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1. Introduction

In this thesis, we study special subvarieties, i.e., subvarieties containing a dense subset of
CM points, of the moduli space A5 of principally polarized abelian varieties of dimension five,
generically contained in the locus of intermediate Jacobians of cubic threefolds. The analogous
question for Jacobians of curves is related to a conjecture of Coleman–Oort and has been studied
by Shimura, Mostow, De Jong–Noot, Rohde, Moonen, Oort, Frediani, Ghigi and others.

Adapting methods of Frediani, Ghigi and Penegini [FGP15], we give a sufficient condition
ensuring that the closure of the image of a family of smooth cubic threefolds with prescribed
automorphisms via the period map is a special subvariety of A5 and classify the positive-
dimensional families of cubic threefolds satisfying our condition. In particular, we discover two
examples of positive-dimensional special subvarieties in the intermediate Jacobian locus that
contain the intermediate Jacobian of the Klein cubic threefold.

1.1. Before giving a more precise overview of the results of this thesis, let us discuss the
analogous question regarding the existence of special subvarieties generically contained in the
locus of Jacobians of curves. For details, see the expository article by Moonen and Oort [MO13].
Let Ag denote the coarse moduli space of principally polarized abelian varieties of dimension g.

In [Col87, Conj. 6], Coleman conjectured that for sufficiently large genus, there are only
finitely many curves admitting complex multiplication on their Jacobians. Using the André–
Oort Conjecture, recently proven by Tsimerman [Tsi18], one can reformulate the conjecture as
follows:

Conjecture 1.1 (Coleman–Oort). For g ě 8, there are no positive-dimensional special subva-
rieties Z Ď Ag generically contained in the Torelli locus.

Without the assumption on the genus, the conjecture fails. In [FGP15], Frediani, Ghigi and
Penegini establish a sufficient condition ensuring that the image of a family of Galois coverings
of the projective line via the period map is a special subvariety of Ag, generalizing earlier work
by de Jong, Noot, Rohde, Moonen, Oort and others, see [JN91], [Roh09], [Moo10] and [MO13].
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Using this criterion, they find exactly 30 positive-dimensional special subvarieties of Ag for
g ď 7 that are generically contained in the Torelli locus, see [FGP15, Thm. 1.9].

As it serves as the main inspiration for large parts of this note, we briefly describe their
criterion. A Galois covering C //P1 is determined by the ramification data m :“ pm1, . . . ,mrq,
the Galois group G, the branching points t1, . . . , tr P P1 and an epimorphism

θ : π1pP1ztt1, . . . , tru, t0q // //G.

Fixing the datum pm,G, θq and varying the points t1, . . . , tr P P1, one obtains a family of curves.
Let Zpm,G, θq denote the closure of the set of Jacobians of these curves in Ag. By the Torelli
theorem for curves, this an pr ´ 3q-dimensional subvariety of Ag.

Theorem 1.2 ([FGP15, Thm. 1.4]). Let pm,G, θq be a datum as above. Assume that

(‹) dimZpm,G, θq “ dimpS2H0pC,KCqqG.

Then, Zpm,G, θq is a special subvariety of PEL-type of Ag, generically contained in the Torelli
locus.

Building on ideas of de Jong and Noot [JN91], Moonen [Moo10] proved that for cyclic G

the condition (‹) is also necessary. Moreover, he gives a complete classification of those data
pm,Z{nZ, θq for which Zpm,Z{nZ, θq is a special subvariety.

1.2. The aim of this note is to study the analogous question for the locus of intermediate
Jacobians of cubic threefolds. For a general reference on cubic threefolds, we refer to [Huy23,
Ch. 5]. Denote by M :“ H0pP4,Op3qqsm{GLp5,Cq the coarse moduli space of smooth cubic
threefolds. Similar to the case of curves, the Torelli theorem for cubic threefolds asserts that
the map

J : M //A5,

sending a cubic threefold to its intermediate Jacobian is a locally closed embedding. A mon-
odromy computation due to Beauville [Bea85, Thm. 4] shows that the closure of JpMq in A5 is
not a special subvariety.1

For a finite group G Ď GLp5,Cq, we let MG denote the image of H0pP4,Op3qqGsm in the
moduli space of smooth cubic threefolds. In analogy to Theorem 1.2, we establish the following
criterion:

Theorem 1.3 (See Thm. 4.3). Assume that

(‹‹) dimMG “ dimpS2H2,1pY qqG

holds for some smooth cubic threefold Y P MG. Then, the closure of JpMGq in A5 is a special
subvariety of PEL-type.

1In [ACT11], Allcock, Carlson and Toledo give a description of the moduli space M of smooth cubic threefolds
as an open subset of a ten-dimensional complex ball quotient via an ”occult” period map. In particular, there
is a notion of special subvarieties of M with respect to this period map. However, note that if the closure of
Z Ď M in the ten-dimensional ball quotient is a special subvariety, then, in general, the closure of JpZq Ď A5

will not be a special subvariety of A5. For example, (the closure of) M is a special subvariety in the ”occult”
sense, but the closure of JpMq in A5 is not a special subvariety.
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By the work of Allcock, Carlson and Toledo [ACT02], it is known that the image of the locus
of cyclic cubic threefolds M cyc “ Mxdiagpζ3,1,1,1,1qy Ď M is a special subvariety, see also [Ach13].
Using the classification of groups acting faithfully on smooth cubic threefolds by Wei and Yu
[WY20], we show the following:

Theorem 1.4 (See Thm. 8.1). Let G Ď GLp5,Cq be a finite subgroup such that there is no
G ⊊ G1 Ď GLp5,Cq with MG1 “ MG. Then (‹‹) is satisfied if and only if one of the following
holds:

(i) dimMG “ 0;
(ii) MG Ď M cyc; or
(iii) MG is the unique family of cubic threefolds admitting a faithful action by Altp4q (resp.

Altp5q) such that MG contains the Klein cubic threefold.
In particular, in these cases, the closure of JpMGq in A5 is a special subvariety.

The locus of cyclic cubic threefolds is four-dimensional, while the loci mentioned in (iii) are
two-(resp. one-)dimensional. One can visualize the situation as follows, see Sec. 8 for more
explanation:

M

Y1

Y2

Y3

Y4 Y5

Y6

MAlt(5)

Mcyc

MAlt(4)

Figure 1. Families of cubic threefolds that give rise to special subvarieties in
the intermediate Jacobian locus (see Sec. 8)
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We conclude this introduction by remarking that (‹‹) is sufficient but not necessary for the
closure of JpMGq to be a special subvariety. In Remark 4.4, we give examples of groups G ⊊ H,
where G does not satify (‹‹), but MG “ MH and H satisfies (‹‹). In particular, the closure of
JpMGq “ JpMHq is a special subvariety.

It would be interesting to know whether there are examples of groups G Ď GLp5,Cq for
which JpMGq is a special subvariety but there is no subgroup H Ď GLp5,Cq with MG “ MH

satisfying (‹‹). On a more general note, it would be interesting to know whether there are
special subvarieties that are generically contained in the locus of intermediate Jacobians of
cubic threefolds but not contained in the examples that we found.

1.3. The plan of this thesis is as follows:
In Section 2, we recall the notion special subvarieties and a particular kind of special subva-

rieties arising from the existence of extra automorphisms.
In Section 3, we briefly recall the classification of automorphisms groups of smooth cubic

threefolds and liftings of such groups to GLp5,Cq.
Section 4 is devoted to the proof of Theorem 1.3.
In Section 5, we discuss the known special subvariety arising from the family of cyclic cubic

threefolds.
Section 6 is devoted to the discussion of new examples arising from certain subgroups of the

automorphism group of the Klein cubic threefold.
In Section 7, we show that there are no further families satisfying (‹‹).
In Section 8, we conclude Theorem 1.4.

Acknowledgments. I would like to thank my advisor Daniel Huybrechts for his precious
comments, advices and suggestions, and Bert van Geemen for his comments on an earlier
version of this paper. I would like to give special thanks to Ben Moonen for inviting me to
Nijmegen and for fruitful discussions on the results of this thesis. I am grateful for financial
support provided by ERC Synergy Grant HyperK, Grant agreement ID 854361.

2. Special subvarieties

Let Ag denote the coarse moduli space of g-dimensional principally polarized abelian varieties.
Recall, e.g., from [Kem12, Sec. 7], that the Siegel upper half-space

Hg “ tJ P GLp2g,Rq | J2 “ ´I, J˚E “ E,Epx, Jxq ą 0, @x ‰ 0u.

parametrizes complex structures on R2g{Z2g, compatible with the principal polarization given
by the standard alternating form E : Z2g ˆ Z2g //Z of type p1, . . . , 1q. The group Spp2g,Zq

acts properly discontinuous on Hg by conjugation and the quotient Spp2g,ZqzHg identifies with
Ag, see [Mil05, Sec. 6]. Denote the principally polarized abelian variety corresponding to a
complex structure J P Hg by pAJ ,ΘJq. Observe that AutpAJ ,ΘJq is the stabilizer of the action
of Spp2g,Zq at the point J P H.

On Hg, there is a natural variation of rational Hodge structures, with local system Hg ˆQ2g

and corresponding to the Hodge decomposition of C2g in ˘i eigenspaces for J . By definition, a
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subvariety Z Ď Ag is a special subvariety if it is the image of a Hodge locus of this variation of
Hodge structures, see [MO13].

Recall that an abelian variety A of dimension g admits complex multiplication if EndpAq bQ
contains a commutative Q-algebra of dimension 2g over Q. It turns out that zero-dimensional
special subvarieties of Ag precisely correspond to abelian varieties admitting complex multipli-
cation:

Proposition 2.1. A point in rAs P Ag forms a special subvariety if and only if the corresponding
abelian variety A admits complex multiplication. In this case, we call rAs P Ag a special point.

