.
(2) There is an isomorphism gpHq » sop4, 1q.
(3) The algebra decomposes with respect to the degree as

gpHq “ gpHq´2 ‘ gpHq0 ‘ gpHq2.
Furthermore, gpHq˘2 » H0 as Lie algebras, and gpHq0 “ gpHq10 ‘ Rh with gpHq10 » H0;
this last isomorphism is compatible with the actions on

Ź‚ V ˚.

Proof. p1q Since x´,´y is H-invariant, we can find an orthogonal decomposition

V “ H‘ ¨ ¨ ¨ ‘H.

Taking exterior powers we get
Ź‚ V ˚ “ Ź‚H˚ b ¨ ¨ ¨ bŹ‚H˚. This gives an injective map

gpHq // EndpŹ‚ V ˚q, given by the natural tensor product representation. It is a direct check
that the image of this morphism is exactly the algebra gpV q.
p2q Consider the subrepresentation W ĂŹ‚H˚ given by

W “
0ľ

H˚ ‘ xωI , ωJ , ωKy ‘
4ľ

H˚.

We equip it with the quadratic form given by setting
Ź0H˚‘Ź4H˚ to be a hyperbolic plane,

orthogonal to the 3-plane, and tωI , ωJ , ωKu to be an orthonormal basis of the 3-plane. By a
direct computation we can see that the action of gpHq respects infinitesimally this quadratic
form. This gives a map

(2.1) gpHq // sopW q » sop4, 1q,
that we next show to be an isomorphism.

SinceW has dimension 5 the Lie algebra sopW q has dimension 10. Now consider the following
10 elements of gpHq:

h, eI , eJ , eK , fI , fJ , fK ,KIJ ,KIK ,KJK ,

where KIJ :“ reI , fJ s,KIK “ reI , fKs and KJK “ reJ , fKs. Verbitsky [?] showed that KIJ acts
like the Weil operator associated with the Hodge structure on

Ź‚H˚ given by K, and similarly
KJK and KIK . This means that on a pp, qq form with respect to K it acts as multiplication
by ipp´ qq. It follows that the ten operators above are linearly independent over W , hence the

18



map is surjective. Moreover they generate gpHq as a vector space. Indeed, they generate gpHq
as a Lie algebra, and one has the following relations (see [?]):

rKλ,µ,Kµ,νs “ Kλ,ν , rKλ,µ, hs “ 0,

rKλ,µ, eµs “ 2eλ, rKλ,µ, fµs “ 2fλ,

rKλ,µ, eνs “ 0, rKλ,µ, fνs “ 0,

where λ, µ, ν P tI, J,Ku and ν ‰ λ, ν ‰ µ. This implies that they are a basis of gpHq, hence
the map (2.1) is an isomorphism.

Point p3q follows using this explicit basis. Indeed we have

gpHq´2 “ xfI , fJ , fKy, gpHq2 “ xeI , eJ , eKy, and
gpHq0 “ xKIJ ,KJK ,KIKy ‘ Rh.

In particular we have

gpHq10 „Ý // H0,

KIJ
� //K,

KJK
� // I,

KIK
� // J.

Since I, J,K P H0 act on
Ź‚H˚ as Weil operators for the corresponding complex structures on

H, the isomorphism is compatible with the actions. �

Now we can compute the Lie algebra gg. As above we denote by pggq0 the degree-0 part, and
by pggq10 :“ rpggq0, pggq0s its derived Lie algebra.

Proposition 2.4. Let pX, gq be a hyperkähler manifold with a fixed hyperkähler metric.

(1) There is a natural isomorphism of graded Lie algebras gg » gpHq. In particular gg »
sop4, 1q.

(2) The semisimple part pggq10 acts on H˚pX,Rq via derivations.

Proof. p1q. Consider the Lie subalgebra ĝg Ă EndpΩ‚Xq, generated by the sl2-triples pea, h, faq
with a P F pgq, at the level of forms (in particular fa “ ˚´1ea˚). From the previous proposition,
we see that for every point x P X there is an inclusion gpHq � � // EndpΩ‚X,xq. This gives an
inclusion gpHq � � //

ś
xPX EndpΩ‚X,xq. It follows from the definitions that the two algebras of

gpHq and ĝg are equal as subalgebras of
ś
xPX EndpΩ‚X,xq.

Since the metric g is fixed, the sl2-triples pea, h, faq preserve the harmonic forms H˚pXq, and
so does ĝg. Since H˚pXq » H˚pX,Rq we get a morphism

gpHq » ĝg // gg.
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This map is surjective, because the image contains the sl2-triples that generate gg. Moreover,
by explicit computations similar to the proof of the previous proposition, we can see that
dim gg ě 10. Hence the map is an isomorphism.
p2q. From the previous proposition we have an isomorphism compatible with the actions on

cohomology

pggq10 » gpHq10 » H0.

Hence, it suffices to prove the statement for the action of I, J,K. Each of them gives a complex
structure, and acts as the Weil operator on the associated Hodge decomposition. So, the action
on pp, qq forms is given by multiplication by ipp´ qq, which is a derivation. �

3. The total Lie algebra

The goal of this section is to prove the following result due to Looijenga and Lunts [?,
Proposition 4.5] and Verbitsky [?, Theorem 1.6].

Theorem 3.1. Let X be a hyperkähler manifold. With the above notation we have the following.

(1) The total Lie algebra gtotpXq lives only in degrees ´2, 0, 2, so it decomposes as:

gtotpXq “ gtotpXq´2 ‘ gtotpXq0 ‘ gtotpXq2.
(2) There are canonical isomorphisms gtotpXq˘2 » H2pX,Qq.
(3) There is a decomposition gtotpXq0 “ gtotpXq10 ‘ Qh with gtotpXq10 » sopH2pX,Qq, qq,

where q is the Beauville–Bolomov–Fujiki quadratic form [?]. Furthermore gtotpXq10 acts
on H˚pX,Qq by derivations.

The main geometric input in the proof is the following lemma.

Lemma 3.2. If X is a compact hyperkähler manifold, then rfa, fbs “ 0 for every a, b P H2pX,Rq
for which f is defined.

The proof relies on the following fact.

Proposition 3.3. The set of charateristic 3-planes is open in the Grassmannian of 3-planes in
H2pX,Rq.

In turn, this follows from a celebrated Theorem of Yau.

Theorem 3.4 (Yau). Let X be a hyperkähler manifold, and let I be a complex structure on X.
If ω is a Kähler class, then there is a unique hyperkähler metric g such that rωIs “ ω.

Proof of Lemma 3.2. If we fix a hyperkähler metric g on X, then for every a, b P F pgq we have
rfa, fbs “ 0. This holds already at the level of forms, using the definition fa “ ˚´1ea˚ and the
fact that ˚ depends only on the metric. Let a P H2pX,Rq be a class for which fa is defined.
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Since f is rational, the condition rfa, fbs “ 0 is Zariski closed with respect to b P H2pX,Rq.
From Proposition 3.3 it follows that the set

tb P H2pX,Rq | a, b P F pgq for some metric gu
is open. Since rfa, fbs “ 0 for every b in this open set, we get rfa, fbs “ 0 for every b where fb
is defined. �

While the statement of Theorem 3.1 is over Q, we will give the proof over R following [?].

Proof of Theorem 3.1. Consider the subspace

V :“ V´2 ‘ V0 ‘ V2 Ă gtotpXq,
where V2 is the abelian Lie subalgebra generated by ea with a P H2pX,Rq, V´2 is the abelian
Lie subalgebra generated by the fa with a P H2pX,Rq where fa is defined, and V0 is the Lie
subalgebra generated by rea, ebs. To prove p1q and p2q, it is enough to show that V is a Lie
subalgebra of gtotpXq. Indeed, since gtotpXq is generated by elements contained in V this would
imply V “ gtotpXq. Since V2 and V´2 are abelian, it suffices to show that rV0, V2s Ă V2 and
rV0, V´2s Ă V´2.

Claim. Define V 10 :“ rV0, V0s. We have V0 “ V 10 ‘ Rh where V 10 acts on cohomology via
derivations.

Proof of the claim. Proposition 3.3 implies that the set tpa, bq P H2pX,Rq ˆH2pX,Rq | a, b P
F pgq for some metric gu is open. Arguing as in the proof of Lemma 3.2 we see that V0 is
generated by the elements rea, fbs with a, b P F pgq. If we fix the hyperkähler metric g, the
elements rea, fbs with a, b P F pgq generate the Lie algebra pggq0 and their brackets the Lie
subalgebra pggq10. Thus, V 10 is generated by the Lie algebras pggq10 and their brackets. Since the
Lie algebras pggq10 act on cohomology via derivations, the same is true for their brackets, hence
V 10 acts via derivations. Moreover, from point p3q of Theorem 2.3 we get the decomposition
V0 “ V 10 ` Rh. Since gtotpXq0 is reductive (Proposition 1.6) and h is in the center, we get
h R V 10 Ă gtotpXq10, so the sum is direct. �

Now we show that rV0, V2s Ă V2. Since the adjoint action of h gives the grading, it is enough
to show that rV 10 , V2s Ă V2. Let u P V 10 and ea P V2. For every x P H2pX,Rq we have

(3.1) ru, easpxq “ upa.xq ´ a.upxq “ upaq.x “ eapxq,
because u is a derivation.

The inclusion rV0, V´2s Ă V´2 is more difficult. Let G10 Ă GLpH˚pX,Rqq be the closed Lie
subgroup with Lie algebra V 10 . For every t P G10 we have teat´1 “ etpaq and tht´1 “ h, by
integrating the analogous relations at the level of Lie algebras. Since the third element of an
sl2-triple is unique, we get that tfat´1 “ ftpaq. This implies that the adjoint action of G10 leaves
V´2 invariant, hence so does the Lie algebra V 10 .
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To summarize, at this point we showed p1q and p2q, and also that gtotpXq10 acts via derivations.
It remains to show that gtotpXq10 » sopH2pX,Rq, qq.

We begin by defining the map gtotpXq10 // sopH2pX,Rq, qq. For this, we consider the re-
striction of the action of gtotpXq10 to H2pX,Rq, and show that it preserves infinitesimally the
Beauville–Bogomolov–Fujiki form q. We can fix a hyperkähler metric g and check this for pggq10,
because these Lie subalgebras generate gtotpXq10. From Theorem 2.3 it is enough to check it for
the Weil operators associated to the three complex structures I, J,K induced from g. Fix one
of them, say I; we have to verify that

qpIα, βq ` qpα, Iβq “ 0,

for every α, β P H2pX,Rq. This follows from a direct verification using the q-orthogonal de-
composition

H2pX,Rq “ pH2,0pXq ‘H0,2pXqqRq ‘H1,1pX,Rq,
induced by the Hodge decomposition with respect to the complex structure I.

To conclude the proof it remains to show that this map is bijective; we begin with the
surjectivity. Fix a hyperkähler metric g, the image of the Lie algebra pggq10 in sopH2pX,Rq, qq
is generated (as a vector space) by the Weil operators associated to I, J,K. Using this, it is
easy to see that pggq10 kills the q-orthogonal complement to the characteristic 3-plane F pgq, and
it maps onto sopF pgq, q|F pgqq. One can check that varying the metric g the Lie subalgebras
sopF pgq, q|F pgqq generate sopH2pX,Rqq, hence the surjectivity.

For the injectivity we proceed as follows. Let SH2pX,Rq Ă H˚pX,Rq be the graded subalge-
bra generated by H2pX,Rq; it is a gtotpXq representation for Corollary 4.5. By Lemma 4.6, the
map gtotpXq // glpSH2pX,Rqq is injective. Since gtotpXq10 acts via derivations, the map must
be injective already at the level of H2pX,Rq. �

Definition 3.5. We define the Mukai completion of the quadratic vector space pH2pX,Qq, qq
as the quadratic vector space

pH̃pX,Qq, q̃q :“ pH2pX,Qq, qq ‘ U

where U is a two dimensional vector space with quadratic form given by

˜
0 1

1 0

¸

Corollary 3.6. There is a natural isomorphism

gtotpXq » sopH̃pX,Qq, q̃q.
Proof. Recall that for a rational quadratic space pV, qq there is an isomorphism

2ľ
V

»Ý // sopV, qq,
x^ y � // 1

2
pqpx,´qy ´ qpy,´qxq

22



The desired isomorphism follows from this, at least at the level of vector spaces. The computa-
tions to show that it is in fact an isomorphism of Lie algebras are carried out in [?, Proposition
2.7]. �

Example 3.7. If X is a K3 surface, then the Mukai completion H̃pX,Qq is the rational
cohomology H˚pX,Qq with the usual Mukai pairing. This identification is compatible with the
action of gtotpXq.
Corollary 3.8. The Hodge structure on H˚pX,Rq is determined by the Hodge structure on
H2pX,Rq and by the action of gtotpXq2,R » H2pX,Rq on H˚pX,Rq.
Proof. Let I, J,K be the three complex structures associated to a hyperkähler metric g, and
assume I is the given one. As recalled before, the commutator KJK “ reJ , fKs acts like the
Weil operator for I; hence it recovers the Hodge structure. By definition, it depends only on
the classes rωIs, rωKs and their action on H˚pX,Rq. Since the Hodge structure is given by the
class of the symplectic form rσIs “ rωJ s ` irωKs, the conclusion follows. �

Recall that if g is a Lie algebra, the universal enveloping algebra of g is the smallest associative
algebra extending the bracket on g. It is defined as the quotient of the tensor algebra by the
elements of the form:

xb y ´ y b x´ rx, ys x, y P g.
In particular, if g is abelian, then Ug “ Sym˚g.

Corollary 3.9. There is a natural decomposition

UgtotpXq “ UgtotpXq2 ¨ UgtotpXq0 ¨ UgtotpXq´2.

4. Primitive decomposition

In this section, we study the relationship between the actions of gtotpXq and gtotpXq0 on
H˚pX,Qq, where X is a compact hyperkähler manifold of dimension dimpXq “ 2n. The main
reference is [?], see also [?, Theorem 4.4].

Definition 4.1. Let V be a gtotpXq-representation. We define the primitive subspace as:

PrimpV q “ tx P V | pgtotpXq´2q.x “ 0u.
If V “ H˚pX,Qq is the standard representation we denote the primitive subspace as PrimpXq.

Remark 4.2. The primitive subspace PrimpV q is a gtot,0pXq-subrepresentation. This follows
from the fact that rgtotpXq0, gtotpXq´2s Ă gtotpXq´2.
Definition 4.3. The Verbitsky component SH2pX,Qq Ď H˚pX,Qq is the graded subalgebra
generated by H2pX,Qq.
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Proposition 4.4 ([?, Corollary 1.13 and Corollary 2.3]). The cohomology H˚pX,Qq is generated
by PrimpXq as a SH2pX,Qq-module. Moreover, if W Ă PrimpXq is a gtotpXq0 irreducible
subrepresentation, then SH2pX,Qq.W Ă H˚pX,Qq is an irreducible gtotpXq-module.

Proof. Since gtotpXq is semisimple, we can decompose the cohomology in irreducible gtotpXq-
representations:

H˚pX,Qq “ V1 ‘ ¨ ¨ ¨ ‘ Vk.
The primitive part is compatible with this decomposition, so we get the decomposition

PrimpXq “ PrimpV1q ‘ ¨ ¨ ¨ ‘ PrimpVkq,
of gtotpXq0-representations.

We first want to show that SH2pX,Qq.PrimpViq “ Vi. We have

(4.1) SH2pX,Qq.PrimpViq “ UgtotpXq2.PrimpViq “ UgtotpXq.PrimpViq Ă Vi,

where the first equality follows from the fact that gtotpXq2 is abelian, and the second from Corol-
lary 3.9. Thus SH2pX,Qq.PrimpViq is a gtotpXq subrepresentation of Vi, but Vi is irreducible,
so the equality holds. This proves the first part of the proposition.

To prove the second part it is enough to show that each PrimpViq is irreducible as a gtotpXq0-
representation. Assume it is not and write PrimpViq “W1‘W2. The identities (4.1) show that
acting with SH2pX,Qq gives a decomposition Vi “ SH2pX,Qq.W1 ‘ SH2pX,Qq.W2. Again,
this contradicts the fact that Vi is an irreducible gtotpXq-representation. �

Corollary 4.5. The Verbitsky component SH2pX,Qq Ă H˚pX,Qq is an irreducible gtotpXq
subrepresentation.

Proof. By definition we have SH2pX,Qq “ SH2pX,Qq.H0pX,Qq, and H0pX,Qq Ă PrimpXq.
So it is enough to observe that H0pX,Qq is preserved by gtotpXq0, then we conclude by the
previous proposition. �

Lemma 4.6. The restriction map gtotpXqR // glpSH2pX,Rqq is injective.

Proof. Let K Ă gtotpXqR be the kernel. It is immediate to see that K Ă gtotpXq10. The action
of K is 0 on H2pX,Rq, so by (3.1) we get rK, gtotpXqR,2s “ 0. Taking the Lie group of K and
the corresponding adjoint action, we see that rK, fas “ 0 for every a P H2pX,Rq for which fa is
defined. So K has bracket 0 with gtotpXqR,2 and gtotpXqR,´2, thus also with gtotpXqR,0. Since
gtotpXq is semisimple this implies K=0. �

5. Verbitsky’s Theorem

In this section we give a proof of a result by Verbitsky on the structure of the irreducible
component SH2pXq. The argument presented was given by Bogomolov in [?].
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Theorem 5.1. There is a natural isomorphism of algebras and gtotpXq0-representations:
SH2pX,Cq » Sym˚pH2pX,Cqq{xαn`1 | qpαq “ 0y.

The key technical fact is the following lemma from representation theory, of which we omit
the proof.

Lemma 5.2. Denote by A the graded C-algebra Sym˚pH2pX,Cqq{xαn`1 | qpαq “ 0y. Then we
have:

(1) A2n » C.
(2) The multiplication map Ak ˆA2n´k //A2n induces a perfect pairing.

Proof of the theorem. From the Local Torelli Theorem we have that αn`1 “ 0 for an open
subset of the quadric tα P H2pX,Cq | qpαq “ 0u. Since the condition αn`1 “ 0 is Zariski closed,
we get that it holds for the entire quadric. Consider the multiplication map

Sym˚pH2pX,Cqq //SH2pX,Cq.
The kernel contains tαn`1 | qpαq “ 0u, hence it factors via the ring A. It is an algebra
homomorphism by construction, and a map of gtotpXq0-representations because gtotpXq10 acts
via derivations.

The induced map A //SH2pX,Cq is surjective by construction. If it were not injective, by
the above lemma, the kernel would contain A2n. But this is impossible, because in top degree
the map A2n

//H4npX,Cq is non-zero. Indeed if σ is a holomorphic symplectic form, the form
pσ ` σq2n is non-zero. �

Corollary 5.3. There are natural isomorphisms defined over Q

SH2pX,Qq2k »
$
&
%

SymkH2pX,Qq if k ď n,

Sym2n´kH2pX,Qq if n ă k ď 2n.

Proof. From Theorem 5.1 it follows that the properties p1q and p2q in Lemma 5.2 hold for
SH2pX,Cq. Up to changing the isomorphism SH2pX,Cq2n » C, they also hold for SH2pX,Qq.
The multiplication map SymkH2pX,Qq //SH2pX,Qq2k is an isomorphism if k ď n, because
it is so over C. If k ą n we have

SH2pX,Qq2k » SH2pX,Qq4̊n´2k » Sym2n´kH2pX,Qq˚ » Sym2n´kH2pX,Qq,
where the last equality is due to the Beauville–Bogomolov–Fujiki form. �

Example 5.4. If X is of K3r2s-type, for dimensional reasons, the Verbitsky component SHpXq
is the only irreducible component in the cohomology. For higher values of n the decomposition
of H˚pX,Qq in irreducible components is described in [?], for more details on this see [?].
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6. Spin action

In this section we study how the action of sopH2pX,Qq, qq integrates to an action of the
simply connected algebraic group SpinpH2pX,Qq, qq. Recall that there is an exact sequence of
algebraic groups

1 //˘1 // SpinpH2pX,Qq, qq // SOpH2pX,Qq, qq // 1.

For more information see [?] and [?].

Proposition 6.1 ([?, Theorem 4.4],[?]). The action of sopH2pX,Qq, qq on H˚pX,Qq integrates
to an action of the algebraic group SpinpH2pX,Qq, qq via ring isomorphisms. On the even
cohomology it induces an action of SOpH2pX,Qq, qq.
Proof. The first part of the statement is clear: we can always lift the action because the alge-
braic group SpinpH2pX,Qq, qq is simply connected. The group SpinpH2pX,Qq, qq acts via ring
isomorphisms because the Lie algebra acts via derivations.

To show the second part of the statement we proceed as follows. Fix a hyperkähler metric
g and a compatible complex structure I. The Weil operator with respect to I is contained in
pggq10 » sopH2pX,Qqq. The exponential exppπIq P SpinpH2pX,Qq, qq acts on the pp, qq part of
HkpX,Cq as multiplication by eipp´qqπ, which is just multiplication by p´1qk. In particular, on
H2pX,Qq it acts as the identity, so exppπIq “ ´1 P SpinpH2pX,Qq, qq. We have also shown
that ´1 P SpinpH2pX,Qq, qq acts on HkpX,Qq as p´1qk, which means that the action on even
cohomology factors through SOpH2pX,Qq, qq. �
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ON THE HODGE AND BETTI NUMBERS OF HYPER-KÄHLER
MANIFOLDS

PIETRO BERI AND OLIVIER DEBARRE

Abstract. Let X be a compact Kähler manifold of dimension m. One consequence of the
Hirzebruch–Riemann–Roch theorem is that the coefficients of the χy-genus polynomial

pXpyq :“
mÿ

p,q“0

p´1qqhp,qpXqyp P Zrys

are (explicit) universal polynomials in the Chern numbers of X. In 1990, Libgober–Wood
determined the first three terms of the Taylor expansion of this polynomial about y “ ´1 and
deduced that the Chern number

ş
X
c1pXqcm´1pXq can be expressed in terms of the coefficients

of the polynomial pXpyq (Proposition 2.1).
When X is a hyper-Kähler manifold of dimension m “ 2n, this Chern number vanishes.

The Hodge diamond of X also has extra symmetries which allowed Salamon to translate the
resulting identity into a linear relation between the Betti numbers of X (Corollary 2.5).

When X has dimension 4, Salamon’s identity gives a relation between b2pXq, b3pXq,
and b4pXq. Using a result of Verbitsky’s on the injectivity of the cup-product map that produces
an inequality between b2pXq and b4pXq, it is easy to conclude b2pXq ď 23. Guan established
in 2001 more restrictions on the Betti numbers (Theorem 3.6).
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1. Symmetries of the Hodge diamond of a hyper-Kähler manifold

Let X be a compact hyper-Kähler manifold of dimension 2n and let σ be a holomorphic
symplectic form on X. Apart from the usual symmetries

hp,qpXq “ hq,ppXq “ h2n´p,2n´qpXq

coming from Kähler theory and Serre duality, there is another symmetry

(1.1) hp,qpXq “ h2n´p,qpXq

coming from the fact that the wedge product ^ σ^pn´pq is an isomorphism Ωp
X

„ // Ω2n´p
X . So

the Hodge diamond of X has a D8-symmetry.

Example 1.1 (n “ 2). We represent the various symmetries of the Hodge diamond for an
irreducible hyper-Kähler fourfold (note that the extra “mirror” symmetry (1.1) is only visible
here on the outer edges of the diamond). In the following diagram, the Hodge numbers hp,q of
hyper-Kähler fourfolds of Kum2-type appear as left indices of the pq label and those for the
K3r2s-type as right indices.

1 b0 1 1001

0 b1 0 0100 0010

7 b2 23 1201 51121 1021

8 b3 0 0300 4210 4120 0030

108 b4 276 1401 53121 9622232 51321 1041

8 b5 0 0410 4320 4230 0140

7 b6 23 1421 53321 1241

0 b1 0 0430 0340

1 b0 1 1441

A priori, there are only three undetermined Hodge numbers: h11, h21, and h22. We will see
in Example 2.7 that there is a relation between them.

