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1 Introduction

In general, the underlying topological space |X| of a variety carries little information about
X. For example, any bijection between irreducible curves that preserves the generic point is a
homeomorphism between the underlying Zariski topologies. In higher dimensions, the situation
is less dramatic. For instance, observe that one can distinguish the birationally equivalent
varieties P2

k and P1
k ×k P1

k by looking at intersections of irreducible closed subsets.

It is natural to ask what additional structures suffice to tell apart varieties with homeomorphic
underlying topological spaces. Theorems of Torelli type (cf. [BKT10] and [Zil12]) state that,
under certain conditions, adding the datum of the Jacobian to the underlying topological space
of a curve C determines C up to isomorphism. Based on [KLOS21], the aim of this thesis is to
present a proof of the following theorem:

Theorem 1.1 ([KLOS21, Main Theorem]). Let X be a proper normal integral variety of di-
mension at least two over an algebraically closed field. Then X is determined as a scheme by
the pair

(|X|, c : X(1) → Cl(X)),

where X(1) is the set of codimension one points of X and c is the map sending a codimension
one point of X to its class in the divisor class group.

A more precise formulation of this theorem is given in Section 3.2.

The key ingredient for proving Theorem 1.1 is a variant of the Fundamental Theorem of Projec-
tive Geometry (cf. [Art57, Thm. 2.26]), which roughly states that a bijection between projective
spaces that maps lines to lines, lifts to an isomorphism of the underlying vector spaces. This
is discussed in Section 2. Section 3 begins with a review of the theory of divisors on normal
varieties. In particular, the notion of divisorial structures will be introduced, allowing us to
give a more precise formulation of Theorem 1.1. Afterwards, we give arguments to reduce the
proof to the case of locally-factorial (quasi-)projective varieties. In this situation, we see that
linear systems associated with very ample invertible sheaves are projective spaces that satisfy
the assumptions of the variant Fundamental Theorem of Projective Geometry. In Section 4,
these findings are then combined to finally prove Theorem 1.1. We conclude the section by
briefly sketching how to extend the results to varieties over non-algebraically closed fields.

In Section 5, we discuss examples and stronger results related to Theorem 1.1. At first, we
consider the case of one-dimensional varieties, i.e., curves. After presenting a counterexample
to Theorem 1.1 in the case of curves over non-algebraically closed fields, we apply a theorem of
Torelli type [Zil12] to obtain a variant of Theorem 1.1 for curves over algebraically closed fields.

One might raise the question, whether, under the assumptions of Theorem 1.1, the topological
space |X| alone suffices to recover the variety X up to isomorphism of schemes. It turns out
that the answer to this question depends on the characteristic of the ground field. We present
counterexamples in positive characteristic. In particular, we generalize an example given in
[KLOS21], which makes use of elliptic curves, to hyperelliptic curves of arbitrary genus. On
the other hand, J. Kollár [Kol20] has shown that, in characteristic zero, the answer to the
question above is indeed positive. Recall that smooth varieties over C may be endowed with a
so-called analytic topology, realizing them as complex manifolds. We conclude this thesis by a
brief comparison of the analytic and Zariski topologies.

1



Deutsche Zusammenfassung

Das Hauptziel dieser Arbeit ist, einen Beweis des folgenden Theorems zu präsentieren:

Theorem ([KLOS21]). Sei X eine eigentliche, normale, integrale Varietät von Dimension
größer gleich zwei über einem algebraisch abgeschlossenen Körper. Dann ist X als Schema
eindeutig bestimmt durch das Paar

(|X|, c : X(1) → Cl(X)),

wobei X(1) die Menge der Punkte in Kodimension eins und c die Abbildung ist, die die Punkte
in Kodimension eins auf die zugehörige Klasse in der Klassengruppe von X schickt.

Eine präzisere Formulierung des Theorems findet sich in Abschnitt 3.2.

Der Hauptbestandteil des Beweises ist eine Variante des Hauptsatzes der projektiven Geometrie
[Art57, Thm. 2.26], der in seiner klassischen Form besagt, dass jede Bijektion zwischen projekti-
ven Räumen, die Geraden auf Geraden schickt, auf eine lineare Abbildung zwischen den zugrun-
deliegenden Vektorräumen zurückzuführen ist. Dies wird in Abschnitt 2 diskutiert. Abschnitt 3
beginnt mit einer Rekapitulation der Theorie von Divisoren auf normalen Varietäten. Es werden
insbesondere sogenannte divisorielle Strukturen eingeführt, die eine präzisere Formulierung des
Haupttheorems ermöglichen. Danach liefern wir Argumente, um den Beweis des Theorems auf
den Fall von lokal faktoriellen, (quasi-)projektiven Varietäten zu reduzieren. In dieser Situation
zeigen wir nun, dass die linearen Systeme, die mit sehr amplen invertierbaren Garben assoziiert
sind, projektive Räume sind, welche die Voraussetzungen der Variante des Hauptsatzes der pro-
jektiven Geometrie erfüllen. Diese Beobachtungen werden dann in Abschnitt 4 zu einem Beweis
des Haupttheorems zusammengeführt.

In Abschnitt 5 werden Beispiele und Verstärkungen des Theorems erörtert. Nach der Präsentation
eines Gegenbeispiels im Fall von Kurven über nicht algebraisch abgeschlossenen Körpern, ver-
wenden wir einen Satz des Torelli-Typs [Zil12], um eine Variante des obigen Theorems für
Kurven über algebraisch abgeschlossenen Körper zu erhalten.

Man kann sich die Frage stellen, ob unter den Voraussetzungen des Haupttheorems schon allein
der topologische Raum |X| genügt, um die Varietät X bis auf Schema-Isomorphie zu bestimmen.
Es stellt sich heraus, dass die Antwort von der Charakteristik des Grundkörpers abhängt. Wir
präsentieren mehrere Gegenbeispiele in positiver Charakteristik. Insbesondere verallgemeinern
wir ein Beispiel aus [KLOS21], welches elliptische Kurven verwendet, auf hyperelliptische Kurven
beliebigen Geschlechts. Andererseits hat J. Kollár in [Kol20] gezeigt, dass die Antwort auf die
obige Frage positiv ist, wenn man Körper mit der Charakteristik Null betrachtet. Dieses stärkere
Resultat nutzen wir, um Beispiele von glatten projektiven Varietäten über C anzugeben, die
diffeomorph als reelle differenzierbare Mannigfaltigkeiten sind, deren zugrundeliegenden Zariski-
Topologien jedoch nicht homöomorph sind.

Danksagung

An dieser Stelle möchte ich mich herzlich bei allen bedanken, die mir beim Anfertigen dieser
Arbeit geholfen haben. Besonders bedanke ich mich bei meinem Betreuer, Prof. Daniel Huy-
brechts, für seine Geduld und die hilfreichen Ideen und Ratschläge, sowie für seine interessanten
Vorlesungen in den letzten drei Jahren. Schlussendlich möchte ich meinen Eltern für ihre Un-
terstützung während meines bisherigen Studiums danken.
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2 The Fundamental Theorem of Projective Geometry

Let V and W be vector spaces over a field. In general, a bijection ϕ : P(V ) → P(W ) does
not yield an isomorphism V ∼= W of the underlying vector spaces. However, the Fundamental
Theorem of Projective Geometry asserts that if ϕ preserves lines, one can indeed construct an
isomorphism V ∼= W compatible with the map ϕ. In this section, we establish a generic variant
of this theorem, which is then used in the reconstruction of varieties as described in Sections 3
and 4. Similar methods are used in [BT08] to reconstruct function fields of surfaces over the
algebraic closures of finite fields.

Let us first recall some basic definitions.