The André–Oort conjecture for Ag, recently proven by Tsimerman [Tsi18], building on the
work of Pila and many others, yields an alternative description for special subvarieties in terms
of special points.

Theorem 2.2 (André–Oort, [And89], [Tsi18]). A subvariety Z Ď Ag is a special subvariety if
and only if the set of special points in Z is a Zariski-dense subset.

Let G be a finite subgroup of Spp2g,Zq. One can show that the set of points of Hg fixed
by G forms a smooth connected submanifold HG

g Ď Hg, see [FGP15, Lem. 3.3]. Let ZG Ď Ag

denote the image of HG
g in Ag.

Proposition 2.3 ([FGP15, Prop. 3.7]). The subvariety ZG Ď Ag is a special subvariety (of
PEL-type).

Alternatively, the subvariety ZG Ď Ag can be described as the set of complex structures
J P Hg for which G Ď AutpAJ ,ΘJq Ď Spp2g,Zq.

One can compute the dimension of ZG as follows:

Proposition 2.4 ([FGP15, Lem. 3.8]). Let pA,Θq be a principally polarized abelian variety
corresponding to a point in ZG Ď Ag. Then, we have

dimZG “ dimpS2H0,1pAqqG.

Remark 2.5. Note that dimpS2H0,1pAqqG “ dimpS2H1,0pAqqG.

As zero-dimensional special subvarieties are nothing but CM points, we obtain the following
consequence:

Corollary 2.6 ([FGP15, Cor. 3.10]). Let pA,Θq be a principally polarized abelian variety and
let G Ď AutpA,Θq be a group of automorphisms. If

dimpS2H0,1pAqqG “ 0,

then A admits complex multiplication.

3. Cubic threefolds with extra automorphisms

First, recall the description of the coarse moduli space M of smooth cubic threefolds as an
affine quotient, see [Huy23, Ch. 3.2]: Let U :“ H0pP4,Op3qqsm Ď H0pP4,Op3qq denote the open
set of homogeneous cubic polynomials defining smooth cubic threefolds. Note that U is the
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affine variety SpecpAq, where the ring A is the homogeneous localization of the polynomial ring
CrH0pP4,Op3qq_s with respect to the discriminant ∆ P CrH0pP4,Op3qq_s80. Then, M is the
affine quotient

U “ SpecpAq //M “ SpecpAGLp5,Cqq “ U{GLp5,Cq.

3.1. Recall that every automorphism of a smooth cubic threefold extends to an automorphism
of the ambient projective space, see [Huy23, Sec. 1.3]. The groups acting faithfully on smooth
cubic threefolds have been classified by Wei and Yu in [WY20], see also [GL11].

Theorem 3.1 ([WY20]). A group G has a faithful action on some smooth cubic threefold if
and only if G is isomorphic to a subgroup of one of the following six groups:

pZ{3Zq4 ⋊ Symp5q, pppZ{3Zq2 ⋊ Z{3Zq ⋊ Z{4Zq ˆ Symp3q,

Z{24Z, Z{16Z, PSLp2, 11q, Z{3Z ˆ Symp5q.

Example 3.2. The following six smooth cubic threefolds realize the maximal automorphism
groups, see [WY20, Ex. 3.1]:

F AutpV pF qq

Y1 x3
0 ` x3

1 ` x3
2 ` x3

3 ` x3
4 pZ{3Zq4 ⋊ Symp5q

Y2 x3
0 ` x3

1 ` x3
2 ` 3p

?
3 ´ 1qx0x1x2 ` x3

3 ` x3
4 pppZ{3Zq2 ⋊ Z{3Zq ⋊ Z{4Zq ˆ Symp3q

Y3 x2
0x1 ` x2

1x2 ` x2
2x3 ` x3

3 ` x3
4 Z{24Z

Y4 x2
0x1 ` x2

1x2 ` x2
2x3 ` x2

3x4 ` x3
4 Z{16Z

Y5 x2
0x1 ` x2

1x2 ` x2
2x3 ` x2

3x4 ` x2
4x0 PSLp2, 11q

Y6 x3
0 ` x2

1x2 ` x2
2x3 ` x2

3x4 ` x2
4x1 Symp5q ˆ Z{3Z

Let us recall some definitions concerning the liftability of group actions on Pn, following
[OY19]:

Definition 3.3. Let F P Crx0, . . . , xnsd be a homogeneous polynomial of degree d and H a
finite subgroup of PGLpn ` 1,Cq. A subgroup G Ď GLpn ` 1,Cq is an F -lifting of H if G and
H are isomorphic via the natural projection GLpn ` 1,Cq // PGLpn ` 1,Cq and A.F “ F for
all A P G.

Automorphism groups of cubic threefolds always admit F -liftings:

Theorem 3.4 ([WY20, Thm. 4.11]). If Y “ V pF q Ď P4 is a smooth cubic threefold and H Ď

AutpY q Ď PGLp5,Cq is a group of automorphisms of Y , then there is an F -lifting G Ď GLp5,Cq

of H.

Remark 3.5. If 3 | |H|, then the F -lifting may not be unique. For example, if A P GLp5,Cq

is an element of order three then we have pζ3Aq.F “ A.F . However, if G1, G2 Ď GLp5,Cq are
two F -liftings of a finite group H Ď PGLp5,Cq, then xG1, ζ3id5y “ xG2, ζ3id5y Ď GLp5,Cq and
hence a cubic polynomial is G1-invariant if and only if it is G2-invariant, see [WY20, App. B].
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3.2. From now on, we assume that G Ď GLp5,Cq is a finite subgroup for which the projection
G // PGLp5,Cq is injective. As in the introduction, let MG Ď M denote the image of UG in
M “ U{GLp5,Cq.

Lemma 3.6. The subset MG Ď M is irreducible.

Proof. Immediately follows from the fact the UG is irreducible. l

Note that MG depends only on the conjugacy class of the subgroup G Ď GLp5,Cq. For an
abstract group H, let

ĂMH :“ trY s P M | H Ď AutpY qu Ď M

denote the subset of M consisting of all smooth cubic threefolds admitting a faithful action by
H. By Theorem 3.4, we have

ĂMH “
ď

H»GĎGLp5,Cq

MG.

As there are only finitely many subgroups of GLp5,Cq isomorphic to H up to conjugation, the
subset ĂMH Ď M has finitely many irreducible components.

We conclude this section by computing the dimension of MG in terms of UG and the central-
izer CGLp5,CqpGq of G in GLp5,Cq.

Lemma 3.7. If MG ‰ H, then

dimMG “ dimUG ´ dimCGLp5,CqpGq.

Proof. Note that the normalizer NGLp5,CqpGq naturally acts on UG by conjugation. The induced
morphism

UG{NGLp5,CqpGq //U{GLp5,Cq “ M

is finite by [Lun75, Main Thm.]. As the stabilizers of the action of the normalizer on UG are
finite, this implies that

dimMG “ dimUG ´ dimNGLp5,CqpGq.

Since the quotient NGLp5,CqpGq{CGLp5,CqpGq is isomorphic to a subgroup of the finite group
AutpGq, the claim follows. l

4. Special subvarieties in the locus of intermediate Jacobians

In this section, we consider special subvarieties generically contained in the locus of intermedi-
ate Jacobians of cubic threefolds. Let Y Ď P4 be a cubic threefold. Recall that the intermediate
Jacobian

JpY q :“
H1,2pY q

H3pY,Zq
»

H2,1pY q_

H3pY,Zq

is a principally polarized abelian variety of dimension five. Denote the distinguished theta
divisor by Ξ. Analogous to the case of curves, there is a Torelli theorem:

Theorem 4.1 (Clemens–Griffiths, Tyurin). Let Y, Y 1 Ď P4 be smooth cubic threefolds. Then
the following assertions are equivalent:

(i) There is an isomorphism Y » Y 1.
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(ii) There is an isomorphism of principally polarized abelian varieties pJpY q,Ξq » pJpY 1q,Ξ1q.

Furthermore, there is a natural isomorphism

AutpJpY q,Ξq » AutpY q ˆ x´1y.

Proof. See [CG72]. For the claim about automorphism groups, see [Zhe21, Prop. 1.6]. l

As in the case of curves, the image of the morphism

J : M //A5,

sending a smooth cubic hypersurface to the isomorphism class of its intermediate Jacobian, is
locally closed. Note that M is ten-dimensional and A5 is fifteen-dimensional.

The aim of this section is to prove Theorem 1.3. As a crucial input, let us first recall an
explicit description of the action of AutpY q on H2,1pY q.

Lemma 4.2. Let G Ď GLp5,Cq be a finite subgroup and denote the character of the standard
representation of G on C5 by χ. Let F P UG be a G-invariant cubic polynomial defining a
smooth cubic threefold Y Ď P4. Then, the character of the natural action of G on H2,1pY q_ is
given by detpχq b χ.

Proof. This is an application of Griffiths’ Residue calculus, cf. [Gri69] and [Bea09, Sec. 3]. Let
V :“ P4zY denote the complement of Y . The Gysin exact sequence yields a natural isomorphism

Res: H4pV,Cq
„ //H3pY,Cq.

Let Ω :“
ř4

i“0p´1qixidx0 ^ ¨ ¨ ¨ ^ xdxi ^ ¨ ¨ ¨ ^ dx4. The results of [Gri69] imply that the map

H0pP4,Op1qq //H3pY,Cq

L � // Res
LΩ

F 2

induces an isomorphism H0pP4,Op1qq
„ //H2,1pY q. Now use that F is G-invariant, that the

action of G on H0pP4,Op1qq has character χ and that G acts on Ω via determinants to conclude
the proof. l

In particular, we have

dimpS2H2,1pY qqG “ xS2pdetpχq b χq, χtrivy,

where x¨, ¨y denotes the inner product of characters.

