
LAGRANGIAN FIBRATIONS

D. HUYBRECHTS & M. MAURI

Abstract. We review the theory of Lagrangian fibrations of hyperkähler manifolds as initi-
ated by Matsushita [Mat99, Mat01, Mat05]. We also discuss more recent work of Shen–Yin
[SY18] and Harder–Li–Shen–Yin [HLSY19]. Occasionally, we give alternative arguments and
complement the discussion by additional observations.

Assume f : X //B is a Lagrangian fibration of a compact hyperkähler manifoldX of complex
dimension 2n, and π : X //∆ is a type III degeneration of compact hyperkähler manifolds of
complex dimension 2n. Then the cohomology algebra of Pn appears naturally in (at least) four
different disguises:

(i) As the cohomology algebra of p0, pq resp. pp, 0q-forms (both independent of f):

H˚pPn,Cq » H˚pX,OXq and H˚pPn,Cq » H0pX,Ω˚Xq.

(ii) As the cohomology of the base of the fibration:1

H˚pPn,Cq » H˚pB,Cq.

(iii) As the image of the restriction to the generic fibre Xt of f :

H˚pPn,Cq » Im pH˚pX,Cq //H˚pXt,Cqq .

(iv) As the cohomology of the dual complex DpX0q of the central fibre X0 of π:

H˚pPn,Cq » H˚pDpX0q,Cq.

In this talk we discuss these four situations and explain how they are related. We start by
reviewing basic results on Lagrangian fibrations in Section 1, discuss the topology of the base
and the restriction to the fibre in Section 2, and then sketch the proof of P“W in Section 3.

Throughout, X denotes a compact hyperkähler manifold of complex dimension 2n. A fibra-
tion of X is a surjective morphism f : X // //B with connected fibres onto a normal variety B
with 0 ă dimpBq ă 2n. A submanifold T Ă X is Lagrangian if the restriction σ|T P H0pT,Ω2

T q

of the holomorphic two-form σ P H0pX,Ω2
Xq is zero.

This review was prepared in the context of the seminar organized by the ERC Synergy Grant HyperK, Grant
agreement ID 854361. The talk was delivered on June 4, 2021.

1Here and in (iii) and (iv), one expects isomorphisms of Q-algebras, but this seems not known.
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1. Basics on Lagrangian fibrations

We first discuss Lagrangian submanifolds and in particular Lagrangian tori. Then we study
the cohomology and the singularities of the base B. Next we show that the fibres, smooth
ones as well as singular ones, of any fibration are Lagrangian and conclude that fibrations of
hyperkähler manifolds over a smooth base are flat.

At the end, we mention further results and directions without proof: Matshushita’s descrip-
tion of the higher direct image sheaves Rif˚OX , Beauville’s question whether Lagrangian tori
are always Lagrangian fibres, smoothness of the base, etc.

1.1. Lagrangian tori. We start with some general comments on Lagrangian manifolds and
more specifically on Lagrangian tori.

Proposition 1.1 (Voisin). Any Lagrangian submanifold T Ă X of a hyperkähler manifold X
is projective. In particular, any Lagrangian torus is an abelian variety.

Proof. We are following the proof as presented in [Cam06]. Since the restriction of any Kähler
class on X to T is non-trivial, the restriction H2pX,Rq //H2pT,Rq is a non-trivial morphism
of Hodge structures. On the other hand, as T is a Lagrangian, all classes in H2,0pXq‘H0,2pXq

have trivial restrictions. Hence, the image of H2pX,Rq //H2pT,Rq is contained in H1,1pT,Rq.
More precisely, the images of H2pX,Rq //H2pT,Rq and of H1,1pX,Rq //H1,1pT,Rq coincide.
Therefore, for any Kähler class ω P H1,1pX,Rq there exists a rational class α P H2pX,Qq such
that the p1, 1q-class α|T comes arbitrarily close to the Kähler class ω|T . Thus, α|T is a rational
Kähler class and, hence, T is projective. �

Remark 1.2. The normal bundle of a Lagrangian submanifold T Ă X is isomorphic to
the cotangent bundle of T , so NT {X » ΩT . Hence, the p1, 1q-part of the restriction map
H2pX,Cq //H2pT,Cq can be identified with the natural map H1pX, TXq //H1pT,NT {Xq that
sends a first order deformation of X to the obstruction to deform T sideways with it, see [Voi92]:

H1,1pXq

»

��

// H1,1pT q

»

��
H1pX, TXq // H1pT,NT {Xq.

Clearly, as T is Lagrangian, the map pH2,0 ‘ H0,2qpXq //H2pT,Cq is trivial, cf. the proof
above. Since the restriction of a Kähler class is again Kähler, H1,1pXq //H1,1pT q is certainly
not trivial. Thus, T Ă X deforms with X along a subset of codimension at least one. For
smooth fibres of a Lagrangian fibration, so eventually Section 1.5.2 for all Lagrangian tori, the
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rank of the restriction map and hence the codimension of the image DefpT Ă Xq //DefpXq is
exactly one.2

Proposition 1.3. Assume T Ă X is a Lagrangian torus. Then the restrictions cipXq|T P

H2ipT,Rq of the Chern classes cipXq P H
2ipX,Rq are trivial.

Proof. The normal bundle sequence allows one to compute the restriction of the total Chern
class of X to the ones of T . More precisely, cpTXq|T “ cpTT q ¨ cpNT {Xq. To conclude, use
NT {X » ΩT and the fact that the tangent bundle of a torus is trivial. �

Remark 1.4. (i) In the case that T Ă X is the fibre of a Lagrangian fibration f : X //B, as
it always is, cf. Section 1.5.2, also the restriction of the Beauville–Bogomolov form, thought of
as a class q̃ P H4pX,Qq, is trivial:

q̃|T “ 0.

There does not seem to be a direct proof of this fact. However, using that the rank of the
restriction map H4pX,Qq //H4pT,Qq is one, see Theorem 2.1, it can be shown as follows. The
classes q̃ and c2 in H4pX,Qq both have the distinguished property that the homogenous forms
ş

X q̃ ¨ β
2n´2 and

ş

c2pXq ¨ β
2n´2 defined on H2pX,Zq are non-trivial scalar multiples of qpβqn´1

and, therefore, of each other.3 If rT s P H2npX,Zq is the class of a fibre f´1ptq, then up to
scaling rT s “ f˚αn for some α P H2pB,Qq. Hence, for a Kähler class ω on X we find (up to a
non-trivial scalar factor)

ż

T
q̃|T ¨ ω|

n´2
T “

ż

X
q̃ ¨ f˚αn ¨ ωn´2 “

ż

X
c2pXq ¨ f

˚αn ¨ ωn´2 “

ż

T
c2pXq|T ¨ ω|

n´2
T “ 0.

Since ω|T ‰ 0 and Im pH˚pX,Rq //H˚pT,Rqq is generated by ω|T , this proves the claim.

(ii) For other types of Lagrangian submanifolds, the restrictions of the Chern classes of X are
not trivial. For example, for a Lagrangian plane P2 Ă X one easily computes

ş

P2 c2pXq|P2 “ 15.