Definition 2.1. Let V be a vector space over a field k. The projective space associated to V is
the quotient

P(V ) := (V \ {0})/k×.
If V is finite-dimensional, then the dimension of P(V ) is dimk V − 1. A projective space of
dimension one is called a line. If W ⊆ V is a linear subspace, then there is a natural inclusion
P(W ) ⊆ P(V ) of projective spaces. The subsets of P(V ) arising in this way are called (linear)
subspaces.

The following definition generalizes the notion of linear maps between vector spaces.

Definition 2.2. Let σ : k1 → k2 be an isomorphism of fields. Let V1 (resp. V2) be a vector
space over k1 (resp. k2). A map γ : V1 → V2 is called σ-linear if γ satisfies

γ(v + w) = γ(v) + γ(w) and γ(a · v) = σ(a) · γ(v)

for all a ∈ k1 and v, w ∈ V1.

Note that every injective σ-linear map γ : V1 → V2 induces a map

P(γ) : P(V1)→ P(V2).

We call this map the projectivization of γ. The Fundamental Theorem of Projective Geometry
yields a partial converse to this construction.

Theorem 2.3 (Fundamental Theorem of Projective Geometry, [Art57, Thm. 2.26]). Let V1

(resp. V2) be a vector space over a field k1 (resp. k2) of dimension at least three. If

ϕ : P(V1)→ P(V2)

is a bijection that induces a bijection on the sets of lines of P(V1) and P(V2), then there is an
isomorphism of fields σ : k1

∼−→ k2 and a σ-linear isomorphism γ : V1
∼−→ V2 such that the induced

map P(γ) : P(V1)→ P(V2) agrees with ϕ.

Remark 2.4. Note that for isomorphisms of fields σ, σ′ : k1
∼−→ k2 and σ-(resp. σ′-)linear injective

maps γ, γ′ : V1 → V2, we have P(γ) = P(γ′) if and only if σ = σ′ and there exists λ ∈ k×2 such
that γ = λγ′.

Example 2.5. The only automorphisms of the fields Q, R and Qp are the respective identities.
The proof of this fact is elementary and carried out in [Con]. In the case of the field of real
numbers, the proof uses the fact that R is an ordered field. For algebraically closed fields,
the situation is more complicated. For example, the existence of a square root of −1 prohibits
algebraically closed fields from being ordered. The only automorphisms of C that are continuous
as maps of R2, are the identity and complex conjugation. However, these are not the only
automorphisms of the field of complex numbers. In fact, for an arbitrary algebraically closed
field k, one can show that the cardinality of the set of automorphisms of k is 2card(k) (For details,
see [Cha70]).
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Remark 2.6. In the proof of Theorem 1.1, we will be able to determine whether a line in P(V1)
is mapped to a line in P(V2) only for a dense open subset of lines in P(V1). Hence, we need a
variant of the Fundamental Theorem of Projective Geometry, taking into account this notion
of genericity.

In order to make precise what we mean by a dense open subset of lines on a projective space,
we recall that the Grassmannian variety Gr(1,P(V )) classifies the one-dimensional subspaces
on the projective space P(V ). (This is sometimes denoted Gr(2, V ) as lines in P(V ) correspond
to two-dimensional subspaces of V .) For a discussion of the Grassmannian as a classical variety,
the reader is referred to [Har92, Ch. 6]. The scheme-theoretic point of view is discussed in
[EH00, Ch. III.2.7].

Definition 2.7 ([KLOS21, Def. 2.1.1]). A definable projective space is a triple (k, V, U) consist-
ing of an infinite field k, a finite-dimensional k-vector space V and a subset U ⊆ Gr(1,P(V ))(k)
containing the k-points of a dense open subset of the space Gr(1,P(V )) of lines in the projective
space P(V ). The elements of U are called definable lines. The dimension of (k, V, U) is defined
to be

dim(k, V, U) := dimk V − 1.

Definition 2.8 ([KLOS21, Def. 2.1.2]). Let k be a field and V a k-vector space. We define the
sweep of a subset U ⊆ Gr(1,P(V )) to be the set SU (P(V )) of all points P ∈ P(V ) contained in
a line L ∈ U◦ where U◦ ⊆ U is the maximal open subset of U ⊆ Gr(1,P(V ))(k).

Theorem 2.9 (Variant Fundamental Theorem of Projective Geometry, [KLOS21, Thm. 2.1.5]).
Let (k1, V1, U1) and (k2, V2, U2) be definable projective spaces of the same dimension n ≥ 2. If
there is a bijection

ϕ : P(V1)→ P(V2)

such that for all definable lines L ⊆ P(V1) (i.e., L ∈ U1) the image ϕ(L) ⊆ P(V2) is again a
definable line, then there is an isomorphism of fields σ : k1

∼−→ k2 and a σ-linear isomorphism

γ : V1
∼−→ V2

such that P(γ) agrees with ϕ on a dense open subset of P(V1) containing the sweep of (k1, V1, U1).

Proof. We follow the proof given in [KLOS21, Thm. 2.1.5], which is very similar to the classical
one (cf. [Art57, Thm. 2.26]).

As the definition of the sweep of (k1, V1, U1) just depends on the maximal open subset U0
1 ⊆ U1,

we can without loss of generality assume that U1 = U◦1 ⊆ Gr(1,P(V1))(k1) is an open subset.

For simplicity, we assume that k1 and k2 are algebraically closed. In particular, this allows us
to work with the Grassmannian as a classical variety in the sense of [Har77, Ch. I.].

Let us first fix some notation. Let V be a finite-dimensional vector space over a field k. A
point P ∈ P(V ) corresponds to a one-dimensional subspace lP ⊆ V . For 0 6= v ∈ lP we write
P = [v]. Two distinct points P,Q ∈ P(V ) span a unique line LP,Q ⊆ P(V ). If P (resp. Q) is
represented by vP ∈ lP (resp. vQ ∈ lQ), then vP and vQ are linearly independent in V and LP,Q
corresponds to the two-dimensional subspace spanned by vP and vQ. Note that if P,Q and R
are three distinct points on a line L ⊆ P(V ), then, for a chosen vector vP ∈ lP \ {0}, there is a
unique vector vR ∈ lR \ {0} such that Q = [vP + vR]. Moreover, the map

εP,Q,R : k → L \ {R}
a 7→ [vP + avR]

is a bijection that maps 0 to P and 1 to Q. One easily verifies that εP,Q,R is independent of the
chosen representative vP .
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The first step of the proof of Theorem 2.9 is to construct an isomorphism of fields σ : k1 → k2.

For the remainder of the proof, fix a definable line L1 ⊆ P(V1) together with three distinct
points P,Q,R ∈ L1. As the image of L1 under ϕ is again a definable line, we obtain a bijection

σ(L1,P,Q,R) : k1
εP,Q,R−−−−→ L1 \ {R}

ϕ→ ϕ(L1) \ {ϕ(R)} (εϕ(P ),ϕ(Q),ϕ(R))
−1

−−−−−−−−−−−−→ k2.

Since εP,Q,R(0) = P and εP,Q,R(1) = Q, we have σ(L1,P,Q,R)(0) = 0 and σ(L1,P,Q,R)(1) = 1. Our
goal is to show that σ is an isomorphism of fields that is independent of the chosen line and
points. The proof will revolve around the following configuration of lines:

P

R T

εP,Q,R(a)
εP,S,T (b)

Oa,b

Figure 1: The configuration of lines considered in Construction 2.10.

Construction 2.10. Let L2 ⊆ P(V1) be an additional line intersecting L1 precisely in the point
P and choose two distinct points S, T ∈ L2 \ {P}. Fix a, b ∈ k1 \ {0}. Choose a representative
vP ∈ lP \{0} of P . Then there are unique vR ∈ lR\{0}, vT ∈ lT \{0} such that Q = [vP +vR] and
S = [vP + vT ]. Moreover, we have εP,Q,R(a) = [vP + avR] 6= P and εP,S,T (b) = [vP + bvT ] 6= P .
The point of intersection

{Oa,b} := LT,R ∩ LεP,Q,R(a),εP,S,T (b)

corresponds to the intersection of linear subspaces

〈vT , vR〉 ∩ 〈vP + avR, vP + bvT 〉 = 〈vT −
a

b
vR〉 ⊆ V1.