Theorem 4.3 (Thm. 1.3). Let G Ď GLp5,Cq be a finite group and let χ denote the character
of the standard representation of G on C5. If MG ‰ H and

(‹‹) dimMG “ xS2pdetpχq b χq, χtrivy,

then the closure of JpMGq in A5 is a special subvariety (of PEL-type).
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Proof. Take a smooth cubic threefold Y “ V pF q Ď P4 such that F is G-invariant. By the Torelli
theorem, G acts faithfully on H3pY,Zq. Fixing an isomorphism pH3pY,Zq,Yq » pZ10, Eq, we
may thus identify G with a subgroup of Spp10,Zq. Note that the special subvariety ZG Ď A5

does not depend on this choice of isomorphism.
We claim that JpMGq Ď ZG. Let F 1 P UG be another G-invariant cubic polynomial defining

a smooth cubic threefold Y 1 Ď P4. Then, there is a path in UG connecting F and F 1. Parallel
transport along this path gives rise to an isomorphism pH3pY,Zq,Yq » pH3pY 1,Zq,Yq such
that the diagram

G SppH3pY,Zq,Yq

SppH3pY 1,Zq,Yq

»

commutes. The claim follows.
Since ZG is irreducible, it suffices to show that dim JpMGq “ dimZG. By the Torelli theorem,

we have dimMG “ dim JpMGq, and by [FGP15, Lem. 3.8], see Proposition 2.4, we have

dimZG “ dimpS2H2,1pY qqG.

As a consequence of Lemma 4.2, we have dimpS2H2,1pY qqG “ xS2pdetpχq b χq, χtrivy. Hence,
condition (‹‹) implies dim JpMGq “ dimZG and thus JpMGq “ ZG is a special subvariety. l

Remark 4.4. The condition (‹‹) is only sufficient but not necessary for JpMGq Ď A5 to be a
special subvariety. As an example, consider the cyclic group Z{3Z » G :“ xdiagpζ3, ζ3, 1, 1, 1qy Ď

GLp5,Cq. Then, dimMG “ 1 but dimZG “ 3.
However, one can show that, up to coordinate change, every Y P MG can be written as

V px30 ` x31 ` F px2, x3, x4qq Ď P4,

where F is a homogeneous cubic polynomial. In particular, the group

Z{3Z ˆ Z{3Z » H :“ xdiagpζ3, 1, 1, 1q,diagp1, ζ3, 1, 1, 1qy Ď GLp5,Cq

acts on Y and we have MG “ MH . A simple computation shows that H satisfies (‹‹). Thus,
JpMGq “ JpMHq is a special subvariety.

It would be interesting to known whether there are examples of groups G Ď GLp5,Cq for
which JpMGq is a special subvariety but JpMGq ‰ ZH for any H Ď Spp10,Zq.

Corollary 4.5. The intermediate Jacobians of the smooth cubic threefolds Y1, . . . , Y6 with max-
imal automorphism group, see Example 3.2, admit complex multiplication.

Proof. For an explicit description of the groups acting on Y1, . . . , Y6 see [WY20, Ex. 3.1]. The
case of the Klein cubic threefold Y5 will be recalled in Section 6. Using [GAP22], one verifies
that in these cases, we have

dimMG “ 0 “ xS2pdetpχq b χq, χtrivy

in the notation of Theorem 4.3. Hence, the intermediate Jacobians JpYkq admit CM. l
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Remark 4.6. At least for Y1, Y5 and Y6, the above is well-known. For Y1 and Y6, we have
JpYkq „ E5, where E is the Fermat elliptic curve with complex multiplication by Qpζ3q, see
[Rou09, Sec. 4] and [GY16, Prop. 1.7]. For the Klein cubic threefold Y5, Adler has shown in
[Adl81] that JpY5q „ E5

11, where E11 is an elliptic curve with complex multiplication by Qpζ11q.
See also [GMZ05].

Let us conclude this section by a small refinement of the arguments in the proof of Theorem
4.3, leading to the observation that (‹‹) is satisfied if the special subvariety ZG is generically
contained in the intermediate Jacobian locus.

Proposition 4.7. Let G Ď Spp10,Zq be a finite group. If ZG Ď JpMq and ZG X JpMq ‰ H,
then there is a finite subgroup H Ď GLp5,Cq isomorphic to xG,´1y{x´1y such that JpMHq “

ZG. In particular, H satisfies (‹‹) of Theorem 4.3.

Proof. Let Y “ V pF q Ď P4 be a smooth cubic threefold with JpY q P ZG. Then, we have
G Ď AutpJpY q,Ξq. Let H denote the image of G under the epimorphism

AutpJpY q,Ξq // // AutpY q

described in [Zhe21, Prop. 1.6]. In particular, we then have H » xG,´1y{x´1y. By Theorem
3.4, we can identify H with a subgroup of GLp5,Cq such that F is H-invariant. Thus, Y P MH .
By the proof of Theorem 4.3, we have MH Ď ZG.

As ZG is irreducible and, up to conjugation in GLp5,Cq, there are only finitely many choices
for H as above, the claim follows. l

5. Cyclic cubic threefolds

In this section, we briefly recall the well-known special subvariety generically contained in the
locus of intermediate Jacobians that arises as a family of cyclic cubic threefolds, cf. [ACT02]
and [CT13].

Definition 5.1. A smooth cubic threefold Y Ď P4 is called a cyclic cubic threefold if there is
a cyclic triple cover Y //P3 ramified along a smooth cubic surface.

Observe that the above is equivalent to the existence of an automorphism φ P AutpY q conjugate
to rdiagpζ3, 1, 1, 1, 1qs P PGLp5,Cq. Let

M cyc :“ Mxdiagpζ3,1,1,1,1qy Ď M

denote the locus of cyclic cubic threefolds. Let M surf denote the coarse moduli space of cubic
surfaces. The morphism

M surf //M cyc Ď M,

mapping a cubic surface S Ď P3 to a cyclic triple cover Y //P3 ramified along S is generically
injective, see [Huy23, Rem. 5.22]. Refining this fact, Allcock, Carlson and Toledo have shown
that one can embed M surf in JpM cycq Ď A5, see [ACT02].

Proposition 5.2. The closure of JpM cycq in A5 is a special subvariety.
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Proof. As discussed in the proof of [ACT02, Lem. 9.2], the closure of JpM cycq Ď A5 is a totally
geodesic subvariety,2 isomorphic to a four-dimensional complex ball quotient. By [Moo98, Thm.
4.3], a subvariety Z Ď Ag is a special subvariety if and only if it is totally geodesic and contains
a CM point. Since the Fermat cubic threefold Y1 is a cyclic cubic threefold and JpY1q „ E5

admits complex multiplication, the claim follows.
Alternatively, apply Theorem 4.3 to G “ xdiagpζ3, 1, 1, 1, 1qy Ď GLp5,Cq. l

We have the following consequence of Proposition 5.2:

Corollary 5.3. Let G Ď GLp5,Cq be a finite subgroup containing an element φ conjugate
to diagpζ3, 1, 1, 1, 1q P GLp5,Cq. If MG ‰ H, then the closure of JpMGq in A5 is a special
subvariety.

Proof. In this case, we have ZG Ď Zxφy “ JpM cycq Ď A5. By the arguments given in the
proof of Proposition 4.7, it follows that the closure of JpMGq is equal to ZG and thus a special
subvariety. l

We conclude this section by noting that the family M cyc is special among the families MG

as it is the only one containing cubic threefolds with simple, i.e., irreducible up to isogeny,
intermediate Jacobian:

Proposition 5.4. Let Y be a smooth cubic threefold with simple intermediate Jacobian. Then,

AutpY q Ď Z{3Z.

If AutpY q » Z{3Z and JpY q is simple, then Y is a cyclic cubic threefold. Conversely, there are
cyclic cubic threefolds with simple intermediate Jacobian.

Proof. Suppose there is a prime number p ‰ 3 and an automorphism φ P AutpY q of order p.
By [GL11], we have p P t2, 5, 11u. For p “ 2, 5, one uses the explicit description in Table 6 to
check that 0 ă dimH1,2pY qφ ă 5, which implies that imp1´φ˚q Ď JpY q is a non-trivial proper
abelian subvariety of JpY q, contradicting simplicity of JpY q. For p “ 11, X. Roulleau has
shown in [Rou09] that Y is the Klein cubic threefold Y5. However, in [Adl81], A. Adler proves
that JpY5q is isogeneous to E5, where E is an elliptic curve admitting complex multiplication
by Qpζ11q.

Hence, we either have AutpY q “ t1u or |AutpY q| “ 3k for some k ě 1. In the latter case, Y
admits an automorphism φ of order three. As above, one uses the explicit description in Table 6
to verify that 0 ă dimH1,2pY qφ ă 5 if φ is not conjugate to diagpζ3, 1, . . . , 1q. Hence, simplicity
of JpY q implies that φ is (up to conjugation) given by diagpζ3, 1, . . . , 1q. In particular, Y is a
cyclic cubic threefold. By [Ach13, Prop. 3.6], EndpJpY qq b Q is the composition of Qpζ3q and
a totally really field. Therefore, k “ 1 and AutpY q » Z{3Z.

On the other hand, it follows from [Ach13, Prop. 3.6] that there are cyclic cubic threefolds
with simple intermediate Jacobian. l

2See [Moo98] for a discussion of totally geodesic subvarieties of Ag and their relation to special subvarieties.
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6. New examples

In this section, we discuss new examples of special subvarieties generically contained in the
intermediate Jacobian locus that arise from families of cubic threefolds admitting an action by
the alternating groups Altp4q and Altp5q.