As remarked before, the normal bundle of a Lagrangian torus is trivial. The next observation
can be seen as a converse, it applies in particular to the smooth fibres of any fibration f : X //B.

Lemma 1.5. Assume T Ă X is Lagrangian submanifold with trivial normal bundle. Then T is
a complex torus and, therefore, an abelian variety.

Proof. Since T is Lagrangian, the tangent bundle TT » N ˚
T {X is trivial. Using the Albanese

morphism, one easily proves that any compact Kähler manifold with trivial tangent bundle is
a complex torus. �

2Is there an a priori reason why this is the case for Lagrangian tori? It fails for general Lagrangian subman-
ifolds; see §4.

3The non-triviality of the scalar for c2pXq follows from the fact that
ş

X
c2pXq ¨ ω

2n´2
‰ 0 for any Kähler

class.
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1.2. The base of a fibration. We pass on to (Lagrangian) fibrations.

Proposition 1.6 (Matsushita). Assume f : X // //B is a fibration with B smooth. Then B is
a simply connected, smooth projective variety of dimension n satisfying Hp,0pBq “ H0,ppBq “ 0

for all p ą 0 and H2pB,Qq » Q. In particular,

PicpBq » H2pB,Zq » Z.

Proof. The smoothness of B implies that the pull-back f˚ : H˚pB,Qq //H˚pX,Qq is injective.
Next, as α2n “ 0 for any class α P H2pB,Rq, we have pf˚αq2n “ 0 and, therefore, qpf˚αq “ 0.
By [Bog96, Ver96], this implies pf˚αqn`1 “ 0 and hence αn`1 “ 0, which yields dimpBq ď n.
On the other hand, again by [Bog96, Ver96], pf˚αqn ‰ 0 for every class 0 ‰ α P H2pB,Rq from
which we deduce n ď dimpBq.

If α P Hp,0pBq, then f˚α is a non-trivial multiple of some power of σ. Hence, α “ 0 if p is
odd. If p “ 2, then f˚α “ λ ¨ σ and, hence, f˚αn “ λn ¨ σn. Since σn ‰ 0 and H2n,0pBq “ 0,
one finds λ “ 0. A similar argument can be made to work for all evenp and an alternative
argument is provided by Theorem 2.1.

Next we show H2pB,Qq » Q. Using [Bog96, Ver96], we have

Snf˚H2pB,Qq Ă SnH2pX,Qq Ă H2npX,Qq.

On the other hand, the image of Snf˚H2pB,Qq is contained in f˚H2npB,Qq which is just
one-dimensional.4

Since X is Kähler, also B is, see [Var84]. Using H2,0pBq “ H0,2pBq “ 0, we can conclude that
there exists a rational Kähler class on B. Hence, B is projective. According to [Kol95, Prop.
2.10.2], the natural map π1pXq // π1pBq is surjective and, therefore, B is simply connected, as
X is.5 Then, by the universal coefficient theorem, H2pB,Zq is torsion free, i.e. H2pB,Zq » Z.
Since H1,0pBq “ H2,0pBq “ 0, the exponential sequence yields PicpBq

„ //H2pB,Zq. �

Remark 1.7. In fact, as we shall see, Hp,qpBq “ 0 for all p ‰ q and Hp,ppBq » Hp,ppPnq, i.e.
there is an isomorphism of rational Hodge structures

H˚pB,Qq » H˚pPn,Qq.

There are two proofs of this fact, both eventually relying on the isomorphism H˚pX,OXq »

H˚pPn,Cq. It seems that unlike H2pB,Qq » Q, which above was proved by exploiting the

4The traditional proof goes as follows: First one shows that for any non-trivial class α P H2
pB,Rq “

H1,1
pB,Rq and any Kähler class ω on X one has

ş

X
pf˚αq ^ω2n´1

‰ 0. Indeed, otherwise the Hodge index the-
orem would imply qpf˚αq ă 0 and, therefore, pf˚αqn`1

‰ 0, which contradicts dimpBq “ n. As a consequence,
observe that for any two non-trivial classes α1, α2 P H

2
pB,Rq there exists a linear combination α :“ λ1α1`λ2α2

with
ş

X
pf˚αq ^ ω2n´1

“ 0, which then implies α “ 0, i.e. any two classes α1, α2 P H2
pB,Rq are linearly

dependent.
5By Lemma 1.8 below, B is a Fano manifold, which yields an alternative argument for B simply connected.
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structure of the subring of SH2pX,Qq Ă H˚pX,Qq, the higher cohomology groups of B use
deeper information about the hyperkähler structure.

(i) The first proof for B smooth and X projective was given by Matsushita [Mat05], as a
consequence of the isomorphisms Rif˚OX » Ωi

B, see Section 1.5.1. Combining this isomorphism
with the splitting Rf˚OX »

À

Rif˚OXr´is, see [Kol86b], one finds

HkpX,OXq » HkpB,Rf˚OXq »
à

Hk´ipB,Rif˚OXq »
à

Hk´ipB,Ωi
Bq,

which proves the claim.6

(ii) Another one, which also works for singular B and non-projective X, was given in [SY18]
and, roughly, relies on the fact that H˚pB,Cq can be deformed into H˚pX,OXq, see Section
2.2.

Lemma 1.8 (Markushevich, Matsushita). Under the above assumptions, B is a Fano manifold,
i.e. ω˚B is ample.

Proof. Since B is dominated by X, we have kodpBq ď 0 by the known case of the Iitaka
conjecture; see [Kaw85, Cor. 1.2]. Hence, ωB » OB or ω˚B is ample. However, the first case is
excluded by Hn,0pBq “ 0.

In [Huy03, Prop. 24.8] the assertion is deduced from the fact that X admits a Kähler–
Einstein metric. The case ωB » OB is excluded, because it would imply Hn,0pBq ‰ 0, which
was excluded above. �

Remark 1.9. It turns out that as soon as the base B is smooth, then B » Pn. This result
is due to Hwang [Hwa08] and its proof relies on the theory of minimal rational tangents. The
results by Matsushita and more recently by Shen and Yin, see Remark 1.7 and Section 2, can be
seen as strong evidence for the result. In dimension two, the result is immediate: Any smooth
projective surface B with ω˚B ample and H2pB,Qq » Q is isomorphic to P2.

It is tempting to try to find a more direct argument in higher dimension, but all attempts
have failed so far. For example, according to Hirzebruch–Kodaira [HK57] it suffices to show that
H˚pB,Zq » H˚pPn,Zq such that the line bundle L corresponding to the generator of H2pB,Zq
satisfies h0pB,Lkq “ h0pPn,Opkqq, see [Li16] for a survey of further results in this direction.

Alternatively, by Kobayashi–Ochai [KO73], it is enough to show that ωB is divisible by n`1,
i.e. the Fano manifold B has index n ` 1. As a first step, one could try to show that f˚ωB is
divisible by n` 1.

1.3. Singularities of the base. It is generally expected that the base manifold B is smooth,
but at the moment this is only known for n ď 2, cf. [Ou19, BK18, HX19]. The expectation is
corroborated by the following computations of invariants of the singularities of B.