In particular, we have
Oa,b = εT,[vT+vR],R(−a/b).

To compare σ(L1,P,Q,R) and σ(L2,P,S,T ), we would like to apply ϕ to the lines constructed above
and then carry out the same calculation in P(V2). However, this is only possible if all the
considered lines are definable. Otherwise, the images of the lines under ϕ may not be lines
in P(V2) anymore. In the following, we show that for a general choice of (L2, S, T ), all lines
considered in Construction 2.10 are definable. Let us first introduce notions to make this
statement precise.

The quotient map V1 → V1/lP induces a closed embedding

P(V1/lP ) ∼= Gr(0,P(V1/lP )) ↪→ Gr(1,P(V1)),

identifying P(V1/lP ) with the closed subvariety of Gr(1,P(V1)) corresponding to the set of lines
going through the point P (see [Har92, Ch. 6.6]). Let

L → P(V1/lP )
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denote the universal line through P . In other words, L ⊆ P(V1)×k P(V1/lP ) can be described
as the closed subvariety containing pairs (Q,L), where Q is a point on a line L through P . The
morphism L → P(V1/lP ) is the restriction of the second projection. Note that the restriction
of the first projection L → P(V1) is (isomorphic to) the blow-up of P(V1) in the point P .

Definition 2.11. We define the scheme MP to be the fiber product of the universal line through
P , i.e., L → P(V1/lP ) with itself.

MP := L ×P(V1/lP ) L

Note that the closed points of MP correspond to triples (L, S, T ), where L ⊆ P(V1) is a line
through P and S, T ∈ P(V1) are points contained in the line L.

Lemma 2.12. The scheme MP is integral.

Proof. Being isomorphic to the blow-up of P(V1) in the point P , the variety L is irreducible and
smooth over k1. Moreover, the fibers of L → P(V1/lP ) are isomorphic to P1

k1
and in particular

irreducible of dimension 1 = dim L −dimP(V1/lP ). The ’miracle flatness theorem’ (cf. [Mat87,
Thm. 23.1]) thus implies that L → P(V1/lP ) is flat. As flatness is stable under base change,
the projection π : MP = L ×P(V1/lP ) L → L is flat as well. Note that the fibers of π are again
isomorphic to projective lines. Hence, π is a flat (and thus open) morphism with irreducible
fibers and irreducible target. A general fact from topology (cf. [Stacks, 004Z]) implies that the
source of such a map is irreducible.

It remains to show that MP is reduced. This follows from the fact that π : MP → L is flat and
L is reduced (cf. [DG67, IV. Prop. 11.3.13]).

Note that, in general, the fiber product of (morphisms between) integral varieties may not be
irreducible.

Example 2.13. Fix n > 2. Consider the blow-up π : BlP (Pnk) → Pnk of Pnk in a point P ∈ Pnk .
Let X denote the fiber product of BlP (Pnk)→ Pnk with itself.

X BlP (Pnk)

BlP (Pnk) Pnk

The morphism π restricts to an isomorphism π−1(Pnk \{P})
∼−→ Pnk \{P}. Hence, X has an open

subset of dimension n. On the other hand, the fiber of X → Pnk over the point P is isomorphic
to Pn−1

k ×k Pn−1
k and thus of dimension 2n − 2 6= n. In particular, this implies that X has

irreducible components of different dimensions. Note however, that Pnk is irreducible and π has
irreducible fibers.

With these preparations out of the way, we can now show that we can always find triples
(L, S, T ) such that all of the lines occurring in Construction 2.10 are definable.

Lemma 2.14 ([KLOS21, Lem. 2.1.9]). Fix a, b ∈ k×1 . Then there exists a non-empty open
subset UP,a,b ⊆MP such that for all points (L, S, T ) of UP,a,b, the lines

LP,T , LT,R, LεP,Q,R(a),εP,S,T (b)

occurring in Construction 2.10 are definable.
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Proof. Let W ⊆MP be the open subset containing all points (L, S, T ) that satisfy

S 6= T, P 6= T,R 6= T and εP,Q,R(a) 6= εP,S,T (b).

We define the following morphisms of varieties sending points of W to the corresponding lines
occuring in Construction 2.10.

q1 : W → Gr(1,P(V1)), (L, S, T ) 7→ LP,T

q2 : W → Gr(1,P(V1)), (L, S, T ) 7→ LT,R

q3 : W → Gr(1,P(V1)), (L, S, T ) 7→ LεP,Q,R(a),εP,S,T (b)

Note that by definition of W , each of the qi is well-defined. As W is open and k1 is infinite,
we may choose points S, T on the fixed line L1 such that (L1, S, T ) ∈ W . Then we have
qi((L1, S, T )) = L1 ∈ U1 and thus q−1

i (U1) 6= ∅ for i = 1, 2, 3. As MP is irreducible, the
intersection of the non-empty open subsets UP,a,b :=

⋂3
i=1 q

−1
i (U1) is again a non-empty open

subset. By construction, the closed points in this set correspond precisely to the triples (L, S, T )
for which all lines in Construction 2.10 are definable.

Lemma 2.15 ([KLOS21, Lem. 2.1.10]). Let P,Q ∈ P(V1) be two points in the sweep of U1.
Then there exists a definable line LP through P and a definable line LQ through Q such that
LP and LQ intersect in a single point.

Proof. The map s : P(V1/lP ) → L sending a line L ∈ P(V1/lP ) to the pair (L,P ) ∈ L is
a morphism between projective varieties, hence closed. Consider the restriction of the two
projection maps to the open subvariety L \ im(s) ⊆ L :

L \ im(s)

P(V1) \ {P} P(V1/lP )

π1 π2

The projection π1 is an isomorphism. Indeed, the inverse morphism is given by

P(V1) \ {P} → L \ im(s)

Q 7→ (Q,LP,Q)

mapping a point Q 6= P to the unique line through P and Q.

It follows that the set SP := π1(π−1
2 (U1)) ⊆ P(V1) \ {P}, which corresponds to the set of points

connected to P via a definable line, is open. Moreover, SP is non-empty, since P is contained
in the sweep of U1. As P(V1) is irreducible, the intersection of the non-empty open subsets
SP ∩ SQ ⊆ P(V1) is non-empty. Hence, there is a point R ∈ SP ∩ SQ connected to both P and
Q via definable lines. This finishes the proof.

We can finally show that σ is independent of any choices.

Claim 2.16. The map σ(L1,P,Q,R) does not dependent on the quadruple (L1, P,Q,R).

Proof. Let (L′, P ′, Q′, R′) be a definable line on P(V1) containing three marked points. Our aim
is to show

σ(L1,P,Q,R)(a) = σ(L′,P ′,Q′,R′)(a)

for all a ∈ k1. First consider the case P = P ′. Fix an element 0 6= a ∈ k1. By Lemma 2.14,
there is a line L ⊆ P(V1) containing two distinct points S, T ∈ L such that L′ 6= L 6= L1 (Note
that we do not exclude the case L′ = L1) and the lines

LP,T , LT,R, LεP,Q,R(a),εP,S,T (a), LεP,Q,R(1),εP,S,T (1),
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and
LT,R′ , LεP,Q′,R′ (a),εP,S,T (a), LεP,Q′,R′ (1),εP,S,T (1)

are definable. In other words, all the lines appearing in Construction 2.10 for a, b replaced by
a and a, b replaced by 1 are definable and thus mapped to lines in P(V2) by ϕ. We claim that

σ(L1,P,Q,R)(a) = σ(L,P,S,T )(a). (2.1)

The calculation proceeds in the same way as in Construction 2.10. To simplify notation, we
temporarily write σ := σ(L1,P,Q,R) and σ′ := σ(L,P,S,T ). Choosing vP ∈ V1 and wP ∈ V2 such
that P = [vP ] and ϕ(P ) = [wP ] yields unique vectors vR, vT ∈ V1 and wR, wT ∈ V2 such that

R = [vR], Q = [vP + vR], ϕ(R) = [wR] and ϕ(Q) = [wP + wR],

and
T = [vT ], S = [vT + vP ], ϕ(T ) = [wT ] and ϕ(S) = [wT + wP ].