Example 1.2 (n “ 3). We represent some of the symmetries of the Hodge diamond of an
irreducible hyper-Kähler sixfold. In the following diagram, the Hodge numbers hp,q of hyper-
Kähler sixfolds of Kum3-type appear as left indices of the pq label, those for the K3r3s-type as
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right indices, and those for the OG6-type as right exponents.

1 b0
1
1 10011

0 b1
0
0 01000 00100

7 b2
8
23 12011 511621 10211

8 b3
0
0 03000 42100 41200 00300

51 b4
199
299 14011 6311222 3722173253 6131222 10411

56 b5
0
0 05000 44100 243200 242300 41400 00500

458 b6
1504
2554 16011 551621 3742173253 3723311442004 3724173253 515621 10611

56 b7
0
0 06100 45200 244300 243400 42500 01600

A priori, there are only six undetermined Hodge numbers: h11, h21, h31, h22, h32, and h33. We
will see in Example 2.8 that there is a relation between them.

2. Salamon’s results on Betti numbers

2.1. Hirzebruch–Riemann–Roch. Let X be a compact Kähler manifold of dimension m.
Following [H1], we set

χppXq :“
mÿ

q“0
p´1qqhp,qpXq “ χpX,Ωp

Xq.

By Serre duality, these numbers satisfy

(2.1) χppXq “ p´1qmχm´ppXq
and we define the χy-genus by the formula

(2.2) pXpyq :“
mÿ

p“0
χppXqyp “

mÿ

p,q“0
p´1qqhp,qpXqyp P Zrys.

For instance,

‚ pXp0q “ χ0pXq “ χpX,OXq,
‚ pXp´1q “ χtoppXq “ epXq,
‚ pXp1q is the signature of the intersection form on HmpX,Rq (which vanishes when m is
odd).

Serre duality translates into the reciprocity property p´yqmpX
`
1
y

˘ “ pXpyq.
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One consequence of the Hirzebruch–Riemann–Roch theorem is that χppXq can be expressed
as a universal polynomial Tm,ppc1, . . . , cmq in the Chern classes of X evaluated on X ([H1,
Section IV.21.3, (10)]), that is,

(2.3) pXpyq “
mÿ

p“0
yp

ż

X
Tm,ppc1pXq, . . . , cmpXqq “

ż

X
Tmpyqpc1pXq, . . . , cmpXqq,

where Tmpyq :“ řm
p“0 Tm,pyp, a polynomial with coefficients in Qrc1, . . . , cms. One has

‚ Tm,p “ p´1qmTm,m´p and p´yqmTm
`
1
y

˘ “ Tmpyq;
‚ Tm,0 “ tdmpc1, . . . , cmq.

Libgober–Wood found in [LW, Lemma 2.2] the first three terms of the Taylor expansion of the
polynomial Tmpyq about ´1:

(2.4) Tmpy ´ 1q “ cm ´ 1
2mcmy ` 1

12

`
1
2mp3m´ 5qcm ` c1cm´1

˘
y2 ` ¨ ¨ ¨

The following is [LW, Proposition 2.3] (reproved later in [S, Theorem 4.1]).

Proposition 2.1 (Libgober–Wood). If X is a compact Kähler manifold of dimension m, one
has the relation

(2.5)
ż

X
c1pXqcm´1pXq “

mÿ

p“0
p´1qp`6p2 ´ 1

2mp3m` 1q˘χppXq.

Proof. The Taylor expansion of the polynomial pX about the point ´1 is

pXpy ´ 1q “
mÿ

p“0
χppXqpy ´ 1qp

“
mÿ

p“0
p´1qpχppXq ` y

mÿ

p“0
p´1qp´1

ˆ
p

1

˙
χppXq ` y2

mÿ

p“0
p´1qp

ˆ
p

2

˙
χppXq ` ¨ ¨ ¨

Using the Hirzebruch–Riemann–Roch theorem (2.3) and comparing with (2.4), we get, by iden-
tifying the coefficients, the relations1

pXp´1q “
ż

X
cmpXq “

mÿ

p“0
p´1qpχppXq,

p1Xp´1q “ ´1
2m

ż

X
cmpXq “

mÿ

p“0
p´1qp´1pχppXq,(2.6)

p2Xp´1q “ 1
6

ż

X

`
1
2mp3m´ 5qcmpXq ` c1pXqcm´1pXq

˘ “ 2
mÿ

p“0
p´1qp

ˆ
p

2

˙
χppXq,

1The first two relations are in fact formally equivalent upon using the symmetries (2.1), which give

p1Xp´1q “
mÿ

p“0

p´1qp´1pm´ pqχppXq “ ´mpXp´1q ´ p1Xp´1q

(see Remark 2.3).
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from which it is not difficult to get (2.5). �

The following consequence of Proposition 2.1 was obtained in [G, (1.14) and Proposition 2.4]
using modular forms (see also [H2]).2

Corollary 2.2 (Gritsenko). If X is a compact Kähler manifold of dimension m that satisfies
c1pXqR “ 0, one has

(2.7) 1
12 mepXq “

mÿ

p“0
p´1qp`12m´ p

˘2
χppXq “ 2

ÿ

0ďpăm{2
p´1qp`12m´ p

˘2
χppXq.

In particular, when m is even,3 mepXq is divisible by 24.

Proof. The first equality in (2.7) is easily obtained from the relations (2.6), and the second
equality from the symmetries (2.1). �

Remark 2.3. Salamon gives in [S, p. 145] the next two terms of the expansion (2.4) (see also
[L, Proposition 3.1(4)]):

Tmpy ´ 1q “ cm ´ 1
2mcmy ` 1

12

`
1
2mp3m´ 5qcm ` c1cm´1

˘
y2

´ 1
24pm´ 2q`12mpm´ 3qcm ` c1cm´1

˘
y3

` 1
5760

`
mp15m3 ´ 150m2 ` 485m´ 502qcm ` 4p15n2 ´ 85n` 108qc1cm´1
` 8pc21 ` 3c2qcm´2 ´ 8pc31 ´ 3c1c2 ` 3c3qcm´3

˘
y4 ` ¨ ¨ ¨

The y3-term does not bring any new information since it is in fact a formal consequence of the
reciprocity property p´yqmTm

`
1
y

˘ “ Tmpyq.
Using this expansion, J. Schmitt was able to find the following analogue of the Libgober–

Wood formula (2.5) for a compact Kähler manifold X of dimension m:

(2.8)
ż

X

`p13c21pXq ` c2pXqqcm´2pXq ´ p13c31pXq ´ c1pXqc2pXq ` c3pXqqcm´3pXq
˘

“
mÿ

p“0
p´1qp`10p4 ` p2´ 5m´ 15m2qp2 ` 1

24
mp5m` 1qp15m2 ` 3m´ 2q˘χppXq.

On a hyper-Kähler manifold, where all the odd Chern classes vanish, the left side reduces toş
X c2pXqcm´2pXq.

2Gritsenko also gives in [G, (1.13)] relations between the χppXq when m P t4, 6, 8, 10u, but they are all
rewritings of (2.7).

3This assumption is missing from [G], but it is necessary: when m is odd and we write m “ 2n` 1, we have

m´3
12

epXq “ 2
ÿ

0ďpďn
p´1qp`` 1

2
m´ p˘2 ´ 1

4

˘
χppXq “ 2

ÿ

0ďpďn
p´1qp`npn` 1q ´ pp2n` 1q ` p2˘χppXq,

which is divisible by 4. So what we get is that m´3
2
epXq is divisible by 24.
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Remark 2.4. The polynomials Tm can be computed. Setting for simplicity c1 “ 0 (the case of
interest for us), we have, for even dimensions m P t2, 4, 6u (see [LW] or [D, Section 9]),

T2py ´ 1q “ c2 ´ c2y ` 1
12c2y

2,

T4py ´ 1q “ c4 ´ 2c4y ` 7
6c4y

2 ´ 1
6c4y

3 ` 1
720p3c22 ´ c4qy4,

T6py ´ 1q “ c6 ´ 3c6y ` 13
4 c6y

2 ´ 3
2c6y

3 ` 1
240p´c23 ` c2c4 ` 62c6qy4

` 1
720p3c23 ´ 3c2c4 ´ 6c6qy5 ` 1

60480p10c32 ´ c23 ´ 9c2c4 ` 2c6qy6.
Setting χ :“ tdm (this is the constant term and leading coefficient of Tm), we get

T2pyq “ χ` p2χ´ c2qy ` χy2,
T4pyq “ χ` p4χ´ 1

6c4qy ` p6χ` 2
3c4qy2 ` p4χ´ 1

6c4qy3 ` χy4.(2.9)

2.2. Application to hyper-Kähler manifolds. Assume now that m is even and that we
have the extra “mirror” symmetry hp,qpXq “ hm´p,qpXq like we do when X is a hyper-Kähler
manifold. We define polynomials

hXps, tq :“
mÿ

p,q“0
hp,qpXqsptq P Zrs, ts,

bXptq :“
2mÿ

j“0
bjpXqtj “ hXpt, tq.

The polynomial hX is symmetric and pXpyq “ hXp´1, yq. Now we use the evenness of m and
the extra symmetry to get

B2hX
BsBt p´1,´1q “

mÿ

p,q“0
pqp´1qp`qhp,qpXq

“
mÿ

p,q“0
pm´ pqqp´1qm´p`qhp,qpXq

“ ´B
2hX
BsBt p´1,´1q `m

mÿ

p,q“0
qp´1qp`qhp,qpXq

“ ´B
2hX
BsBt p´1,´1q ´m BhX

Bt p´1,´1q,
so that

(2.10) 2
B2hX
BsBt p´1,´1q “ ´m BhX

Bt p´1,´1q “ ´mp1Xp´1q.
In terms of the polynomial bX , we have, by symmetry of hX ,

b1Xptq “ 2
BhX
Bt pt, tq,
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b2Xptq “ 2
B2hX
BsBt pt, tq ` 2

B2hX
Bt2 pt, tq,

so that we get, using (2.10),

(2.11) b1Xp´1q “ 2p1Xp´1q , b2Xp´1q “ ´mp1Xp´1q ` 2p2Xp´1q.
Proceeding as in the proof of Proposition 2.1, we write the Taylor expansion of the polynomial bX
about the point ´1:

bXpt´ 1q “
2mÿ

j“0
bjpXqpt´ 1qj

“
2mÿ

j“0
bjpXqp´1qj ` t

2mÿ

j“0
bjp´1qj´1

ˆ
j

1

˙
` t2

2mÿ

j“0
bjpXqp´1qj

ˆ
j

2

˙
` ¨ ¨ ¨

Using (2.11) and (2.6), we get

2mÿ

j“0
bjp´1qjj “ ´b1Xp´1q “ ´2p1Xp´1q “ m

ż

X
cmpXq,

2mÿ

j“0
bjpXqp´1qj

ˆ
j

2

˙
“ 1

2b
2
Xp´1q “ ´1

2mp
1
Xp´1q ` p2Xp´1q

“ 1
4m

2

ż

X
cmpXq ` 1

6

ż

X

`
1
2mp3m´ 5qcmpXq ` c1pXqcm´1pXq

˘
.

Putting everything together, we obtain the analogue of (2.5) ([S, Theorem 4.1]):

2

ż

X
c1pXqcm´1pXq “

2mÿ

j“0
p´1qjp6j2 ´mp6m` 1qqbjpXq.

Corollary 2.5 (Salamon). If X is a compact hyper-Kähler manifold of dimension 2n, one has4

4nÿ

j“0
p´1qjp3j2 ´ np12n` 1qqbjpXq “ 0.

Using the symmetry bj “ b4n´j , one checks that one gets the equivalent relations (in the
spirit of (2.7))

nepXq “ 6
2nÿ

j“1
p´1qjj2b2n´jpXq , nb2npXq “ 2

2nÿ

j“1
p´1qjp3j2 ´ nqb2n´jpXq.

Example 2.6 (n “ 1). We obtain b2pXq “ 22 and epXq “ 24.

4There is a misprint in [Hu, 24.4.2].
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Example 2.7 (n “ 2). Salamon’s relation reads

b4pXq “ 46` 10b2pXq ´ b3pXq.
On an irreducible hyper-Kähler fourfold, because of the symmetries, there are only 3 unkown
Hodge numbers: h11pXq, h21pXq, and h22pXq. One has

b2pXq “ 2` h11pXq , b3pXq “ 2h21pXq , b4pXq “ 2` 2h11pXq ` h22pXq.
Salamon’s relation translates into

h22pXq “ 64` 8h11pXq ´ 2h21pXq.
There are two Chern numbers, c4 :“ ş

X c4pXq “ epXq and c22 :“ ş
X c2pXq2. They satisfy

(2.12) 3 “ χpX,OXq “ T4p0q “
ż

X
td4pXq “ 1

720p3c22 ´ c4q.

But we also have, using (2.9),

(2.13) χ1pXq “ 12´ 1
6c4 , χ2pXq “ 18` 2

3c4.

A priori though, the value of c4 is not enough to determine all the Hodge numbers but, once
we know c4, one Hodge number determines all the others.

The Chern numbers for the two known deformation types of irreducible hyper-Kähler four-
folds are in the following table.

χtop “ e “ c4 c22

Kum2 108 756

K3r2s 324 828

Example 2.8 (n “ 3). Salamon’s relation reads

b6pXq “ 70` 30b2pXq ´ 16b3pXq ` 6b4pXq.
Because of the symmetries, there are only 6 undetermined Hodge numbers: h11pXq, h21pXq,
h31pXq, h22pXq, h32pXq, and h33pXq. One has

b2pXq “ 2` h11pXq,
b3pXq “ 2h21pXq,
b4pXq “ 2` 2h31pXq ` h22pXq,
b5pXq “ 2h41pXq ` 2h32pXq,
b6pXq “ 2` 2h11pXq ` 2h22pXq ` h33pXq.
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Salamon’s relation translates into

h33pXq “ 140` 28h11pXq ´ 32h21pXq ` 12h31pXq ` 4h22pXq.
There are three Chern numbers, c6 :“ ş

X c6pXq “ epXq, c2c4 :“ ş
X c2pXqc4pXq, and c32 :“ş

X c2pXq3. They satisfy

4 “ χpX,OXq “ T6p0q “ td6pXq “ 1
60480p10c32 ´ 9c2c4 ` 2c6q.

The three known examples in dimension 6 are in the following table taken from [N2, Re-
mark 4.13] (see also [N1, Appendix A]) and [MRS, Corollary 6.8].

χtop “ epXq “ c6 c2c4 c32

Kum3 448 6784 30208

K3r3s 3200 14720 36800

OG6 1920 7680 30720

3. Guan’s bounds for Betti numbers of hyper-Kähler fourfolds

3.1. Bounds on b2. Let X be an irreducible compact hyper-Kähler manifold of complex di-
mension m “ 2n. Let σ be a symplectic form on X. One has b1pXq “ 0, and b2pXq ě 3 since
H2,0pXq “ Cσ, H0,2pXq “ Cσ̄, and H1,1pXq contains the class of any Kähler form.

Our aim is to prove the following upper bound for b2pXq when m “ 4 ([Gu, Theorem 1]).

Theorem 3.1 (Guan). Let X be an irreducible compact hyper-Kähler manifold of dimension
4. Then 3 ď b2pXq ď 23. Moreover, if b2pXq “ 23, the Hodge numbers of X are the same as
the Hodge numbers of the Hilbert square of a K3 surface.

About the higher Betti numbers, we have the following result ([V, Theorem 1.5], [B, Theo-
rem 1.5]).

Theorem 3.2 (Verbitsky). Let X be an irreducible compact hyper-Kähler manifold of dimen-
sion 2n. For all k ď n, the canonical map SymkH2pX,Rq //H2kpX,Rq given by cup-product
is injective. In particular, b2kpXq ě

`b2pXq`k´1
k

˘
.

We denote by SH2kpXq Ă H2kpX,Rq the image of the map above.

Proof of Theorem 3.1. Write bj for bjpXq. We have b3 ` b4 “ 46 ` 10b2 (Example 2.7) and
b4 ě b2pb2`1q

2 (Theorem 3.2), hence

(3.1)
b2pb2 ` 1q

2
ď b3 ` b2pb2 ` 1q

2
ď b3 ` b4 “ 46` 10b2
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which can be rewritten as
pb2 ` 4qpb2 ´ 23q ď 0,

so b2 ď 23. Assume now b2 “ 23. Substituting in the inequality above, we get b3 ` 276 ď
46 ` 230 “ 276, so b3 “ 0. This implies b4 “ 46 ` 10b2 “ 276. So the Betti numbers of X are
the same as those of the Hilbert square of a K3 surface. As noted in Example 2.7, this implies
that the Hodge numbers are also the same. �

3.2. Generalized Chern numbers. For an irreducible compact hyper-Kähler manifold X of
dimension 2n, we have the Beauville–Bogomolov–Fujiki quadratic form qX on H2pX,Qq ([F] or
[Hu, Section 23]). There exists a positive rational constant cX such that

(3.2) @β P H2pX,Qq
ż

X
β2n “ cXqXpβqn.

More generally, let α P H4jpX,Rq be a class that is of type p2j, 2jq on all small deformations
of X (this is the case for example for the Chern class cjpXq). There is a constant cα P R such
that ([Hu, Corollary 23.17])

(3.3) @β P H2pX,Rq
ż

X
αβ2pn´jq “ cαqXpβqn´j .

For α “ 1 and j “ 0, we recover (3.2).
We can now define the generalized Chern numbers.

Definition 3.3. Let C P H4jpX,Cq be a polynomial in the Chern classes. The number

NpCq :“
ş
X Cu

2pn´jq
`ş
X u

2n
˘n´j

n

is independent of the choice of u P H2pX,Cq with ş
X u

2n ‰ 0. We call it a generalized Chern
number of X.

To see that NpCq does not depend on the choice of u, note that
ş
X Cu

2pn´jq “ aCqXpuqn´j ,
where aC is the sum of the cα as in (3.3) for all monomials α in C. Moreover,

ş
X u

2n “ cXqXpuqn,
so NpCq “ aCc

´n´j
n

X ; it is a real number since we can always choose u in H4jpX,Rq.
In our case, n “ 2, we are interested in the generalized Chern number Npc2pXqq. Guan

rewrote [HS, (1)] as follows ([Gu, Lemma 2]).

Lemma 3.4. Let X be an irreducible compact hyper-Kähler manifold of dimension 2n. Then5

(3.4)
pp2nq!qn´1Npc2pXqqn
p24np2n´ 2q!qn “

ż

X
td

1
2 pXq.

Moreover Npc2pXqq ą 0.
5Hitchin and Sawon, and then Guan, use the Â

1
2 -genus instead of td

1
2 . In general, one has Â “ ec1{2 td, so

they coincide in our case since c1 “ 0.
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Proof. For any hyper-Kähler manifold X, one has
ş
Xpσ ` σ̄q2n “ cXqXpσ ` σ̄qn ą 0. Hence we

can write

Npc2pXqq “
ş
X c2pXqpσ ` σ̄q2n´2
pşXpσ ` σ̄q2nq

n´1
n

.

The lemma therefore follows from the equality

(3.5)
‖R‖2n

p192π2nqn volpXqn´1 “
ż

X
td

1
2 pXq

from [HS, (1)],6 where

‚ volpXq “ 1
22np2nq!

ş
Xpσ ` σ̄q2n is the volume form on X,

‚ ‖R‖ is the L2-norm of the Riemann curvature tensor, given by

‖R‖2 “ 8π2

22n´2p2n´ 2q!
ż

X
c2pXqpσ ` σ̄q2n´2.

Note that
ş
X c2pXqpσ ` σ̄q2n´2 is nonnegative, since it is a positive multiple of ‖R‖2. If it

vanishes, X is flat, hence a torus by the Bieberbach theorem, which is absurd. �

The following proposition is [Gu, Lemma 3].

Proposition 3.5 (Guan). Let X be an irreducible compact hyper-Kähler manifold of dimen-
sion 4. Then

(3.6) 3b2pXqNpc2pXqq2 ď pb2pXq ` 2q
ż

X
c2pXq2.

Equality holds if and only if c2pXq P SH4pXq.
Proof. The orthogonal complement SH4pXqK of SH4pXq in H4pX,Rq with respect to the
intersection form consists of primitive classes. Therefore, by the second Hodge–Riemann bilin-
ear relations, the intersection form is positive definite on SH4pXqK and one has H4pX,Rq “
SH4pXq ‘ SH4pXqK.

Let us write c2pXq “ p ` r with p P SH4pXq and r P SH4pXqK. As noted above, one hasş
X r

2 ě 0, with equality if and only if r “ 0.
For every β P H2pX,Rq, one has, using (3.3),

(3.7)
ż

X
pβ2 “

ż

X
c2pXqβ2 “ cqXpβq,

6The authors of [HS] and [Gu] use a different convention for exterior products of differential forms. The
latter can be seen either as elements of the abstract exterior algebra of the space of 1-forms or as alternating
multilinear forms: depending on the point of view, the two definitions of product between differential forms
differ by a binomial coefficient. So, if we follow Hitchin and Sawon and we write volpXq “ 1

22nppnq!q2
ş
X
σnσ̄n

and ‖R‖2 “ 8π2

22n´2ppn´1q!q2
ş
X
c2pXqσn´1σ̄n´1, then (3.4) becomes pp2nq!q

n´1Npc2pXqqn
p24np2n´2q!qn ¨ p

2pn´1q
n´1 qn
p2nn qn´1 “ ş

X
td

1
2 pXq.
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where c :“ cc2pXq. Write b for b2pXq. Let pe1, . . . , ebq be a basis ofH2pX,Cq which is orthonormal
with respect to qX . For all t1, t2, t3, t4 P R and pairwise distinct i, j, k, l, we have

ż

X
pt1ei ` t2ej ` t3ek ` t4elq4 “ cXqXpt1ei ` t2ej ` t3ek ` t4elq2 “ cXpt21 ` t22 ` t23 ` t24q2,

which implies

(3.8)
ż

X
e4i “ cX ,

ż

X
e2i e

2
j “

1

3
cX ,

ż

X
e2i ejek “

ż

X
eiejekel “ 0.

Write p “ ř
1ďiďjďb pijei ¨ ej . Using (3.7) and (3.8), we obtain, for i ‰ j,

0 “
ż

X
peiej “ 1

3
cXpij ,

hence pij “ 0. Similarly, for each i, we have

c “
ż

X
pe2i “ cXpii ` 1

3
cX

ÿ

j‰i
pii.

Summing over i P t1, . . . , bu, we obtain

bc “ cX
ÿ

i

pii ` 1

3
cXpb´ 1q

ÿ

i

pii “ cXpb` 2q
3

ÿ

i

pii.

Using these relations, we obtain
ż

X
p2 “

ÿ

i

pii

ż

X
pe2i “ c

ÿ

i

pii “ 3bc2

cXpb` 2q .

Finally, Definition 3.3 gives

Npc2pXqq “
ş
X c2pXqe21`ş
X e

4
1

˘1{2 “
ş
X pe

2
1`ş

X e
4
1

˘1{2 “ c c
´1{2
X .

Putting everything together, we obtain
ż

X
c2pXq2 “

ż

X
p2 `

ż

X
r2 ě

ż

X
p2 “ 3bc2

cXpb` 2q “
3bNpc2pXqq2

b` 2
,

which is the desired inequality. Equality holds if and only if
ş
X r

2 “ 0. As we saw earlier, this
is equivalent to r “ 0, that is, c2pXq P SH4pXq. �

3.3. Bounds on b3. Let again X be an irreducible compact hyper-Kähler manifold of dimen-
sion 4. A formal computation shows

(3.9)
ż

X
td

1
2 pXq “ 1

5760

ż

X
p7c2pXq2 ´ 4c4pXqq.

The following result is [Gu, Theorem 2].
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Theorem 3.6 (Guan). Let X be an irreducible compact hyper-Kähler manifold of dimension
4. Then

(3.10) b3pXq ď 4p23´ b2pXqqp8´ b2pXqq
b2pXq ` 1

.