6By evoking results due to Saito, it should be possible to avoid the projectivity assumption in [Kol86b].
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Denote by IH˚pB,Qq the intersection cohomology of the complex variety B with middle
perversity and rational coefficients. It is the hypercohomology of the intersection cohomology
complex ICB, i.e. IH˚pB,Qq “ H˚pB, ICBq. In particular, if B is smooth or has quotient
singularities, cf. [GS93, Prop. 3], then IH˚pB,Qq “ H˚pB,Qq.

Proposition 1.10. Assume f : X //B is a fibration over the complex variety B.

(i) B is Q-factorial7, both in the Zariski and in the analytic topology.
(ii) The intersection cohomology complex ICB of B is quasi-isomorphic to the constant sheaf

QB. In particular, IH˚pB,Qq “ H˚pB,Qq.
(iii) (Matsushita) B has log terminal singularities.

Proof. For (i) and (ii) one only needs that f : X //B is a connected and equidimensional
morphism from a smooth variety X, while in the proof of (iii) one also needs ωX trivial.

For any t P B, choose a chart ϕ : Ux Ă X //C2n, centred at x, and the analytic subset
S :“ ϕ´1pΛq, where Λ Ď C2n is an n-dimensional affine subspace intersecting the fibre ϕpf´1ptqq

transversely. Since f is equidimensional, the restriction f |S : S //B is finite over an analytic
neighbourhood U of t. Therefore, U is Q-factorial by the elementary [KM98, Lem. 5.16].

Denote S˝ :“ S X f´1pUq. By the decomposition theorem8, ICU is a direct summand of
Rpf |S˝q˚QS˝ . Taking stalks at t, we have

H0pICBqt » QB,t HipICU qt Ď HipRpf |S˝q˚QS˝qt “ 0,

because of the finiteness of f |S˝ . Thus, the natural map QB
// ICB is a quasi-isomorphism in

the constructible derived category Db
cpBq with rational coefficients.

By the canonical bundle formula, there exists a Q-divisor ∆ Ă B such that the pair pB,∆q
is log terminal; see [Kol07a, Thm. 8.3.7.(4)] and [Nak88, Thm. 2]. By the Q-factoriality, B has
log terminal singularities too. �

Remark 1.11 (Quotient singularities). The finiteness of the restriction f |S : S //B over b
suggests that B should have at worst quotient singularities. This would follow from the following
conjecture9.

Conjecture 1.12. [Kol07b, §2.24] Let f : X // Y be a finite and dominant morphism from a
smooth variety X onto a normal variety Y . Then Y has quotient singularities.

This is known for n “ 2 by [Bri68, Lem. 2.6], but it is open in higher dimension. One of the
main issue is that f itself need not be a quotient map, not even locally.

Corollary 1.13. The pullback f˚ : H˚pB,Qq //H˚pX,Qq is injective.
7Are the singularities of B actually factorial?
8Alternatively, note that the trace map Rpf |S˝q˚QS˝ // ICU splits the natural morphism

ICU
//Rpf |S˝q˚QS˝ .

9Thanks to Paolo Cascini to bring this conjecture to our attention.
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Proof. By Proposition 1.10 this follows from the inclusion IH˚pB,Qq �
� //H˚pX,Qq coming from

the decomposition theorem. �

Remark 1.14. Let f : M //N be a surjective holomorphic map between compact complex
manifold, with M Kähler. By [Voi07, Lem. 7.28], the pullback f˚ : H˚pN,Qq //H˚pM,Qq is
injective. However, this may fail if N is singular, e.g. if f is a normalization of a nodal cubic,
even if N has Q-factorial log terminal singularities, e.g. [Mau21, Thm. 5.11].

Remark 1.15. Assume that B is projective. By Corollary 1.13, the smoothness of B can be
dropped from the assumptions of Proposition 1.6 and Lemma 1.8.

1.4. The fibres of a fibration. Next we present Matsushita’s result that any fibration of a
compact hyperkähler manifold is a Lagrangian fibration.

Lemma 1.16 (Matsushita). Assume f : X //B is a fibration. Then every smooth fibre T :“

Xt Ă X is a Lagrangian torus and in fact an abelian variety.

Proof. Comparing the coefficients of xn´2yn in the polynomial (in x and y) the equation

qpσ ` σ̄ ` x ¨ ω ` y ¨ f˚αqn “ cX ¨

ż

X
pσ ` σ̄ ` x ¨ ω ` y ¨ f˚αq2n

shows
ş

Xpσσ̄q ^ ωn´2 ^ f˚pαnq “ 0 for all ω P H2pX,Rq and all α P H2pB,Rq. Since rT s “
f˚pαnq for some class α, this yields

ş

F pσσ̄q|T ^ ωn´2|T “ 0, which for a Kähler class ω and
using that σ ^ σ̄ is semi-positive implies σ|T “ 0. Then conclude by Lemma 1.5. �

Lemma 1.17 (Matsushita). The symplectic form σ P H2,0pXq is trivial when restricted to any
subvariety T Ă X contracted to a point t under f . In particular, all fibres of f are of dimension
n, i.e. f is equidimensional, and if B is smooth, f is flat.

Proof. A theorem due to Kollár [Kol86a, Thm. 2.1] and Saito [Sai90, Thm. 2.3, Rem. 2.9.]
says that R2f˚ωX is torsion free. Since in our case ωX » OX , this shows that R2f˚OX is
torsion free. Let σ̄ P H2pX,OXq be the conjugate of the symplectic form, and ρ be its image
in H0pB,R2f˚OXq. Since the general fibre is Lagrangian, ρ must be torsion and hence zero. If
rT // T is a resolution of T , then the image of σ̄ in H2p rT ,O

rT
q is contained in the image of

R2f˚OX b kptq //H2pT,OT q //H2p rT ,O
rT
q

and hence trivial. This implies that the image of σ in H0p rT ,Ω2
rT
q is trivial, i.e. σ|T “ 0. By

semi-continuity of the dimension of the fibres, dimT ě n, and so T is Lagrangian.
The flatness follows from the smoothness of X and B, see [Har77, Exer. III.10.9]. �

Remark 1.18. Note that the conclusion that f is flat really needs the base to be smooth. In
fact, by miracle flatness, f is flat if and only if B is smooth.

1.5. Further results. We summarize a few further results without proof.
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1.5.1. Higher direct images. The first one is the main result of [Mat05].

Theorem 1.19 (Matsushita). Assume f : X //B is a fibration of a projective10 hyperkähler
manifold over a smooth base. Then

Rif˚OX » Ωi
B.

On the open subset B˝ Ă B over which f˝ :“ f |f´1pB˝q : X
˝ //B˝ is smooth, the result can

be obtained by dualising the isomorphism

f˝˚Ω1
X˝{B˝ » TB˝ ,

which holds because the smooth fibres of f are Lagrangian. A relative polarization is used to
show that R1f˝˚OX˝ and f˝˚Ω1

X˝{B˝ are dual to each other. To extend the result from B˝ to
the whole B, Theorem 1.19 uses a result of Kollár [Kol86a, Thm. 2.1] saying that Rif˚ωX are
torsion free, which for X hyperkähler translates into Rif˚OX being torsion free.