Table 1. Irreducible characters of PSLp2, 11q of degree ď 5

1a 2a 3a 5a 5b 6a 11a 11b

χ1 1 1 1 1 1 1 1 1

χ2 5 1 ´1 0 0 1 ´1`
?

´11
2

´1´
?
11

2

χ3 5 1 ´1 0 0 1 ´1´
?

´11
2

´1`
?
11

2

For later use, let us first recall an explicit description of an F -lifting of the action of PSLp2, 11q

on the Klein cubic threefold Y5 “ V pF q Ď P4, where

F :“ x0x
2
1 ` x1x

2
2 ` x2x

2
3 ` x3x

2
4 ` x4x

2
0,

see [Adl78]. The group PSLp2, 11q has exactly eight conjugacy classes with representatives of
order 1, 2, 3, 5, 5, 6, 11 and 11. We denote these classes by 1a, 2a, 3a, 5a, 5b, 6a, 11a and 11b. The
characters of PSLp2, 11q of degree at most five are given in Table 1. In [Adl78], Adler shows
that there is a faithful representation ρ : PSLp2, 11q // GLp5,Cq with character3 χ2 such that
the image G :“ impρq Ď GLp5,Cq is an F -lifting of AutpY5q. Using [GAP22], one computes

dimMG “ xS3χ2, χ1y ´ 1 “ 0 and dimZG “ xS2pdetpχ2q b χ2q, χ1y “ 0,

confirming the well-known fact that JpY5q P A5 is a special point.

6.1. From now on, we identify PSLp2, 11q with its image in GLp5,Cq via the representation ρ

as discussed in the previous section. Up to isomorphism, the subgroups of PSLp2, 11q are Z{2Z,
Z{3Z, pZ{2Zq2, Z{6Z, Symp3q, D10, Z{11Z, Altp4q, D12, Z{11Z⋊Z{5Z, Altp5q and PSLp2, 11q.

Using the character table of PSLp2, 11q, one easily verifies the following lemma:

Lemma 6.1. If G1 and G2 are subgroups of PSLp2, 11q Ď GLp5,Cq that are isomorphic as
abstract groups, then G1 and G2 are conjugate in GLp5,Cq. In particular, MG1 “ MG2 .

With the help of [GAP22], we compute dimMG and dimZG for all G Ď PSLp2, 11q. The
results are listed in Figure 2, where vertical lines express the subgroup relation. Pairs of
subgroups G ⊊ G1 Ď PSLp2, 11q satisfying MG “ MG1 are indicated by dashed lines.

3There is an automorphism α P AutpPSLp2, 11qq, explicitly given as conjugation by diagp´1, 1q P PGLp2, 11q,
that interchanges the conjugacy classes 11a and 11b and leaves the remaining classes invariant. Hence, if
ρ2, ρ3 : PSLp2, 11q // GLp5,Cq are five-dimensional representations with characters χpρiq “ χi for i “ 2, 3,
then their images impρ2q, impρ3q Ď GLp5,Cq are conjugate subgroups. Hence, for our purposes, one could also
take a representation with character χ3.
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Figure 2. Subgroups of PSLp2, 11q

tidu

10 ă 15

Z{11Z
0 “ 0

Z{5Z
2 ă 3

Z{2Z
6 ă 9

Z{3Z
4 ă 5

pZ{2Zq
ˆ2

4 ă 6

D10

2 ă 3

Altp4q

2 “ 2

Z{6Z
2 ă 3

Symp3q

3 ă 4

Altp5q

1 “ 1

D12

2 ă 3

Z{11Z ⋊ Z{5Z
0 “ 0

PSLp2, 11q

0 “ 0

G

dimMG ď dimZG

Up to isomorphism, there are exactly two subgroups which satisfy dimMG ą 0 and (‹‹).
These are the alternating groups Altp4q and Altp5q. In the remaining part of this section, we
explain the computations and discuss the two resulting special subvarieties.

6.2. Let us now explain the computations going into Figure 2 for the subgroup Altp4q Ď

PSLp2, 11q.

Proposition 6.2. Let G Ď PSLp2, 11q Ď GLp5,Cq be a subgroup isomorphic to Altp4q. Then,
the closure of JpMGq in A5 is a two-dimensional special subvariety.

Proof. The group Altp4q has exactly four conjugacy classes 1a, 2a, 3a and 3b with representatives
of order 1, 2, 3 and 3. The character table is given in Table 2. The restriction of

ρ : PSLp2, 11q // GLp5,Cq

to Altp4q has character χ :“ χ2 ` χ3 ` χ4. Using [GAP22], we compute

(6.1) dimUG “ xS3χ, χtrivy “ 5 and xS2pdetpχq b χq, χtrivy “ 2.

Table 2. Character table of Altp4q

1a 2a 3a 3b

χ1 1 1 1 1

χ2 1 1 ´1`
?

´3
2

´1´
?

´3
2

χ3 1 1 ´1´
?

´3
2

´1`
?

´3
2

χ4 3 ´1 0 0



14

In view of Lemma 3.7, it remains to determine the dimension of the centralizer of the image
of Altp4q in GLp5,Cq. As a subgroup of the symmetric group Symp4q, Altp4q is generated by
the permutations p243q and p12qp34q. It is easy to verify that

p243q
� //

¨

˚

˚

˚

˚

˚

˝

ζ3 0 0 0 0

0 ζ23 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 0 1 0

˛

‹

‹

‹

‹

‹

‚

, p12qp34q
� //

¨

˚

˚

˚

˚

˚

˝

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 ´1 0

0 0 0 0 ´1

˛

‹

‹

‹

‹

‹

‚

gives a representation Altp4q // GLp5,Cq with character χ. Let G Ď GLp5,Cq denote its image.
Using the explicit description, one easily checks that the centralizer CGLp5,CqpGq is given by

CGLp5,CqpGq “
␣

diagpλ1, λ2, λ3, λ3, λ3q P GLp5,Cq | λ1, λ2, λ3 P Cˆ
(

,

and that a general member of MG is isomorphic to

V px30 ` x31 ` x2x3x4 ` ax0px22 ` ζ23x
2
3 ` ζ3x

2
4q ` bx1px22 ` ζ3x

2
3 ` ζ23x

2
4qq Ď P4,

for some a, b P C. In particular, we have dimCGLp5,CpGq “ 3. Combined with (6.1), this yields

dimMG “ xS3χ, χtrivy ´ dimCGLp5,CqpGq “ 2 “ xS2pdetpχq b χq, χtrivy “ dimZG.

We conclude that ZG Ď A5 is a special subvariety. l

Remark 6.3. By construction, the Klein cubic threefold is contained in the family considered
above. Therefore, the family is not contained in the locus of cyclic cubic threefolds. Looking at
the explicit equations, we observe that the intersection with the locus of cyclic cubic threefolds
is one-dimensional. In fact, it follows from the classification of automorphism of smooth cubic
surfaces in [Dol12, Thm. 9.5.8] that the intersection of M cyc and MG as in the previous propo-
sition is precisely the locus of cubic threefolds that arise as triple cyclic covers of P3 ramified
along a cubic surface admitting a faithful action by Symp4q.

Proposition 6.4. The locus of smooth cubic threefolds admitting a faithful action by Altp4q

decomposes into two two-dimensional irreducible components

ĂMAltp4q “ MG1 Y MG2 ,

where we may take Altp4q » G1 “ G as in Proposition 6.2 and Altp4q » G2 Ď GLp5,Cq to be
the image of Altp4q under the representation

Altp4q Ď Symp4q // GLp5,Cq,

given by permutation of the first four coordinates. Both the Fermat cubic threefold and the
smooth cubic threefold Y6 described in Example 3.2 are contained in the intersection MG1 XMG2.

Proof. See Table 2 for the character table of Altp4q. The characters of faithful actions on C5

are given by χi,j :“ χi ` χj ` χ4 with 1 ď i, j ď 3. As a subgroup of the symmetric group
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Symp4q, Altp4q is generated by the permutations p243q and p12qp34q. It is easy to verify that

p243q
� //

¨

˚

˚

˚

˚

˚

˝

ζi´1
3 0 0 0 0

0 ζj´1
3 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 0 1 0

˛

‹

‹

‹

‹

‹

‚

, p12qp34q
� //

¨

˚

˚

˚

˚

˚

˝

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 ´1 0

0 0 0 0 ´1

˛

‹

‹

‹

‹

‹

‚

gives a representation Altp4q // GLp5,Cq with character χi,j . Let Gi,j Ď GLp5,Cq denote its
image. We distinguish two cases:

‚ If i “ j, then we have

H0pP4,Op3qqGi,i “ xx30, x
2
0x1, x0x

2
1, x

3
1, x2x3x4y.

We obtain that MGi,i Ď M that MGi,i is independent of i and MG2 “ MGi,i .
‚ If i ‰ j, then we have

H0pP4,Op3qqGi,j “ xx30, x
3
1, x2x3x4,

x0px22 ` ζi´1
3 x23 ` ζ

2pi´1q

3 x24q,

x1px22 ` ζj´1
3 x23 ` ζ

2pj´1q

3 x24qy.

By conjugation with diagp1, 1, ζa3 , ζ
b
3, ζ

c
3q, we observe that MGi,j Ď M is independent of

the choice of i ‰ j. In particular, we have MG1 “ MGi,j .

We conclude that ĂMAltp4q decomposes into the two irreducible components MG1 and MG2 de-
scribed above. l

6.3. At last, we consider the family of smooth cubic threefolds admitting an action by Altp5q.
The group Altp5q has exactly five conjugacy classes 1a, 2a, 3a, 5a and 5b with representatives of
order 1, 2, 3, 5 and 5. The character table is given in Table 3.