If b2pXq ą 7, then pb2pXq, b3pXqq P tp8, 0q, p23, 0qu.
Proof. Write bj for bjpXq, c22 for

ş
X c2pXq2, and c4 for

ş
X c4pXq. We substitute Lemma 3.4,

with n “ 2, in Proposition 3.5 to obtain

3b2
p24 ¨ 4q2

4!

ż

X
td

1
2 pXq ď pb2 ` 2qc22.

Substituting in (3.9) the expression for c4 given in (2.12), we get
ż

X
td

1
2 pXq “ 1

5760

`
7c22 ´ 4p3c22 ´ 720 ¨ 3q˘ “ 3

2
´ c22

1152
.

Hence

(3.11) pb2 ` 2qc22 ě 2 ¨ 242 b2

ż

X
td

1
2 pXq “ 2 ¨ 242 b2

´3

2
´ c22

1152

¯
“ b2p3 ¨ 242 ´ c22q.

We have h1,1pXq ´ 2h2,1pXq “ χ1pXq “ 12´ c4
6 (see (2.13)); using

b2 “ 2` h1,1pXq , b3 “ 2h1,2pXq,
we obtain c4 “ 3p16` 4b2 ´ b3q. We use this in (2.12) to get c22 “ 736` 4b2 ´ b3. Then, (3.11)
becomes pb2 ` 1qb3 ď 4p23´ b2qp8´ b2q as in the statement of the theorem.

If b2 ą 7, the right side of (3.10) is nonpositive because b2 ď 23, so it has to be zero. �

The following is [Gu, Corollary 1].

Corollary 3.7 (Guan). Let X be an irreducible compact hyper-Kähler manifold of dimension 4.
If b2pXq ď 7, one of the following holds:

‚ b2pXq “ 3 and b3pXq “ 4` with ` ď 17;
‚ b2pXq “ 4 and b3pXq “ 4` with ` ď 15;
‚ b2pXq “ 5 and b3pXq “ 4` with ` ď 9;
‚ b2pXq “ 6 and b3pXq “ 4` with ` ď 4;
‚ b2pXq “ 7 and b3pXq “ 4` with ` P t0, 2u.

Proof. By [F, Lemma 1.2], one has 4 | bk for k odd. The bounds are obtained using either (3.1)
or (3.10). Guan proved in [Gu] that the case pb2pXq, b3pXqq “ p7, 4q cannot occur. �

Remark 3.8. When b2pXq “ 7, either b3pXq “ 0 or the Hodge numbers of X are the same as
the Hodge numbers of a generalized Kummer fourfold.
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Remark 3.9. Given pb2pXq, b3pXqq, one can compute Npc2pXqq using Lemma 3.4, since the
Chern numbers ofX are computed in the proof of Theorem 3.6. Then it is possible to check which
pairs give an equality in (3.6). Hence, using Proposition 3.5, one can check that c2pXq P SH4pXq
if and only if pb2pXq, b3pXqq P tp5, 36q, p7, 8q, p8, 0q, p23, 0qu.
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HYPER-KÄHLER MANIFOLDS OF GENERALIZED KUMMER TYPE AND
THE KUGA–SATAKE CORRESPONDENCE

M. VARESCO & C. VOISIN

Abstract. We first describe the construction of the Kuga–Satake variety associated to a
(polarized) weight-two Hodge structure of hyper-Kähler type. We describe the classical cases
where the Kuga–Satake correspondence between a hyper-Kähler manifold and its Kuga–Satake
variety has been proved to be algebraic. We then turn to recent work of O’Grady and Markman
which we combine to prove that the Kuga–Satake correspondence is algebraic for projective
hyper-Kähler manifolds of generalized Kummer deformation type.

1. Introduction

The Kuga–Satake construction associates to any K3 surface, and more generally to any
weight-two Hodge structure of hyper-Kähler type a complex torus which is an abelian variety
when the Hodge structure is polarized. This construction allows to realize the Hodge structure
on degree-two cohomology of a projective hyper-Kähler manifold as a direct summand of the
H2 of an abelian variety. Although the construction is formal and not known to be motivic, it
has been used by Deligne in [2] to prove deep results of a motivic nature, for example the Weil
conjecture for K3 surfaces can be deduced from the Weil conjectures for abelian varieties.

Section 2 of the notes is devoted to the description of the original construction, and to the
presentation of a few classical examples where the Kuga–Satake correspondence is known to be
algebraic, i.e. realized by a correspondence between the hyper-Kähler manifold and its Kuga–
Satake variety. In Section 3, we focus on the case of hyper-Kähler manifolds of a generalized
Kummer type, and present a few recent results. If X is a (very general) projective hyper-Kähler
manifold of generalized Kummer type, the Kuga–Satake variety KSpXq built on H2pX,Zqtr is
a sum of copies of an abelian fourfold KSpXqc of Weil type. There is another abelian fourfold
associated to X, namely the intermediate Jacobian J3pXq which is defined as the complex torus

J3pXq “ H1,2pXq{H3pX,Zq
where b3pXq “ 8. Here we use the fact that H3,0pXq “ 0 and the projectivity of X guarantees
that J3pXq is an abelian variety. O’Grady [11] proves the following result.

Theorem 1.1. The two abelian varieties J3pXq and KSpXqc are isogenous.

This review was prepared in the context of the seminar organized by the ERC Synergy Grant HyperK, Grant
agreement ID 854361. The talk was delivered on May 14, 2021.
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We also prove in Section 3.2 a more general statement concerning hyper-Kähler manifolds
with b3pXq “ 0. Section 3.3 is devoted to the question of the algebraicity of the Kuga–Satake
correspondence. Following [16], we prove, using a theorem of Markman and Theorem 1.1 above
that the Kuga–Satake correspondence is algebraic for hyper-Kähler manifolds of generalized
Kummer type.

Theorem 1.2. There exists a codimension-2n cycle Z P CH2npKSpXqc ˆXqQ such that

rZs˚ : H2pKSpXqc,Qq //H2pX,Qq(1.1)

is surjective.

2. The Kuga–Satake construction

2.1. Main Construction. In this section, we recall the construction and some properties of the
Kuga–Satake variety associated to a Hodge structure of hyper-Kähler type. This construction
is due to Kuga and Satake in [6]. For a complete introduction see [5, Ch. 4] and [3].

Definition 2.1. A pair pV, qq is a Hodge structure of hyper-Kähler type if the following condi-
tions hold: V is a rational level-two Hodge structure with dimV 2,0 “ 1, and q : V bV //Qp´2q
is a morphism of Hodge structures whose real extension is negative definite on pV 2,0‘V 0,2qXVR.
Remark 2.2. Note that if X is a hyper-Käler manifold and qX is the Beauville-Bogomolov
quadratic form, the pair pH2pX,Qq,´qXq is indeed a Hodge structure of hyper-Kähler type.

Let pV, qq be a Hodge structure of hyper-Kähler type, and let T pV q be the tensor algebra of
the underlying rational vector space V :

T pV q :“ à
iě0

V bi

where V b0 :“ Q. Then, the Clifford algebra of pV, qq is the quotient algebra

ClpV q :“ ClpV, qq :“ T pV q{Ipqq,
where Ipqq is the two-sided ideal of T pV q generated by elements of the form v b v ´ qpvq for
v P V .
Since Ipqq is generated by elements of even degree, the natural Z{2Z-grading on T pV q induces
a Z{2Z-grading on ClpV q. Write

ClpV q “ Cl`pV q ‘ Cl´pV q,
where Cl`pV q is the even part and Cl´pV q is the odd part. Note that Cl`pV q is still a Q-
algebra, it is called the even Clifford algebra.
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We now use the assumption that pV, qq is a Hodge structure of hyper-Kähler type to define
a complex structure on Cl`pV qR.
Consider the decomposition of the real vector space VR “ V1 ‘ V2, with

V1 :“ V 1,1 X VR, V2 :“ tV 2,0 ‘ V 0,2u X VR.
The C-linear span of V2 is the two-dimensonal vector space V 2,0‘V 0,2. Therefore, q is negative
definite on V2.
Pick a generator σ “ e1 ` ie2 of V 2,0 with e1, e2 P V2 and qpe1q “ ´1. Since qpσq “ 0, we
deduce that qpe1, e2q “ 0 and qpe2q “ ´1, i.e., e1, e2 is an orthonormal basis of V2. From this,
it is straightforward to check that e1 ¨ e2 “ ´e2 ¨ e1 in ClpV qR. Therefore J :“ e1 ¨ e2 satisfies
the equation J2 “ ´1 and left multiplication by J induces a complex structure on the real
vector space ClpV qR which preserves the real subspaces Cl`pV qR and Cl´pV qR. Since giving a
complex structure on a real vector space is equivalent to giving a Hodge structure of level one
on the rational vector space, we can make the following definition.

Definition 2.3. The Kuga–Satake Hodge structure H1
KSpV q is the Hodge structure of level one

on Cl`pV q given by

ρ : C˚ //GLpCl`pV qRq, x` yi // x` yJ,
where x` yJ acts on Cl`pV qR via left multiplication.

Therefore, starting from a rational level-two Hodge structure of hyper-Kähler type pV, qq, we
constructed a rational Hodge structure of level one on Cl`pV q. This determines naturally a
complex torus up to isogeny: Let Γ Ď Cl`pV q be a lattice in the rational vector space Cl`pV q,
then the Kuga–Satake variety associated to pV, qq is the (isogeny class of) the complex torus

KSpXq :“ Cl`pV qR{Γ,
where Cl`pV qR is endowed with the complex structure induced by left multiplication by J .
Notice that if pV, qq is an integral Hodge structure of hyper-Kähler type, then V can be viewed
as a lattice in Cl`pVQq. Thus, the natural choice Γ :“ V determines the complex torus KSpV q,
and not just up to isogeny.

By construction, one has the following:

H1
KSpV q :“ H1pKSpV q,Qq » Cl`pV q˚ » Cl`pV q,

where the isomorphism between Cl`pV q and its dual is induced by the nondegenerate form q.

Remark 2.4. Consider the case where V can be written as a direct sum of Hodge structures
V “ V1 ‘ V2. Since dimV 2,0 “ 1, either V1, or V2 has to be pure of type p1, 1q. We may then
assume that V 2,0

2 “ 0. Then, one can check that the Kuga–Satake Hodge structure Cl`pV q
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is isomorphic to the product of 2n2´1 copies of Cl`pV1q ‘ Cl´pV1q, with n2 :“ dimV2. In
particular:

KSpV1 ‘ V2q „ KSpV1q2n2
.

Remark 2.5. For any element w P Cl`pV q, the right-multiplication morphism

rw : Cl`pV q //Cl`pV q, rwpxq :“ x ¨ w
is a morphism of Hodge structures. This follows from the fact that the Kuga–Satake Hodge
structure on Cl`pV q is induced by left multiplication by J P Cl`pV q which commutes with right
multiplication by elements of Cl`pV q. Therefore, there is an embedding

Cl`pV q� � //EndHdgpCl`pV qq » EndpKSpV qq bQ.

Since the dimension of Cl`pV q is 2dimV´1, we deduce that the endomorphism algebra of KSpV q
is in general big. This is related with the fact that the Kuga–Satake variety of a Hodge structure
of hyper-Kähler type is in general not simple, but it is isogenous to the power of a smaller-
dimensional torus.

Remarkably, the Kuga–Satake construction realizes the starting level-two Hodge structure as
a sub-Hodge structure of the tensor product of two Hodge structures of level one:

Theorem 2.6. Let pV, qq be a Hodge structure of hyper-Kähler type. Then there is an embedding
of Hodge structures:

V �
� //Cl`pV q b Cl`pV q,

where Cl`pV q is endowed with the level-one Hodge structure of Definition 2.3.

Proof. We recall here just the definition of the desired map, for more details we refer to [5,
Prop. 3.2.6].
Fix an element v0 P V such that qpv0q “ 0 and consider the following left multiplication map:

ϕ : V //EndpCl`pV qq
v // fv : w � // v ¨ w ¨ v0.

The injectivity of ϕ follows from the equality fvpv1 ¨ v0q “ qpv0qpv ¨ v1q for any v1 P V . See the
reference above for the proof of the fact that ϕ is a morphism of Hodge structures.
Finally, the desired embedding is given by the composition of φ and the isomorphisms

EndpCl`pV qq » Cl`pV q˚ b Cl`pV q » Cl`pV q b Cl`pV q,
where the isomorphism Cl`pV q˚ » Cl`pV q is induced by q. �

Remark 2.7. Note that the morphism of Theorem 2.6 is not canonical, in the sense that it
depends on the choice of v0 P V . Nevertheless, choosing another v10 P V changes the embedding
by the automorphism of Cl`pV q which sends w to w¨v0¨v10

qpv0q .
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Theorem 2.6 shows that any Hodge structure of hyper-Kähler type can be realized as a Hodge
substructure of W bW for some level-one Hodge structure W . On the other hand, in [2, Sec.
7], Deligne proves that for a very general level-two Hodge structure of the same conclusion does
not hold. We recall here a version of this fact as presented in [3, Prop. 4.2].

Theorem 2.8. Let pV, qq be a polarized level-two Hodge structure whose Mumford–Tate group
MTpV q is maximal, that is, equal to SOpqq. Then, if dimV 2,0 ą 1, V cannot be realized as a
Hodge substructure of W bW for any level-one Hodge structure W .

Remark 2.9. One can show in some cases that the technical condition MTpV q “ SOpqq of
Theorem 2.8 is satisfied for a very general Hodge structure, see [2, Sec. 7] and [15, Cor. 4.12].
The proof goes as follows: Given a smooth projective morphism π : X //B, one shows that
for very general t P B, the Mumford–Tate group MTpXtq contains a finite index subgroup of
the monodromy group of the base. Then, already in the case of hypersurfaces in a 2r ` 1

dimensional projective space, this shows that for a very general hypersurface Xs, the Mumford
Tate group of H2rpX,Qq is maximal in the above sense. Therefore, applying Theorem 2.8, one
sees that, for a very general surface X in P3 of degree ě 5, H2pX,Qq cannot be realized as a
Hodge substructure of W bW for any level-one Hodge structure W .

To conclude this section, we recall the fact that if the Hodge structure of hyper-Kähler type is
polarized, the resulting Kuga–Satake Hodge structure on the even Clifford algebra is naturally
polarized.

Theorem 2.10. If pV, qq is a Hodge structure of hyper-Kähler type such that q is a polariza-
tion for V , then the Kuga–Satake Hodge structure on Cl`pV q has a natural polarization. In
particular, the Kuga–Satake torus KSpV q is an abelian variety.

2.2. Some examples. Let X be a hyper-Kähler variety (resp. a two dimensional complex
torus). The pair pH2pX,Qq,´qXq where qX is the Beauville-Bogomolov form (resp. the in-
tersection pairing) is a Hodge structure of hyper-Kähler type. Therefore, we can apply the
Kuga–Satake construction to it and we get the Kuga–Satake variety of X:

KSpXq :“ KSpH2pX,Qqq.
Since ´qX is not a polarization on the whole H2pX,Qq, the variety KSpXq is not necessarily
an abelian variety, but it is just a complex torus.
On the other hand, if X is projective and l is an ample class on X, the primitive part

H2pX,Qqp :“ lK Ď H2pX,Qq
is a sub-Hodge structure which is polarized by the restriction of the form ´qX . Therefore,
by Theorem 2.10, the Kuga–Satake variety of H2pX,Qqp is an abelian variety. Moreover, by
Remark 2.4, we have

KSpXq :“ KSpH2pX,Qqq „ KSpH2pX,Qqpq2.
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In particular, in the projective case, KSpXq is an abelian variety. A similar argument can be
applied to H2pX,Qqtr Ď H2pX,Qq, the transcendental lattice of a projective K3 surface, to
deduce that KSpXq is isogenous to some power of the abelian variety KSpH2pX,Qqtrq. On the
other hand, if X is not projective, the torus KSpXq need not be polarized.

Theorem 2.11. [10] Let A a complex torus of dimension two. Then there exists an isogeny

KSpAq „ pAˆ Âq4,
where Â is the dual complex torus.
In particular, if A is an abelian surface

KSpAq „ A8 and KSpKumpAqq „ A219 ,

where KumpAq is the Kummer surface associated to A.

Definition 2.12. Let A be an abelian variety of dimension 2n and let d be a positive real
number. Then A is called of Qp?´dq-Weil type if Qp?´dq Ď EndpAq bZ Q and if the action
of
?´d on the tangent space at the origin of A has eigenvalues

?´d and ´?´d both with
multiplicity n.

Given an abelian of Qp?´dq-Weil type A, then one can associate naturally an element
δ P Q{NpQp?´dqq, where NpQp?´dqq is the set of norms of Qp?´dq. The element δ is called
the discriminant of A.
Abelian varieties of Weil type appear often as simple factors of Kuga–Satake varieties; the next
result due to Lombardo [7] gives an example of this fact. We recall here the version presented
in [3, Thm. 9.2]. In the following, U denotes the hyperbolic plane.

Theorem 2.13. Let d be a positive real number and let A be an abelian fourfold of Qp?´dq-
Weil type of discriminant δ “ 1. Then A4 is the Kuga–Satake variety of a polarized Hodge
structure of hyper-Kähler type of dimension six pV, qq, such that

V » U‘2 ‘ x´1y ‘ x´dy
as quadratic spaces. Conversely, if pV, qq is a Hodge structure of hyper-Kähler type of dimension
six as above, its Kuga–Satake variety is isogenous to A4 for some abelian fourfold of Qp?´dq-
Weil type.

2.3. Kuga–Satake Hodge conjecture. In this section, we analyze the morphism of Hodge
structures

V �
� //Cl`pV q b Cl`pV q

of Theorem 2.6, in the case where V “ H2pX,Qqtr, the transcendental lattice of a projective
hyper-Kähler variety X.
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Using the isomorphism Cl`pH2pX,Qqtrq » H1
KSpH2pX,Qqtrq, we can apply the Künneth de-

composition and obtain an embedding

H1
KSpH2pX,Qqtrq bH1

KSpH2pX,Qqtrq� � //H2pKSpH2pX,Qqtrq2,Qq.

On the other hand, since we the variety X is projective there is a natural projection map
H2pX,Qq //H2pX,Qqtr. Composing these morphisms, we then obtain a morphism of Hodge
structures

H2pX,Qq //H2pKSpH2pX,Qqtrq2,Qq,
which is called the Kuga–Satake correspondence. This morphism corresponds via Poincaré
duality to a Hodge class

κ P H2n,2npX ˆKSpH2pX,Qqtrq ˆKSpH2pX,Qqtrqq,

where 2n “ dimX. The Hodge conjecture applied to this special case gives us the following:

Conjecture 2.14 (Kuga–Satake Hodge conjecture). Let X be a projective hyper-Kähler variety
or a complex projective surface with h2,0 “ 1. Then the class κ is algebraic.

Remark 2.15. In the case where X is an abelian surface or a Kummer surface, the Kuga–
Satake Hodge conjecture can be deduced from Theorem 2.11, using the fact that the Hodge
conjecture is known for self-products of any given abelian surface [9].

The Kuga–Satake Hodge conjecture is not known in most cases, already in the case of K3
surfaces. One of the very few examples for which it has been proved is the family of K3 surfaces
studied by Paranjape in [12]: Let L1, . . . , L6 be six lines in P2 no three of which intersect in
one point, and let π : Y //P2 be the double cover of P2 branched along the six lines. Then,
Y is a singular surface with simple nodes in the preimages of the intersection points of the
lines Li. Resolving the singularities of π by blowing up the nodes one obtains a K3 surface
X. For a general choice of the six lines, the Picard number of X is equal to 16, where a ba-
sis of the Néron–Severi group is given by the 15 exceptional divisors over the singular points
of Y , together with the pullback of the ample line of P2 via the map X //P2. In particu-
lar, the transcendental lattice of X is six-dimensional, and hence satisfies the hypotheses of
Theorem 2.13. Its Kuga–Satake variety is therefore isogenous to the fourth power of some
abelian fourfold. In [12], the author shows that this abelian fourfold is the Prym variety of
some 4 : 1 cover C //E where C is a genus 5 curve and E is an elliptic curve, and finds a
cycle in the product of X and the Prym variety which realizes the Kuga–Satake correspondence.

The fact that the Kuga–Satake correspondence is algebraic for the family described above
has been used by Schlickewei to prove the Hodge conjecture for the square of those K3 surfaces:
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Theorem 2.16. [13, Thm. 2] Let X be a K3 surface which is the desingularization of a double
cover of P2 branched along six lines no three of which intersect in one point. Then, the Hodge
conjecture is true for X2.

As a part of its PhD thesis, the first author of these notes proves an extension of the state-
ment of Theorem 2.16 and shows that the Hodge conjecture holds for all powers of such K3
surfaces.

In the next section, we review another type of polarized hyper-Kähler manifolds for which
the Kuga–Satake Hodge conjecture can be proved: The family of hyper-Kähler manifolds of
generalized Kummer type.

3. The case of hyper-Kähler manifolds of generalized Kummer type

3.1. Cup-product: generalization of a result of O’Grady. Let X be a hyper-Kähler
manifold of dimension 2n with n ě 2. The Beauville-Bogomolov quadratic form qX is a non-
degenerate quadratic form on H2pX,Qq, whose inverse gives an element of Sym2H2pX,Qq. By
Verbitsky [14], the later space imbeds by cup-product in H4pX,Qq, hence we get a class

cX P H4pX,Qq.(3.1)

The O’Grady map φ :
Ź2H3pX,Qq //H4n´2pX,Qq is defined by

φpα^ βq “ cn´2X Y αY β.(3.2)

The following result was first proved by O’Grady [11] in the case of a hyper-Kähler manifold
of generalized Kummer deformation type.

Theorem 3.1. ([11], [16]) Let X be a hyper-Kähler manifold of dimension 2n. Assume that
H3pX,Qq “ 0. Then the O’Grady map map φ :

Ź2H3pX,Qq //H4n´2pX,Qq is surjective.

Proof. We can choose the complex structure on X to be general, so that ρpXq “ 0, and
this implies that the Hodge structure on H2pX,Qq (or equivalently H4n´2pX,Qq as they are
isomorphic by combining Poincaré duality and the Beauville-Bogomolov form) is simple. As
the morphism φ is a morphism of Hodge structures, its image is a Hodge substructure of
H4n´2pX,Qq, hence either φ is surjective, or it is 0. Theorem 3.1 thus follows from the next
proposition. �

Proposition 3.2. The map φ is not identically 0.

Sketch of proof. Let ω P H2pX,Rq be a Kähler class. Then we know that the ω-Lefschetz
intersection pairing x , yω on H3pX,Rq, defined by

xα, βyω :“
ż

X
ω2n´3 Y αY β
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is nondegenerate. This implies that the map

ψ :
2ľ
H3pX,Qq //H6pX,Qq

has the property that Imψ pairs nontrivially with the image of Sym2n´3H2pX,Qq inH4n´6pX,Qq.
Note that the Hodge structure on H3pX,Qq has Hodge level one, so that the Hodge structure on
the image of Imψ in Sym2n´3H2pX,Qq˚ is a Hodge structure of level at most two. One checks
by a Mumford–Tate group argument (see [16] for more details) that for a very general complex
structure on X, the only level-two Hodge substructure of Sym2n´3H2pX,Qq is cn´2X H2pX,Qq,
where we see here cX as an element of Sym2H2pX,Qq. It follows that the image of Imψ in
Sym2n´3H2pX,Qq˚ pairs nontrivially with cn´2X H2pX,Qq, which concludes the proof. �

3.2. Intermediate Jacobian and the Kuga–Satake variety.

3.2.1. Universal property of the Kuga–Satake construction. The following result is proved in [1].
Using the Mumford–Tate group, this is a statement in representation theory of the orthogonal
group.