As mention in Remark 1.7, the theorem implies H˚pB,Qq » H˚pPn,Qq.

1.5.2. Lagrangian tori are Lagrangian fibres. In [Bea11] Beauville asked whether every La-
grangian torus T Ă X is the fibre of a Lagrangian fibration X //B. The question has been
answered affirmatively:

(i) Greb–Lehn–Rollenske in [GLR13] first dealt with the case of non-projective X and later
showed in [GLR14] the existence of an almost holomorphic Lagrangian fibration in dimension
four.

(ii) A different approach to the existence of an almost holomorphic Lagrangian fibration with
T as a fibre was provided by Amerik–Campana [AC13]. The four-dimensional case had been
discussed before by Amerik [Ame12].

(iii) Hwang–Weiss [HW13] deal with the projective case and proved the existence of an
almost Lagrangian fibration with fibre T . Combined with techniques of [GLR13] this resulted
in a complete answer.

2. Cohomology of the base and cohomology of the fibre

The aim of this section is to prove the following result.

Theorem 2.1. Assume X //B is a fibration and let Xt be a smooth fibre. Then

H˚pPn,Qq » H˚pB,Qq and H˚pPn,Qq » Im pH˚pX,Qq //H˚pXt,Qqq .

The first isomorphism for X projective and B smooth is originally due to Matsushita [Mat05],
see Remark 1.7. The proof we give here is a version of the one by Shen and Yin [SY18] that
works without assuming X projective. Note also that we do not assume that the base B is
smooth.

10Again, the projectivity assumption can presumably be dropped by applying results of Saito.
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The second isomorphism in degree two is essentially due to Oguiso [Ogu09], relying on results
of Voisin [Voi92]. The paper by Shen and Yin [SY18] contains two proofs of the general result,
one using the sl2-representation theory of the perverse filtration and another one, due to Voisin,
relying on classical Hodge theory.

The proof we shall give avoids the perverse filtration as well as the various sl2 ˆ sl2-actions
central for the arguments in [SY18]. The discussion below also proves the second result in
[SY18, Thm. 0.2], namely the equality

phi,jpXq “ hi,jpXq

between the classical and perverse Hodge numbers, see Section 2.3. How it fits into the setting
of P“W is explained in Section 3.

2.1. Algebraic preparations. To stress the purely algebraic nature of what follows we shall
use the shorthand H˚ :“ H˚pX,Cq and consider it as a graded C-algebra.

Consider a non-trivial, isotropic element β of degree two, i.e. 0 ‰ β P H2 with qpβq “ 0.
Then, according to Verbitsky and Bogomolov [Bog96, Ver96], one has

βn ‰ 0 and βn`1 “ 0.

In particular, multiplication with β defines on H˚ the structure of a graded Crxs{pxn`1q-algebra
with x of degree two.

All that is needed in the geometric applications is then put into the following statement.

Proposition 2.2. For every two non-zero, isotropic elements β, β1 P H2, the induced graded
Crxs{pxn`1q-algebra structures on H˚ are isomorphic.

Proof. Consider the complex algebraic group of automorphisms AutpH˚q of the graded C-
algebraH˚ and its image G under AutpH˚q //GlpH2q. Clearly, the assertion holds if β, β1 P H2

are contained in the same G-orbit. As any two non-zero isotropic classes β, β1 are contained in
the same orbit of the complex orthogonal group OpH2, qq, it suffices to show that OpH2, qq Ă G.

Now, monodromy defines a discrete subgroup in AutpH˚q and its image in GlpH2q contains a
finite index subgroup of the integral orthogonal group OpH2pX,Zqq. Since the latter is Zariski
dense in OpH2, qq, we indeed have OpH2, qq Ă G. �

Remark 2.3. The arguments can be adapted to prove the following statement: Assume β, β1 P
H2 satisfy qpβq “ qpβ1q ‰ 0. Then the induced graded Crxs{px2n`1q-algebra structures on H˚,
given by letting x act by multiplication with β resp. β1, are isomorphic.

For 0 ‰ β P H2 with qpβq “ 0 we let

Hd
β-pr :“ Ker

´

βn´d`1 : Hd // H2n´d`2
¯

,
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which is called the space of β-primitive forms. Note, however, that β does not satisfy the Hard
Lefschetz theorem for which we would need to define primitive classes as elements in the kernel
of β2n´d`1.

We will also need the two spaces

(2.1) P0H
d :“ Im

ˆ

À

i β
i ¨Hd´2i

β-pr
// Hd

˙

and P̄0H
d :“ Coim

´

βn : Hd // Hd`2n
¯

.

It turns out that the map in the definition of P0 is injective, but this is not needed for the
argument. Note that P0H

d Ă Kerpβnq Ă Hd for all d ą 0.

Corollary 2.4. The dimensions of the spaces P0H
d and P̄0H

d are independent of the choice
of the non-trivial, isotropic class β P H2. �

2.2. Geometric realizations. Let us begin by looking at the obvious choice for β provided
by the symplectic form σ P H0pX,Ω2

Xq Ă H2pX,Cq.

Lemma 2.5. For β “ σ one has

P0H
d “ H0pX,Ωd

Xq Ă HdpX,Cq and P0H
˚ » H˚pPn,Cq

and
P̄0H

d » HdpX,OXq and P̄0H
˚ » H˚pPn,Cq.

Proof. Concerning the first equality, one inclusion is obvious: Since H0pX,OXq “ H0pX,Cq “
H0
σ-pr, we have H0pX,Ωd

Xq “ C ¨σd{2 Ă P0H
d for d even and H0pX,Ωd

Xq “ 0 for d odd. For the
other direction, use that σn´p : Ωp

X
„ //Ω2n´p

X is an isomorphism and that, therefore, for q ą 0

the composition

(2.2) Hp,qpXq
σn´d`1

// H2n´p´2q`2,qpXq
σq´1

// H2n´p,qpXq

is injective. Hence, σn´d`1 is injective, i.e. Hp,qpXq XHd
σ-pr “ 0 for q ą 0, which is enough to

conclude.
For the second part observe that Kerpσnq X

À

Hp,qpXq “
À

pą0H
p,qpXq. �

As an immediate consequence of Corollary 2.4 one then finds.

Corollary 2.6. For any non-trivial, isotropic class β P H2 there exist isomorphisms

P0H
˚ » H˚pPn,Cq and P̄0H

˚ » H˚pPn,Cq

of graded vector spaces. �

Next let us consider a Lagrangian fibration f : X //B. We consider the class β :“ f˚α,
which is isotropic since αn`1 “ 0 for dimension reasons.

Lemma 2.7. For β “ f˚α there exists an inclusion

f˚H˚pB,Cq Ă P0H
˚pX,Cq.
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Proof. The assertion follows from the Lefschetz decomposition

HdpB,Cq “ IHdpB,Cq “
à

i

αi ¨ IHd´2ipB,Cqpr

on B, with respect to the unique ample class α P H2pB,Qq, cf. [dCM05, Thm. 2.2.3.(c)], and
the observation that pull-back via f maps IHd´2ipB,Cqpr into Hd´2i

β-pr . �

Corollary 2.4 then immediately yields

H˚pB,Cq » P0H
˚ » H˚pPn,Cq.

cf. Remark 1.7, which proves the first part of Theorem 2.1.