Table 3. Character table of Altp5q

1a 2a 3a 5a 5b

χ1 1 1 1 1 1

χ2 3 ´1 0 1´
?
5

2
1`

?
5

2

χ3 3 ´1 0 1`
?
5

2
1´

?
5

2

χ4 4 0 1 ´1 ´1

χ5 5 1 ´1 0 0

We have the following description of ĂMAltp5q, cf. Proposition 6.4:

Proposition 6.5. The locus of of smooth cubic threefolds admitting an action by Altp5q has
two irreducible components

ĂMAltp5q “ MH1 Y MH2 ,
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where Altp5q » H1 Ď PSLp2, 11q and H2 is the image of Altp5q under the representation

Altp5q Ď Symp5q // GLp5,Cq,

given by permutation of coordinates. Moreover, we have MH1 X MH2 “ tY1, Y6u.

Proof. We may assume Gi Ď Hi for i “ 1, 2.
Recall that, by the classification in [GL11], we have ĂMZ{5Z “ Mxdiagp1,ζ5,ζ25 ,ζ

3
5 ,ζ

4
5 qy. In par-

ticular, if φ P GLp5,Cq is the F -lifting of an automorphism of order five of a smooth cubic
threefold Y “ V pF q Ď P4, then Trpφq “ 0. Hence, if H Ď GLp5,Cq is the F -lifting of a group
of automorphisms isomorphic to Altp5q, then the character of the corresponding representation
is either given by χ5 or χ1 ` χ4. The character χ5 corresponds to H1 and χ1 ` χ4 corresponds
to H2.

If AutpY q contains subgroups isomorphic to Altp5q that are not conjugate to each other, then
Y P tY1, Y6u by the classification of automorphism groups of cubic threefolds in [WY20]. l

Furthermore, we can show that MH1 is exactly the intersection of MG1 and the locus of
smooth cubic threefolds admitting an automorphism of order five.

Lemma 6.6. For i “ 1, 2, we have

MGi X ĂMZ{5Z “ MHi .

Proof. By considering the groups occuring in the classification of automorphism groups of cubic
threefolds given in [WY20], we observe that a cubic threefold Y admits an action by Altp5q if
and only if it admits an action by Altp4q and Z{5Z, i.e., we have

ĂMAltp5q “ ĂMAltp4q X ĂMZ{5Z.

By construction, we have MHi Ď MGi X ĂMZ{5Z. Towards a contradiction, suppose that Y is a
smooth cubic threefold contained in MGi X ĂMZ{5Z but not in MHi . Then, AutpY q contains a
subgroup isomorphic to Altp5q and two subgroups isomorphic to Altp4q that are not conjugate to
each other. By going through the list of automorphism groups of smooth cubic threefolds given
in [WY20], this already implies Y P tY1, Y6u. But both Y1 and Y6 are contained in MHi XMHj .
As desired, this contradicts our assumption on Y . l

Proposition 6.7. The closure of JpMH1q in A5 is a one-dimensional special subvariety. More-
over, MH1 contains the Klein cubic threefold and is thus not contained in the locus of cyclic
cubic threefolds.

Proof. Since ZH1 Ď ZG1 “ JpMG1q, Proposition 4.7 implies that JpMH1q is equal to ZH1 . In
particular, H1 Ď GLp5,Cq satifies (‹‹) and JpMH1q is a special subvariety of A5.

It remains to show that MH1 is one-dimensional. The character of the action of H1 on C5

equals χ5. Using [GAP22], we compute

dimUH1 “ xS3χ5, χtrivy “ 2 and xS2pdetpχ5q b χ5q, χtrivy “ 1.

As the character χ5 is irreducible, the centralizer of H1 Ď GLp5,Cq is one-dimensional. By
Lemma 3.7, we conclude that MH1 is one-dimensional. l
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Remark 6.8. The intermediate Jacobians of members of the family MH1 are all isogeneous to
the self-product of an elliptic curve:4 Let W5 denote the five-dimensional irreducible Q-valued
representation of Altp5q with character χ5. The endomorphism algebra of W5 is isomorphic to
Q. By [BL04, Thm. 13.6.2], this implies that for each cubic threefold Y P MH1 , there is an
elliptic curve E such that the self-product E5 is isogeneous to JpY q. Note that this yields an
alternative proof of Proposition 6.7. See Remark 4.6 for a description of E for Y1, Y5, Y6 P MH1 .

In particular, the set of intermediate Jacobians with maximal Picard number in the family
JpMH1q is analytically dense, cf. [Bea14, Prop. 3 and Prop. 4].

7. Excluding further examples

It turns out that the examples discussed in the two previous sections are the only examples
of positive-dimensional special subvarieties generically contained in the intermediate Jacobian
locus that arise from the criterion given in Theorem 1.3.

Theorem 7.1. Let G Ď GLp5,Cq be a finite subgroup. If dimMG ą 0 and ZG Ď JpMq,5 then
either MG Ď M cyc, or G is isomorphic to Autp4q or Autp5q and MG contains the Klein cubic
threefold. If dimMG “ 0 “ dimZG, then MG “ tYiu for some Yi as in Example 3.2.

Remark 7.2. In the latter case, MG is one of the families described in the previous section,
see Proposition 6.4 and Proposition 6.5.

Remark 7.3. The cubic threefold Y4 with AutpY4q » Z{16Z and the Klein cubic threefold Y5
are not cyclic cubic threefolds. On the other hand, the cubic threefolds Y1, Y2, Y3 and Y6 in
Example 3.2 are cyclic cubic threefolds.

Proof of Theorem 7.1. Recall from the proof of Theorem 4.3 that JpMGq Ď ZG with equality if
and only (‹‹) holds. By Proposition 4.7, the condition that ZG is contained in JpMq already
implies that G satisfies (‹‹).

By [WY20], the groups admitting a faithful action on a smooth cubic threefold are precisely
the subgroups of the six groups listed in Theorem 3.1. The strategy of this proof is to use
[GAP22] to list all five-dimensional representations of these groups and to check when these
satisfy (‹‹).

First, let us fix some notation. Let H be a subgroup of one of the six groups described in
Theorem 3.1. Using [GAP22], we obtain a complete list of characters that correpond to repre-
sentations H // GLp5,Cq for which the composition H // GLp5,Cq // PGLp5,Cq is injective.
In the following, let χ be such a character, ρ : H // GLp5,Cq a representation with character χ,
and let G Ď GLp5,Cq denote its image. Since, up to conjugation in GLp5,Cq, the representation
ρ is determined by χ, the subset MG only depends on the character χ.

4Thanks to B. van Geemen for pointing this out. In [GY16], van Geemen and Yamauchi show that if Y

admits an automorphism of order five, i.e., Y P ĂMZ{5Z, then JpY q is isogenous to E ˆ B2, where E is an elliptic
curve and B is an abelian surface, and give an explicit description of B for general Y P ĂMZ{5Z.

5Here, we identify G Ď GLp5,Cq with a subgroup of Spp10,Zq via the inclusion G Ď AutpY q
„ // AutpJpY qq Ď

SppH3
pY,Zqq » Spp10,Zq for some Y P MG. As in the proof of Theorem 4.3, we note that ZG Ď A5 only depends

on G Ď GLp5,Cq and not on the choice of Y or the isomorphism H3
pY,Zq » Z10.
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One can compute the dimension of the centralizer of G in GLp5,Cq using the following
elementary lemma:

Lemma 7.4. If χ “
ř

niχi is a decomposition of χ into irreducible characters, then

dimCGLp5,CqpGq “
ÿ

i

n2
i .

If the group G is abelian, then every irreducible character is of degree one. Moreover, in
[WY20, App. B], Wei and Yu give a list of possible F -liftings of abelian groups acting faithfully
on smooth cubic threefolds. Hence, we can use [GAP22] to compute dimMG and dimZG for
all abelian groups acting on smooth cubic threefolds. The results are listed in Table 6.

In the case that we have dimMG “ dimZG in Table 6, the subgroup G Ď GLp5,Cq contains
an element conjugate to diagpζ3, 1, 1, 1, 1q except for the families No. 43, 48, 54, 58, 59, 61,
63, 66 and 67. By determining the corresponding sets UG of G-invariant homogeneous cubic
polynomials, one can show that MG Ď M cyc holds also in these cases:

Lemma 7.5. The families No. 43, 48, 54, 58, 59, 61, 63, 66, 67 in Table 6 are contained in M cyc.

Proof. It is easy to verify that in these cases, every G-invariant homogeneous cubic polynomial
is conjugate to a polynomial of the form x30 ` F px1, . . . , x4q.

For example, consider Family No. 43. Then, we have

G :“ xdiagp1, ζ13 , 1, 1, ζ
1
3 q,diagp1, 1, ζ13 , ζ

2
3 , ζ

2
3 qy Ď GLp5,Cq.

One easily checks that we have

H0pP4,Op3qqG “ xx30, x
3
1, x

3
2, x

3
3, x

3
4, x0x2x3y Ď H0pP4,Op3qq

and thus MG Ď M cyc. The remaining cases are left to the reader. l

This finishes the proof in the case of abelian groups.
In order to carry out the computations in the non-abelian case, let us recall a few criteria for

determining whether a subgroup G Ď GLp5,Cq satisfies dimMG ‰ H.

Lemma 7.6. Let G Ď GLp5,Cq be a subgroup for which the projection G // PGLp5,Cq is
injective and MG ‰ H. Let φ P G be an element of order n.

‚ If n “ 2, then φ is conjugate to diagp´1, 1, 1, 1, 1q or diagp´1,´1, 1, 1, 1q.

‚ If n “ 4, then φ is not conjugate to diagpζ4, 1, 1, 1, 1q and diagp´ζ4, 1, 1, 1, 1q.