Theorem 3.3. Let pH2, qq be a polarized Hodge structure of hyper-Kähler type. Assume that the
Mumford–Tate group of the Hodge structure on H2 is maximal (that is, equal to the orthogonal
group of q). Let H be a simple effective weight-one Hodge structure, such that there exists an
injective morphism of Hodge structures of bidegree p´1,´1q

H2� � //EndpHq.
Then H is a direct summand of the Kuga–Satake Hodge structure H1

KSpH2, qq.
Charles’ theorem is in fact stronger, as it proves a similar statement for all tensor powers

Hbk b pH˚qbk`2r. It also addresses the nonpolarized case that appears when dealing with
nonprojective hyper-Kähler manifolds. In [4], another version of the universality property is
proved. Namely

Theorem 3.4. Let pH2, qq be a polarized Hodge structure of hyper-Kähler type. Assume as
above that the Mumford–Tate group of the Hodge structure on H2 is maximal. Let H be a
simple effective weight-one Hodge structure, such that there exists an injective morphism of
Hodge structures of bidegree p´1,´1q

H2� � //HompH,Aq,
for some weight-one Hodge structure A. Then H is a direct summand of the Kuga–Satake Hodge
structure H1

KSpH2, qq.
Coming back to Theorem 3.3, under the same assumption on the Mumford–Tate group, one

knows that the Kuga–Satake weight-one Hodge structure is a power of a simple weight-one

50



Hodge structure of dimension ě 2t b2´1
2

u, where b2 “ dimH2, hence one gets as a consequence
an inequality (see [1] for a more precise estimate)

dimH ě 2t b2´1
2

u.

Proof of Theorem 1.1. Let X be a very general projective hyper-Kähler manifold of generalized
Kummer type of dimension ě 4. We apply Theorem 3.3 to the O’Grady map (3.2) that we know
to be a surjective morphism of Hodge structures by Theorem 3.1, or rather to its dual. We then
conclude that H3pX,Qq contains a direct summand of H1

KSpH2pX,Qqtrq. As H1
KSpH2pX,Qqtrq

is a power of a simple weight-one Hodge structure H1
KSpH2pX,Qqtrqc of dimension 8, and

b3pXq “ 8, we conclude that H3pX,Qq » H1
KSpH2pX,Qqtrqc as rational Hodge structures. �

3.3. Algebraicity of the Kuga–Satake correspondence for hyper-Kähler manifolds of
generalized Kummer type.

3.3.1. Markman’s result. For a projective manifold X with h3,0pXq “ 0, it is expected from
the Hodge conjecture that there exists a cycle Z P CH2pJ3pXq ˆ XqQ such that rZs˚ :

H1pJ3pXq,Qq //H3pX,Qq is the natural isomorphism. Indeed, the map rZs˚ is an isomor-
phism of Hodge structures, hence provides a degree-4 Hodge class on J3pXqˆX. Equivalently,
after replacing Z by a multiple that makes it integral, the Abel-Jacobi map

ΦZ : J3pXq // J3pXq, ΦZ :“ ΦX ˝ Z˚,
is a multiple of the identity and in particular ΦX is surjective.

Theorem 3.5. (Markman [8]) Let X be a projective hyper-Kähler manifold of generalized Kum-
mer type. Then there exists a codimension-two cycle Z P CH2pJ3pXq ˆ XqQ satisfying the
property above.

The proof of this theorem uses a deformation argument starting from a generalized Kummer
manifold, using the fact that J3pXq can be realized as a moduli space of sheaves on X in that
case.

We now use Markman’s result to prove Theorem 1.2.

Proof of Theorem 1.2. Let Z be the Markman codimension-two cycle of Theorem 3.5. We
choose a cycle CX P CH2pXqQ of class rCXs “ cX (it exists by results of Markman [8]). We
now consider the cycle

Γ “ Z2 ¨ prX̊C
n´2
X P CH2npJ3pXq ˆXqQ.

One checks using the Künneth decomposition (see [16] for more details) that

rΓs˚ : H2pJ3pXq,Qq //H2pX,Qq
is the O’Grady map. By Theorem 1.1, this is also the surjective morphism of Hodge structures
(1.1). �
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DERIVED CATEGORIES OF HYPER-KÄHLER MANIFOLDS VIA THE
LLV ALGEBRA

T. BECKMANN

Abstract. We mostly review work of Taelman [Tae81] on derived categories of hyper-Kähler
manifolds. We study the LLV algebra using polyvector fields to prove that it is a derived
invariant. Applications to the action of derived equivalences on cohomology and to the study
of their Hodge structures are given.

1. Introduction

In this note we discuss the (bounded) derived category DbpXq :“ DbpCohpXqq and its group
of auto-equivalences AutpDbpXqq for projective hyper-Kähler manifolds X. The situation in
dimension two, that is for K3 surfaces, is fairly well understood and we refer to [Huy06, Sec.
10] for an overview. Therefore, we will only concentrate on the higher-dimensional case. More
precisely, we mainly present the first part of Taelman’s paper [Tae81].

These notes are, for the most part, light on derived categories and focus more on a different
perspective of the Looijenga–Lunts–Verbitsky (LLV) Lie algebra gpXq [Ver96, LL97] which will
allow us to show the following.

Theorem 1.1 (Taelman). A derived equivalence Φ: DbpXq „Ý // DbpY q between projective hyper-
Kähler manifolds induces naturally a Lie algebra isomorphism

Φg : gpXq „Ý // gpY q.
The induced isomorphism of quadratic spaces

ΦH : H˚pX,Qq „Ý // H˚pY,Qq
is equivariant with respect to Φg.

The theorem will be proven in Section 5.
We start these notes by introducing the main objects of study and a collection of known

results prior to [Tae81]. Afterwards, we introduce a new Lie subalgebra of the (ungraded)
endomorphism algebra EndpH˚pX,Cqq which is better suited for the study of derived categories.
In the subsequent section we establish Theorem 1.1 via proving that the newly defined Lie
subalgebra coincides with the well-known LLV Lie algebra gpXq. The next three sections will

This review was prepared in the context of the seminar organized by the ERC Synergy Grant HyperK, Grant
agreement ID 854361. The talk was delivered on May 21, 2021.
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draw consequences from this result for the action of derived equivalences on cohomology and
for Hodge structures of derived equivalent hyper-Kähler manifolds.

Notation. We work over the complex numbers. Throughout these notes X and Y will be
projective hyper-Kähler manifolds of dimension 2n. All functors will be implicitely derived.

2. Derived categories

2.1. General theory. For a thorough introduction to derived categories we recommend [Huy06].
Let us recall one of the most important results in the study of derived equivalences proved by
Orlov [Orl97].

Theorem 2.1. Let Z and T be smooth projective varieties and Φ: DbpZq „Ý // DbpT q be an
exact derived equivalence. Then Φ is isomorphic to a Fourier–Mukai functor, i.e. there exists
E P DbpZ ˆ T q such that

Φ » FME :“ pT ˚ ˝ pE b_q ˝ pZ̊ .

Moreover, a derived equivalence as in the theorem naturally induces isomorphisms of several
invariants associated with the varieties such as (topological) K-theory [Huy06, Sec. 5.2]. For us
the most important invariant will be singular cohomology. Namely, every derived equivalence
FME induces a cohomological Fourier–Mukai transform FMH

E given by the correspondence vpEq P
H˚pZˆT q where v “ chp_q?td is the Mukai vector. These are compatible via the Mukai vector,
i.e. the following diagram commutes

(2.1)
DbpZq DbpT q

H˚pZ,Qq H˚pT,Qq.

FME

v v

FMH
E

Hence, the study of derived categories leads naturally to cycles on hyper-Kähler manifolds.

Remark 2.2. Let us mention properties of the cohomological Fourier–Mukai transform FMH
E .

‚ Since vpEq P ‘pHp,ppZˆT q is algebraic, the isomorphism FMH
E respects the weight-zero

Hodge structure on H˚pZq (respectively H˚pT q) given by

H´i,ipZq “ à
q´p“i

Hp,qpZq

for i P Z where the Hodge structure on the right-hand side is the usual one.
‚ The isomorphism FMH

E respects the generalized Mukai pairing, see [Căl03].
‚ The cohomological Fourier–Mukai transform FMH

E respects neither the cup product
structure on cohomology nor the cohomological grading.
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2.2. Case of hyper-Kähler manifolds. We know that if a smooth projective variety Z is
derived equivalent to a hyper-Kähler manifold X, then the dimensions of X and Z coincide and
the canonical bundle ωZ is trivial [Huy06, Sec. 4]. Huybrechts and Nieper-Wißkirchen [?] have
proven that Z must in fact also be an irreducible hyper-Kähler manifold.

3. Recollection of the LLV Lie algebra

We quickly recall the definition of the LLV Lie algebra introduced independently by Looijenga–
Lunts [LL97] and [Ver96]. For a more thorough discussion we refer to [?].

Let X be a hyper-Kähler manifold and λ P H2pX,Qq be a cohomology class. We attach to it
the operator

eλ :“ λY_ P EndpH˚pX,Qqq
given by cup product with the class λ. We say that λ has the Hard Lefschetz property, if for
all i the maps

eiλ : H2n´ipX,Qq //H2n`ipX,Qq
are isomorphisms. The class λ is often called a Hard Lefschetz class. We denote by h P
EndpH˚pX,Qqq the grading operator acting on HipX,Qq via pi ´ 2nqid. For a Hard Lefschetz
class λ P H2pX,Qq, the triple

peλ, h, fλq,
where fλ is the dual Lefschetz operator, spans a Lie subalgebra of EndpH˚pX,Qqq isomorphic
to the Lie algebra sl2.

Definition 3.1. The LLV Lie algebra gpXq is the Lie subalgebra of EndpH˚pX,Qqq generated
by all sl2-triples peλ, h, fλq for λ P H2pX,Qq Hard Lefschetz.

As said in the beginning, we refer to [?] or [LL97] for more details and properties of gpXq. Our
main goal is to relate the Lie algebra gpXq with DbpXq. Note that since a cohomological Fourier–
Mukai functor does not respect cup product nor grading, which are the defining properties of
the LLV algebra, it is a priori not clear how this can be done. The main ingredient for it is the
ring of polyvector fields, to be introduced now.

4. Polyvector fields

Definition 4.1. The ring of polyvector fields HT˚pXq is the graded C-algebra whose degree k
part is

HTkpXq :“ ‘p`q“kHqpX,
pľ

TXq.
The ring structure is induced from the exterior algebra.
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For X a hyper-Kähler manifold we can choose a symplectic form σ P H0pX,Ω2
Xq which

induces isomorphisms
pľ

TX » Ωp
X

which, in turn, induce a graded C-algebra isomorphism

HT˚pXq “ H˚pX,
ľ̊

TXq » H˚pX,ΩX̊q » H˚pX,Cq.(4.1)

Thus, as a graded C-algebra, the ring of polyvectors is isomorphic to the de Rham cohomology.
In this note, we are mostly interested in another viewpoint of the polyvector fields. Namely,

the ring of polyvectors acts on the de Rham cohomology by contraction. That is, given v P
HqpX,Źp TXq and x P Hq1pX,Ωp1

Xq the action is defined as

v{x P Hq`q1pX,Ωp1´p
X q.

The following is immediate, see also [Tae81, Lem. 2.4].

Lemma 4.2. For X a hyper-Kähler manifold the de Rham cohomology is a free module of rank
one over the polyvector fields generated by a Calabi–Yau form σn P H0pX,Ω2n

X q.

The reason why the ring of polyvectors is of interest to us is the following crucial result.
It relies on the modified Hochschild–Konstant–Rosenberg isomorphism identifying Hochschild
(co)homology with polyvectors and the de Rham cohomology [CRVdB12].

Theorem 4.3. A derived equivalence Φ: DbpXq „Ý // DbpY q induces naturally a C-algebra iso-
morphism ΦHT : HT˚pXq „Ý // HT˚pY q such that the action of the polyvector fields is equivariant
for the induced isomorphism ΦH : H˚pX,Cq „Ý // H˚pY,Cq.

Spelling this out, for v P HT˚pXq and x P H˚pX,Cq we have

ΦHpv{xq “ ΦHTpvq{ΦHpxq P H˚pY,Cq.

5. Reinventing the LLV Lie algebra

We will define a new Lie algebra, which will turn out to be isomorphic to gpXq with scalars
extended to C. This will prove Theorem 1.1 from the introduction.

We consider the holomorphic grading operator hp and the antihomolorphic grading operator
hq defined by acting on Hk,lpXq via

hp “ pk ´ nqid, hq “ pl ´ nqid.
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With these definitions the usual grading operator h for the cohomological grading is just h “
hp ` hq. We define the Hodge grading operator h1 :“ hq ´ hp.

h1-gradingoo ÝÝ //

H0,0

H1,0 H0,1

H2,0 H1,1 H0,2

...

H2n,0 H2n´1,1 . . . Hn,n . . . H1,2n´1 H0,2n

İ§§§đh-grading
...

H2n,2n´2 H2n´1,2n´1 H2n,2n´2

H2n,2n´1 H2n´1,2n

H2n,2n

With this definition the action of the polyvector fields HT˚pXq on the de Rham cohomology
H˚pX,Cq alluded to in Lemma 4.2 has degree two with respect to the grading h1.

For µ P HT2pXq we define the operator

eµ :“ µ{_ P EndpH˚pX,Cqq.
We say that µ is Hard Lefschetz if the operator eµ satisfies the Hard Lefschetz isomorphisms
with respect to the grading operator h1. The Jacobson–Morozov theorem asserts that this is
equivalent to the existence of an operator fµ P EndpH˚pX,Cqq such that

peµ, h1, fµq
generates a Lie subalgebra of EndpH˚pX,Cqq isomorphic to sl2.

Definition 5.1. The complex Lie algebra g1pXq is defined to be the smallest Lie subalgebra of
EndpH˚pX,Cqq containing all sl2-triples peµ, h1, fµq for all Hard Lefschetz µ P HT2pXq.

Equivalently, one could have defined the Lie algebra g1pXq as the Lie subalgebra of EndpHT˚pXqq
containing all sl2-triples with µ Hard Lefschetz. Through the isomorphism

HT˚pXq{σn » H˚pX,Cq
these two definitions are identified.

Recall from (4.1) that the choice of a symplectic form produces an abstract graded C-algebra
isomorphism

HT˚pXq » H˚pX,ΩX̊q » H˚pX,Cq.
Thus, the choice of a symplectic form leads to the following result.
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Lemma 5.2. There is an isomorphism of complex Lie algebras

gpXq bQ C » g1pXq.
We also deduce the following consequence from Theorem 4.3.

Proposition 5.3. For a derived equivalence between hyper-Kähler manifolds Φ: DbpXq »
DbpY q the isomorphism

ΦHT : HT2pXq „Ý // HT2pY q
induces naturally a Lie algebra isomorphism

Φg : g1pXq „Ý // g1pY q
such that the induced isomorphism

ΦH : H˚pX,Cq „Ý // H˚pY,Cq
is equivariant with respect to Φg.

Spelling this again out means that for j P g1pXq and x P H˚pX,Cq we have

ΦHpj.xq “ Φgpjq.ΦHpxq P H˚pY,Cq.
The connection between all that has been said so far and the main tool for all the applications
we will present is the following main theorem of [Tae81] which was also implicitely proven (but
not stated in the form below) by Verbitsky [Ver99].

Theorem 5.4. The Lie algebras gpXq bQ C and g1pXq are equal as Lie subalgebras of the Lie
algebra EndpH˚pX,Cqq.
Proof. Verbitsky showed that there is an isomorphism of ungraded vector spaces

η : H˚pX,Cq „Ý // H˚pX,Cq
which conjugates the two Lie algebras, i.e.

η pgpXq bQ Cq η´1 “ g1pXq.
Since the isomorphism η is obtained by integrating the action of the Lie algebra gpXq, one can
conclude the proof.

We will, however, follow Taelman’s proof. From Lemma 5.2 we infer that it is enough to
show only the inclusion

g1pXq Ă gpXq bQ C.
A straightforward calculation shows that

peσ, hp, eσ̌q
is an sl2-triple, where σ̌ P H0pŹ2pTXqq is the dual symplectic form (note that the Lefschetz
operator eσ acts via cup product, whereas eσ̌ acts by contraction of polyvector fields).
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Analogously or using Hodge symmetry, for the complex conjugate form σ̄ P H2pX,OXq
the operator eσ̄ has the Hard Lefschetz property for the grading operator hq. The Jacobson–
Morozov Theorem grants the existence of an operator g P EndpH˚pX,Cqq such that

peσ̄, hq, gq
forms an sl2-triple. An easy check shows that all elements from the sl2-triple peσ, hp, eσ̌q com-
mute with all elements from the sl2-triple peσ̄, hq, gq. Thus we obtain two new sl2-triples

peσ ` eσ̄, h, eσ̌ ` gq, peσ ´ eσ̄, h, eσ̌ ´ gq.
This gives that eσ̌ P gpXq bQ C. Since reσ, eσ̌s “ hp and hp ` hq “ h, we deduce furthermore
that hp, hq and therefore h1 “ hq ´ hp are all contained inside gpXq bQ C.

Since evidently eσ̄ is also contained in gpXq bQ C (the action via contraction of polyvector
fields agrees with the cup product), it is left to show that for almost all µ P H1pX, TXq the
operator eµ lies in gpXq bQ C. This follows from the identity

reσ̌, eηs “ eµ

for η P H1pX,ΩXq satisfying
µ “ σ̌{η P H1pX, TXq

which follows from a straightforward calculation, see [Tae81, Lem. 2.13]. �

The theorem implies that the isomorphism Φg from Proposition 5.3 is already defined over
Q, since the same holds for the induced isomorphism on singular cohomology. We thus have
proved Theorem 1.1 which we state her again for the reader’s convenience.

Corollary 5.5. A derived equivalence Φ: DbpXq „Ý // DbpY q between hyper-Kähler manifolds
induces naturally a Lie algebra isomorphism

Φg : gpXq „Ý // gpY q
such that the induced isomorphism

ΦH : H˚pX,Qq „Ý // H˚pY,Qq
is equivariant with respect to Φg.

6. Verbitsky component and extended Mukai lattice

We want to draw consequences of Theorem 5.4 for the study of derived equivalences of hyper-
Kähler manifolds and their induced actions on cohomology.

Definition 6.1. The Verbitsky component SHpX,Qq Ă H˚pX,Qq is the subalgebra generated
by H2pX,Qq.
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It is easy to see that the Verbitsky component is an irreducible representation of the LLV
Lie algebra gpXq and it is characterized as such as the irreducible representation whose Hodge
strucutre attains the maximal possible width. It is equipped with the Mukai pairing bSH defined
via

bSHpλ1 . . . λm, µ1 . . . µ2n´mq :“ p´1qm
ż

X
λ1 ¨ ¨ ¨λmµ1 ¨ ¨ ¨µ2n´m

for classes λi, µj P H2pX,Qq which agrees with the generalized Mukai pairing alluded to in
Remark 2.2.

Corollary 6.2. For a derived equivalence Φ: DbpXq „Ý // DbpY q between hyper-Kähler manifolds
the induced isomorphism ΦH restricts to a Hodge isometry

ΦSH : SHpX,Qq „Ý // SHpY,Qq.
Proof. Since the Verbitsky component is the unique irreducible representation whose Hodge
strucutre attains the maximal possible width and by Theorem 1.1 the isomorphism ΦH respects
the LLV algebra, we conclude that ΦH must restrict to an isomorphism of the Verbitsky com-
ponent. The Mukai pairing on the Verbitsky component agrees with the generalized Mukai
pairing, which is a derived invariant. �

We want to study the Verbitsky component and the LLV Lie algebra more closely to further
refine the study of AutpDbpXqq.
Definition 6.3. The rational quadratic vector space defined by

H̃pX,Qq :“ Qα‘H2pX,Qq ‘Qβ.

is called the extended Mukai lattice. Its quadratic form b̃ restricts to the Beauville–Bogomolov–
Fujiki form b on H2pX,Qq [Huy03, Sec. 23] and the two classes α and β are orthogonal to
H2pX,Qq and satisfy b̃pα, βq “ ´1 as well as b̃pα, αq “ b̃pβ, βq “ 0.

Furthermore, we define on H̃pX,Qq a grading by declaring α to be of degree ´2, H2pX,Qq
sits in degree zero and β is of degree two. Finally, the extended Mukai lattice is equipped with
a weight-two Hodge structure

pH̃pX,Qq b Cq2,0 :“ H2,0pXq
pH̃pX,Qq b Cq0,2 :“ H0,2pXq
pH̃pX,Qq b Cq1,1 :“ H1,1pXq ‘ Cα‘ Cβ.

There exists a graded morphism ψ : SHpX,Qqr´2ns // SymnpH̃pX,Qqq sitting in the follow-
ing short exact sequence

0 // SHpX,Qqr´2ns ψÝ // SymnpH̃pX,Qqq ∆nÝ // Symn´2pH̃pX,Qqq // 0.
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Here, the map ∆n is the Laplacian operator defined on pure tensors via

v1 ¨ ¨ ¨ vn � //
ÿ

iăj
b̃pvi, vjqv1 ¨ ¨ ¨ v̂i ¨ ¨ ¨ v̂j ¨ ¨ ¨ vn.

The map ψ is uniquely determined (up to scaling) by the condition that it is a morphism of
gpXq-modules. The gpXq-structure of H̃pX,Qq is defined by eωpαq “ ω, eωpµq “ bpω, µqβ and
eωpβq “ 0 for all classes ω, µ P H2pX,Qq. The n-th symmetric power SymnpH̃pX,Qqq then
inherits the structure of a gpXq-module by letting gpXq act by derivations. We fix once and for
all a choice of ψ by setting ψp1q “ αn{n!.

Taelman [Tae81, Sec. 3] showed that the map ψ is an isometry with respect to the Mukai
pairing on SHpX,Qq and the pairing

brnspx1 ¨ ¨ ¨xn, y1 ¨ ¨ ¨ ynq “ p´1qncX
ÿ

σPSn

nź

i“1

b̃pxi, yσpiqq

on SymnpH̃pX,Qqq, where cX is the Fujiki constant characterized by the property
ż

X
ω2n “ cX

p2nq!
2nn!

bpω, ωqn

for all ω P H2pX,Qq. Note that our definition of brns differs from Taelman’s definition by the
Fujiki constant. Ours has the advantage that ψ is always an isometry.

Summing up, the inclusion ψ respects the

‚ gpXq-module structure,
‚ quadratic forms,
‚ Hodge structures,
‚ gradings.

7. Action of derived equivalences on the extended Mukai lattice

Recall that we have deduced the existence of a representation

ρSH : AutpDbpXqq //OpSHpX,Qqq(7.1)

and the isometries in the image of this representation normalize the action of the LLV algebra
gpXq, i.e. for these g P OpSHpX,Qqq we have

ggpXqg´1 “ gpXq Ă EndpSHpX,Qqq.
Let us study these automorphisms a bit further.

Definition 7.1. The group AutpSHpX,Qq, bSH, gpXqq is the group of all isometries of the
Verbitsky component that normalize the action of the LLV algebra.

The main representation-theoretic input for our discussion is the following result [Tae81, Sec.
4].
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Proposition 7.2. If n is odd or the second Betti number is odd, then

AutpSHpX,Qq, bSH, gpXqq » OpH̃pX,Qqq.

We make this isomorphism more explicit. Let X and Y be deformation-equivalent hyper-
Kähler manifolds together with a derived equivalence Φ: DbpXq „Ý // DbpY q. Then there exists
a unique Hodge isometry

ΦH̃ : H̃pX,Qq „Ý // H̃pY,Qq
inducing the following commutative diagram

(7.2)

SHpX,Qq SHpY,Qq

SymnpH̃pX,Qqq SymnpH̃pY,Qqq.

εpΦH̃qΦSH

ψ ψ

SymnΦH̃

The scalar εpΦH̃q P t˘1u depends on defining orientations on the vector spaces H̃pX,Qq respec-
tively H̃pY,Qq and for X “ Y we simply have εpΦH̃q “ detpΦH̃qn`1. In particular, in the case
X “ Y , the representation (7.1) factors via the commutative diagram

OpH̃pX,Qqq

AutpDbpXqq
OpSHpX,Qqq.