We keep the isotropic class β “ f˚α and observe that the natural inclusion

(2.3) Ker
´

HdpX,Qq // HdpXt,Qq
¯

Ă Ker
´

rXts : H
dpX,Qq // Hd`2npX,Qq

¯

.

is actually an isomorphism.

Lemma 2.8 (Voisin). Let β “ f˚α be as before and Xt Ă X a smooth fibre of f . Then

Kerpβnq Ă Ker
´

HdpX,Qq // HdpXt,Qq
¯

.

Proof. The result is proved in [SY18, App. B]. The assertion is shown to be equivalent to
the statement that the intersection pairing on the fibre is non-degenerate on the image of the
restriction map, which in turn is deduced from Deligne’s global invariant cycle theorem. �

The result yields a surjection

π : P̄0H
˚ // // Im pH˚pX,Cq //H˚pXt,Cqq .

Since P̄0H
˚ » H˚pPn,Cq by Corollary 2.6, its image in H˚pXt,Cq is the subring generated

by the restriction of a Kähler class. Hence, π is an isomorphism, which proves the second
isomorphism in Theorem 2.1. However, it is easier to argue directly, as the equality holds in
Lemma 2.8 by (2.3).

2.3. As in Section 2.1, we consider the abstract algebraic situation provided byH˚ :“ H˚pX,Cq
and the additional structure induced by the choice of a non-zero isotropic class β P H2. The
two spaces P0H

d and P̄0H
d defined there, both depending on β, are part of a filtration

P0H
˚ Ă P1H

˚ Ă ¨ ¨ ¨ Ă P2n´1H
˚ Ă P2nH

˚ “ H˚,

where P0H
d is as defined before and P̄0H

d “ Hd{Pd´1H
d.

In general, one defines

PkH
d :“

ÿ

iě0

βi ¨Ker
´

βn´pd´2iq`k`1 : Hd´2i //H2n´d`2i`2k`2
¯

.

If we want to stress the dependence of β, we write P βk H
d. The graded objects of this filtration

GrPi H
˚ :“ PiH

˚{Pi´1H
˚,
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in particular GrdH
d “ P̄0H

d, are used to define the Hodge numbers of the filtration as
Phi,j :“ dim GrPi H

i`j .

As a further consequence of Proposition 2.2, one has

Corollary 2.9. The Hodge numbers Phi,j of the filtration PiH˚ are independent of the choice
of the isotropic class β P H2. �

Let us quickly apply this to two geometric examples.

(i) First, consider β “ σ̄ P H2pX,OXq » H0,2pXq Ă H2pX,Cq, the anti-holomorphic sym-
plectic form. Then the filtration gives back the Hodge filtration, i.e.

P σ̄k H
d “

à

pěk

Hp,d´ppXq.

To see this, one needs to use the Lefschetz decomposition with respect to σ̄:

HqpX,Ωp
Xq “

à

q´`ěpq´nq`

σ̄q´` ¨H2`´qpX,Ωp
Xqσ̄-pr.

Note that from this example one can deduce that indeed for any choice of β one has P βk H
d “ 0

for k ă 0 and P βk H
d “ Hd for k ě d.

(ii) For the second example consider a Lagrangian fibration f : X //B and let β be the pull–
back of an ample class α P H2pB,Qq. The induced filtration is called the perverse filtration11

and the Hodge numbers are denoted phi,jpXq.

Then [SY18, Thm. 0.2] becomes the following immediate consequence of Proposition 2.2 or
Corollary 2.9.

Corollary 2.10 (Shen–Yin). For any Lagrangian fibration f : X //B the Hodge numbers of
the perverse filtration equal the classical Hodge numbers:

phi,jpXq “ hi,jpXq.

3. P“W

P“W for compact hyperkähler manifolds asserts that the perverse filtration associated with a
Lagrangian fibration can be realised as the weight filtration of a limit mixed Hodge structure of
a degeneration of compact hyperkäher manifolds. It boils down to the observation that the cup
product by a semiample not big class and a logarithmic monodromy operator define nilpotent
endomorphisms in cohomology which are not equal, but up to renumbering induce the same
filtration. Inspired by P“W, we provide some geometric explanation or conjecture concerning
the appearance of the cohomology of Pn in the introduction and in Theorem 2.1.

11The classical definition of the perverse filtration for the constructible complex Rf˚QX due to [BBDG18] or
[dCM05, Def. 4.2.1] coincides with the present one; see [dCM05, Prop. 5.2.4.(39)].
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3.1. The weight filtration of a nilpotent operator.

Definition 3.1. Given a nilpotent endomorphism N of a finite dimensional vector space H˚ of
index l, i.e. N l ‰ 0 and N l`1 “ 0, the weight filtration of N centred at l is the unique increasing
filtration

W0H
˚ ĂW1H

˚ Ă ¨ ¨ ¨ ĂW2l´1H
˚ ĂW2lH

˚ “ H˚,

with the property that (1) NWk ĎWk´2, and denoting again N the induced endomorphism on
graded pieces, (2) Nk : GrWl`kH

˚ » GrWl´kH
˚ for every k ě 0, see [Del80, §1.6].

The weight filtration of N on H˚ can be constructed inductively as follows: first let W0 :“

ImN l, andW2l´1 :“ kerN l. We can replace H˚ withW2l´1{W0, on which N is still well-defined
and N l “ 0. Then define

W1 :“ inverse image in W2l´1 of ImN l´1 in W2l´1{W0,

W2l´2 :“ inverse image in W2l´1 of kerN l´1 in W2l´1{W0.

Continuing inductively, we obtain the unique (!) filtration on H˚ satisfying (1) and (2).
By the Jacobson–Morozov theorem, the nilpotent operator N can be extended to an sl2-triple

with Cartan subalgebra generated by an element HN which is unique up to scaling. By the
representation theory of sl2-triple, there exists a decomposition of H˚

H˚ “
l

à

λ“´l

H˚λ ,

called weight decomposition, with the property that HN pvq “ λv for all v P H˚λ . In particular,
the decomposition splits the weight filtration of N

WkH
˚ “

´l`k
à

λ“´l

H˚λ .

Let us apply this to some geometric examples.

(i) Any cohomology class ω P H2pX,Cq define a nilpotent operator Lω on H˚ :“ H˚pX,Cq by
cup product. If ω is Kähler, then the Hard Lefschetz theorem implies that the weight filtration
on H˚ centred at 2n is

Wω
k H

˚ “
à

iě4n´k

H ipX,Cq.

(ii) Consider a Lagrangian fibration f : X //B and let β be the pull–back of an ample class
α P H2pB,Qq. Up to renumbering, the weight filtration associated with the class β on H˚

centred at n coincides with the perverse filtration, see Section 2.3

W β
k H

dpX,Qq “ Pd`k´2nH
dpX,Qq.