By the definition of σ(−), we have

ϕ(εP,Q,R(a)) = εϕ(P ),ϕ(Q),ϕ(R)(σ(a)) = [wP + σ(a)wR]

and
ϕ(εP,S,T (a)) = εϕ(P ),ϕ(S),ϕ(T )(σ′(a)) = [wP + σ′(a)wT ].

Hence,
ϕ(Oa,a) = [σ(a)wR − σ′(a)wT ].

Note that Oa,a = [vR − vT ] is independent of the choice of a ∈ k×1 . As σ(1) = σ′(1) = 1, we
conclude

[wR − wT ] = ϕ(O1,1) = ϕ(Oa,a) = [σ(a)wR − σ′(a)wT ]

and thus σ(a) = σ′(a). By symmetry, it follows that

σ(L1,P,Q,R)(a) = σ(L,P,S,T )(a) = σ(L′,P,Q′,R′)(a).

In particular, the map σ(L,P,Q,R) is independent of the choice of Q and R. Moreover, using the
notation above, we calculate

[wP + σ(L1,P,Q,R)(a)wR] = ϕ([vP + avR]) = ϕ([vR + a−1vP ]) = [wR + σ(L1,R,Q,P )(a−1)wP ]

and obtain

σ(L1,P,Q,R)(a) =
(
σ(L1,R,Q,P )(a−1)

)−1
. (2.2)

Together with the conclusion above, this shows that σ(L1,P,Q,R) is independent of the choice of
points P,Q and R. Temporarily call this map σL1 .

Now consider the case L1 6= L′. If L1 and L′ intersect in a point P , then we can choose Q,R ∈ L1

and Q′, R′ ∈ L′ as above and conclude

σL1 = σ(L1,P,Q,R) = σ(L′,P,Q′,R′) = σL
′
.

In the case that L1 and L′ do not intersect, Lemma 2.15 implies that there is a definable line
L′′ intersecting both L1 and L′. Then we have

σL1 = σL
′′

= σL
′
.

This finishes the proof.
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Set σ := σ(L1,P,Q,R).

Claim 2.17. For all a ∈ k×1 , we have

(σ(a−1))−1 = σ(a).

Proof. As calculated in the proof of the previous claim, we have

σ(L1,P,Q,R)(a) =
(
σ(L1,R,Q,P )(a−1)

)−1
.

Since σ is independent of the chosen definable line and points, the claim follows.

Claim 2.18. For all a, b ∈ k1, we have

σ(a · b) = σ(a) · σ(b).

Proof. It suffices to show that there is λ ∈ k×2 such that for all a, b ∈ k×1 , we have

σ(−a/b) = −λσ(a)/σ(b). (2.3)

Indeed, plugging in b = 1, we obtain σ(−a) = −λσ(a) for all a ∈ k1. In particular, we have

1 = σ(1) = −λσ(−1) = λ2σ(−(−1)) = λ2.

We obtain
σ(a/b) = −λσ(−a/b) = λ2σ(a)/σ(b) = σ(a)/σ(b).

By Claim 2.17, we conclude

σ(a · b) = σ(a/b−1) = σ(a)/σ(b−1) = σ(a)/σ(b)−1 = σ(a) · σ(b).

Let us now give a proof of (2.3). The idea is again to inspect the point of intersection in
Construction 2.10. Fix a, b ∈ k×1 . By Lemma 2.14 we find a definable line L and points
S, T ∈ L such that all the lines considered in Construction 2.10 for the fixed elements a, b as
well as for a, b replaced by 1 are definable. In other words, (L, S, T ) corresponds to a point in
the intersection UP,a,b ∩ UP,1,1 ⊆ MP . Fix representatives vP ∈ lP \ {0} and wP ∈ lϕ(P ) \ {0}.
Then there are unique vR, vT ∈ V1 and wR, wT ∈ V2 such that

R = [vR], Q = [vP + vR], ϕ(R) = [wR] and ϕ(Q) = [wP + wR],

and
T = [vT ], S = [vT + vP ], ϕ(T ) = [wT ] and ϕ(S) = [wT + wP ].

As ϕ([vR + vT ]) is contained in the definable line spanned by ϕ(R) and ϕ(T ), there is λ ∈ k×1
such that

ϕ([vT + vR]) = [wT + λ−1wR].

Note that a priori, we do not know whether λ is independent of a and b. We have Oa,b =
[vT − a/bvR] and ϕ(Oa,b) = [wT − σ(a)/σ(b)wR] by the calculation in Construction 2.10. This
implies

εT,[vT+vR],R(−a/b) = [vT − a/bvR] = Oa,b

and
εϕ(T ),[wT+λ−1wR],ϕ(R)(−λσ(a)/σ(b)) = [wT − σ(a)/σ(b)wR] = ϕ(Oa,b).

We conclude σ(−a/b) = −λσ(a)/σ(b). Applying the same arguments with a and b replaced by
1 without changing (L, S, T ) shows that λ is independent of a and b.
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To see that σ is an isomorphism of fields, it remains to show that the map is compatible with
addition. As in the case of multiplication, the strategy is to look at the points of intersection
in a certain configuration of lines.

Construction 2.19. Consider a marked line (L1, P,Q,R) and let S be a point not contained
in L1. Let T be a third point on the line LS,R. Choose vR ∈ V1 such that R = [vR]. This choice
again yields unique vP , vS ∈ V1 such that P = [vP ], S = [vS ], Q = [vP + vR] and T = [vS + vR].
The lines LS,Q and LP,T intersect in a point corresponding to the subspace

〈vS , vR + vR〉 ∩ 〈vP , vS + vR〉 = 〈vP + vS + vR〉 ⊆ V1.

Call this point V := [vP + vS + vR]. The intersection of the lines LR,V and LP,S corresponds to
the subspace

〈vR, vP + vS + vR〉 ∩ 〈vP , vS〉 = 〈vP + vS〉 ⊆ V1.

Let W := [vP + vS ] denote the point of intersection. Note that V and W are independent of
the chosen vector vR ∈ V1.

Fix a, b ∈ k1. Using the above notation, we have εP,Q,R(a) = [vP + avR] and εS,T,R(b) =
[vS + bvR]. The lines LR,W and LεP,Q,R(a),εS,T,R(b) thus intersect in a point corresponding to the
linear subspace

〈vR, vP + vS〉 ∩ 〈vP + avR, vS + bvR〉 = 〈vP + vS + (a+ b)vR〉.

Call this point O := [vP + vS + (a+ b)vR] = εW,V,R(a+ b).

R V

εP,Q,R(a)

Q

P

W

S

T

εS,T,R(b)

O

Figure 2: The configuration of lines considered in Construction 2.19

To use this construction in our favor, we have to ensure once again that all the considered lines
are definable.

Lemma 2.20. For a, b ∈ k1, there exists a pointed line (L,P,Q,R) and points S, T such that
all the lines in Figure 2 are definable.

Proof. The proof of this lemma is very similar to the proof of Lemma 2.14 (see [KLOS21, Lem.
2.1.13]) and thus omitted for brevity.