ρH̃

ρSH

Remark 7.3. In all known examples, derived equivalent hyper-Kähler manifolds are deformation-
equivalent, but this is not known in general. Without this assumption, the above proposition
has to weakened as we shall demonstrate.

One can, using similitudes, still formulate a version of Proposition 7.2 in the general case.
This will be needed in the next section for the application to Hodge structures.

Theorem 7.4. Let X and Y be arbitrary hyper-Kähler manifolds and Φ: DbpXq „Ý // DbpY q
be a derived equivalence. Then there exists a Hodge similitude ΦH̃ : H̃pX,Qq // H̃pY,Qq and a
scalar λ P Q˚ such that

(7.3)

SHpX,Qq SHpY,Qq

SymnpH̃pX,Qqq SymnpH̃pY,Qqq

ΦSH

ψ ψ

λSymnΦH̃

commutes.
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8. Hodge structures

In this section we want to give one application of the results presented so far regarding derived
equivalent hyper-Kähler manifolds and their Hodge structures. We first want to recall a recent
result of Soldatenkov [Sol21]1, whose statement and proof are similiar in flavour to what we will
discuss afterwards for derived equivalences.

Theorem 8.1. Let X and Y be arbitrary hyper-Kähler manifolds and ϕ : H2pX,Qq „Ý // H2pY,Qq
be an isomorphism of Q-Hodge structures, which is the restriction of a global algebra automor-
phism φ : H˚pX,Qq „Ý // H˚pY,Qq. Then for all i P Z the restrictions

φ : HipX,Qq „Ý // HipY,Qq
are isomorphisms of Q-Hodge structures.

Proof. We briefly sketch the argument. Since φ is a graded algebra automorphism, the adjoint
action produces an isomorphism

adpφq : gpXq „Ý // gpY q.
The fact that φ is graded implies that adpφqphq “ h. Moreover, the restriction of φ to H2pX,Qq
respects the Hodge structures. This implies that adpφqph1q “ h1, where again h1 “ hq ´ hp.
Indeed, the adjoint action of φ is determined by its restriction to the degree two component
[Sol21, Prop. 2.11]. As the morphism φ respects the Hodge structure on the second cohomology,
the claim follows.

Since h` h1 “ 2hq and h´ h1 “ 2hp we deduce adpφqphpq “ hp and adpφqphqq “ hq. This is
equivalent to φ being a morphism of Q-Hodge structures. �

The assertion that the isomorphism of Hodge structures is the restriction of a global algebra
automorphism is frequently met. For example, Hodge isometries with positive determinant can
be extended to algebra automorphisms of the even cohomology by integrating the LLV action.
For more details and examples we refer to [Sol21].

With this in mind, we can now prove the following result of Taelman [Tae81, Sec. 5]. It
also establishes a conjecture of Orlov in the case of hyper-Kähler manifolds [Orl05] stating that
derived equivalent varieties have the same Hodge numbers.

Theorem 8.2. Let X and Y be derived equivalent hyper-Kähler manifolds. Then for all i P Z
we have an isomorphism

HipX,Qq » HipY,Qq
of Q-Hodge structures.

1We thank Andrey Soldatenkov for a stimulating conversation about his results.
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LAGRANGIAN FIBRATIONS

D. HUYBRECHTS & M. MAURI

Abstract. We review the theory of Lagrangian fibrations of hyperkähler manifolds as initi-
ated by Matsushita [Mat99, Mat01, Mat05]. We also discuss more recent work of Shen–Yin
[SY18] and Harder–Li–Shen–Yin [HLSY19]. Occasionally, we give alternative arguments and
complement the discussion by additional observations.

Assume f : X //B is a Lagrangian fibration of a compact hyperkähler manifoldX of complex
dimension 2n, and π : X //∆ is a type III degeneration of compact hyperkähler manifolds of
complex dimension 2n. Then the cohomology algebra of Pn appears naturally in (at least) four
different disguises:

(i) As the cohomology algebra of p0, pq resp. pp, 0q-forms (both independent of f):

H˚pPn,Cq » H˚pX,OXq and H˚pPn,Cq » H0pX,ΩX̊q.
(ii) As the cohomology of the base of the fibration:1

H˚pPn,Cq » H˚pB,Cq.
(iii) As the image of the restriction to the generic fibre Xt of f :

H˚pPn,Cq » Im pH˚pX,Cq //H˚pXt,Cqq .
(iv) As the cohomology of the dual complex DpX0q of the central fibre X0 of π:

H˚pPn,Cq » H˚pDpX0q,Cq.
In this survey we discuss these four situations and explain how they are related. We start by

reviewing basic results on Lagrangian fibrations in Section 1, discuss the topology of the base
and the restriction to the fibre in Section 2, and then sketch the proof of P“W in Section 3.

Throughout, X denotes a compact hyperkähler manifold of complex dimension 2n. A fibra-
tion of X is a surjective morphism f : X // //B with connected fibres onto a normal variety B
with 0 ă dimpBq ă 2n. A submanifold T Ă X is Lagrangian if the restriction σ|T P H0pT,Ω2

T q
of the holomorphic two-form σ P H0pX,Ω2

Xq is zero.

This review was prepared in the context of the seminar organized by the ERC Synergy Grant HyperK, Grant
agreement ID 854361. The talk was delivered on June 4, 2021.

1Here and in (iii) and (iv), one expects isomorphisms of Q-algebras, but this seems not known.
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1. Basics on Lagrangian fibrations

We first discuss Lagrangian submanifolds and in particular Lagrangian tori. Then we study
the cohomology and the singularities of the base B. Next we show that the fibres, smooth
ones as well as singular ones, of any fibration are Lagrangian and conclude that fibrations of
hyperkähler manifolds over a smooth base are flat.

At the end, we mention further results and directions without proof: Matshushita’s descrip-
tion of the higher direct image sheaves Rif˚OX , Beauville’s question whether Lagrangian tori
are always Lagrangian fibres, smoothness of the base, etc.

1.1. Lagrangian tori. We start with some general comments on Lagrangian manifolds and
more specifically on Lagrangian tori.

Proposition 1.1 (Voisin). Any Lagrangian submanifold T Ă X of a hyperkähler manifold X
is projective. In particular, any Lagrangian torus is an abelian variety.

Proof. We are following the proof as presented in [Cam06]. Since the restriction of any Kähler
class on X to T is non-trivial, the restriction H2pX,Rq //H2pT,Rq is a non-trivial morphism
of Hodge structures. On the other hand, as T is Lagrangian, all classes in H2,0pXq ‘H0,2pXq
have trivial restrictions. Hence, the image of H2pX,Rq //H2pT,Rq is contained in H1,1pT,Rq.
More precisely, the images of H2pX,Rq //H2pT,Rq and of H1,1pX,Rq //H1,1pT,Rq coincide.
Therefore, for any Kähler class ω P H1,1pX,Rq there exists a rational class α P H2pX,Qq such
that the p1, 1q-class α|T comes arbitrarily close to the Kähler class ω|T . Thus, α|T is a rational
Kähler class and, hence, T is projective. �

Remark 1.2. The normal bundle of a Lagrangian submanifold T Ă X is isomorphic to
the cotangent bundle of T , so NT {X » ΩT . Hence, the p1, 1q-part of the restriction map
H2pX,Cq //H2pT,Cq can be identified with the natural map H1pX, TXq //H1pT,NT {Xq that
sends a first order deformation of X to the obstruction to deform T sideways with it, see [Voi92]:

H1,1pXq
»
��

// H1,1pT q
»
��

H1pX, TXq // H1pT,NT {Xq.

Clearly, as T is Lagrangian, the map pH2,0 ‘ H0,2qpXq //H2pT,Cq is trivial, cf. the proof
above. Since the restriction of a Kähler class is again Kähler, H1,1pXq //H1,1pT q is certainly
not trivial. Thus, T Ă X deforms with X along a subset of codimension at least one. For
smooth fibres of a Lagrangian fibration, so eventually Section 1.5.2 for all Lagrangian tori, the
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rank of the restriction map and hence the codimension of the image DefpT Ă Xq //DefpXq is
exactly one.2

Proposition 1.3. Assume T Ă X is a Lagrangian torus. Then the restrictions cipXq|T P
H2ipT,Rq of the Chern classes cipXq P H2ipX,Rq are trivial.

Proof. The normal bundle sequence allows one to compute the restriction of the total Chern
class of X to the ones of T . More precisely, cpTXq|T “ cpTT q ¨ cpNT {Xq. To conclude, use
NT {X » ΩT and the fact that the tangent bundle of a torus is trivial. �

Remark 1.4. (i) In the case that T Ă X is the fibre of a Lagrangian fibration f : X //B, as
it always is, cf. Section 1.5.2, also the restriction of the Beauville–Bogomolov form, thought of
as a class q̃ P H4pX,Qq, is trivial:

q̃|T “ 0.

There does not seem to be a direct proof of this fact. However, using that the rank of the
restriction map H4pX,Qq //H4pT,Qq is one, see Theorem 2.1, it can be shown as follows. The
classes q̃ and c2 in H4pX,Qq both have the distinguished property that the homogenous formsş
X q̃ ¨ β2n´2 and

ş
c2pXq ¨ β2n´2 defined on H2pX,Zq are non-trivial scalar multiples of qpβqn´1

and, therefore, of each other.3 If rT s P H2npX,Zq is the class of a fibre f´1ptq, then up to
scaling rT s “ f˚αn for some α P H2pB,Qq. Hence, for a Kähler class ω on X we find (up to a
non-trivial scalar factor)

ż

T
q̃|T ¨ ω|n´2

T “
ż

X
q̃ ¨ f˚αn ¨ ωn´2 “

ż

X
c2pXq ¨ f˚αn ¨ ωn´2 “

ż

T
c2pXq|T ¨ ω|n´2

T “ 0.

Since ω|T ‰ 0 and Im pH˚pX,Rq //H˚pT,Rqq is generated by ω|T , this proves the claim.

(ii) For other types of Lagrangian submanifolds, the restrictions of the Chern classes of X are
not trivial. For example, for a Lagrangian plane P2 Ă X one easily computes

ş
P2 c2pXq|P2 “ 15.

As remarked before, the normal bundle of a Lagrangian torus is trivial. The next observation
can be seen as a converse, it applies in particular to the smooth fibres of any fibration f : X //B.

Lemma 1.5. Assume T Ă X is Lagrangian submanifold with trivial normal bundle. Then T is
a complex torus and, therefore, an abelian variety.

Proof. Since T is Lagrangian, the tangent bundle TT » N ˚
T {X is trivial. Using the Albanese

morphism, one easily proves that any compact Kähler manifold with trivial tangent bundle is
a complex torus. �

2Is there an a priori reason why this is the case for Lagrangian tori? It fails for general Lagrangian subman-
ifolds; see §4.

3The non-triviality of the scalar for c2pXq follows from the fact that
ş
X
c2pXq ¨ ω2n´2 ‰ 0 for any Kähler

class.
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1.2. The base of a fibration. We pass on to (Lagrangian) fibrations.

Proposition 1.6 (Matsushita). Assume f : X // //B is a fibration with B smooth. Then B is
a simply connected, smooth projective variety of dimension n satisfying Hp,0pBq “ H0,ppBq “ 0

for all p ą 0 and H2pB,Qq » Q. In particular,

PicpBq » H2pB,Zq » Z.

Proof. The smoothness of B implies that the pull-back f˚ : H˚pB,Qq //H˚pX,Qq is injective.
Next, as α2n “ 0 for any class α P H2pB,Rq, we have pf˚αq2n “ 0 and, therefore, qpf˚αq “ 0.
By [Bog96, Ver96], this implies pf˚αqn`1 “ 0 and hence αn`1 “ 0, which yields dimpBq ď n.
On the other hand, again by [Bog96, Ver96], pf˚αqn ‰ 0 for every class 0 ‰ α P H2pB,Rq from
which we deduce n ď dimpBq.

If α P Hp,0pBq, then f˚α is a non-trivial multiple of some power of σ. Hence, α “ 0 if p is
odd. If p “ 2, then f˚α “ λ ¨ σ and, hence, f˚αn “ λn ¨ σn. Since σn ‰ 0 and H2n,0pBq “ 0,
one finds λ “ 0. A similar argument can be made to work for all even p and an alternative
argument is provided by Theorem 2.1.

Next we show H2pB,Qq » Q. Using [Bog96, Ver96], we have

Snf˚H2pB,Qq Ă SnH2pX,Qq Ă H2npX,Qq.
On the other hand, the image of Snf˚H2pB,Qq is contained in f˚H2npB,Qq which is just
one-dimensional.4

Since X is Kähler, also B is, see [Var84]. Using H2,0pBq “ H0,2pBq “ 0, we can conclude that
there exists a rational Kähler class on B. Hence, B is projective. According to [Kol95, Prop.
2.10.2], the natural map π1pXq // π1pBq is surjective and, therefore, B is simply connected, as
X is.5 Then, by the universal coefficient theorem, H2pB,Zq is torsion free, i.e. H2pB,Zq » Z.
Since H1,0pBq “ H2,0pBq “ 0, the exponential sequence yields PicpBq „ //H2pB,Zq. �

Remark 1.7. In fact, as we shall see, Hp,qpBq “ 0 for all p ‰ q and Hp,ppBq » Hp,ppPnq, i.e.
there is an isomorphism of rational Hodge structures

H˚pB,Qq » H˚pPn,Qq.
There are two proofs of this fact, both eventually relying on the isomorphism H˚pX,OXq »
H˚pPn,Cq. It seems that unlike H2pB,Qq » Q, which above was proved by exploiting the

4The traditional proof goes as follows: First one shows that for any non-trivial class α P H2pB,Rq “
H1,1pB,Rq and any Kähler class ω on X one has

ş
X
pf˚αq ^ω2n´1 ‰ 0. Indeed, otherwise the Hodge index the-

orem would imply qpf˚αq ă 0 and, therefore, pf˚αqn`1 ‰ 0, which contradicts dimpBq “ n. As a consequence,
observe that for any two non-trivial classes α1, α2 P H2pB,Rq there exists a linear combination α :“ λ1α1`λ2α2

with
ş
X
pf˚αq ^ ω2n´1 “ 0, which then implies α “ 0, i.e. any two classes α1, α2 P H2pB,Rq are linearly

dependent.
5By Lemma 1.8 below, B is a Fano manifold, which yields an alternative argument for B simply connected.
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structure of the subring of SH2pX,Qq Ă H˚pX,Qq, the higher cohomology groups of B use
deeper information about the hyperkähler structure.

(i) The first proof for B smooth and X projective was given by Matsushita [Mat05], as a
consequence of the isomorphisms Rif˚OX » Ωi

B, see Section 1.5.1. Combining this isomorphism
with the splitting Rf˚OX »À

Rif˚OXr´is, see [Kol86b], one finds

HkpX,OXq » HkpB,Rf˚OXq »
à

Hk´ipB,Rif˚OXq »
à

Hk´ipB,Ωi
Bq,

which proves the claim.6

(ii) Another one, which also works for singular B and non-projective X, was given in [SY18]
and, roughly, relies on the fact that H˚pB,Cq can be deformed into H˚pX,OXq, see Section
2.2.

Lemma 1.8 (Markushevich, Matsushita). Under the above assumptions, B is a Fano manifold,
i.e. ωB̊ is ample.

Proof. Since B is dominated by X, we have kodpBq ď 0 by the known case of the Iitaka
conjecture; see [Kaw85, Cor. 1.2]. Hence, ωB » OB or ωB̊ is ample. However, the first case is
excluded by Hn,0pBq “ 0.

In [Huy03, Prop. 24.8] the assertion is deduced from the fact that X admits a Kähler–
Einstein metric. The case ωB » OB is excluded, because it would imply Hn,0pBq ‰ 0, which
was excluded above. �

Remark 1.9. It turns out that as soon as the base B is smooth, then B » Pn. This result
is due to Hwang [Hwa08] and its proof relies on the theory of minimal rational tangents. The
results by Matsushita and more recently by Shen and Yin, see Remark 1.7 and Section 2, can be
seen as strong evidence for the result. In dimension two, the result is immediate: Any smooth
projective surface B with ωB̊ ample and H2pB,Qq » Q is isomorphic to P2.

It is tempting to try to find a more direct argument in higher dimension, but all attempts
have failed so far. For example, according to Hirzebruch–Kodaira [HK57] it suffices to show that
H˚pB,Zq » H˚pPn,Zq such that the line bundle L corresponding to the generator of H2pB,Zq
satisfies h0pB,Lkq “ h0pPn,Opkqq, see [Li16] for a survey of further results in this direction.

Alternatively, by Kobayashi–Ochai [KO73], it is enough to show that ωB is divisible by n`1,
i.e. the Fano manifold B has index n ` 1. As a first step, one could try to show that f˚ωB is
divisible by n` 1.

1.3. Singularities of the base. It is generally expected that the base manifold B is smooth,
but at the moment this is only known for n ď 2, cf. [Ou19, BK18, HX19]. The expectation is
corroborated by the following computations of invariants of the singularities of B.

6By evoking results due to Saito, it should be possible to avoid the projectivity assumption in [Kol86b].
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Denote by IH˚pB,Qq the intersection cohomology of the complex variety B with middle
perversity and rational coefficients. It is the hypercohomology of the intersection cohomology
complex ICB, i.e. IH˚pB,Qq “ H˚pB, ICBq. In particular, if B is smooth or has quotient
singularities, cf. [GS93, Prop. 3], then IH˚pB,Qq “ H˚pB,Qq.
Proposition 1.10. Assume f : X //B is a fibration over the complex variety B.

(i) B is Q-factorial7, both in the Zariski and in the analytic topology.
(ii) The intersection cohomology complex ICB of B is quasi-isomorphic to the constant sheaf

QB. In particular, IH˚pB,Qq “ H˚pB,Qq.
(iii) (Matsushita) B has log terminal singularities.

Proof. For (i) and (ii) one only needs that f : X //B is a connected and equidimensional
morphism from a smooth variety X, while in the proof of (iii) one also needs ωX trivial.

For any t P B, choose a chart ϕ : Ux Ă X //C2n, centred at x, and the analytic subset
S :“ ϕ´1pΛq, where Λ Ď C2n is an n-dimensional affine subspace intersecting the fibre ϕpf´1ptqq
transversely. Since f is equidimensional, the restriction f |S : S //B is finite over an analytic
neighbourhood U of t. Therefore, U is Q-factorial by the elementary [KM98, Lem. 5.16].

Denote S˝ :“ S X f´1pUq. By the decomposition theorem8, ICU is a direct summand of
Rpf |S˝q˚QS˝ . Taking stalks at t, we have

H0pICBqt » QB,t HipICU qt Ď HipRpf |S˝q˚QS˝qt “ 0,

because of the finiteness of f |S˝ . Thus, the natural map QB
// ICB is a quasi-isomorphism in

the constructible derived category Db
cpBq with rational coefficients.

By the canonical bundle formula, there exists a Q-divisor ∆ Ă B such that the pair pB,∆q
is log terminal; see [Kol07a, Thm. 8.3.7.(4)] and [Nak88, Thm. 2]. By the Q-factoriality, B has
log terminal singularities too. �

Remark 1.11 (Quotient singularities). The finiteness of the restriction f |S : S //B over b
suggests that B should have at worst quotient singularities. This would follow from the following
conjecture9.

Conjecture 1.12. [Kol07b, §2.24] Let f : X // Y be a finite and dominant morphism from a
smooth variety X onto a normal variety Y . Then Y has quotient singularities.

This is known for n “ 2 by [Bri68, Lem. 2.6], but it is open in higher dimension. One of the
main issue is that f itself need not be a quotient map, not even locally.

Corollary 1.13. The pullback f˚ : H˚pB,Qq //H˚pX,Qq is injective.
7Are the singularities of B actually factorial?
8Alternatively, note that the trace map Rpf |S˝q˚QS˝ // ICU splits the natural morphism

ICU
//Rpf |S˝q˚QS˝ .

9Thanks to Paolo Cascini to bring this conjecture to our attention.
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Proof. By Proposition 1.10 this follows from the inclusion IH˚pB,Qq � � //H˚pX,Qq coming from
the decomposition theorem. �

Remark 1.14. Let f : M //N be a surjective holomorphic map between compact complex
manifold, with M Kähler. By [Voi07, Lem. 7.28], the pullback f˚ : H˚pN,Qq //H˚pM,Qq is
injective. However, this may fail if N is singular, e.g. if f is a normalization of a nodal cubic,
even if N has Q-factorial log terminal singularities, e.g. [Mau21, Thm. 5.11].

Remark 1.15. Assume that B is projective. By Corollary 1.13, the smoothness of B can be
dropped from the assumptions of Proposition 1.6 and Lemma 1.8.

1.4. The fibres of a fibration. Next we present Matsushita’s result that any fibration of a
compact hyperkähler manifold is a Lagrangian fibration.

Lemma 1.16 (Matsushita). Assume f : X //B is a fibration. Then every smooth fibre T :“
Xt Ă X is a Lagrangian torus and in fact an abelian variety.

Proof. Comparing the coefficients of xn´2yn in the polynomial (in x and y) the equation

qpσ ` σ̄ ` x ¨ ω ` y ¨ f˚αqn “ cX ¨
ż

X
pσ ` σ̄ ` x ¨ ω ` y ¨ f˚αq2n

shows
ş
Xpσσ̄q ^ ωn´2 ^ f˚pαnq “ 0 for all ω P H2pX,Rq and all α P H2pB,Rq. Since rT s “

f˚pαnq for some class α, this yields
ş
F pσσ̄q|T ^ ωn´2|T “ 0, which for a Kähler class ω and

using that σ ^ σ̄ is semi-positive implies σ|T “ 0. Then conclude by Lemma 1.5. �

Lemma 1.17 (Matsushita). The symplectic form σ P H2,0pXq is trivial when restricted to any
subvariety T Ă X contracted to a point t under f . In particular, all fibres of f are of dimension
n, i.e. f is equidimensional, and if B is smooth, f is flat.

Proof. A theorem due to Kollár [Kol86a, Thm. 2.1] and Saito [Sai90, Thm. 2.3, Rem. 2.9.]
says that R2f˚ωX is torsion free. Since in our case ωX » OX , this shows that R2f˚OX is
torsion free. Let σ̄ P H2pX,OXq be the conjugate of the symplectic form, and ρ be its image
in H0pB,R2f˚OXq. Since the general fibre is Lagrangian, ρ must be torsion and hence zero. If
rT // T is a resolution of T , then the image of σ̄ in H2p rT ,O rT q is contained in the image of

R2f˚OX b kptq //H2pT,OT q //H2p rT ,O rT q
and hence trivial. This implies that the image of σ in H0p rT ,Ω2

rT q is trivial, i.e. σ|T “ 0. By
semi-continuity of the dimension of the fibres, dimT ě n, and so T is Lagrangian.

The flatness follows from the smoothness of X and B, see [Har77, Exer. III.10.9]. �

Remark 1.18. Note that the conclusion that f is flat really needs the base to be smooth. In
fact, by miracle flatness, f is flat if and only if B is smooth.

1.5. Further results. We summarize a few further results without proof.
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1.5.1. Higher direct images. The first one is the main result of [Mat05].

Theorem 1.19 (Matsushita). Assume f : X //B is a fibration of a projective10 hyperkähler
manifold over a smooth base. Then

Rif˚OX » Ωi
B.

On the open subset B˝ Ă B over which f˝ :“ f |f´1pB˝q : X˝ //B˝ is smooth, the result can
be obtained by dualising the isomorphism

f ˝̊Ω1
X˝{B˝ » TB˝ ,

which holds because the smooth fibres of f are Lagrangian. A relative polarization is used to
show that R1f ˝̊OX˝ and f ˝̊Ω1

X˝{B˝ are dual to each other. To extend the result from B˝ to
the whole B, Theorem 1.19 uses a result of Kollár [Kol86a, Thm. 2.1] saying that Rif˚ωX are
torsion free, which for X hyperkähler translates into Rif˚OX being torsion free.