Indeed, the action of β gives the morphisms

β : PkH
dpX,Qq //PkH

d`2pX,Qq βj : GrPi H
n`i´j » GrPi H

n`i`j .
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The isomorphism is called perverse Hard Lefschetz theorem [dCM05, Prop. 5.2.3]. By Proposi-
tion 2.2, this corresponds to the isomorphism σ̄j : Hn´jpX,Ωi

Xq » Hn`jpX,Ωi
Xq.

(iii) Let π : X //∆ be a projective degeneration of hyperkähler manifolds over the unit disk
which we assume to be semistable, i.e. the central fibre X0 is reduced and snc. For t P ∆˚,
let N denote the logarithmic monodromy operator on H˚pXt,Qq. The weight filtration of N
centred at d on HdpXt,Qq, denoted WkH

dpXt,Qq, is the weight filtration of the limit mixed
Hodge structure associated to π, see [PS08, Thm. 11.40].

The degeneration π : X //∆ is called of type III if N2 ‰ 0 and N3 “ 0 on H2pXt,Qq. In
this case, the limit mixed Hodge structure is of Hodge–Tate type by [Sol20, Thm. 3.8], and in
particular GrW2i`1H

˚pXt,Qq “ 0. Then the even graded pieces of the weight filtration are used
to define the Hodge numbers

whi,jpX q :“ dim GrW2iH
i`jpXt,Qq.

The Hodge numbers wh0,jpX q have a clear geometric description. The dual complex of
X0 “

ř

∆i, denoted DpX0q, is the CW complex whose k-cells are in correspondence with the
irreducible components of the intersection of pk ` 1q divisors ∆i. The Clemens–Schmid exact
sequence then gives

(3.1) wh0,jpX q “ dimHjpDpX0q,Qq,

see for instance [Mor84, §3, Cor. 1 & 2].
In order to show P“W, namely that the filtrations (ii) and (iii) can be identified, we need

the notion of hyperkähler triples with their associated sop5,Cq-action.

3.2. Hyperkähler triples. A hyperkähler manifold is a Riemannian manifold pX, gq which is
Kähler with respect to three complex structures I, J , and K, satisfying the standard quaternion
relations I2 “ J2 “ K2 “ IJK “ ´Id. The corresponding hyperkähler triple is the triple of
Kähler classes in H2pX,Cq ˆH2pX,Cq ˆH2pX,Cq given by

pωI , ωJ , ωKq :“ pgpI¨, ¨q, gpJ ¨, ¨q, gpK¨, ¨qq.

The set of all hyperkähler triples on X form a Zariski-dense subset in

D˝ “ tpx, y, zq : qpxq “ qpyq “ qpzq ‰ 0, qpx, yq “ qpy, zq “ qpz, xq “ 0u.

In particular, all algebraic relations that can be formulated for triples in D˝ and which hold for
triples of the form pωI , ωJ , ωKq hold in fact for all px, y, zq P D˝, see [SY18, Prop. 2.3].

3.3. The sop5,Cq-action. Recall the scaling operator

H : H ipX,Cq //H ipX,Cq Hpvq “ pi´ 2nqv.
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By the Jacobson–Morozov theorem, to any ω P H2pX,Cq of Lefschetz type we can associate a
sl2-triple pLω, H,Λωq. Let p “ px, y, zq P D˝. The sl2-triples associated to x, y and z generate
the Lie subalgebra gp Ă EndpH˚pX,Cqq, isomorphic to sop5,Cq, with Cartan subalgebra

(3.2) h “ xH,H 1p :“
?
´1rLy,Λzsy.

There is an associated weight decomposition

(3.3) H˚pX,Cq “
à

i,j

H i,jppq

such that for all v P H i,jppq we have

Hpvq “ pi` j ´ 2nqv H 1ppvq “ pj ´ iqv.

The following sl2-triples in gp

(3.4) Ep :“
1

2
pLy ´

?
´1Lzq Fp :“

1

2
pΛy `

?
´1Λzq Hp :“

1

2
pH `H 1pq,

(3.5) E1p :“ rEp,Λxs F 1p :“ rLx, Fps H 1p

induce the same weight decomposition, since for any v P H i,jppq we have

Hppvq “ pj ´ nqv H 1ppvq “ pj ´ iqv.

Remark 3.2. The previous identities for hyperkähler triples are due to Verbitsky. The result
for a general pair p “ px, y, zq P D˝ follows from the density of hyperkähler triples in D˝, and
the fact that the sl2-representation H˚pX,Cq associated to x, y and z have the same weights,
since x, y, and z are all of Lefschetz type, see [SY18, §2.4].

3.4. P“W. The main result of [HLSY19] is the following

Theorem 3.3 (P“W). For any Lagrangian fibration f : X //B, there exists a type III projec-
tive degeneration of hyperkähler manifolds π : X //∆ with Xt deformation equivalent to X for
all t P ∆˚, together with a multiplicative isomorphism H˚pX,Qq » H˚pXt,Qq, such that

PkH
˚pX,Qq “W2kH

˚pXt,Qq “W2k`1H
˚pXt,Qq.

Proof. Let β “ f˚α be the pullback of an ample class α P H2pB,Qq, and η P H2pX,Qq with
qpηq ą 0. Since βn`1 “ 0, we have qpβq “ 0. Up to replacing η with η` λβ for some λ P Q, we
can suppose that qpηq “ 0. Set

y “ β ` η z “ ´
?
´1pη ´ βq.

By scaling a nonzero vector x P H2pX,Cq perpendicular to y and z with respect to q, we obtain
ppfq “ px, y, zq P D˝ with

β “
1

2
py ´

?
´1zq.
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Soldatenkov showed that the nilpotent operator E1ppfq is the logarithmic monodromy N of
a projective type III degeneration π : X //∆ of compact hyperkähler manifolds deformation
equivalent to X, see [Sol20, Lem. 4.1, Thm. 4.6]12.

The weight decomposition for the sl2-triple (3.4) gives the perverse filtration associated to
f , since Eppfq acts in cohomology via the cup product by β. The weight decomposition for the
sl2-triple (3.5) gives the weight filtration of the limit mixed Hodge structure associated to π,
because E1ppfq “ N . Hence, by Section 3.3, this yields P“W. �

P“W also yields alternative proofs of Corollary 2.10 and Theorem 2.1.

Corollary 3.4 (Numerical P“W). phi,jpXq “ whi,jpX q “ hi,jpXq.

Proof. By Theorem 3.3 we obtain phi,jpXq “ whi,jpX q. The equality phi,jpXq “ hi,jpXq is
Corollary 2.10.

Alternatively, one can argue as follows. By [Sol20, Thm. 3.8], the limit mixed Hodge structure
pH˚limpXt,Qq » H˚pXt,Cq,W˚, F˚q associated to π is of Hodge–Tate type, and so whi,jpX q “
dimC GrFi H

i`j
lim pXt,Cq. By the classical result [PS08, Cor. 11.25], we have dimC GrFi H

i`j
lim pXt,Cq “

hi,jpXtq. We conclude that phi,jpXq “ hi,jpXtq “ hi,jpXq. �

Corollary 3.5. At the boundary of the Hodge diamond of X, P“W gives13

dimHjpB,Qq “ ph0,jpXq “ h0,jpXq “ dimHjpPnq,

dimHjpDpX0q,Qq “ wh0,jpX q “ h0,jpXq “ dimHjpPnq,

dim ImpH ipX,Qq //H ipXt,Qqq “ phi,0pXq “ hi,0pXq “ dimH ipPnq.