Claim 2.21. For all a, b ∈ k1, we have

σ(a+ b) = σ(a) + σ(b).
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Proof. This follows from the calculation carried out in Construction 2.19 combined with Lemma
2.20. Indeed, for a choice of (L,P,Q,R) and S, T such that all the lines occurring in Construction
2.19 are definable, we have

O = εW,V,R(a+ b) and ϕ(O) = εϕ(W ),ϕ(V ),ϕ(R)(σ(a) + σ(b)).

Hence, we conclude σ(a+ b) = σ(a) + σ(b).

Combining the claims above, we arrive at the desired conclusion.

Corollary 2.22. The map σ : k1
∼−→ k2 is an isomorphism of fields.

The second step of the proof is to construct an injective σ-linear map γ : V1 → V2.

Using the fact that k is infinite and that U1 ⊆ Gr(1,P(V1)) is open, we may choose a basis
(vi) ∈ V n

1 of V1 such that the lines L[vi],[vj ] ⊆ P(V1) are definable for 1 ≤ i < j ≤ n. In order to
define a map V1 → V2, we construct a sequence (wi) ∈ V n

2 of elements of V2:

Begin by choosing a representative w1 ∈ lϕ([v1]) \ {0}. For i ≥ 2, the line Li := L[v1],[vi] is
definable. Therefore, its image ϕ(Li) ⊆ P(V2) is a definable line as well. Furthermore, ϕ(Li)
contains the points ϕ([v1]), ϕ([vi]) and ϕ([v1 + vi]). The choice of w1 hence determines a unique
wi ∈ lϕ([vi]) \ {0} such that

ϕ([v1 + vi]) = [w1 + wi].

Extending the map vi 7→ wi σ-linearly, we obtain a σ-linear map γ : V1 → V2 satisfying

γ

(
n∑
i=1

aivi

)
=

n∑
i=1

σ(ai)wi.

Claim 2.23. There is a non-empty open subset W ⊆ kn1 = Ank1(k1) such that for all points
(a1, . . . , an) ∈W , we have

ϕ

([
n∑
i=1

aivi

])
=

[
γ

(
n∑
i=1

aivi

)]
.

Proof. The idea of the proof is very similar to what we have seen above. First, we show that a
certain set of lines is definable. Then, we compute points of intersection of these lines in P(V1)
and, after applying ϕ, in P(V2).

For 1 ≤ i < j ≤ n, we define morphisms of varieties

Fi,j : WF
i,j → Gr(1,P(V1)), (ak) 7→ P(〈aivi, ai+1vi+1 + · · ·+ ajvj〉)

and
Gi,j : WG

i,j → Gr(1,P(V1)), (ak) 7→ P(〈aivi + · · ·+ aj−1vj−1, ajvj〉),

where WF
i,j ,W

G
i,j ⊆ kn1 are the maximal open subsets on which the maps are well-defined. Note

that the definable line spanned by vi and vj is contained in the images of Fi,j and Gi,j . Hence,
the open set

W :=

 ⋂
1≤i<j≤n

F−1
i,j (U1)

 ∩
 ⋂

1≤i<j≤n
G−1
i,j (U1)

 ⊆ kn1
is non-empty.

Take a = (a1, . . . , an) ∈ W . Note that ϕ([aivi]) = ϕ([vi]) = [wi] = [σ(ai)wi] = [γ(aivi)]. We
proceed by induction on 0 ≤ j < n. For all 1 ≤ i ≤ n− j, assume

ϕ([aivi + · · ·+ ai+jvi+j ]) = [γ(aivi + · · ·+ ai+jvi+j)].
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Fix 1 ≤ i ≤ n− j− 1. Consider the lines L := Fi,i+j+1(a) and L′ := Gi,i+j+1(a). They intersect
in the point

L ∩ L′ = {[aivi + · · ·+ ai+j+1vi+j+1]}.

As a ∈W , both L and L′ are definable lines. Hence, their images ϕ(L) and ϕ(L′) are definable
lines as well. Note that ϕ(L) is spanned by

σ([aivi]) = [γ(aivi)] and σ([ai+1vi+1 + · · ·+ ai+j+1vi+j+1]) = [γ(ai+1vi+1 + · · ·+ ai+j+1vi+j+1)],

while ϕ(L′) is spanned by

σ([aivi + · · ·+ ai+jvi+j ]) = [γ(aivi + · · ·+ ai+jvi+j)] and σ([ai+j+1vi+j+1]) = [γ(ai+j+1vi+j+1)].

In particular, we have

ϕ(L ∩ L′) = ϕ(L) ∩ ϕ(L′) = {[γ(aivi + · · ·+ ai+j+1vi+j+1]}

and conclude

ϕ([aivi + · · ·+ ai+j+1vi+j+1]) = [γ(aivi + · · ·+ ai+j+1vi+j+1)].

By induction, we obtain ϕ ([
∑n

i=1 aivi]) = [γ (
∑n

i=1 aivi)].

Claim 2.24. The map γ : V1 → V2 is an isomorphism

Proof. As V1 and V2 are vector spaces of the same dimension, it suffices to show that γ is
injective. Suppose that 0 6= ker(γ). The previous claim shows that there is a non-empty
open subset W ⊆ V1 such that for all v ∈ W one has σ([v]) = [γ(v)]. In particular, we have
ker(γ) ∩W = ∅. Fix v ∈W . As W is open and ker(γ) 6= 0, there is w ∈ (v + ker(γ)) ∩W such
that v and w are linearly independent. But then we have ϕ([v]) = [γ(v)] = [γ(w)] = ϕ([w]), in
contradiction to the injectivity of ϕ.

In particular, γ induces a bijection P(γ) : P(V1)→ P(V2).

Claim 2.25. The map P(γ) : P(V1)→ P(V2) is independent of the chosen basis v1, . . . , vn ∈ V1.

Proof. This follows from Claim 2.23 and the fact that for two injective σ-linear maps γ, γ′ : V1 →
V2 such that the projectivizations P(γ),P(γ′) : P(V1)→ P(V2) agree on a non-empty open (and
thus dense) subset of P(V1), we already have P(γ) = P(γ′).

To finish the proof of Theorem 2.9, it remains to show that P(γ) and ϕ agree on the sweep of
the set of definable lines.

Claim 2.26. The map P(γ) agrees with ϕ on the sweep of U1.

Proof. Let P be a point contained in the sweep of U1. As U1 ⊆ Gr(1,P(V1)) is open, k is infinite
and P is contained in the sweep of definable lines, we can choose a basis v′1, . . . , v

′
n of V1 such

that v′1 represents the point P and for i 6= j, the line spanned by [v′i] and [v′j ] is definable.

As the map P(γ) is independent of the chosen basis, we may assume vi = v′i. The construction
of γ then yields

P(γ)(P ) = P(γ)([v1]) = [γ(v1)] = [w1] = σ([v1]) = σ(P ).

Therefore, P(γ) and ϕ agree on the sweep of U1.

Remark 2.27. For an axiomatic approach to projective geometry, the reader is referred to
[Mih72].
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3 Divisorial structure and linear systems

In the following, all schemes are assumed to be Noetherian.

3.1 Divisors and reflexive sheaves

Recall from [Har77, Rem. II.6.11.2] that on a normal scheme X, the set of Cartier divisors may
be identified with the set of locally principal Weil divisors. If X is locally-factorial, then every
Weil divisor is Cartier (cf. [Har77, Prop. 6.11]) and thus corresponds to an invertible sheaf on
X. For arbitrary normal varieties, this correspondence fails, leading to the notion of reflexive
sheaves. In the following, we will briefly review the properties of reflexive sheaves needed in
this thesis. For proofs and more information, the reader is referred to [Har80], [CLS12, Ch. 8]
and [Sch].