As mention in Remark 1.7, the theorem implies H˚pB,Qq » H˚pPn,Qq.
1.5.2. Lagrangian tori are Lagrangian fibres. In [Bea11] Beauville asked whether every La-
grangian torus T Ă X is the fibre of a Lagrangian fibration X //B. The question has been
answered affirmatively:

(i) Greb–Lehn–Rollenske in [GLR13] first dealt with the case of non-projective X and later
showed in [GLR14] the existence of an almost holomorphic Lagrangian fibration in dimension
four.

(ii) A different approach to the existence of an almost holomorphic Lagrangian fibration with
T as a fibre was provided by Amerik–Campana [AC13]. The four-dimensional case had been
discussed before by Amerik [Ame12].

(iii) Hwang–Weiss [HW13] deal with the projective case and proved the existence of an
almost Lagrangian fibration with fibre T . Combined with techniques of [GLR13] this resulted
in a complete answer.

2. Cohomology of the base and cohomology of the fibre

The aim of this section is to prove the following result.

Theorem 2.1. Assume X //B is a fibration and let Xt be a smooth fibre. Then

H˚pPn,Qq » H˚pB,Qq and H˚pPn,Qq » Im pH˚pX,Qq //H˚pXt,Qqq .
The first isomorphism for X projective and B smooth is originally due to Matsushita [Mat05],

see Remark 1.7. The proof we give here is a version of the one by Shen and Yin [SY18] that
works without assuming X projective. Note also that we do not assume that the base B is
smooth.

10Again, the projectivity assumption can presumably be dropped by applying results of Saito.
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The second isomorphism in degree two is essentially due to Oguiso [Ogu09], relying on results
of Voisin [Voi92]. The paper by Shen and Yin [SY18] contains two proofs of the general result,
one using the sl2-representation theory of the perverse filtration and another one, due to Voisin,
relying on classical Hodge theory.

The proof we shall give avoids the perverse filtration as well as the various sl2 ˆ sl2-actions
central for the arguments in [SY18]. The discussion below also proves the second result in
[SY18, Thm. 0.2], namely the equality

phi,jpXq “ hi,jpXq
between the classical and perverse Hodge numbers, see Section 2.3. How it fits into the setting
of P“W is explained in Section 3.

2.1. Algebraic preparations. To stress the purely algebraic nature of what follows we shall
use the shorthand H˚ :“ H˚pX,Cq and consider it as a graded C-algebra.

Consider a non-trivial, isotropic element β of degree two, i.e. 0 ‰ β P H2 with qpβq “ 0.
Then, according to Verbitsky and Bogomolov [Bog96, Ver96], one has

βn ‰ 0 and βn`1 “ 0.

In particular, multiplication with β defines on H˚ the structure of a graded Crxs{pxn`1q-algebra
with x of degree two.

All that is needed in the geometric applications is then put into the following statement.

Proposition 2.2. For every two non-zero, isotropic elements β, β1 P H2, the induced graded
Crxs{pxn`1q-algebra structures on H˚ are isomorphic.

Proof. Note that due to the existence of the isotropic planes, we know that the Beauville–
Bogomolov form q is indefinite.

Consider the complex algebraic group of automorphisms AutpH˚q of the graded C-algebra
H˚ and its image G under AutpH˚q //GlpH2q. Clearly, the assertion holds if β, β1 P H2 are
contained in the same G-orbit. As any two non-zero isotropic classes β, β1 are contained in the
same orbit of the complex orthogonal group OpH2, qq, it suffices to show that OpH2, qq Ă G.

Now, monodromy defines a discrete subgroup in AutpH˚q and its image in GlpH2q contains
a finite index subgroup of the integral orthogonal group OpH2pX,Zqq. Since by [Bor66] the
latter is Zariski dense in OpH2, qq when q is indefinite, we indeed have OpH2, qq Ă G. �

Remark 2.3. The arguments can be adapted to prove the following statement: Assume β, β1 P
H2 satisfy qpβq “ qpβ1q ‰ 0. Then the induced graded Crxs{px2n`1q-algebra structures on H˚,
given by letting x act by multiplication with β resp. β1, are isomorphic.

For 0 ‰ β P H2 with qpβq “ 0 we let

Hd
β-pr :“ Ker

´
βn´d`1 : Hd // H2n´d`2

¯
,
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which is called the space of β-primitive forms. Note, however, that β does not satisfy the Hard
Lefschetz theorem for which we would need to define primitive classes as elements in the kernel
of β2n´d`1.

We will also need the two spaces

(2.1) P0H
d :“ Im

ˆÀ
i β

i ¨Hd´2i
β-pr

// Hd

˙
and P̄0H

d :“ Coim
´
βn : Hd // Hd`2n

¯
.

It turns out that the map in the definition of P0 is injective, but this is not needed for the
argument. Note that P0H

d Ă Kerpβnq Ă Hd for all d ą 0.

Corollary 2.4. The dimensions of the spaces P0H
d and P̄0H

d are independent of the choice
of the non-trivial, isotropic class β P H2. �

2.2. Geometric realizations. Let us begin by looking at the obvious choice for β provided
by the symplectic form σ P H0pX,Ω2

Xq Ă H2pX,Cq.
Lemma 2.5. For β “ σ one has

P0H
d “ H0pX,Ωd

Xq Ă HdpX,Cq and P0H
˚ » H˚pPn,Cq

and
P̄0H

d » HdpX,OXq and P̄0H
˚ » H˚pPn,Cq.

Proof. Concerning the first equality, one inclusion is obvious: Since H0pX,OXq “ H0pX,Cq “
H0
σ-pr, we have H0pX,Ωd

Xq “ C ¨σd{2 Ă P0H
d for d even and H0pX,Ωd

Xq “ 0 for d odd. For the
other direction, use that σn´p : Ωp

X
„ //Ω2n´p

X is an isomorphism and that, therefore, for q ą 0

the composition

(2.2) Hp,qpXq σn´d`1
// H2n´p´2q`2,qpXq σq´1

// H2n´p,qpXq
is injective. Hence, σn´d`1 is injective, i.e. Hp,qpXq XHd

σ-pr “ 0 for q ą 0, which is enough to
conclude.

For the second part observe that Kerpσnq XÀ
Hp,qpXq “À

pą0H
p,qpXq. �

As an immediate consequence of Corollary 2.4 one then finds.

Corollary 2.6. For any non-trivial, isotropic class β P H2 there exist isomorphisms

P0H
˚ » H˚pPn,Cq and P̄0H

˚ » H˚pPn,Cq
of graded vector spaces. �

Next let us consider a Lagrangian fibration f : X //B. We consider the class β :“ f˚α,
which is isotropic since αn`1 “ 0 for dimension reasons.

Lemma 2.7. For β “ f˚α there exists an inclusion

f˚H˚pB,Cq Ă P0H
˚pX,Cq.
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Proof. The assertion follows from the Lefschetz decomposition

HdpB,Cq “ IHdpB,Cq “à
i

αi ¨ IHd´2ipB,Cqpr

on B, with respect to the unique ample class α P H2pB,Qq, cf. [dCM05, Thm. 2.2.3.(c)], and
the observation that pull-back via f maps IHd´2ipB,Cqpr into Hd´2i

β-pr . �

Corollary 2.4 then immediately yields

H˚pB,Cq » P0H
˚ » H˚pPn,Cq.

cf. Remark 1.7, which proves the first part of Theorem 2.1.

We keep the isotropic class β “ f˚α and observe that the natural inclusion

(2.3) Ker
´
HdpX,Qq // HdpXt,Qq

¯
Ă Ker

´
rXts : HdpX,Qq // Hd`2npX,Qq

¯
.

is actually an isomorphism.

Lemma 2.8 (Voisin). Let β “ f˚α be as before and Xt Ă X a smooth fibre of f . Then

Kerpβnq Ă Ker
´
HdpX,Qq // HdpXt,Qq

¯
.

Proof. The result is proved in [SY18, App. B]. The assertion is shown to be equivalent to
the statement that the intersection pairing on the fibre is non-degenerate on the image of the
restriction map, which in turn is deduced from Deligne’s global invariant cycle theorem. �

The result yields a surjection

π : P̄0H
˚ // // Im pH˚pX,Cq //H˚pXt,Cqq .

Since P̄0H
˚ » H˚pPn,Cq by Corollary 2.6, its image in H˚pXt,Cq is the subring generated

by the restriction of a Kähler class. Hence, π is an isomorphism, which proves the second
isomorphism in Theorem 2.1. However, it is easier to argue directly, as the equality holds in
Lemma 2.8 by (2.3).

2.3. As in Section 2.1, we consider the abstract algebraic situation provided byH˚ :“ H˚pX,Cq
and the additional structure induced by the choice of a non-zero isotropic class β P H2. The
two spaces P0H

d and P̄0H
d defined there, both depending on β, are part of a filtration

P0H
˚ Ă P1H

˚ Ă ¨ ¨ ¨ Ă P2n´1H
˚ Ă P2nH

˚ “ H˚,

where P0H
d is as defined before and P̄0H

d “ Hd{Pd´1H
d.

In general, one defines

(2.4) PkH
d :“

ÿ

iě0

βi ¨Ker
´
βn´pd´2iq`k`1 : Hd´2i //H2n´d`2i`2k`2

¯
.

If we want to stress the dependence of β, we write P βk H
d. The graded objects of this filtration

GrPi H
˚ :“ PiH

˚{Pi´1H
˚,
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in particular GrdH
d “ P̄0H

d, are used to define the Hodge numbers of the filtration as
Phi,j :“ dim GrPi H

i`j .

As a further consequence of Proposition 2.2, one has

Corollary 2.9. The Hodge numbers Phi,j of the filtration PiH˚ are independent of the choice
of the isotropic class β P H2. �

Let us quickly apply this to two geometric examples.

(i) First, consider β “ σ̄ P H2pX,OXq » H0,2pXq Ă H2pX,Cq, the anti-holomorphic sym-
plectic form. Then the filtration gives back the Hodge filtration, i.e.

P σ̄k H
d “ à

pďk
Hp,d´ppXq.

To see this, one needs to use the Lefschetz decomposition with respect to σ̄:

HqpX,Ωp
Xq “

à

q´`ěpq´nq`
σ̄q´` ¨H2`´qpX,Ωp

Xqσ̄-pr.

Note that from this example one can deduce that indeed for any choice of β one has P βk H
d “ 0

for k ă 0 and P βk H
d “ Hd for k ě d.

(ii) For the second example consider a Lagrangian fibration f : X //B and let β be the pull–
back of an ample class α P H2pB,Qq. The induced filtration is called the perverse filtration11

and the Hodge numbers are denoted phi,jpXq.
Then [SY18, Thm. 0.2] becomes the following immediate consequence of Proposition 2.2 or

Corollary 2.9.

Corollary 2.10 (Shen–Yin). For any Lagrangian fibration f : X //B the Hodge numbers of
the perverse filtration equal the classical Hodge numbers:

phi,jpXq “ hi,jpXq.

3. P“W

P“W for compact hyperkähler manifolds asserts that the perverse filtration associated with a
Lagrangian fibration can be realised as the weight filtration of a limit mixed Hodge structure of
a degeneration of compact hyperkäher manifolds. It boils down to the observation that the cup
product by a semiample not big class and a logarithmic monodromy operator define nilpotent
endomorphisms in cohomology which are not equal, but up to renumbering induce the same
filtration. Inspired by P“W, we provide some geometric explanation or conjecture concerning
the appearance of the cohomology of Pn in the introduction and in Theorem 2.1.

11The classical definition of the perverse filtration for the constructible complex Rf˚QX due to [BBDG18] or
[dCM05, Def. 4.2.1] coincides with the present one; see [dCM05, Prop. 5.2.4.(39)].
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3.1. The weight filtration of a nilpotent operator.

Definition 3.1. Given a nilpotent endomorphism N of a finite dimensional vector space H˚ of
index l, i.e. N l ‰ 0 and N l`1 “ 0, the weight filtration of N centred at l is the unique increasing
filtration

W0H
˚ ĂW1H

˚ Ă ¨ ¨ ¨ ĂW2l´1H
˚ ĂW2lH

˚ “ H˚,
with the property that (1) NWk ĎWk´2, and denoting again N the induced endomorphism on
graded pieces, (2) Nk : GrWl`kH˚ » GrWl´kH˚ for every k ě 0, see [Del80, §1.6].

The weight filtration of N on H˚ can be constructed inductively as follows: first let W0 :“
ImN l, andW2l´1 :“ kerN l. We can replace H˚ withW2l´1{W0, on which N is still well-defined
and N l “ 0. Then define

W1 :“ inverse image in W2l´1 of ImN l´1 in W2l´1{W0,

W2l´2 :“ inverse image in W2l´1 of kerN l´1 in W2l´1{W0.

Continuing inductively, we obtain the unique (!) filtration on H˚ satisfying (1) and (2).
By the Jacobson–Morozov theorem, the nilpotent operator N can be extended to an sl2-triple

with Cartan subalgebra generated by an element HN which is unique up to scaling. By the
representation theory of sl2-triple, there exists a decomposition of H˚

H˚ “
là

λ“´l
Hλ̊ ,

called weight decomposition, with the property that HN pvq “ λv for all v P Hλ̊ . In particular,
the decomposition splits the weight filtration of N

WkH
˚ “

´l`kà
λ“´l

Hλ̊ .

Let us apply this to some geometric examples.

(i) Any cohomology class ω P H2pX,Cq define a nilpotent operator Lω on H˚ :“ H˚pX,Cq by
cup product. If ω is Kähler, then the Hard Lefschetz theorem implies that the weight filtration
on H˚ centred at 2n is

Wω
k H

˚ “ à
iě4n´k

H ipX,Cq.

(ii) Consider a Lagrangian fibration f : X //B and let β be the pull–back of an ample class
α P H2pB,Qq. Up to renumbering, the weight filtration associated with the class β on H˚

centred at n coincides with the perverse filtration, see Section 2.3

W β
k H

dpX,Qq “ Pd`k´2nH
dpX,Qq.

Indeed, the action of β gives the morphisms

β : PkH
dpX,Qq //PkH

d`2pX,Qq βj : GrPi H
n`i´j » GrPi H

n`i`j .
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The isomorphism is called perverse Hard Lefschetz theorem [dCM05, Prop. 5.2.3]. By Proposi-
tion 2.2, this corresponds to the isomorphism σ̄j : Hn´jpX,Ωi

Xq » Hn`jpX,Ωi
Xq.

(iii) Let π : X //∆ be a projective degeneration of hyperkähler manifolds over the unit disk
which we assume to be semistable, i.e. the central fibre X0 is reduced and snc. For t P ∆˚,
let N denote the logarithmic monodromy operator on H˚pXt,Qq. The weight filtration of N
centred at d on HdpXt,Qq, denoted WkH

dpXt,Qq, is the weight filtration of the limit mixed
Hodge structure associated to π, see [PS08, Thm. 11.40].

The degeneration π : X //∆ is called of type III if N2 ‰ 0 and N3 “ 0 on H2pXt,Qq. In
this case, the limit mixed Hodge structure is of Hodge–Tate type by [Sol20, Thm. 3.8], and in
particular GrW2i`1H

˚pXt,Qq “ 0. Then the even graded pieces of the weight filtration are used
to define the Hodge numbers

whi,jpX q :“ dim GrW2iH
i`jpXt,Qq.

The Hodge numbers wh0,jpX q have a clear geometric description. The dual complex of
X0 “ ř

∆i, denoted DpX0q, is the CW complex whose k-cells are in correspondence with the
irreducible components of the intersection of pk ` 1q divisors ∆i. The Clemens–Schmid exact
sequence then gives

(3.1) wh0,jpX q “ dimHjpDpX0q,Qq,
see for instance [Mor84, §3, Cor. 1 & 2].

In order to show P“W, namely that the filtrations (ii) and (iii) can be identified, we need
the notion of hyperkähler triples with their associated sop5,Cq-action.

3.2. Hyperkähler triples. A hyperkähler manifold is a Riemannian manifold pX, gq which is
Kähler with respect to three complex structures I, J , and K, satisfying the standard quaternion
relations I2 “ J2 “ K2 “ IJK “ ´Id. The corresponding hyperkähler triple is the triple of
Kähler classes in H2pX,Cq ˆH2pX,Cq ˆH2pX,Cq given by

pωI , ωJ , ωKq :“ pgpI¨, ¨q, gpJ ¨, ¨q, gpK¨, ¨qq.
The set of all hyperkähler triples on X form a Zariski-dense subset in

D˝ “ tpx, y, zq : qpxq “ qpyq “ qpzq ‰ 0, qpx, yq “ qpy, zq “ qpz, xq “ 0u.
In particular, all algebraic relations that can be formulated for triples in D˝ and which hold for
triples of the form pωI , ωJ , ωKq hold in fact for all px, y, zq P D˝, see [SY18, Prop. 2.3].

3.3. The sop5,Cq-action. Recall the scaling operator

H : H ipX,Cq //H ipX,Cq Hpvq “ pi´ 2nqv.
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By the Jacobson–Morozov theorem, to any ω P H2pX,Cq of Lefschetz type we can associate a
sl2-triple pLω, H,Λωq. Let p “ px, y, zq P D˝. The sl2-triples associated to x, y and z generate
the Lie subalgebra gp Ă EndpH˚pX,Cqq, isomorphic to sop5,Cq, with Cartan subalgebra

(3.2) h “ xH,H 1p :“ ?´1rLy,Λzsy.
There is an associated weight decomposition

(3.3) H˚pX,Cq “à
i,j

H i,jppq

such that for all v P H i,jppq we have

Hpvq “ pi` j ´ 2nqv H 1ppvq “ pj ´ iqv.
The following sl2-triples in gp

(3.4) Ep :“ 1

2
pLy ´

?´1Lzq Fp :“ 1

2
pΛy `

?´1Λzq Hp :“ 1

2
pH `H 1pq,

(3.5) E1p :“ rEp,Λxs F 1p :“ rLx, Fps H 1p

induce the same weight decomposition, since for any v P H i,jppq we have

Hppvq “ pj ´ nqv H 1ppvq “ pj ´ iqv.
Remark 3.2. The previous identities for hyperkähler triples are due to Verbitsky. The result
for a general pair p “ px, y, zq P D˝ follows from the density of hyperkähler triples in D˝, and
the fact that the sl2-representation H˚pX,Cq associated to x, y and z have the same weights,
since x, y, and z are all of Lefschetz type, see [SY18, §2.4].

3.4. P“W. The main result of [HLSY19] is the following

Theorem 3.3 (P“W). For any Lagrangian fibration f : X //B, there exists a type III projec-
tive degeneration of hyperkähler manifolds π : X //∆ with Xt deformation equivalent to X for
all t P ∆˚, together with a multiplicative isomorphism H˚pX,Qq » H˚pXt,Qq, such that

PkH
˚pX,Qq “W2kH

˚pXt,Qq “W2k`1H
˚pXt,Qq.

Proof. Let β “ f˚α be the pullback of an ample class α P H2pB,Qq, and η P H2pX,Qq with
qpηq ą 0. Since βn`1 “ 0, we have qpβq “ 0. Up to replacing η with η` λβ for some λ P Q, we
can suppose that qpηq “ 0. Set

y “ β ` η z “ ´?´1pη ´ βq.
By scaling a nonzero vector x P H2pX,Cq perpendicular to y and z with respect to q, we obtain
ppfq “ px, y, zq P D˝ with

β “ 1

2
py ´?´1zq.
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Soldatenkov showed that the nilpotent operator E1ppfq is the logarithmic monodromy N of
a projective type III degeneration π : X //∆ of compact hyperkähler manifolds deformation
equivalent to X, see [Sol20, Lem. 4.1, Thm. 4.6]12.

The weight decomposition for the sl2-triple (3.4) splits the perverse filtration associated to
f , since Eppfq acts in cohomology via the cup product by β. The weight decomposition for the
sl2-triple (3.5) splits the weight filtration of the limit mixed Hodge structure associated to π,
because E1ppfq “ N . Hence, by Section 3.3, this yields P“W. �

P“W also yields alternative proofs of Corollary 2.10 and Theorem 2.1.

Corollary 3.4 (Numerical P“W). phi,jpXq “ whi,jpX q “ hi,jpXq.
Proof. By Theorem 3.3 we obtain phi,jpXq “ whi,jpX q. The equality phi,jpXq “ hi,jpXq is
Corollary 2.10.

Alternatively, one can argue as follows. By [Sol20, Thm. 3.8], the limit mixed Hodge structure
pHl̊impXt,Qq » H˚pXt,Cq,W˚, F˚q associated to π is of Hodge–Tate type, and so whi,jpX q “
dimC GrFi H

i`j
lim pXt,Cq. By the classical result [PS08, Cor. 11.25], we have dimC GrFi H

i`j
lim pXt,Cq “

hi,jpXtq. We conclude that phi,jpXq “ hi,jpXtq “ hi,jpXq. �

Corollary 3.5. At the boundary of the Hodge diamond of X, P“W gives13

dimHjpB,Qq “ ph0,jpXq “ h0,jpXq “ dimHjpPn,Qq,
dimHjpDpX0q,Qq “ wh0,jpX q “ h0,jpXq “ dimHjpPn,Qq,

dim ImpH ipX,Qq //H ipXt,Qqq “ phi,0pXq “ hi,0pXq “ dimH ipPn,Qq.
In the following, we provide conjectural conceptual explanations for these identities.

3.5. A conjectural explanation I. Assume that X is Calabi–Yau. This can be always
achieved via a MMP, at the cost of making X0 mildly singular (precisely divisorial log ter-
minal), see [Fuj11]. Under this assumption the homeomorphism class of DpX0q is well-defined.

Then the SYZ conjecture predicts that Xt carries a special Lagrangian fibration f : Xt //DpX0q
with respect to a hyperkähler metric. By hyperkähler rotation [Hit00, §3], f should become a
holomorphic Lagrangian fibration f : X //B on a hyperkähler manifold X deformation equiv-
alent to Xt. It is conjectured that the base of a Lagrangian fibration on X is a projective space.
So in brief, we should have the homeomorphisms

(3.6) DpX0q » Pn » B.

12One can use the Lie algebra structure of the LLV algebra to compare the present description of E1ppfq with
that of [Sol20, Lem. 4.1], cf. [KSV19, Lem. 3.9]. Mind that Soldatenkov’s existence result is not constructive:
it relies on lattice theory and the geometry of the period domain, and does not produce an explicit type III
degeneration.

13The identity dimHjpDpX0q,Qq “ dimHjpPnq has been first proved in [KLSV18, Thm. 7.13].
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The latter equality is known to hold if n ď 2 , see §1.3, or conditional to the smoothness of the
base [Hwa08]. The former equality is known for degenerations of Hilbert schemes or generalised
Kummer varieties [BM19]. In both case, the most delicate problem is to assess the smoothness
of DpX0q or B. From this viewpoint, the identity

dimHjpDpX0q,Qq “ dimHjpPn,Qq “ dim IHjpB,Qq “ dimHjpB,Qq.
is a weak cohomological evidence for the conjecture (3.6).

3.6. A conjectural explanation II. We conjecture that the equality phi,0pX q “ whi,0pX q is
the result of the identification of two Lagrangian tori up to isotopy.

Definition 3.6. Let x be a zero-dimensional stratum of X0. Choose local coordinates z0, . . . , z2n

centered at x with πpzq “ z0 ¨ . . . ¨ z2n. For fixed radius 0 ă ri ! 1 and t “ś2n
i“0 ri, a profound

torus T Ă Xt is
T “ tpr0e

iθ0 , . . . , r2ne
iθ2nq : θ0, . . . , θ2n P r0, 2πq, θ0 ` ¨ ¨ ¨ ` θ2n ´ argptq P Zu.

Remark 3.7. The ambient-isotopy type of T Ă Xt does not depend on the choice of the
coordinates: T is homotopic to UxXXt, where Ux is a neighbouhood of x in X . More remarkably,
if X is Calabi–Yau, then the isotopy class of T in Xt is independent of x. This follows at once
from Kollár’s notion of P1-link (see [Kol13, Prop. 4.37]or [Har19, Lem. 3.10]), or equivalently
because profound tori are fibre of the same smooth fibration, by adapting [EM21, Prop. 6.12.]