In the following, we provide conjectural conceptual explanations for these identities.

3.5. A conjectural explanation I. Assume that X is Calabi–Yau. This can be always
achieved via a MMP, at the cost of making X0 mildly singular (precisely divisorial log ter-
minal), see [Fuj11]. Under this assumption the homeomorphism class of DpX0q is well-defined.

Then the SYZ conjecture predicts that Xt carries a special Lagrangian fibration f : Xt //DpX0q

with respect to a hyperkähler metric. By hyperkähler rotation [Hit00, §3], f should become a
holomorphic Lagrangian fibration f : X //B on a hyperkähler manifold X deformation equiv-
alent to Xt. It is conjectured that the base of a Lagrangian fibration on X is a projective space.
So in brief, we should have the homeomorphisms

(3.6) DpX0q » Pn » B.

12One can use the Lie algebra structure of the LLV algebra to compare the present description of E1ppfq with
that of [Sol20, Lem. 4.1], cf. [KSV19, Lem. 3.9]. Mind that Soldatenkov’s existence result is not constructive:
it relies on lattice theory and the geometry of the period domain, and does not produce an explicit type III
degeneration.

13The identity dimHj
pDpX0q,Qq “ dimHj

pPn
q has been first proved in [KLSV18, Thm. 7.13].
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The latter equality is known to hold if n ď 2 , see §1.3, or conditional to the smoothness of the
base [Hwa08]. The former equality is known for degenerations of Hilbert schemes or generalised
Kummer varieties [BM19]. In both case, the most delicate problem is to assess the smoothness
of DpX0q or B. From this viewpoint, the identity

dimHjpDpX0q,Qq “ dimHjpPn,Qq “ dim IHjpB,Qq “ dimHjpB,Qq.

is a weak cohomological evidence for the conjecture (3.6).

3.6. A conjectural explanation II. We conjecture that the equality phi,0pX q “ whi,0pX q is
the result of the identification of two Lagrangian tori up to isotopy.

Definition 3.6. Let x be a zero-dimensional stratum of X0. Choose local coordinates z0, . . . , z2n

centered at x with πpzq “ z0 ¨ . . . ¨ z2n. For fixed radius 0 ă ri ! 1 and t “
ś2n
i“0 ri, a profound

torus T Ă Xt is

T “ tpr0e
iθ0 , . . . , r2ne

iθ2nq : θ0, . . . , θ2n P r0, 2πq, θ0 ` ¨ ¨ ¨ ` θ2n ´ argptq P Zu.

Remark 3.7. The ambient-isotopy type of T Ă Xt does not depend on the choice of the
coordinates: T is homotopic to UxXXt, where Ux is a neighbouhood of x in X . More remarkably,
if X is Calabi–Yau, then the isotopy class of T in Xt is independent of x. This follows at once
from Kollár’s notion of P1-link (see [Kol13, Prop. 4.37]or [Har19, Lem. 3.10]), or equivalently
because profound tori are fibre of the same smooth fibration, by adapting [EM21, Prop. 6.12.]

Conjecture 3.8 (Geometric P“W). For any Lagrangian fibration f : X //B with general
fibre T , there exists a projective minimal dlt type III degeneration of hyperkähler manifolds
π : X //∆ with Xt deformation equivalent to X for all t P ∆˚, such that T is isotopic to a
profound torus T.

The conjecture is inspired by the geometric P“W conjecture for character varieties, see the
new version of [MMS18] (to appear soon). Lemma 2.8 and (2.1) give

Pd´1H
dpX,Qq “ Ker

´

HdpX,Qq //HdpT,Qq
¯

.

If X0 is snc (or ideally adapting [Har19, Thm. 3.12] to the dlt setting), one obtain that

W2d´1H
dpXt,Qq “ Ker

´

HdpXt,Qq //HdpT,Qq
¯

.

Therefore, Conjecture 3.8 would give a geometric explanation of P“W at the highest weight

Pd´1H
dpX,Qq “W2d´1H

dpXt,Qq.

It is not clear what should be a geometric formulation of P“W which can explain the cohomo-
logical statement in all weights.

Recent advance in the SYZ conjecture due to Yang Li [Li20] suggests that profound tori
can be made special Lagrangian, up to a conjecture in non-archimedean geometry. Since few
months ago, the existence of a single special Lagrangian torus on Xt was a complete mystery, see
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[Gro13, §5, p.152]. Note also that Li’s result is compatible with the expectation in symplectic
geometry [Aur07, Conj. 7.3]. Profound tori appear as general fibres of the SYZ fibration that Li
constructed onto an open set which contains an arbitrary large portion of the mass of Xt with
respect to a Calabi–Yau metric, still modulo the non-archimedean conjecture. It is curious (but
maybe not surprising) that also the previously quoted results [HX19] and [BM19] highly rely
on non-archimedean techniques.

3.7. Multiplicativity of the perverse filtration. P“W implies that the perverse filtration
on H˚pX,Qq is compatible with cup product.

Corollary 3.9 (Multiplicativity of the perverse filtration). Assume f : X //B is a fibration.
Then the perverse filtration on H˚pX,Qq is multiplicative under cup product, i.e.

Y : PkH
dpX,Qq ˆ Pk1Hd1pX,Qq //Pk`k1H

d`d1pX,Qq.

Proof. By P=W, it is sufficient to show that the weight filtration is multiplicative. To this
end, endow the tensor product H˚pXt,QqbH˚pXt,Qq with the nilpotent endomorphism Nb :“

N b 1` 1bN , and call Wb the weight filtration of Nb. Since the monodromy operator eN is
an algebra homomorphism of H˚pXt,Qq, N is a derivation, i.e.

NpxY yq “ NxY y ` xYNy “ YpNbpxb yqq.

As a consequence, the construction of the weight filtration (cf. Section 3.1) yields

YpWb
k pH

ipXt,Qq bHjpXt,Qqqq ĎWkH
i`jpXt,Qq.

Together with [Del80, 1.6.9.(i)] which says that

Wb
k pH

ipXt,Qq bHjpXt,Qqq “
à

a`b“k

WaH
ipXt,Qq bWbH

jpXt,Qq,

we conclude that the weight filtration is multiplicative. Alternatively see [HLSY19, §5]. �

Remark 3.10. For an arbitrary morphism of projective varieties or Kähler manifolds, the
perverse filtration is not always multiplicative [Zha17, Exa. 1.5], but it is so for instance if it
coincides with the Leray filtration, or if P“W holds. Indeed, the Leray filtration and the weight
filtration of the limit mixed Hodge structure are multiplicative.