‚ If n “ 5, then φ is conjugate to diagp1, ζ5, ζ
2
5 , ζ

3
5 , ζ

4
5 q.

Proof. Follows from [WY20, Tab. 2]. l

For every non-abelian group H occuring in the classification of automorphism groups of
smooth cubic threefolds, we use [GAP22] to create a list of all characters of H of degree five.
Then, we apply Lemma 7.4, Lemma 7.6 and the dimension formulas given in Proposition 2.4 and
Lemma 3.7 to exclude groups H for which (‹‹) can not be satisfied. Furthermore, we remove
the characters χ for which the images of the corresponding representations contain an element
conjugate to a scalar multiple of diagpζ3, 1, 1, 1, 1q from our list, because the associated families of
cubic threefolds are contained in the locus of cyclic cubic threefolds. The groups that survive this
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process are Z{3Z⋊Z{4Z, Z{3ZˆSymp3q, pZ{3ZˆZ{3Zq⋊Z{3Z, ppZ{3ZˆZ{3Zq⋊Z{3Zq⋊Z{2Z,
Altp4q and Altp5q.

In the remaining part of this proof, we show that only the alternating groups Altp4q and
Altp5q admit representations for which dimMG ą 0, MG ⊈ M cyc and dimMG “ dimZG.

Lemma 7.7. If G Ď GLp5,Cq is isomorphic to Z{3Z ⋊ Z{4Z, then dimMG ‰ dimZG.

Proof. The group Z{3Z ⋊ Z{4Z has exactly six conjugacy classes 1a, 4a, 2a, 3a, 4b and 6a with
representatives of order 1, 4, 2, 3, 4 and 6. The character table is given in Table 4.

Table 4. Character table of Z{3Z ⋊ Z{4Z

1a 4a 2a 3a 4b 6a

χ1 1 1 1 1 1 1

χ2 1 ´1 1 1 ´1 1

χ3 1 ´i ´1 1 ´i ´1

χ4 1 i ´1 1 i ´1

χ5 2 0 ´2 ´1 0 1

χ6 2 0 2 ´1 0 ´1

Going through all characters of degree five and applying the process described above, the
characters 2χ1 ` χ3 ` χ6 and 2χ1 ` χ4 ` χ6 are the only possible candidates for which (‹‹)
could hold. Let us consider the case χ :“ 2χ1 ` χ4 ` χ6. One checks that

p0, 1q
� //

¨

˚

˚

˚

˚

˚

˝

1 0 0 0 0

0 1 0 0 0

0 0 ζ4 0 0

0 0 0 0 1

0 0 0 1 0

˛

‹

‹

‹

‹

‹

‚

, p1, 0q
� //

¨

˚

˚

˚

˚

˚

˝

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 ζ3 0

0 0 0 0 ζ23

˛

‹

‹

‹

‹

‹

‚

gives rise to a representation Z{3Z ⋊ Z{4Z // GLp5,Cq with character χ. Let G Ď GLp5,Cq

denote its image. The space of G-invariant homogeneous cubic polynomials is of dimension

dimH0pP4,Op3qqG “ xS3χ, χtrivy “ 7

and spanned by

H0pP4,Op3qqG “ xx30, x
2
0x1, x0x

2
1, x

3
1, x0x3x4, x1x3x4, x

3
3 ` x34y Ď H0pP4,Op3qq.

As the variable x2 does not occur among these polynomials, we conclude that MG “ H.
The character 2χ1 ` χ3 ` χ6 is excluded using similar arguments. l

Lemma 7.8. If G Ď GLp5,Cq is isomorphic to one of

Z{3Z ˆ Symp3q, pZ{3Z ˆ Z{3Zq ⋊ Z{3Z, ppZ{3Z ˆ Z{3Zq ⋊ Z{3Zq ⋊ Z{2Z,

and dimMG “ dimZG, then MG Ď M cyc.
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Proof. Let us consider the group G » Z{3Z ˆ Symp3q. The remaining cases are left to the
reader. The group Z{3Z ˆ Symp3q has exactly nine conjugacy classes with representatives
1a, 2a, 3a, 3b, 6a, 3c, 3d, 6b and 3e of order 1, 2, 3, 3, 6, 3, 3, 6 and 3. The character table is given
in Table 5.

Table 5. Character table of Z{3Z ˆ Symp3q

1a 2a 3a 3b 6a 3c 3d 6b 3e

χ1 1 1 1 1 1 1 1 1 1

χ2 1 ´1 1 1 ´1 1 1 ´1 1

χ3 1 ´1 ζ23 1 ´ζ23 ζ3 ζ23 ´ζ3 ζ3

χ4 1 ´1 ζ3 1 ´ζ3 ζ23 ζ3 ´ζ23 ζ23
χ5 1 1 ζ23 1 ζ23 ζ3 ζ23 ζ3 ζ3

χ6 1 1 ζ3 1 ζ3 ζ23 ζ3 ζ23 ζ23
χ7 2 0 2 ´1 0 2 ´1 0 ´1

χ8 2 0 2ζ3 ´1 0 2ζ23 ´ζ3 0 ´ζ23
χ9 2 0 2ζ23 ´1 0 2ζ3 ´ζ23 0 ´ζ3

Going through the list of characters of degree five and applying the process described above,
we see that the only characters we have to check are those of the form χi ` χj ` χk, where

pi, j, kq P tp1, 7, 9q, p5, 7, 9q, p1, 7, 8q, p6, 7, 8q, p5, 8, 9q, p6, 8, 9qu.

A straightforward computation as in Lemma 7.5 shows that for these characters, we have
MG Ď M cyc. In fact, MG agrees with the one-dimensional family No. 32 in Table 6. l

We conclude that if dimMG ą 0 and (‹‹) are satified, then either G » Altp4q,Altp5q and MG

contains the Klein cubic threefold, or MG is contained in the locus of cyclic cubic threefolds.
Using the classification of automorphism groups in [WY20], in particular the unicity results

in [WY20, Tab. 2], a straightforward computation using [GAP22] shows that dimMG “ 0 “

dimZG already implies that MG “ tYiu for one of the maximally symmetric cubic threefolds
listed in Example 3.2.

This finishes the proof of Theorem 7.1. l
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8. Summary of the results

One can summarize the results of the previous sections as follows:

Theorem 8.1. Let G Ď GLp5,Cq be a finite subgroup such that there is no G Ď G1 Ď GLp5,Cq

satisfying MG “ MG1 . Then (‹‹) is satisfied if and only if one of the following holds:
(i) dimMG “ 0 and MG “ tYiu for some i P t1, . . . , 6u and Yi as in Example 3.2.
(ii) MG Ď M cyc; or
(iii) G is a subgroup of GLp5,Cq isomorphic to Altp4q (resp. Altp5q) and MG is the unique

irreducible component of ĂMG that contains the Klein cubic threefold Y5.
In particular, in these cases, the closure of JpMGq in A5 is a special subvariety.

We can also determine the intersection of M cyc with the loci described in (iii):

Proposition 8.2. The intersection of M cyc and the irreducible component of ĂMAltp4q containing
the Klein cubic threefold is the one-dimensional locus of cyclic cubic threefolds that arise as cyclic
triple covers of P3 ramified along cubic surfaces admitting a faithful action by Symp4q.

The intersection of M cyc and the irreducible component of ĂMAltp5q containing the Klein cubic
threefold is given by tY1, Y6u.

Proof. The first claim was proven in Remark 6.3. For the second claim, see Proposition 6.5. l

The situation is depicted in Figure 3. Note that M cyc is four-dimensional, the family of cubic
threefolds with an Altp4q-action that contains the Klein cubic threefold is two-dimensional and
contains a one-dimensional family of cubic threefolds admitting an Altp5q-action. See Example
3.2 for an explicit description of the cubic threefolds Y1, . . . , Y6.

M

Y1

Y2

Y3

Y4 Y5

Y6

MAlt(5)

Mcyc

MAlt(4)

Figure 3. Families of cubic threefolds that give rise to special subvarieties in
the intermediate Jacobian locus
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9. Appendix

The representations of faithful abelian group actions on smooth cubic threefolds were listed
by Wei and Yu in [WY20, Tab. 2]). In Table 6, we complement the list by the results of the
dimension computations that were used in the proof of Theorem 8.1.