Definition 3.1. Let D be a Weil divisor on a normal integral scheme X. Then

U ⊆ X 7→ {f ∈ K(X)× | (divf +D)|U ≥ 0} ∪ {0}

yields a coherent sheaf OX(D) on X. The divisor D is Cartier if and only if OX(D) is invertible.

Definition 3.2. A coherent sheaf F is called reflexive if the natural map

F → F∨∨

is an isomorphism.

Proposition 3.3 ([Har80, Prop. 1.6]). Let F be a coherent sheaf on a normal integral scheme
X. Then the following conditions are equivalent:

(i) F is reflexive;

(ii) F is torsion-free and for every open set U and every closed subset Z ⊆ U of codimension
at least two, the restriction map F(U)→ F(U \ Z) is bijective.

Proof. See [Har80, Prop. 1.6].

The following proposition relates Weil divisors and reflexive sheaves of rank one, generalizing
the correspondence between Cartier divisors and invertible sheaves.

Proposition 3.4. Let F be a coherent sheaf on a normal integral scheme X. Then the following
conditions are equivalent:

(i) F is reflexive of rank one;

(ii) F ∼= OX(D) for some Weil divisor D on X.

Proof. See [CLS12, Prop. 8.0.7].

Lemma 3.5. Let D and E be divisors on a normal integral scheme X. Then D and E are
linearly equivalent if and only if OX(D) ∼= OX(E).

Proof. In the case of X being locally-factorial (i.e., D and E Cartier), the proof is given in
[Har77, Prop. II.7.7]. For the general case, see [Sch, Prop. 3.12].

We immediately obtain the following corollary.

Corollary 3.6. Let D be an effective Cartier divisor on a normal integral scheme X. Then
every effective divisor that is linearly equivalent to D, is Cartier as well.
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3.2 Divisorial structure

Let X be a normal integral scheme and let Eff(X) ⊆ Div(X) denote the set of effective Weil
divisors on X. Observe that Eff(X) is the free abelian monoid on the set of codimension one
points of |X|, which we will denote as X(1). In particular, the datum of Eff(X) consists of a
map X(1) → Eff(X). Similary, Div(X) is the free abelian group on the set X(1) and comes with
a map X(1) → Div(X).

In order to give a more concise reformulation of Theorem 1.1, we introduce the notion of
divisorial structures.

Definition 3.7 ([KLOS21, Def. 3.1.10]). The divisorial structure associated to a normal integral
scheme X is the pair

τ(X) := (|X|, cX : X(1) → Cl(X)),

where |X| is the underlying topological space of X and

cX : X(1) → Cl(X)

is the map sending a point of codimension one to the rational equivalence class of the corre-
sponding prime divisor in the class group. Note that by the universal property of free abelian
groups (resp. monoids), the map cX factors uniquely as

X(1) → Eff(X)→ Div(X)→ Cl(X),

where the first map is given by the datum of Eff(X), the second one is the natural inclusion
Eff(X) ⊆ Div(X) and Div(X) → Cl(X) is the quotient map given by the rational equivalence
relation on divisors.

Let X and Y be normal schemes and assume that there is a homeomorphism f : |X| ∼−→ |Y |.
Note that f restricts to a bijection

f (1) := f|X(1) : X(1) → Y (1)

between the sets of points of codimension one. As Eff(X) is the free monoid on the set X(1),
the bijection f (1) induces isomorphisms

Eff(f) : Eff(X)
∼−→ Eff(Y )

and
Div(f) : Div(X)

∼−→ Div(Y )

of monoids (respectively groups). However, in general, f does not induce an isomorphism
between Cl(X) and Cl(Y ).

Example 3.8. Let X := A1
k and Y := P1

k be the affine and projective line over an algebraically
closed field k. Any bijection

A1(k) = k
∼−→ k ∪ {∞} = P1(k)

induces a homeomorphism f : |X| ∼−→ |Y | between the underlying Zariski topologies. However,

cX : X(1) → Cl(X) = 0

is the zero map, while
cY : Y (1) → Cl(Y ) ∼= Z

is the map sending every point to 1 ∈ Z.
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Definition 3.9 ([KLOS21, Def. 3.1.8]). Let X and Y be normal separated schemes. An iso-
morphism of divisorial structures is given by a homeomorphism

f : |X| ∼−→ |Y |

and an isomorphism of groups
cf : Cl(X)

∼−→ Cl(Y )

such that the diagram

X(1) Y (1)

Cl(X) Cl(Y )

f (1)

cX cY

cf

of maps of sets commutes.

Remark 3.10. Observe the group isomorphism cf is uniquely determined by f , if it exists. In
particular, the diagram above factors as

X(1) Eff(X) Div(X) Cl(X)

Y (1) Eff(Y ) Div(Y ) Cl(Y )

f (1) Eff(f) Div(f) cf

by the universal property of free abelian groups and monoids. From now on, we will drop cf
from the notation and say that f : τ(X)

∼−→ τ(Y ) is an isomorphism of divisorial structures.

We can now formulate a slightly stronger version of Theorem 1.1:

Theorem 3.11. Let X and Y be proper normal irreducible schemes of dimension at least two
over algebraically closed fields kX and kY . If there is an isomorphism of divisorial structures
f : τ(X)

∼−→ τ(Y ), then there is an isomorphism of schemes ϕ : X
∼−→ Y such that the underlying

map of topological spaces |ϕ| : |X| → |Y | agrees with f .

The following example shows that even when kX = kY , one can only expect the isomorphism
ϕ : X

∼−→ Y occurring in the previous theorem to be an isomorphism of schemes but not an
isomorphism over kX . In other words, the divisorial structure determines the isomorphism class
of X as a scheme but not as a kX -scheme.

Example 3.12. Let σ : C ∼−→ C be a non-trivial automorphism of the field complex numbers.
Then σ induces an isomorphism of schemes ϕσ : PnC

∼−→ PnC fitting into the diagram

PnC PnC

Spec(C) Spec(C).

ϕσ

σ

Note that ϕσ sends a hypersurface V+(
∑
aIx

I) to the hypersurface V+(
∑
σ(aI)x

I). In partic-
ular, ϕσ preserves degrees of divisors and thus induces an isomorphism of divisorial structures.
However, ϕσ is not a morphism of schemes over C, just a morphism in the category of schemes.

We can already show a simple case of Theorem 3.11.

Proposition 3.13. Fix n,m ≥ 2 and let K and L be algebraically closed fields. If

f : τ(PnK)→ τ(PmL )

is an isomorphism of divisorial structures, then we have n = m, K ∼= L and f is the underlying
map on topological spaces of an isomorphism of schemes PnK

∼−→ PmL .
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Proof. Note that n (resp. m) is the Krull dimension (i.e., the longest chain of irreducible closed
subsets) of the underlying topological space |PnK |. As f is a homeomorphism, this implies
n = m. Since hyperplanes in PnK are precisely the effective divisors of degree one, we see
that the isomorphism of divisorial structures f maps hyperplanes to hyperplanes. Choosing an
isomorphism between Kn+1 and its dual, we may interpret the action of f on the closed points
of PnK as a bijection

P(Kn+1)→ P(Ln+1)

that maps lines to lines. By the classical Fundamental Theorem of Projective Geometry 2.3,
there is an isomorphism of fields σ : K

∼−→ L and a σ-linear isomorphism ψ : Kn+1 ∼−→ Ln+1

such that f = P(ψ). We conclude by observing that the isomorphism ψ naturally yields an
isomorphism of schemes PnK

∼−→ PnL, which agrees with P(ψ) on the closed points PnK(K) =
P(Kn+1).