Conjecture 3.8 (Geometric P“W). For any Lagrangian fibration f : X //B with general
fibre T , there exists a projective minimal dlt type III degeneration of hyperkähler manifolds
π : X //∆ with Xt deformation equivalent to X for all t P ∆˚, such that T is isotopic to a
profound torus T.

The conjecture is inspired by the geometric P“W conjecture for character varieties, see the
new version of [MMS18] (to appear soon). Lemma 2.8 and (2.1) give

Pd´1H
dpX,Qq “ Ker

´
HdpX,Qq //HdpT,Qq

¯
.

If X0 is snc (or ideally adapting [Har19, Thm. 3.12] to the dlt setting), one obtain that

W2d´1H
dpXt,Qq “ Ker

´
HdpXt,Qq //HdpT,Qq

¯
.

Therefore, Conjecture 3.8 would give a geometric explanation of P“W at the highest weight

Pd´1H
dpX,Qq “W2d´1H

dpXt,Qq.
It is not clear what should be a geometric formulation of P“W which can explain the cohomo-
logical statement in all weights.

Recent advance in the SYZ conjecture due to Yang Li [Li20] suggests that profound tori
can be made special Lagrangian, up to a conjecture in non-archimedean geometry. Since few
months ago, the existence of a single special Lagrangian torus on Xt was a complete mystery, see
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[Gro13, §5, p.152]. Note also that Li’s result is compatible with the expectation in symplectic
geometry [Aur07, Conj. 7.3]. Profound tori appear as general fibres of the SYZ fibration that Li
constructed onto an open set which contains an arbitrary large portion of the mass of Xt with
respect to a Calabi–Yau metric, still modulo the non-archimedean conjecture. It is curious (but
maybe not surprising) that also the previously quoted results [HX19] and [BM19] highly rely
on non-archimedean techniques.

3.7. Multiplicativity of the perverse filtration. P“W implies that the perverse filtration
on H˚pX,Qq is compatible with cup product.

Corollary 3.9 (Multiplicativity of the perverse filtration). Assume f : X //B is a fibration.
Then the perverse filtration on H˚pX,Qq is multiplicative under cup product, i.e.

Y : PkH
dpX,Qq ˆ Pk1Hd1pX,Qq //Pk`k1Hd`d1pX,Qq.

Proof. By P=W, it is sufficient to show that the weight filtration is multiplicative. To this
end, endow the tensor product H˚pXt,QqbH˚pXt,Qq with the nilpotent endomorphism Nb :“
N b 1` 1bN , and call Wb the weight filtration of Nb. Since the monodromy operator eN is
an algebra homomorphism of H˚pXt,Qq, N is a derivation, i.e.

NpxY yq “ NxY y ` xYNy “ YpNbpxb yqq.
As a consequence, the construction of the weight filtration (cf. Section 3.1) yields

YpWb
k pH ipXt,Qq bHjpXt,Qqqq ĎWkH

i`jpXt,Qq.
Together with [Del80, 1.6.9.(i)] which says that

Wb
k pH ipXt,Qq bHjpXt,Qqq “

à
a`b“k

WaH
ipXt,Qq bWbH

jpXt,Qq,

we conclude that the weight filtration is multiplicative. Alternatively see [HLSY19, §5]. �

Remark 3.10. For an arbitrary morphism of projective varieties or Kähler manifolds, the
perverse filtration is not always multiplicative [Zha17, Exa. 1.5], but it is so for instance if it
coincides with the Leray filtration, or if P“W holds. Indeed, the Leray filtration and the weight
filtration of the limit mixed Hodge structure are multiplicative.

It is natural to ask whether the multiplicativity holds at a sheaf theoretic level, for Rf˚QX ,
or over an affine base. The motivation for this comes from the celebrated P“W conjecture for
twisted character varieties [dCHM12], which has been proved to be equivalent to the conjectural
multiplicativity of the perverse filtration of the Hitchin map, namely a proper holomorphic
Lagrangian fibration over an affine base, see [dCMS19, Thm. 0.6]. From this viewpoint, it is
remarkable that Shen and Yin give a proof of the multiplicativity in the compact case [SY18,
Thm. A.1] which uses only the representation theory of slp2q-triples, with no reference to the
weight filtration.
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3.8. Nagai’s conjecture for type III degenerations. Let π : X //∆ be a projective de-
generation of hyperkähler manifolds with unipotent monodromy Td on HdpXt,Qq. The index
of nilpotence of Nd :“ log Td is

nilppNdq “ maxti : N i
d ‰ 0u,

and nilppNdq ď d by [Gri15, Ch. IV]. It is known that H2pXt,Qq determines the Hodge
structure of HdpXt,Qq by means of the LLV representation, see [Sol19]. The Nagai’s conjecture
investigates to what extent nilppN2q determines nilppNdq. The ring structure of the subalgebra
generated by H2 implies the inequality nilppN2kq ě k ¨ nilppN2q, see [?, Lem. 2.4], but equality
is expected.

Conjecture 3.11 (Nagai). nilppN2kq “ k ¨ nilppN2q for k ď 2n.

The previous inequalities imply Nagai’s conjecture for type III degenerations, i.e. nilppN2q “
2. Remarkably, P“W explains Nagai’s conjecture in term of the level of the Hodge structure
HdpXt,Qq, and determines nilppNdq even for d odd. Recall that the level of a Hodge structure
H “ ‘Hp,q, denoted levelpHq, is the largest difference |p´q| for which Hp,q ‰ 0, or equivalently
the length of the Hodge filtration on H.

Proposition 3.12. Let π : X //∆ be a type III projective degeneration of hyperkähler manifolds
with unipotent monodromy. Then

nilppNdq “ levelpHdpXt,Cqq.
For k ď 2n, the following identities hold:

(i) nilppN2kq “ 2k “ k ¨ nilppN2q,
(ii) nilppN2k`1q “ 2k ´ 1, if H3pXt,Cq ‰ 0.

Remark 3.13. The statement (ii) is proved in [Sol20, Prop. 3.15]. Here we present an alter-
native simple proof of (ii) which avoids the LLV representation.

Nagai’s conjecture is known to hold for degenerations of type I and III, i.e. nilppN2q “ 0

and 2, see [KLSV18, Thm. 6.5]. In order to establish Nagai’s conjecture in full, only the case
of type II degenerations remains open, i.e. nilppN2q “ 1. For type II there are partial results:
k ď nilppN2kq ď 2k ´ 2 for 2 ď k ď n ´ 1, see [KLSV18, Thm. 6.5], and nilppN2nq “ n, see
[?, Thm. 1.2]. The full conjecture holds for all the known deformation families of hyperkähler
manifolds by [GKLR19, Thm. 1.13]. Further comments on Nagai’s conjecture for type II can
be found in [GKLR19, Har67, ?].

Proof. Let ld be half of the length of the weight filtration ofNd, i.e. ld :“ minti : W2iH
dpXt,Qq “

HdpXt,Qqu. By Definition 3.1, we have nilppNdq “ ld.
For any type III degeneration of Hodge structure of hyperkähler type with unipotent mono-

dromy, we know by the proof of Theorem 3.3, that the logarithmic monodromy N˚ is of the
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form E1p “ rβ,Λxs for some β and x in H2pX,Qq with qpβq “ 0 (here we use the assumption
b2pXtq ě 5, see [Sol20, §4.1]). Then, by Corollaries 2.9 and 3.4, we have ld “ levelpHdpXt,Cqq.
Hence, nilppNdq “ levelpHdpXt,Cqq.

Finally, statements (i) and (ii) are equivalent to (i) H2k,0pXtq “ Cσ ‰ 0, and (ii) H2k,1pXtq ‰
0 if H2,1pXtq ‰ 0, which follows from (2.2). �

4. Examples and counterexamples

Example 4.1. 14 In [Nam01, Ex. 1.7.(iv)] Namikawa exhibits an example of a submanifold T
of a hyperkähler manifold X which is isomorphic to a complex torus, but is not Lagrangian
(actually it is symplectic).

Let E, F be elliptic curve defined by the cubic equation f and g respectively, and let Y Ď P5

be the cubic fourfold given by the equation h :“ fpx0, x1, x2q ` gpy0, y1, y2q “ 0. The cyclic
group G :“ Z{3Z acts on Y by

φζ : rx0 : x1 : x2 : y0 : y1 : y2s � // rx0 : x1 : x2 : ζy0 : ζy1 : ζy2s,
where ζ is a third root of unity. The induced action on the Fano variety of lines X is symplectic,
i.e. φζ̊σ “ σ for σ P H0pX,Ω2

Xq. Indeed, by [BD85] there is a G-equivariant isomorphism
H0pX,Ω2

Xq » H1pY,Ω3
Y q. Denoting Ω the canonical section of H0pP5,KP5p6qq, H1pY,Ω3

Y q is
generated by the G-invariant residue ResY pΩ{h2q, and so the action is symplectic. In particular,
the fixed locus T of the G action on X is a symplectic submanifold. T is given by the set of
lines which join two points on Y X ty0 “ y1 “ y2 “ 0u » E and Y X tx0 “ x1 “ x2 “ 0u » F

respectively. Hence, T » E ˆ F . We conclude that T is a symplectic torus embedded in the
hyperkähler manifold X.

Example 4.2. There exists a Lagrangian submanifold L of a hyperkähler manifold X with

ImpH2pX,Qq //H2pL,Qqq fi Q.

Proof. Let f : S //P1 be an elliptic K3 surface with smooth fibre E. Define L Ď X :“ Sr2s to
be the locus of non-reduced length-two subschemes of S supported on E, which is isomorphic
to the P1-bundle PpΩ1

S |Eq over E. Then, L is an irreducible component of the fibre of the
Lagrangian fibration f r2s : Sr2s //Sp2q //P2, thus L is Lagrangian. The exceptional divisor
Exc of the Hilbert–Chow morphism Sr2s //Sp2q restricts to a multiple of the tautological line
bundle OPpΩ1

S |Eqp´1q on L. Therefore, the second cohomology group H2pLq is generated by the
restriction of Exc and the pullback of an ample line bundle of Sp2q. �

Example 4.3. There exists a Lagrangian submanifold L of a hyperkähler manifold X with

ImpH2pX,Qq //H2pL,Qqq » Q and ImpH˚pX,Qq //H˚pL,Qqq fi H˚pPn,Qq.
14Thanks to Thorsten Beckmann for pointing out this example.
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Proof. Let C be a smooth curve of genus two in an abelian surface A. Consider ModdpAq a
moduli space of stable 1-dimensional sheaves on A supported on the curve class

2rCs P H2pA,Zq
and Euler characteristic ´1. The fibre of the albanese morphismModdpAq //Aˆ pA is a compact
hyperkähler manifold X deformation equivalent to a generalised Kummer variety of dimension
six. Taking Fitting supports defines a Lagrangian fibration

X //P3 “ |2C|.
The fibre over the curve 2C contains as irreducible component the moduli space L of rank-two
vector bundles on C of degree one, which is isomorphic to the intersection of two quadrics in P5.
The cohomology H˚pXq is generated by so-called tautological classes, and H˚pLq is generated
by their restrictions, see [Mar02] and [New72, Thm. 1]. Therefore, we have

H˚pX,Qq // //H˚pL,Qq » H˚pP3,Qq ‘Q4r´3s fi H˚pP3,Qq.
�
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THE LLV DECOMPOSITION OF HYPERKÄHLER COHOMOLOGY
AND APPLICATIONS TO THE NAGAI CONJECTURE

(AFTER GREEN–KIM–LAZA–ROBLES)

GEORG OBERDIECK AND JIEAO SONG

Abstract. Following work of Green, Kim, Laza, and Robles, we discuss the structure
and known cases of the decomposition of the cohomology of hyperkähler varieties under
the Looijenga–Lunts–Verbitsky algebra. This has applications to the Nagai conjecture
concerning degenerations of hyperkähler varieties.

1. Introduction

Given a compact hyperkähler manifold X, the rational second cohomology group H2(X,Q)
is equipped with the Beauville–Bogomolov–Fujiki form qX . Following [GKLR], we let

(V, q) :=
(
H2(X,Q)⊕Q2, qX ⊕ ( 0 1

1 0 )
)

denote its Mukai completion. Let also h ∈ EndH∗(X,Q) be the degree operator defined by
h|Hk(X,Q) = (k − dimX) Id

such that the degrees are centered at the middle cohomology.
The Looijenga–Lunts–Verbitsky (LLV) algebra g is the subalgebra of EndH∗(X,Q) gen-

erated by all sl2-triples (La, h,Λa), where La is the operator of cup product with a class
a ∈ H2(X,Q). We refer to [A] for an introduction. In particular, the fundamental theorem
about this algebra is the following:
Theorem 1.1 (Looijenga–Lunts [LL], Verbitsky [V]).

(1) g is isomorphic to so(V, q);
(2) g = g−2 ⊕ g0 ⊕ g2, where gk acts by degree k;
(3) g0 = g′0 ⊕Qh, and the reduced part g′0 := [g0, g0] is isomorphic to so(H2(X,Q), qX).
The cohomology H∗(X,Q) is a g-module by construction. By semisimplicity, the coho-

mology hence splits into a direct sum of irreducible g-submodules Vλ,
H∗(X,Q) ∼=

⊕

λ

V mλλ ,

called the LLV decomposition; here mλ ∈ N are the multiplicities of the components. The
main goal of this note is to discuss the general structure of this decomposition. One has the
following basic results (the first holds since g is of even degree).
Proposition 1.2. H∗(X,Q) decomposes into H∗even(X,Q)⊕H∗odd(X,Q) as g-modules.
Theorem 1.3 ([V]). The subalgebra SH2(X,Q) ⊂ H∗(X,Q) generated by H2(X,Q) is an
irreducible g-submodule. It is isomorphic to Sym∗(H2(X,Q))/

〈
an+1 | qX(a) = 0

〉
as algebra

and g′0-module.

Date: August 26, 2021.
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The branching rules for g′0 ⊂ g show that SH2(X,Q) is isomorphic to V(n) as a g-module
(see below for notation). Hence there is always an irreducible submodule in H∗(X,Q) that
is known (and also quite big), and referred to as the Verbitsky component. The structure
of the remaining components is however still mysterious. The so far strongest conjectural
bound on their weights will be given in Remark 5.8.

The plan of this note is as follows: In Section 2 we recall useful facts about the repre-
sentation theory of Lie algebras of type B and D. In Section 3 we discuss the connection
of the LLV algebra to the Hodge structure which will be sufficient to determine the LLV
decomposition for the OG10 class. In Section 4 we introduce the Mumford–Tate algebra,
and in Section 5 we almost give full details in the computation of the LLV decomposi-
tion in K3[n]-type. The remaining cases of generalized Kummer varieties and OG6 are
sketched in Section 6. Starting with Section 7 the last two sections will consider applica-
tions of the LLV decomposition to the Nagai conjecture which concerns the question, how
the nilpotency indices of degenerations of hyperkähler varieties are related in different degrees.

Acknowledgements: This note originated from a joint talk at the University Bonn/Paris
reading seminar on hyperkähler varieties in the Spring of 2021. The main source is the
beautiful paper [GKLR] by Green, Kim, Laza, and Robles, and aside from streamlining a
few arguments we do not claim any originality. We thank Daniel Huybrechts for organizing
the seminar and inviting us to contribute this note.

The first author was funded by the Deutsche Forschungsgemeinschaft (DFG) – OB 512/1-1.

2. Representation theory

We introduce the necessary notions for the representation theory of g. For this section, we
let g := so(V, q) denote a Lie algebra of type Br or Dr defined over Q, where dimV = 2r+ 1
or dimV = 2r. For references, see the Appendices of [GKLR] and the book [FH].

Type B. Let h ⊂ gC be a Cartan subalgebra. The standard representation V decomposes
as

V = V (0)⊕ V (ε1)⊕ V (−ε1)⊕ · · · ⊕ V (εr)⊕ V (−εr),
for some 0,±ε1, . . . ,±εr ∈ h∨ which are called the weights of V . An element h ∈ h acts as
the scalar ε(h) on V (ε). We choose a positive Weyl chamber generated by the fundamental
weights

$i = ε1 + · · ·+ εi for 1 ≤ i ≤ r − 1, $r = 1
2 (ε1 + · · ·+ εr).

They correspond to the highest weight of
∧
iV for 1 ≤ i ≤ r − 1 and the spin module

respectively. The set of dominant weights is the following

Λ+ =

{
λ = λ1ε1 + · · ·+ λrεr

∣∣∣∣
λ1 ≥ · · · ≥ λr ≥ 0

λi ∈ 1
2Z, λi − λj ∈ Z for all i, j

}
.

Over C, irreducible gC-modules are classified by their highest weight.
Over Q, the Schur–Weyl construction for a g-module with integral highest weight is still

available: let λ be a dominant weight with
∑
λi = d. Then one defines

Vλ := SλV ∩ V [d],

where Sλ is the Schur functor, and V [d] is the intersection of all the kernels ker(V d
q→ V d−2)

given by contracting any two components with q. On the other hand, modules with half-
integer highest weight are not necessarily defined over Q.

Example. We have V(1,...,1) =
∧
kV , and V(k) = ker(Symk V

q→ Symk−2 V ).
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Type D. The standard representation V has weights ±ε1, . . . ,±εr ∈ h∨. The fundamental
weights are given by

$i = ε1 + · · ·+εi for 1 ≤ i ≤ r−2, $r−1 = 1
2 (ε1 + · · ·+εr−1−εr), $r = 1

2 (ε1 + · · ·+εr),

corresponding to the highest weight of
∧
iV for 1 ≤ i ≤ r − 2 and the two half-spin modules

respectively. The set of dominant weights is the following

Λ+ =

{
λ = λ1ε1 + · · ·+ λrεr

∣∣∣∣
λ1 ≥ · · · ≥ λr−1 ≥ |λr| ≥ 0

λi ∈ 1
2Z, λi − λj ∈ Z for all i, j

}
.

Again, all the representations with integral highest weight are defined over Q via the Schur–
Weyl construction, which is not necessarily the case for those with half-integer highest
weight.

For both type B and type D, the dimension of each Vλ can be obtained using Weyl
dimension formula, which we won’t state here. We will however need the following corollary
of the dimension formula.

Lemma 2.1. Let λ and µ 6= 0 be dominant integral weights of g, then dimVλ+µ > dimVλ.

Weyl character. We review results on the Weyl character ring for any reductive rational
Lie algebra g, although our main interest remains in type B and D. Let Rep(g) be the
category of finite dimensional rational g-modules. Complexification gives a functor

Rep(g) −→ Rep(gC)

to the category of gC-modules, which induces an injective morphism

K(g) ↪−→ K(gC)

at the level of representation rings, that is, the Grothendieck rings of the corresponding
categories.

The Weyl character of a gC-module V =
⊕

µ V (µ) is given by chV :=
∑

dimV (µ)eµ with
value in the group ring Z[Λ], where eµ is the element corresponding to the weight µ. The
character map factors through the representation ring K(gC) and has image in Z[Λ]W, the
W-invariant subring.

Theorem 2.2. The character map ch: K(gC)→ Z[Λ]W is a ring isomorphism.

We describe the Weyl character ring Z[Λ]W for g of type Br and Dr.

Proposition 2.3.
(1) When g is of type Br, write xi := eεi . Then

Z[Λ] = Z[x±1
1 , . . . , x±1

r , (x1 · · ·xr)±
1
2 ].

The Weyl group W2r+1 is isomorphic to Srn (Z/2)r, where Sr acts as permutations
on x1, . . . , xr and the i-th Z/2 acts as xi 7→ x−1

i .
(2) When g is of type Dr, the group ring Z[Λ] is the same as above for Br, while the

Weyl group W2r is the index-2 subgroup of W2r+1 consisting of elements with an
even number of non-trivial components in (Z/2)r.

We have the following result that relates the two.
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Proposition 2.4. Let (V, q) be a rational quadratic space of dimension dimV = 2r + 1,
and W ⊂ V a non-degenerate subspace of dimension dimW = 2r. Let g = so(V, q) and
m = so(W, q|W ). Then the restriction functor Res: Rep(g)→ Rep(m) induces an injective
morphism for the character rings, and consequently, the (rational) representation rings. We
have the following diagram

K(g) K(m)

K(gC) K(mC)

Z[Λ]W2r+1 Z[Λ]W2r .

Res

Res

ch ' ch '

In particular, for an arbitrary g-module, if one can obtain its decomposition as an m-
module via restriction, then its Weyl character is uniquely determined and hence so is its
g-module structure.

Remark 2.5. In the hyperkähler setting, the LLV algebra g is of type Br+1 or Dr+1, and
its reduced part g′0 is of type Br or Dr, so the proposition does not apply directly for g′0 ⊂ g.
Instead, in the K3[n]-case, we will take the subalgebra m to be g(S), the LLV algebra of a
K3 surface S.

3. Hodge structures

From this section on, we let r := bb2(X)/2c, so that g is of type Br+1 or Dr+1, and g′0 is
of type Br or Dr. The weights of g will be denoted as λ = λ0ε0 + · · ·+ λrεr.

The LLV decomposition is a diffeomorphism invariant, but we can obtain more information
using a complex structure. Let f ∈ EndH∗(X,R) be the Weil operator

f |Hp,q(X) = i(q − p) Id .

We will use this operator to define Hodge structures on each irreducible component Vλ, and
obtain some conditions on the dominant weight λ that can appear.

Proposition 3.1. We have f ∈ (g′0)R.

Proof. Denote by I, J,K three complex structures coming from a hyperkähler metric g where
I is the complex structure that we are using. We have three Kähler classes ωI = g(I−,−),
ωJ = g(J−,−), and ωK = g(K−,−), hence three sl2-triples

(1) (LI , h,ΛI), (LJ , h,ΛJ), (LK , h,ΛK).

These are all operators on H∗(X,R) and lie in gR by construction.
By working pointwise on tangent spaces and then using harmonic forms Verbitsky showed

that the Weil operator f = fI for the complex structure I satisfies

fI = −[LJ ,ΛK ] = −[LK ,ΛJ ],

so fI ∈ (g0)R. One may consider Weil operators fJ and fK for the other two complex
structures, and verify that

[fJ , fK ] = −2fI .

So fI indeed lies in [(g0)R, (g0)R] = (g′0)R. �
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Remark 3.2. Recall that the real subalgebra gg generated by the three sl2-triples (1) is
isomorphic to so(4, 1): an explicit basis over R is given by

ΛI ,ΛJ ,ΛK , fI , fJ , fK , h, LI , LJ , LK .

In particular, the degree-0 part is generated by h and the three Weil operators.

Under the action of f , the standard representation V decomposes as
V = V 2,0 ⊕ V 1,1 ⊕ V 0,2,

where f acts as −2i, 0, and 2i respectively. Similarly, we have another decomposition under
the action of h

V = V−2 ⊕ V0 ⊕ V2,

where h acts as −2, 0, and 2 respectively. Hence if we take h ⊂ gC a Cartan subalgebra
that contains both h and f , then h and if are among the ±ε∨i . Up to the choice of a Weyl
chamber, we may hence suppose that h = ε∨0 and if = ε∨1 . Under this choice, we can also
identify ε1, . . . , εr as the weights of g′0.

For a g-module Vλ that appears in H∗(X,Q), we take its weight decomposition with
respect to the chosen Cartan subalgebra h: (Vλ)C =

⊕
µ Vλ(µ), where Vλ(µ) is the component

of weight µ = µ0ε0 + · · ·+ µrεr. Then h acts as 2µ0 and if acts as 2µ1 on Vλ(µ). We find
Vλ(µ) ⊂ Hp,q(X)

where

(2)
{

2µ0 = p+ q − 2n

2µ1 = i · i(q − p) = p− q ⇒
{
p = µ0 + µ1 + n

q = µ0 − µ1 + n

In other words, Vλ ⊂ H∗(X,Q) is a sub-Hodge structure.
More generally, there is a naturally defined Hodge structure on any g-module Vλ determined

by the actions of h and f . We simply set

(Vλ)p,qC :=
⊕

µ satisfying (2)

Vλ(µ).