Table 6: Abelian groups acting on smooth cubic threefolds (cf. [WY20])

No. H Ď AutpXq generator(s) of an F -lifting G of H dimMG dimZG “

1 Z{2Z diagp´1, 1, 1, 1, 1q 7 11 No

2 Z{2Z diagp´1,´1, 1, 1, 1q 6 9 No

3 Z{3Z diagp1, 1, 1, ζ13 , 1q 4 4 Yes

4 Z{3Z diagp1, 1, 1, ζ13 , ζ
1
3 q 1 3 No

5 Z{3Z diagp1, 1, 1, ζ13 , ζ
2
3 q 4 7 No

6 Z{3Z diagp1, 1, ζ13 , ζ
1
3 , ζ

2
3 q 4 5 No

7 Z{4Z diagpζ14 ,´1, 1, 1, 1q 3 4 No

8 Z{4Z diagpζ14 ,´1, 1,´1, 1q 3 5 No

9 Z{4Z diagpζ14 ,´1, 1, ζ34 , 1q 3 5 No

10 pZ{2Zq
2 diagp´1, 1, 1, 1, 1q,

diagp1, 1,´1, 1, 1q

5 8 No

11 pZ{2Zq
2 diagp´1,´1, 1, 1, 1q,

diagp1,´1,´1, 1, 1q

4 6 No

12 Z{5Z diagp1, ζ15 , ζ
2
5 , ζ

3
5 , ζ

4
5 q 2 3 No

13 Z{2Z ˆ Z{3Z diagp´1, 1,´1, 1, 1q,
diagp1, 1, 1, ζ13 , 1q

2 2 Yes

14 Z{2Z ˆ Z{3Z diagp´1, 1,´1, 1, 1q,
diagp1, 1, ζ13 , ζ

1
3 , 1q

1 2 No

15 Z{2Z ˆ Z{3Z diagp´1, 1,´1, 1, 1q,
diagp1, 1, ζ13 , ζ

1
3 , ζ

1
3 q

1 2 No

16 Z{2Z ˆ Z{3Z diagp´1, 1,´1, 1, 1q,
diagp1, 1, ζ13 , ζ

1
3 , ζ

2
3 q

2 3 No

17 Z{2Z ˆ Z{3Z diagp´1, 1, 1, 1, 1q,
diagp1, 1, ζ13 , 1, 1q

3 3 Yes

18 Z{2Z ˆ Z{3Z diagp´1, 1, 1, 1, 1q,
diagp1, 1, ζ13 , 1, ζ

1
3 q

1 3 No

19 Z{2Z ˆ Z{3Z diagp´1, 1, 1, 1, 1q,
diagp1, 1, ζ13 , 1, ζ

2
3 q

3 5 No
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20 Z{2Z ˆ Z{3Z diagp´1, 1, 1, 1, 1q,
diagp1, 1, ζ13 , ζ

1
3 , ζ

1
3 q

1 2 No

21 Z{2Z ˆ Z{3Z diagp´1, 1, 1, 1, 1q,
diagp1, 1, ζ13 , ζ

1
3 , ζ

2
3 q

2 3 No

22 Z{2Z ˆ Z{3Z diagp´1, 1, 1, 1, 1q,
diagp1, 1, ζ13 , ζ

2
3 , ζ

2
3 q

2 3 No

23 Z{8Z diagpζ18 , ζ
6
8 , ζ

4
8 , 1, 1q 1 2 No

24 Z{8Z diagpζ18 , ζ
6
8 , ζ

4
8 , 1, ζ

2
8 q 1 2 No

25 Z{4Z ˆ Z{2Z diagpζ14 ,´1, 1, 1, 1q,
diagp1, 1, 1,´1, 1q

2 3 No

26 Z{9Z diagpζ19 , ζ
7
9 , ζ

4
9 , 1, 1q 0 0 Yes

27 Z{9Z diagpζ19 , ζ
7
9 , ζ

4
9 , 1, ζ

3
9 q 0 1 No

28 Z{9Z diagpζ19 , ζ
7
9 , ζ

4
9 , 1, ζ

6
9 q 0 1 No

29 Z{9Z diagpζ19 , ζ
7
9 , ζ

4
9 , ζ

3
9 , ζ

3
9 q 0 0 Yes

30 Z{9Z diagpζ19 , ζ
7
9 , ζ

4
9 , ζ

3
9 , ζ

6
9 q 0 1 No

31 Z{9Z diagpζ19 , ζ
7
9 , ζ

4
9 , ζ

6
9 , ζ

6
9 q 0 0 Yes

32 pZ{3Zq
2 diagp1, ζ13 , 1, 1, 1q, diagp1, 1, ζ13 , 1, 1q 1 1 Yes

33 pZ{3Zq
2 diagp1, ζ13 , 1, 1, 1q,

diagp1, 1, ζ13 , 1, ζ
1
3 q

0 0 Yes

34 pZ{3Zq
2 diagp1, ζ13 , 1, 1, 1q,

diagp1, 1, ζ13 , 1, ζ
2
3 q

2 2 Yes

35 pZ{3Zq
2 diagp1, ζ13 , 1, 1, 1q,

diagp1, 1, ζ13 , ζ
1
3 , ζ

1
3 q

1 1 Yes

36 pZ{3Zq
2 diagp1, ζ13 , 1, 1, 1q,

diagp1, 1, ζ13 , ζ
1
3 , ζ

2
3 q

2 2 Yes

37 pZ{3Zq
2 diagp1, ζ13 , 1, 1, 1q,

diagp1, 1, ζ13 , ζ
2
3 , ζ

2
3 q

2 2 Yes

38 pZ{3Zq
2 diagp1, ζ13 , 1, 1, ζ

1
3 q,

diagp1, 1, ζ13 , 1, 1q

0 0 Yes

39 pZ{3Zq
2 diagp1, ζ13 , 1, 1, ζ

1
3 q,

diagp1, 1, ζ13 , 1, ζ
1
3 q

0 1 No

40 pZ{3Zq
2 diagp1, ζ13 , 1, 1, ζ

1
3 q,

diagp1, 1, ζ13 , 1, ζ
2
3 q

0 1 No

41 pZ{3Zq
2 diagp1, ζ13 , 1, 1, ζ

1
3 q,

diagp1, 1, ζ13 , ζ
1
3 , ζ

1
3 q

0 1 No
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42 pZ{3Zq
2 diagp1, ζ13 , 1, 1, ζ

1
3 q,

diagp1, 1, ζ13 , ζ
1
3 , ζ

2
3 q

0 1 No

43 pZ{3Zq
2 diagp1, ζ13 , 1, 1, ζ

1
3 q,

diagp1, 1, ζ13 , ζ
2
3 , ζ

2
3 q

1 1 Yes

44 pZ{3Zq
2 diagp1, ζ13 , 1, 1, ζ

2
3 q,

diagp1, 1, ζ13 , 1, 1q

2 2 Yes

45 pZ{3Zq
2 diagp1, ζ13 , 1, 1, ζ

2
3 q,

diagp1, 1, ζ13 , 1, ζ
1
3 q

0 1 No

46 pZ{3Zq
2 diagp1, ζ13 , 1, 1, ζ

2
3 q,

diagp1, 1, ζ13 , 1, ζ
2
3 q

1 3 No

47 pZ{3Zq
2 diagp1, ζ13 , 1, 1, ζ

2
3 q,

diagp1, 1, ζ13 , ζ
1
3 , ζ

1
3 q

0 1 No

48 pZ{3Zq
2 diagp1, ζ13 , 1, 1, ζ

2
3 q,

diagp1, 1, ζ13 , ζ
1
3 , ζ

2
3 q

2 2 Yes

49 pZ{3Zq
2 diagp1, ζ13 , 1, 1, ζ

2
3 q,

diagp1, 1, ζ13 , ζ
2
3 , ζ

2
3 q

2 3 No

50 pZ{3Zq
2 diagp1, ζ13 , 1, ζ

1
3 , ζ

1
3 q,

diagp1, 1, ζ13 , 1, 1q

1 1 Yes

51 pZ{3Zq
2 diagp1, ζ13 , 1, ζ

1
3 , ζ

1
3 q,

diagp1, 1, ζ13 , 1, ζ
1
3 q

0 1 No

52 pZ{3Zq
2 diagp1, ζ13 , 1, ζ

1
3 , ζ

1
3 q,

diagp1, 1, ζ13 , 1, ζ
2
3 q

0 1 No

53 pZ{3Zq
2 diagp1, ζ13 , 1, ζ

1
3 , ζ

1
3 q,

diagp1, 1, ζ13 , ζ
1
3 , ζ

1
3 q

0 1 No

54 pZ{3Zq
2 diagp1, ζ13 , 1, ζ

1
3 , ζ

1
3 q,

diagp1, 1, ζ13 , ζ
1
3 , ζ

2
3 q

1 1 Yes

55 pZ{3Zq
2 diagp1, ζ13 , 1, ζ

1
3 , ζ

1
3 q,

diagp1, 1, ζ13 , ζ
2
3 , ζ

2
3 q

0 1 No

56 pZ{3Zq
2 diagp1, ζ13 , 1, ζ

1
3 , ζ

2
3 q,

diagp1, 1, ζ13 , 1, 1q

2 2 Yes

57 pZ{3Zq
2 diagp1, ζ13 , 1, ζ

1
3 , ζ

2
3 q,

diagp1, 1, ζ13 , 1, ζ
1
3 q

0 1 No

58 pZ{3Zq
2 diagp1, ζ13 , 1, ζ

1
3 , ζ

2
3 q,

diagp1, 1, ζ13 , 1, ζ
2
3 q

2 2 Yes

59 pZ{3Zq
2 diagp1, ζ13 , 1, ζ

1
3 , ζ

2
3 q,

diagp1, 1, ζ13 , ζ
1
3 , ζ

1
3 q

1 1 Yes

60 pZ{3Zq
2 diagp1, ζ13 , 1, ζ

1
3 , ζ

2
3 q,

diagp1, 1, ζ13 , ζ
1
3 , ζ

2
3 q

2 3 No
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61 pZ{3Zq
2 diagp1, ζ13 , 1, ζ