It is natural to ask whether the multiplicativity holds at a sheaf theoretic level, for Rf˚QX ,
or over an affine base. The motivation for this comes from the celebrated P“W conjecture for
twisted character varieties [dCHM12], which has been proved to be equivalent to the conjectural
multiplicativity of the perverse filtration of the Hitchin map, namely a proper holomorphic
Lagrangian fibration over an affine base, see [dCMS19, Thm. 0.6]. From this viewpoint, it is
remarkable that Shen and Yin give a proof of the multiplicativity in the compact case [SY18,
Thm. A.1] which uses only the representation theory of slp2q-triples, with no reference to the
weight filtration.
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3.8. Nagai’s conjecture for type III degenerations. Let π : X //∆ be a projective de-
generation of hyperkähler manifolds with unipotent monodromy Td on HdpXt,Qq. The index
of nilpotence of Nd :“ log Td is

nilppNdq “ maxti : N i
d ‰ 0u.

It is known that H2pXt,Qq determines the Hodge structure of HdpXt,Qq by means of the LLV
representation, see [Sol19]. The Nagai’s conjecture investigates to what extent nilppN2q deter-
mines nilppNdq. The ring structure of the subalgebra generated by H2 implies the inequality
nilppN2kq ě k ¨ nilppN2q, but equality is expected.

Conjecture 3.11 (Nagai). nilppN2kq “ k ¨ nilppN2q for k ď 2n.

P“W yields a simple proof of Nagai’s conjecture for type III degenerations, i.e. nilppN2q “ 2.
Given a Hodge structure H “ ‘Hp,q, denote levelpHq the level of H, i.e. the largest difference
|p´ q| for which Hp,q ‰ 0, or equivalently the length of the Hodge filtration on H.

Proposition 3.12. Let π : X //∆ be a type III projective degeneration of hyperkähler manifolds
with unipotent monodromy. Assume b2pXtq ě 5. Then

nilppNdq “ levelpHdpXt,Cqq.

For k ď 2n, the following identities hold:

(i) nilppN2kq “ 2k “ k ¨ nilppN2q,
(ii) nilppN2k`1q “ 2k ´ 1, if H3pXt,Cq ‰ 0.

Remark 3.13. To show (i), we essentially follow [KLSV18, Thm. 6.5]. The statement (ii) is
proved in [Sol20, Prop. 3.15], without the assumption b2pXtq ě 5. Here we present an alternative
simple proof of (ii) which avoids the LLV representation.

Nagai’s conjecture is known to hold for degenerations of type I and III. For type II, there
exists a bound: k ď nilppN2kq ď 2k ´ 2 for 2 ď k ď n ´ 1, see [KLSV18, Thm. 6.5]. The full
conjecture holds for all the known deformation families of hyperkähler manifolds by [GKLR19,
Thm. 1.13]

Proof. Let ld be half of the length of the weight filtration ofNd, i.e. ld :“ minti : W2iH
dpXt,Qq “

HdpXt,Qqu. By Definition 3.1, we have nilppNdq “ ld.
For any type III degeneration of Hodge structure of hyperkähler type with unipotent mono-

dromy, we know by the proof of Theorem 3.3, that the logarithmic monodromy N˚ is of the
form E1p “ rβ,Λxs for some β and x in H2pX,Qq with qpβq “ 0 (here we use the assumption
b2pXtq ě 5, see [Sol20, §4.1]). Then, by Corollaries 2.9 and 3.4, we have ld “ levelpHdpXt,Cqq.
Hence, nilppNdq “ levelpHdpXt,Cqq.

Finally, statements (i) and (ii) are equivalent to (i) H2k,0pXtq “ Cσ ‰ 0, and (ii) H2k,1pXtq ‰
0 if H2,1pXtq ‰ 0, which follows from (2.2). �
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4. Examples and counterexamples

Example 4.1. 14 In [Nam01, Ex. 1.7.(iv)] Namikawa exhibits an example of a submanifold T
of a hyperkähler manifold X which is isomorphic to a complex torus, but is not Lagrangian
(actually it is symplectic).

Let E, F be elliptic curve defined by the cubic equation f and g respectively, and let Y Ď P5

be the cubic fourfold given by the equation h :“ fpx0, x1, x2q ` gpy0, y1, y2q “ 0. The cyclic
group G :“ Z{3Z acts on Y by

φζ : rx0 : x1 : x2 : y0 : y1 : y2s
� // rx0 : x1 : x2 : ζy0 : ζy1 : ζy2s,

where ζ is a third root of unity. The induced action on the Fano variety of lines X is symplectic,
i.e. φ˚ζσ “ σ for σ P H0pX,Ω2

Xq. Indeed, by [BD85] there is a G-equivariant isomorphism
H0pX,Ω2

Xq » H1pY,Ω3
Y q. Denoting Ω the canonical section of H0pP5,KP5p6qq, H1pY,Ω3

Y q is
generated by the G-invariant residue ResY pΩ{h

2q, and so the action is symplectic. In particular,
the fixed locus T of the G action on X is a symplectic submanifold. T is given by the set of
lines which join two points on Y X ty0 “ y1 “ y2 “ 0u » E and Y X tx0 “ x1 “ x2 “ 0u » F

respectively. Hence, T » E ˆ F . We conclude that T is a symplectic torus embedded in the
hyperkähler manifold X.

Example 4.2. There exists a Lagrangian submanifold L of a hyperkähler manifold X with

ImpH2pX,Qq //H2pL,Qqq fi Q.

Proof. Let f : S //P1 be an elliptic K3 surface with smooth fibre E. Define L Ď X :“ Sr2s to
be the locus of non-reduced length-two subschemes of S supported on E, which is isomorphic
to the P1-bundle PpΩ1

S |Eq over E. Then, L is an irreducible component of the fibre of the
Lagrangian fibration f r2s : Sr2s //Sp2q //P2, thus L is Lagrangian. The exceptional divisor
Exc of the Hilbert–Chow morphism Sr2s //Sp2q restricts to a multiple of the tautological line
bundle OPpΩ1

S |Eq
p´1q on L. Therefore, the second cohomology group H2pLq is generated by the

restriction of Exc and the pullback of an ample line bundle of Sp2q. �

Example 4.3. There exists a Lagrangian submanifold L of a hyperkähler manifold X with

ImpH2pX,Qq //H2pL,Qqq » Q and ImpH˚pX,Qq //H˚pL,Qqq fi H˚pPn,Qq.

Proof. Let C be a smooth curve of genus two in an abelian surface A. Consider ModdpAq a
moduli space of stable 1-dimensional sheaves on A supported on the curve class

2rCs P H2pA,Zq

and Euler characteristic ´1. The fibre of the albanese morphismModdpAq //Aˆ pA is a compact
hyperkähler manifold X deformation equivalent to a generalised Kummer variety of dimension

14Thanks to Thorsten Beckmann for pointing out this example.
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six. Taking Fitting supports defines a Lagrangian fibration

X //P3 “ |2C|.

The fibre over the curve 2C contains as irreducible component the moduli space L of rank-two
vector bundles on C of degree one, which is isomorphic to the intersection of two quadrics in P5.
The cohomology H˚pXq is generated by so-called tautological classes, and H˚pLq is generated
by their restrictions, see [Mar02] and [New72, Thm. 1]. Therefore, we have

H˚pX,Qq // //H˚pL,Qq » H˚pP3,Qq ‘Q4r´3s fi H˚pP3,Qq.

�
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