The Hodge numbers hp,q count the multiplicities of suitable weights.

Remark 3.3. The Hodge numbers only give information about λ0, λ1 in the representation
Vλ and do not necessarily determine the g-module structure (such an example will show up
in the case of OG6).

Example. The Verbitsky component SH2(X,Q) contains a non-trivial H2n,2n-part. We
have p = 2n, q = 2n so µ0 = n, µ1 = 0 which must be the highest weight (n). (In fact
this can be used to prove that SH2(X,Q) ' V(n): we just saw that the highest weight of
SH2(X,Q) dominates (n); on the other hand, we have dimSH2(X,Q) = dimV(n) due to
the description of Verbitsky, so by Lemma 2.1, the highest weight must be exactly (n).) In
particular, since H2n,2n(X) is one-dimensional, the component V(n) appears with multiplicity
1 in H∗(X,Q). By using the explicit description of V(n) one also sees that it exhausts all the
outermost Hodge numbers h2k,0 = 1.

Corollary 3.4.
(1) Each component Vλ of H∗even(X,Q) has integral highest weight λ;
(2) Each component Vλ of H∗odd(X,Q) has half-integer highest weight λ;
(3) Each component Vλ other than the Verbitsky component satisfies λ0 + λ1 ≤ n − 1

and λ0 ≤ n− 3
2 .
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Proof. For statements (1) and (2), we look at the component Vλ(λ) and get
p+ q = 2λ0 + 2n,

which allows us to conclude that λ0 is an integer or a half-integer in the two cases.
For statement (3), since Vλ is not the Verbitsky component, it cannot have a H2n,0-part,

so by looking at the component Vλ(λ) we get
λ0 + λ1 + n = p ≤ 2n− 1,

which gives the first inequality. By definition, the Verbitsky component exhausts the second
cohomology H2(X,Q) and hence H4n−2(X,Q) by Hodge symmetry, so we also have

3 ≤ p+ q = 2λ0 + 2n ≤ 4n− 3,

which gives the second inequality. �

Remark 3.5.
(1) The two inequalities in (3) are tight: for generalized Kummer varieties Kumn with

n ≥ 2 (whose LLV algebra is of type B4), we can have the component V(n− 3
2 ,

1
2 ,

1
2 ,

1
2 ).

In fact, the existence of this component is equivalent to the non-vanishing of b3(X).
(2) When n = 2, the statement (3) shows that λ = (2) or λ0 ≤ 1

2 , so all the possible
weights are (2), ( 1

2 , · · · , 1
2 ), (0), plus ( 1

2 , · · · , 1
2 ,− 1

2 ) in the type D case. The half-
integer weight component generates H∗odd(X,Q).

If we assume the conjecture of [GKLR] (see Remark 5.8 below), the sum of each
weight would then be bounded by n = 2, so the odd cohomologies must vanish
entirely when b2(X) ≥ 8. This is indeed the case, by a theorem of Guan (see [BD,
Theorem 3.6] of this volume).

(3) When n = 3 and Vλ is a component of H∗even(X,Q) other than V(3), we get λ0 ≤ 1

so λ is a sequence of ones, and Vλ must be a wedge product
∧
kV .1

The corollary gives some contraints on the irreducible components that can appear. For
O’Grady’s 10-dimensional example, this is already enough to determine the full decomposition.

Proposition 3.6. Let X be a hyperkähler manifold of dimension 10 such that b2(X) = 24,
e(X) = 176904, and H∗odd(X) = 0. Then we have the following decomposition of g-modules

H∗(X,Q) = V(5) ⊕ V(2,2).

In particular, O’Grady’s example OG10 satisfies these numerical conditions, so we have
obtained its LLV decomposition.

Proof. The LLV algebra g is of type D13. Write H∗(X,Q) = H∗even(X,Q) = V(5) ⊕ V ′. We
have dimV ′ = e(X)− dimV(5) = 37674. By using the inequalities in Corollary 3.4 and by
considering the dimension bound and Lemma 2.1, the only possible dominant weights that
can appear are

{(3), (2, 2), (2, 1), (2), (1, 1, 1, 1), (1, 1, 1), (1, 1), (1), (0)}.
Each Vλ carries a Hodge structure and therefore has its own Betti numbers. Using Salamon’s
result on the Betti numbers of a hyperkähler manifold (see [BD, Section 2] of this volume),
one can verify that the only possible solution is one copy of V(2,2). �

1In the article of Sawon on the bound of b2(X), he wrongly assumed that only
∧

2V can appear. Even if
the general conjecture holds, that is, the sum of λ is bounded by 3, we can still have

∧
3V .
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4. Mumford–Tate algebra

Definition 4.1. Let W be a rational Hodge structure. Let f be the Weil operator
f |Wp,q = i(q − p) Id .

The special Mumford–Tate algebra m = m(W ) is the smallest rational subalgebra of End(W )
such that f ∈ mR. The (full) Mumford–Tate algebra is m⊕Qh where h is the degree operator
h|Wp,q = (p+ q) Id. It coincides with the associated Lie algebra of the Mumford–Tate group
of W . (This degree operator differs from the one that we defined earlier, so we need to take
a Tate twist H∗(X,Q)(dimX).)

When W is the cohomology H∗(X,Q) of a hyperkähler manifold X, by Proposition 3.1
we see that m is a subalgebra of g′0. Conversely, we have the following result.

Proposition 4.2. For X a very general hyperkähler manifold, the Mumford–Tate algebra m
is equal to g′0.

Proof. Consider the restriction map
ρ : EndH∗(X,Q) −→ EndH2(X,Q).

The Weil operator f2 on H2(X,Q) is the restriction of f . Since m satisfies f ∈ mR, its
restriction ρ(m) will satisfy f2 = ρ(f) ∈ ρ(m)R. Thus by definition, ρ(m) contains the
special Mumford–Tate algebra m(H2(X,Q)) for the second cohomology. By the local Torelli
theorem, the latter is equal to so(H2(X,Q), qX) ' g′0 for X very general. So ρ(m) ' g′0,
which shows that m must coincide with g′0. �

Consequently, for a very general X, the decomposition of H∗(X,Q) into g′0-modules is
the same as decomposition into sub-Hodge structures.

Example. For X of K3[2]-type, by a dimension count we have H∗(X,Q) = V(2) as g-module.
Write H for the second cohomology group as a g′0-module. Using the description by Verbitsky,
we get an isomorphism of g′0-modules

H∗(X,Q) = Q ⊕ H ⊕ Sym2H ⊕ H ⊕ Q
= Q ⊕ H ⊕ (H(2) ⊕Q) ⊕ H ⊕ Q ,

where H(2) is an irreducible g′0-module obtained as ker(Sym2H
qX→ Q). The 1-dimensional

component Q ⊂ H4(X,Q) is generated by the dual of qX , which is also proportional to
c2(X).

For a Hodge special X, the Mumford–Tate algebra m becomes smaller, so H∗(X,Q) may
decompose further into smaller components. This is the key idea for determining the LLV
decomposition for the other three types of hyperkähler manifolds.

5. K3[n]-type

In the K3[n]-type case, there is a natural choice of a Hodge special locus: when X = S[n]

is actually the Hilbert scheme of a K3 surface S (not necessarily algebraic). We have a
decomposition

(H2(X,Q), qX) = (H2(S,Q), qS)⊕ 〈−2(n− 1)〉.
Hence g(S) is naturally realized as a subalgebra of g = g(X), and m(S) = m(H2(S,Q)) as a
subalgebra of m = m(H2(X,Q)). We write W := H∗(S,Q), which coincides with the Mukai
completion of H2(S,Q) and is therefore the standard representation for g(S). When S is

94



non-algebraic and very general, m(S) coincides with g′0(S) = so(H2(S,Q), qS) and is of type
D11. We have the diagram

g g′0

g(S) g′0(S) = m(S)

The Hodge structure on H∗(S[2],Q) is described by Göttsche–Soergel [GS] (stated for
algebraic ones only; the general case is due to de Cataldo–Migliorini).

Theorem 5.1. Let S be a K3 surface, not necessarily algebraic. We have an isomorphism
of Hodge structures

H∗(S[n],Q)(n) '
⊕

α`n
H∗(S(a1) × · · · × S(an),Q)(a1 + · · ·+ an).

The sum is taken over all partitions α of n, where α = (a1, · · · , an) satisfies a1 ·1+· · ·+an ·n =
n. Here S(a) denotes the a-th symmetric power Sa/Sa of S, and we have an isomorphism
of Hodge structures

H∗(S(a),Q) ' SymaH∗(S,Q).

Remark 5.2. We can omit all the Tate twists by considering the grading h on the coho-
mologies centered at the middle cohomology.

In other words, we have obtained the decomposition of H∗(X,Q) as an m(S)-module. To
deduce the g-module structure, we first lift this as a g(S)-module decomposition, and then
apply Proposition 2.4.

Theorem 5.3. We have an isomorphism

(3) H∗(S[n],Q) '
⊕

α`n

n⊗

i=1

Symai H∗(S,Q)

of g(S)-modules. Consequently, the Weyl character of H∗(S[n],Q) as a g(S)-module is equal
to

chH∗(S[n],Q) =
∑

α`n

n∏

i=1

ch SymaiW.

In view of Proposition 2.4, this gives the Weyl character of H∗(X,Q) as a g-module.

Proof. The g(S)-module structure is a diffeomorphism invariant, so we may assume that S
is very general and non-algebraic. Recall that in this case, the special Mumford–Tate algebra
m(S) coincides with g′0(S) = so(H2(S,Q), qS). So the isomorphism of Hodge structures gives
an isomorphism of g′0(S)-modules.

Since g0(S) = g′0(S)⊕Qh and the decomposition respects the grading h, we can lift it to
an isomorphism of g0(S)-modules. Finally, the weight lattice of g0(S) is the same as that of
g(S), so this also is an isomorphism of g(S)-modules. �

Remark 5.4. Alternatively, one can prove the g(S)-equivariance of the isomorphism (3)
using Nakajima operators [N] and the explicit description of the LLV action in the Nakajima
basis given in [O]. By [dCM] the isomorphism (3) matches the Nakajima description.
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Example 5.5. We consider again the K3[2]-type case. The isomorphism is given as
H∗(S[2],Q) ' H∗(S(2) × S(0),Q)⊕H∗(S(0) × S(1),Q) = Sym2H∗(S,Q)⊕H∗(S,Q).

The right hand side decomposes into 3 irreducible g(S)-modules, and further into 10 irre-
ducible g′0(S)-modules.

As g-module (B12)

1

1 21 1

1 21 232 21 1

1 21 1

1

yRes

Res−→

as g′0-module (B11)
(= m(X) for X very general)1

1 21 1

1 21 231 21 1

1 21 1

1

⊕ 1

yRes

as g(S)-module (D12)

1

1 20 1

1 20 211 20 1

1 20 1

1

⊕
1

1 20 1

1

⊕ 1

Hodge special (X = S[2])

Res−→

as g′0(S)-module (D11)
(= m(S) for S very general)

1

1 20 1

1 20 210 20 1

1 20 1

1

⊕
⊕
⊕

1 ⊕
1

1 20 1

1

⊕ 1

Figure 1. Decompositions of the Hodge diamond of H∗(K3[2],Q)

We may write the formula for the characters of H∗(K3[n],Q) in a more succinct fashion
by considering all Hilbert powers at the same time. Note that the LLV algebras are a priori
not the same in different dimensions. But since we are considering Weyl characters, we only
need the complexification gC which is always isomorphic to so(25).

Proposition 5.6 ([GKLR]). Let g be the Lie algebra so(25). The generating series of the
characters of the g-modules H∗(K3[n]) for n ≥ 2 is given by

(4)
∞∑

n=0

chH∗(K3[n])qn =

∞∏

n=1

11∏

i=0

1

(1− xiqn)(1− x−1
i qn)

.

The identity lives inside the formal power series ring A[[q]] where

A := Z[Λ]W = Z[x±1
0 , . . . , x±1

11 , (x0 · · ·x11)±
1
2 ]W25

is the Weyl character ring of type B12. Note that when n = 1, the cohomology H∗(K3) does
not admit a structure of g-module, so we write formally

chH∗(K3[1]) :=
11∑

i=0

(xi + x−1
i ).

Corollary 5.7. Let X be a hyperkähler manifold of K3[n]-type. Any irreducible component
Vλ of the LLV decomposition of H∗(X,Q) with highest weight λ = λ0ε0 + · · ·+λ11ε11 satisfies

λ0 + · · ·+ λ11 ≤ n.
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Proof. The weight λ corresponds to the monomial xλ0
0 · · ·xλ11

11 in the character ring. When
we expand the right hand side of (4) we get

∞∏

n=1

11∏

i=0


∑

j≥0

(xiq
n)j




∑

k≥0

(x−1
i qn)k


 .

For each term of this product, its degree in xi is bounded by its degree in q. So each
monomial that appears in the coefficient of qn has degree ≤ n, which gives the inequality. �

Remark 5.8. More generally, for any hyperkähler manifold X of dimension 2n with
r = bb2(X)/2c, Green–Kim–Laza–Robles [GKLR] conjecture the inequality

λ0 + · · ·+ λr−1 + |λr| ≤ n
for each irreducible component Vλ of the LLV decomposition of H∗(X,Q). This conjecture
holds for all known examples of hyperkähler varieties.

Remark 5.9. Once the character of the g-module structure is known, one can use computer
algebra to recover the actual decomposition. One implementation in Sage can be found on
the second author’s webpage.

6. Generalized Kummer varieties and OG6

After having treated the K3[n] case in the previous section and OG10 in Proposition 3.6,
we briefly remark on the remaining two cases. See [GKLR] for details and references.

Generalized Kummer varieties. The LLV algebra g is of type B4.
Similar to the case of K3[n]-type, we consider Hodge special members of the family: we

specialize X to an actual generalized Kummer variety associated to a very general complex
torus A of dimension 2. The results of Göttsche–Soergel give a complete description of the
Hodge structure of H∗(X) in terms of the Hodge structures on H∗(A), which can be seen as
a decomposition of m(A)-modules (of type D3). We can similarly lift it to a g(A)-module
decomposition (of type D4) and apply Proposition 2.4 to obtain the character of H∗(X) as
a g-module.

OG6. This last case is more complicated. The LLV algebra g is of type D5.
Using the Hodge numbers of OG6 and the Hodge numbers of the g-modules, we may

obtain two possible decompositions for H∗(X,Q). To determine which case we are in, we
specialize X to a Hodge special member with an explicit geometric construction given by
Rapagnetta. In this situation, the Mumford–Tate algebra m is of type B2 (that of a very
general abelian surface A), and the geometric construction gives a description of the Hodge
structure of H∗(X) in terms of m = m(A)-modules (Mongardi–Rapagnetta–Saccà). Then
by comparing the restrictions to m of the two possible g-module decompositions, only one
agrees with the m-module decomposition obtained from geometry, so we may conclude.

7. Application: The Nagai conjecture

Let π : X → ∆ be a 1-paramer projective degeneration of hyperkähler manifolds over the
disc ∆ = {t ∈ C| |t| ≤ 1}. We assume that the fibers Xt = π−1(t) are smooth for t 6= 0. Let

T : H∗(Xt0 ,Z) −→ H∗(Xt0 ,Z)
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be the monodromy operator for a fixed basepoint t0 6= 0. It is well-known (see e.g. [KK])
that T is quasi-unipotent, i.e. there exists m,n > 0 such that (Tm − 1)n = 0. For any such
m, we hence can define the nilpotent operator

N =
1

m
log(Tm).

Let also Nk = N |Hk(X0,Z) be the restriction to degree k and define its nilpotency:

νk := min
{
r ∈ Z≥1|Nr

k 6= 0, Nr+1
k = 0

}
.

By a classical result of Schmid we always have νk ≤ k, and the precise value of νk should be
viewed as measuring the change of topology under the degeneration.

For hyperkähler varieties the type of the degeneration is determined by ν2 according to
the following table:

Type ν2

I 0
II 1
III 2

For example, a quartic K3 surface S degenerating to a nodal K3 is of type I, the degeneration
of S to the union of two quadrics Q1 ∪E Q2 is type II, and breaking S into the union
of 4 hyperplanes is type III. More generally, Kulikov classifies all the limits of semistable
degenerations of K3 surfaces according to type.

In higher dimension a priori we need to consider all the nilpotencies, the even ν2, ν4, . . . , ν4n−2

and the odd ones ν3, ν5, . . . , ν4n−3. However, Nagai made the following prediction for the
even degeneracies (the precise behaviour of the odd remains an open question).

Conjecture 7.1 (Nagai). ν2k = kν2.

Using the LLV decomposition one finds the following results:

Theorem 7.2 ([KLSV, GKLR]). Nagai’s conjecture holds if ν2 = 0 or ν2 = 2.

Theorem 7.3 ([GKLR]). Let H∗(X,Q) =
⊕

λ V
mλ
λ be the LLV decomposition. If

λ0 + λ1 + |λ2| ≤ n
for all λ, then Nagai’s conjecture holds.

Corollary 7.4. Nagai’s conjecture holds if dimX ≤ 8. It holds for all known examples of
hyperkähler manifolds. It holds if the conjectural description of the LLV decomposition in
Remark 5.8 is satisfied.

We give a sketch of the proof below. The main geometric step is to relate the nilpotent
matrices N2 and Nk as follows. Let ρk : g′0 → EndHk(X,Q) be the restriction of the LLV
action to degree k. Moreover, since T |H2 preserves the Beauville–Bogomolov form, the
nilpotent matrix N2 ∈ EndH2(X,Q) lies in g′0. Then one has:

Theorem 7.5 (Soldatenkov). Nk = ρk(N2)

From this, the cases ν2 ∈ {0, 2} are fairly straightforward and follow essentially from the
description of the Verbitsky component. The critical range of the Nagai conjecture is ν2 = 1.

8. Sketch of proof for Theorems 7.3 and 7.5

We first give a sketch of the result of Soldatenkov following [GKLR].
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Sketch of proof for Theorem 7.5. We divide the proof into two steps.
Step 1. Let X/S be a fixed degeneration of hyperkähler manifolds over a smooth base S,
let t0 ∈ S be a base point, and let S̃ → S be the universal cover. Define the (extended)
period domains parametrizing Hodge structures in degree k > 2 and 2 respectively:

D̂k = Flag(Hk(Xt0 ,C), f•),

D̂2 = P(H2(Xt0 ,C)).

Here f• is the dimension vector of the Hodge filtration.

Proposition 8.1. There exists a canonical morphism ψk : D̂2 → D̂k such that the diagram

(5)
S̃ D̂2

D̂k

Φ̃2

Φ̃k ψk

commutes, where Φ̃k is the period mapping t 7→ ptt0,t(F
•Hk(Xt)).

Here ptt0,t is obtained from the parallel transport map H∗(Xt,Z) → H∗(Xt0 ,Z) along
any path from t to t0 by tensoring with C, or equivalently it is the parallel transport with
respect to the Gauss–Manin connection. It is well-defined since S̃ is simply connected.

Proof (Sketch). Recall from Proposition 3.1 that the Weil operator f ∈ End(H∗(X,R))
defined by f |Hp,q(X) = i(q − p) Id lies in (g′0)R and hence satisfies
(6) f |Hk = ρk(f |H2).

This motivates the following:

Construction of ψk: Given o2 ∈ D̂2, there exists a unique semisimple fo2
∈ (g′0)R such

that fo2
induces o2, i.e.

fo2
(x) = (q − p)ix for all x ∈ Hp,q

o2
(X).

Define ψk(o2) to be the filtration induced by ρk(o2).

Proof of Commutativity of (5): Let ψtk : P(H2(Xt,C)) → D̂t
k = Flag(Hk(Xt0 ,C), f•)

be the map ψk above with respect to the base point t. If o2(t), ok(t) are the elements
determined by the Hodge structure of H∗(Xt) then by construction of ψtk and (6) we have
that

ψtk(o2(t)) = ok(t).

Parallel transport naturally intertwines the LLV algebra, that is
ptt0,t ◦ ρk(α) = ρk(ptt0,t(α)) ◦ ptt0,t, hence ψt0k ◦ ptt0,t = ptt0,t ◦ ψtk

We conclude:
ψk

(
Φ̃2(t)

)
= ψt0k (ptt0,t(o2(t)))

= ptt0,t(ψ
t
ko2(t))

= ptt0,t(ok(t))

= Φ̃k(t). �
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Step 2. We prove Theorem 7.5. For that we require the degeneration X/S to be projective.
We let D2 ⊂ D̂2 and Dk ⊂ D̂k be the period domains with respect to the choosen polarization,
that is we define

D2 = {x ∈ P(H2
prim(Xt0 ,C))|x · x = 0, x · x}

and we let
Dk ⊂ Flag(Hk

prim(Xt0 ,C))

be the orbit of ok(t0) under mtk,R, where mtk is the generic special Mumford–Tate algebra
of Hk

prim(Xt0 ,C) (i.e. the special Mumford–Tate algebra m(Hk
prim(X ′,C))R of a generic

projective deformation X ′ of Xt0 , see [GKLR]). For the projective degeneration, the period
mappings Φ̃k take values in Dk; we write Φk in this case. The key point is now:

• mtk = ρk(mt2) = ρk(g′0) and hence ψk defines a morphism D2 → Dk;
• Dk

∼= (mtk,R · ok(t0))/K where K is a compact subgroup (see e.g. [KK]).
It follows that if Tk = T |Hk(Xt0 ,Z) is the monodromy along the loop γ, then in Dk we have

Tmk Φk(t0) = Φk(γm · t0)

= ψk(Φ2(γm · t0)

= ψk(Tm2 Φ2(t0))

= ρk(T2)mψk(Φ2(t0))

= ρk(T2)mΦk(t0)

for all m ≥ 1 hence
T−mk ρk(T2)m ∈ K ∩GL(Hk

prim(X,Z))

Since the intersection on the right is a finite subgroup, there exists m1,m2 such that
T−m1

k ρk(T2)m1 = T−m2

k ρk(T2)m2 , and hence Tm1−m2

k = ρk(T2)m1−m2 . Taking log on both
sides, we get the desired equality Nk = ρk(N2).

We are ready to give an idea of the proofs of Theorem 7.2 and 7.3.

Sketch of proof for Theorems 7.2 and 7.3. We first state the following lemma.
Lemma 8.2. If a nilpotent operator N : V → V has nilpotency ν, then Symk(N) :

Symk(V )→ Symk(V ) has nilpotency k · ν.
Proof. Since Nν+1 is zero, for all elements x1, . . . , xk ∈ V we have Symk(N)kν(x1 · · ·xk) =

(Nνx1) · · · (Nνxk) and Symk(N)kν+1(x1 · · ·xk) = 0. On the other hand, since Nν is not zero,
we may pick x ∈ V such that Nνx 6= 0, and therefore Symk(N)kν(xk) = (Nνx)k 6= 0. �

For each k ≥ 1, H2k(X,Q) contains the Verbitsky component SymkH2(X,Q) as a sub
g′0-module. Hence the nilpotency ν2k of Nk = ρk(N2) is bounded below by the nilpotency of
SymkN2, which is equal to k · ν2 by the lemma. Therefore we obtain ν2k ≥ k · ν2.

• If ν2 = 0, then N2 = 0, so Nk = ρk(N2) = 0 is identically zero, and ν2k = 0.
• If ν2 = 2, then we already have the classical bound ν2k ≤ 2k so we may conclude
that ν2k = 2k.

• If ν2 = 1, then we have ν2k ≥ k. On the other hand, the nilpotency of the action
of N2 on Vλ can be bounded above by the weights, see [GKLR]. In particular, the
nilpotency of Nk = ρk(N2) is bounded by all the weights λ that appear in the
g′0-decomposition of Hk(Xt0 ,Q). Using the branching rules this can be expressed by
the weights of the LLV decomposition of H∗(Xt0 ,Z). It is fortunate that this yields
the rather simple weight bound of the claim.
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