A central theme occurring in the following sections is the observation that certain properties of
X are determined by the divisorial structure τ(X). Recall that the linear system |D| associated
with a divisor is the set

|D| = {E ∈ Eff(X) | E ∼ D}

of effective divisors linearly equivalent to D. Note that by Corollary 3.6, the divisor D is
Cartier if and only if every divisor contained in the linear system |D| is Cartier. The following
proposition shows that the divisorial structure determines the linear system |D|.

Proposition 3.14. Let X and Y be normal separated schemes and f : τ(X)
∼−→ τ(Y ) an iso-

morphism of divisorial structures. Let D be an effective divisor on X. Then

Eff(f) : Eff(X)
∼−→ Eff(Y )

restricts to a bijection of sets fD : |D| ∼−→ |Eff(f)(D)|.

Proof. The divisorial structure determines a commutative diagram

Eff(X) Eff(Y )

Cl(X) Cl(Y ),

Eff(f)

qX qY

cf

where Eff(f) is an isomorphism of monoids and cf is an isomorphism of groups. Note that
|D| = q−1

X (qX(D)) and |Eff(f)(D)| = q−1
Y (qY (Eff(f)(D))). By commutativity of the diagram

above, we have

|Eff(f)(D)| = q−1
Y (cf (qX(D))) = Eff(f)(|D|)

and the claim follows.

Recall from the discussion in [Har77, II.7] that linear systems on a non-singular projective
variety over an algebraically closed field are naturally endowed with the structure of a finite-
dimensional projective space. Ultimately, these are the projective spaces that we would like to
apply the Fundamental Theorem of Projective Geometry to. In the following, we characterize
a broader class of schemes on which linear systems naturally possess the structure of projective
spaces.

Definition 3.15. A normal integral scheme X is called definable if the following conditions
hold:
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(i) The global sections kX := Γ(X,OX) form an algebraically closed field.

(ii) The natural morphism X → Spec(kX) is separated and of finite type.

(iii) For every reflexive sheaf F of rank one, Γ(X,F) is a finite-dimensional kX -vector space.

Proposition 3.16. Every proper normal irreducible scheme X over an algebraically closed field
kX is definable.

Proof. As X is integral and proper, we have Γ(X,OX) ∼= kX . The second condition is satisfied
by the definition of proper morphisms. Finally, note that every reflexive sheaf of rank one is
coherent, and thus Serre’s theorem (cf. [DG67, III. Thm. 3.2.1]) shows that its global sections
form a finite-dimensional vector space over the field kX .

Remark 3.17. On the other hand, observe that positive-dimensional affine varieties are not
definable as Γ(Spec(A),OSpec(A)) ∼= A.

Proposition 3.18. Let D be a divisor on a definable scheme X. Then there is a natural
bijection between the linear system |D| and the projective space PkX (Γ(X,OX(D))).

Proof. First note that the definition of definable schemes ensures that PkX (Γ(X,OX(D)) is
a well-defined finite-dimensional projective space. By the definition of linear equivalence, an
effective Divisor E is contained in |D| if and only if there is an element f ∈ K(X)× such that
E = div(f) + D. As E is effective, this already implies f ∈ Γ(X,OX(D)). Conversely, every
non-zero section 0 6= f ∈ Γ(X,OX(D)) gives rise to the effective divisor div(f) +D ≥ 0 which
is contained in |D|.
To show the claim, it suffices to observe that two sections f, g ∈ Γ(X,OX(D)) give rise to the
same divisor if and only if there is a unit u ∈ Γ(X,OX)× = k×X such that f = u · g. For Cartier
divisors on locally-factorial schemes, this is shown in [Har77, Prop. II.7.7]. The general case is
discussed in [Sch, Prop. 3.12].

We will eventually reduce the proof of Theorem 4.3 to the case of locally-factorial schemes on
which every divisor is Cartier. Note that for a Cartier divisor D on X, the invertible sheaf
OX(D) is — by definition — a subsheaf of the constant sheaf with value K(X). The following
remark generalizes the notion of linear systems to arbitrary invertible sheaves.

Remark 3.19. Suppose that L is an invertible sheaf on a definable scheme X. By Lemma 3.4,
there is a Cartier divisor D on X such that L ∼= OX(D). This isomorphism induces a kX -linear
isomorphism ϕ : Γ(X,L)

∼−→ Γ(X,OX(D)) which in turn yields an isomorphism

P(ϕ) : P(Γ(X,L))
∼−→ P(Γ(X,O(D)) = |D|.

Recall from Lemma 3.6, that every divisor in |D| is effective and Cartier. Furthermore, note
that for a non-zero section 0 6= s ∈ Γ(X,L), the zero locus of s is precisely the effective Cartier
divisor P(ϕ)([s]) ∈ |D|. We call

|L| := PkX (Γ(X,L))

the linear system associated to L.

Let X and Y be definable schemes and f : τ(X)
∼−→ τ(Y ) an isomorphism of divisorial structures.

Let D be a divisor on X. The combination of Proposition 3.14 and 3.18 shows that f induces
a bijection

P(Γ(X,O(D)))
∼−→ P(Γ(Y,O(f(D)))),

where we write f(D) as an abbreviaton for Eff(f)(D). A priori, we only know that this is
a bijection between sets. The goal of Section 3 is to show that this bijection satisfies the
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assumptions of the variant Fundamental Theorem of Projective Geometry 2.9. Before this is
achieved in Section 3.7, we give some arguments to show that it suffices to consider the case of
locally-factorial quasi-projective definable schemes.

3.3 Reduction to open subsets with complements in codimension two

In this section, we establish general arguments needed in order to reduce the proof of Theorem
1.1 to the case of locally-factorial quasi-projective definable schemes. The first step is to observe
that definable schemes and isomorphisms of divisorial structures are compatible with restriction
to open subsets containing all points of codimension one.

Lemma 3.20. Let X and Y be normal separated schemes and f : τ(X)
∼−→ τ(Y ) an isomorphism

of divisorial structures. If U ⊆ X is an open subscheme containing all points of codimension
one, then f restricts to an isomorphism of divisorial structures f|U : τ(U)

∼−→ τ(f(U)).

Proof. Note that as f is a homeomorphism, the set f(U) ⊆ Y is an open subset containing all
points of codimension one. As U contains all points of codimension one, we have X(1) = U (1)

and Cl(X) = Cl(U) since these sets only depend on the points of codimension one. The same
holds for f(U) and thus the claim follows.

Lemma 3.21. Let X be a definable scheme. If U ⊆ X is an open subscheme containing all
points of codimension one, then U is a definable scheme as well.

Proof. Note that by Lemma 3.3, we have Γ(X,F) = Γ(U,F) for all reflexive sheaves F of rank
one on X. Hence, it suffices to show that for every reflexive sheaf F of rank one on U , there is
a reflexive sheaf F ′ on X such that F ∼= F ′|U . As in the previous proof, we have X(1) = U (1)

and Cl(X) = Cl(U). By Lemma 3.4, this implies that there is a divisor D on X such that

F ∼= OU (D|U ) ∼= OX(D)|U .

This finishes the proof.

The second part of this section is concerned with extending isomorphisms of schemes defined
on open subsets containing all points of codimension one. More precisely, we will show the
following proposition.

Proposition 3.22 ([KLOS21, Lem. 4.1.3]). Assume that X and Y are normal separated sche-
mes, and U ⊆ X and V ⊆ Y are dense open subschemes with complements of codimension at
least two. If f : |X| ∼−→ |Y | is a homeomorphism of Zariski topological spaces such that f(U) = V
and f|U is the underlying map of an isomorphism f̃U : U

∼−→ V of schemes, then f̃U extends to

a unique isomorphism of schemes f̃ : X
∼−→ Y whose underlying map on topological spaces is f .

Remark 3.23. Note that we do not assume X and Y to be schemes over a field k. However, a
close look at the arguments below shows that if X and Y are k-schemes and f̃U is a morphism
over k, then the lift f̃ is a morphism over k as well.