1
3 , ζ

2
3 q,

diagp1, 1, ζ13 , ζ
2
3 , ζ

2
3 q

1 1 Yes

62 pZ{3Zq
2 diagp1, ζ13 , 1, ζ

2
3 , ζ

2
3 q,

diagp1, 1, ζ13 , 1, 1q

2 2 Yes

63 pZ{3Zq
2 diagp1, ζ13 , 1, ζ

2
3 , ζ

2
3 q,

diagp1, 1, ζ13 , 1, ζ
1
3 q

1 1 Yes

64 pZ{3Zq
2 diagp1, ζ13 , 1, ζ

2
3 , ζ

2
3 q,

diagp1, 1, ζ13 , 1, ζ
2
3 q

2 3 No

65 pZ{3Zq
2 diagp1, ζ13 , 1, ζ

2
3 , ζ

2
3 q,

diagp1, 1, ζ13 , ζ
1
3 , ζ

1
3 q

0 1 No

66 pZ{3Zq
2 diagp1, ζ13 , 1, ζ

2
3 , ζ

2
3 q,

diagp1, 1, ζ13 , ζ
1
3 , ζ

2
3 q

1 1 Yes

67 pZ{3Zq
2 diagp1, ζ13 , 1, ζ

2
3 , ζ

2
3 q,

diagp1, 1, ζ13 , ζ
2
3 , ζ

2
3 q

2 2 Yes

68 Z{11Z diagpζ111, ζ
9
11, ζ

4
11, ζ

3
11, ζ

5
11q 0 0 Yes

69 Z{4Z ˆ Z{3Z diagpζ14 ,´1, 1, 1, 1q,
diagp1, 1, 1, ζ13 , 1q

1 1 Yes

70 Z{4Z ˆ Z{3Z diagpζ14 ,´1, 1, 1, 1q,
diagp1, 1, 1, ζ13 , ζ

1
3 q

0 0 Yes

71 Z{4Z ˆ Z{3Z diagpζ14 ,´1, 1, 1, 1q,
diagp1, 1, 1, ζ13 , ζ

2
3 q

1 2 No

72 Z{4Z ˆ Z{3Z diagpζ14 ,´1, 1, 1,´1q,
diagp1, 1, 1, ζ13 , ζ

1
3 q

0 1 No

73 Z{4Z ˆ Z{3Z diagpζ14 ,´1, 1, 1, ζ34 q,
diagp1, 1, 1, ζ13 , 1q

1 1 Yes

74 pZ{2Zq
2

ˆ Z{3Z diagp´1, 1, 1, 1, 1q,
diagp1, 1,´1, 1, 1q,
diagp1, 1, ζ13 , ζ

1
3 , 1q

1 2 No

75 pZ{2Zq
2

ˆ Z{3Z diagp´1, 1, 1, 1, 1q,
diagp1, 1,´1, 1, 1q,
diagp1, 1, ζ13 , ζ

1
3 , ζ

1
3 q

1 2 No

76 pZ{2Zq
2

ˆ Z{3Z diagp´1, 1, 1, 1, 1q,
diagp1, 1,´1, 1, 1q,
diagp1, 1, ζ13 , ζ

1
3 , ζ

2
3 q

1 2 No

77 pZ{2Zq
2

ˆ Z{3Z diagp´1, 1, 1, 1, 1q,
diagp1, 1,´1, 1, 1q,
diagp1, 1, 1, ζ13 , 1q

2 2 Yes
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78 pZ{2Zq
2

ˆ Z{3Z diagp´1, 1, 1, 1,´1q,
diagp1, 1,´1, 1,´1q,
diagp1, 1, 1, ζ13 , 1q

1 1 Yes

79 Z{5Z ˆ Z{3Z diagpζ15 , ζ
3
5 , ζ

4
5 , ζ

2
5 , 1q,

diagp1, 1, 1, 1, ζ13 q

0 0 Yes

80 Z{16Z diagpζ116, ζ
14
16 , ζ

4
16, ζ

8
16, 1q 0 0 Yes

81 Z{9Z ˆ Z{2Z diagpζ19 , ζ
7
9 , ζ

4
9 , 1, 1q,

diagp1, 1, 1,´1, 1q

0 0 Yes

82 Z{9Z ˆ Z{2Z diagpζ19 , ζ
7
9 , ζ

4
9 , ζ

3
9 , ζ

3
9 q,

diagp1, 1, 1,´1, 1q

0 0 Yes

83 Z{9Z ˆ Z{2Z diagpζ19 , ζ
7
9 , ζ

4
9 , ζ

6
9 , ζ

6
9 q,

diagp1, 1, 1,´1, 1q

0 0 Yes

84 Z{2Z ˆ pZ{3Zq
2 diagp´1, 1, 1, 1, 1q,

diagp1, 1, ζ13 , 1, 1q, diagp1, 1, 1, ζ13 , 1q

1 1 Yes

85 Z{2Z ˆ pZ{3Zq
2 diagp´1, 1, 1, 1, 1q,

diagp1, 1, ζ13 , 1, 1q,
diagp1, 1, 1, ζ13 , ζ

1
3 q

0 0 Yes

86 Z{2Z ˆ pZ{3Zq
2 diagp´1, 1, 1, 1, 1q,

diagp1, 1, ζ13 , 1, 1q,
diagp1, 1, 1, ζ13 , ζ

2
3 q

1 1 Yes

87 Z{2Z ˆ pZ{3Zq
2 diagp´1, 1, 1, 1, 1q,

diagp1, 1, ζ13 , 1, ζ
1
3 q,

diagp1, 1, 1, ζ13 , ζ
1
3 q

0 1 No

88 Z{2Z ˆ pZ{3Zq
2 diagp´1, 1, 1, 1, 1q,

diagp1, 1, ζ13 , 1, ζ
2
3 q,

diagp1, 1, 1, ζ13 , ζ
2
3 q

1 2 No

89 Z{8Z ˆ Z{3Z diagpζ18 , ζ
6
8 , ζ

4
8 , 1, 1q,

diagp1, 1, 1, 1, ζ13 q

0 0 Yes

90 Z{4Z ˆ Z{2Z ˆ Z{3Z diagpζ14 ,´1, 1, 1, 1q,
diagp1, 1, 1,´1, 1q,
diagp1, 1, 1, ζ13 , ζ

1
3 q

0 0 Yes

91 Z{9Z ˆ Z{3Z diagpζ19 , ζ
7
9 , ζ

4
9 , 1, 1q,

diagp1, 1, 1, ζ13 , 1q

0 0 Yes

92 Z{9Z ˆ Z{3Z diagpζ19 , ζ
7
9 , ζ

4
9 , 1, ζ

3
9 q,

diagp1, 1, 1, ζ13 , 1q

0 0 Yes

93 Z{9Z ˆ Z{3Z diagpζ19 , ζ
7
9 , ζ

4
9 , 1, ζ

6
9 q,

diagp1, 1, 1, ζ13 , 1q

0 0 Yes

94 pZ{3Zq
3 diagp1, ζ13 , 1, 1, 1q,

diagp1, 1, ζ13 , 1, 1q, diagp1, 1, 1, ζ13 , 1q

0 0 Yes
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95 pZ{3Zq
3 diagp1, ζ13 , 1, 1, 1q,

diagp1, 1, ζ13 , 1, 1q,
diagp1, 1, 1, ζ13 , ζ

1
3 q

0 0 Yes

96 pZ{3Zq
3 diagp1, ζ13 , 1, 1, 1q,

diagp1, 1, ζ13 , 1, 1q,
diagp1, 1, 1, ζ13 , ζ

2
3 q

1 1 Yes

97 pZ{3Zq
3 diagp1, ζ13 , 1, 1, 1q,

diagp1, 1, ζ13 , 1, ζ
1
3 q,

diagp1, 1, 1, ζ13 , ζ
1
3 q

0 0 Yes

98 pZ{3Zq
3 diagp1, ζ13 , 1, 1, 1q,

diagp1, 1, ζ13 , 1, ζ
1
3 q,

diagp1, 1, 1, ζ13 , ζ
2
3 q

0 0 Yes

99 pZ{3Zq
3 diagp1, ζ13 , 1, 1, 1q,

diagp1, 1, ζ13 , 1, ζ
2
3 q,

diagp1, 1, 1, ζ13 , ζ
2
3 q

1 1 Yes

100 pZ{3Zq
3 diagp1, ζ13 , 1, 1, ζ

1
3 q,

diagp1, 1, ζ13 , 1, ζ
1
3 q,

diagp1, 1, 1, ζ13 , ζ
1
3 q

0 1 No

101 pZ{3Zq
3 diagp1, ζ13 , 1, 1, ζ

1
3 q,

diagp1, 1, ζ13 , 1, ζ
1
3 q,

diagp1, 1, 1, ζ13 , ζ
2
3 q

0 0 Yes

102 pZ{3Zq
3 diagp1, ζ13 , 1, 1, ζ

1
3 q,

diagp1, 1, ζ13 , 1, ζ
2
3 q,

diagp1, 1, 1, ζ13 , ζ
2
3 q

0 1 No

103 pZ{3Zq
3 diagp1, ζ13 , 1, 1, ζ

2
3 q,

diagp1, 1, ζ13 , 1, ζ
2
3 q,

diagp1, 1, 1, ζ13 , ζ
2
3 q

0 1 No

104 Z{4Z ˆ pZ{3Zq
2 diagpζ14 ,´1, 1, 1, 1q,

diagp1, 1, 1, ζ13 , 1q, diagp1, 1, 1, 1, ζ13 q

0 0 Yes

105 pZ{2Zq
2

ˆ pZ{3Zq
2 diagp´1, 1, 1, 1, 1q,

diagp1,´1, 1, 1, 1q,
diagp1, ζ13 , 1, ζ

1
3 , 1q,

diagp1, 1, 1, 1, ζ13 q

0 0 Yes

106 Z{2Z ˆ pZ{3Zq
3 diagp´1, 1, 1, 1, 1q,

diagp1, 1, ζ13 , 1, 1q,
diagp1, 1, 1, ζ13 , 1q, diagp1, 1, 1, 1, ζ13 q

0 0 Yes

107 pZ{3Zq
3

ˆ Z{2Z diagp1, ζ13 , 1, 1, 1q,
diagp1, 1,´1, 1, 1q,
diagp1, 1, 1, ζ13 , 1q, diagp1, 1, 1, 1, ζ13 q

0 0 Yes
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108 pZ{3Zq
4 diagp1, ζ13 , 1, 1, 1q,

diagp1, 1, ζ13 , 1, 1q,
diagp1, 1, 1, ζ13 , 1q, diagp1, 1, 1, 1, ζ13 q

0 0 Yes
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