Before giving the proof, we need to make a few preliminary observations about separated
schemes.

Lemma 3.24 ([KLOS21, Lem. 4.1.1]). If X is an integral separated scheme, then we have

{x} =
⋂

y∈X(1), x∈{y}

{y}

for all points x ∈ X.
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Proof. The inclusion ’⊆’ is clear. For the inclusion ’⊇’, let z ∈
⋂
y∈X(1),x∈{y} {y} be an element

of the right-hand side. We claim that every open affine neighborhood of z contains x. Let
z ∈ U be an open affine neighborhood. As X is separated, the complement X \ U has pure
codimension one (cf. [Stacks, 0BCQ]). If x is not contained in U , then there exists y ∈ X(1)

with x ∈ {y} such that {y} ⊆ X \U . But then z ∈ {y} ⊆ X \U . Contradiction. Hence, x ∈ U .

Therefore, it suffices to consider the affine case X = Spec(A) for some Noetherian integral
ring A. Let p ⊆ A be the prime ideal corresponding to the point x ∈ X = Spec(A). Write
p = (f1, . . . , fm). By primary decomposition (cf. [AM69, Ch. 4]), we have

V (fi) =
⋃
j

V (qi,j),

where the qi,j ⊆ A are the minimal prime ideals containing fi. By Krull’s principal ideal
theorem (cf. [AM69, Cor. 11.17]), the prime ideals qi,j are of height one. In other words, the
sets V (qi,j) ⊆ Spec(A) are irreducible closed subsets of codimension one. We conclude

{x} = V (p) =
⋂
i

V (fi) =
⋂
i

⋃
j

V (qi,j) ⊇
⋂

qi,j⊆p
V (qi,j) ⊇

⋂
y∈X(1),x∈{y}

{y}.

This finishes the proof.

Lemma 3.25 ([KLOS21, Lem. 4.1.2]). Assume that f1, f2 : |X| → |Y | are homeomorphisms
of the underlying spaces of two separated integral schemes. Let U ⊆ |X| be an open subset
containing all points of codimension one. If f1|U = f2|U , then f1 = f2.

Proof. Take x ∈ X. As fi is a homeomorphism for i = 1, 2, we have

fi

(
{x}
)

= {fi(x)}.

Hence fi(x) is the unique generic point of fi

(
{x}
)

and therefore it suffices to show

f1

(
{x}
)

= f2

(
{x}
)
.

In fact, Lemma 3.24 yields

fi

(
{x}
)

= fi

 ⋂
y∈X(1), x∈{y}

{y}

 =
⋂

y∈X(1), x∈{y}

fi

(
{y}
)

=
⋂

y∈X(1), x∈{y}

{fi(y)}.

As f1(y) = f2(y) for all points y ∈ X of codimension one, this finishes the proof.

With these preparations out of the way, we can finally prove Proposition 3.22.

Proof of Proposition 3.22. Let us first show how to extend the morphism f̃U to a morphism on
the whole of X. Since X is separated, it suffices to extend the morphism locally, and thus we
may assume that Y = Spec(A) is affine. The morphism f̃U then corresponds to a morphisms
of rings A → Γ(U,OX). As U contains all points of codimension one, Lemma 3.3 implies that
Γ(U,OX) = Γ(X,OX). Hence, we obtain a unique morphism of rings A → Γ(X,OX) such
that the corresponding morphism f̃ : X → Y = Spec(A) of schemes satisfies f̃|U = f̃U . If we

additionally assume that f̃U : U → Y is a morphism in the category of k-schemes, then the
morphism A→ Γ(U,OX) is not only a morphism of rings but a morphism of k-algebras.

Applying the same argument to the homeomorphism f−1 and the isomorphism of schemes
f̃−1
U : V

∼−→ U , we obtain a morphism g̃ : Y → X such that (f̃ ◦ g̃)|V = id|U and (g̃ ◦ f̃)|U = id|V .
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As X and Y are separated, this already implies that f̃ and g̃ are inverse to each other on all
of X (resp. Y ). In other words, f̃ is an isomorphism. In particular, the underlying map on
topological spaces is a homeomorphism and agrees with f on |U |. By Lemma 3.25, this implies
that |f̃ | = f .

3.4 Reduction to the locally-factorial case

Recall that a scheme X is called locally-factorial if all of the local rings OX,x are unique fac-
torization domains. As shown in [Har77, II.6.11], every divisor on a locally-factorial scheme is
Cartier.

Lemma 3.26. Every definable scheme X contains a locally-factorial definable open subscheme
U ⊆ X containing all points of codimension one.

Proof. Every local regular ring is a unique factorization domain (cf. [AB59]). Hence, the claim
follows from Lemma 3.21 and the fact that the regular locus U ⊆ X on a normal scheme is an
open subscheme containing all points of codimension one.

Example 3.27. The regular locus can be strictly smaller than the locus of points x ∈ X for
which the local ring OX,x is a unique factorization domain. Let k be a field of char k 6= 2,

A := k[x1, . . . , x5]/(x2
1 + · · ·+ x2

5)

and X := Spec(A). The ring A is factorial by a theorem of Klein and Nagata, see [Sam68,
4.]. Therefore, X is locally-factorial. On the other hand, the localization of A at the origin
(x1, . . . , xn) ∈ Spec(A) is not regular.

Before combining the arguments of this section and the previous one into an actual reduction
argument, we will give a short interlude on the detection of ample sheaves using divisorial
structures. Afterwards, in Section 3.6, we will then see how the reduce the proof of Theorem
1.1 to the case of locally-factorial quasi-projective definable schemes.

3.5 Detecting ample sheaves

Linear systems associated with very ample invertible sheaves determine the ways of embedding
X into projective space. In this section, we will investigate how to use the divisorial structure
to determine whether a given invertible sheaf is (very) ample.

Definition 3.28 ([DG67, II. Thm. 4.5.2]). Let X be a kX -scheme. Recall that an invertible
sheaf L is ample if it satisfies the following equivalent conditions:

(i) For n � 0, L⊗n is very ample, i.e., global sections of L⊗n determine a locally-closed
embedding of X into projective space.

(ii) For all quasicoherent sheaves F , there is n0 ≥ 0 such that for n ≥ n0, the sheaf F ⊗ L⊗n
is globally generated.

(iii) As s runs over all global sections of L⊗n for n > 0, the sets

Xs := {x ∈ X | sx 6∈ mx · L⊗nx }

form a base of the topology on X.

A Cartier divisor D is (very) ample if the associated invertible sheaf OX(D) is (very) ample.
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Recall that the support Supp(D) ⊆ |X| of an effective Weil divisor D =
∑
niYi is the union

Supp(D) :=
⋃
{Yi}

of the irreducible closed subsets {Yi} ⊆ |X|.
Plugging in the definitions, we see that the support of an effective divisor D is determined by
the divisorial structure τ(X):

Proposition 3.29. Let X and Y be normal separated schemes. If there is an isomorphism
f : τ(X)

∼−→ τ(Y ) of divisorial structures, then we have

f(Supp(D)) = Supp(Eff(f)(D)).

Proof. Let D =
∑
niYi be a divisor on X with Yi ∈ X(1). Then we have Eff(f)(D) =

∑
nif(Yi).

In particular, this implies

Supp(Eff(f)(D)) =
⋃
{f(Yi)} = f

(⋃
{Yi}

)
= f(Supp(D)),

where the second equality holds as f is a homeomorphism.

We can now show that the divisorial structure τ(X) determines whether a Cartier divisor is
ample.

Proposition 3.30 ([KLOS21, Prop. 3.2.7]). Let X and Y be normal separated schemes and
f : τ(X)

∼−→ τ(Y ) be an isomorphism of divisorial structures. If D and Eff(f)(D) are effective
Cartier divisors, then D is ample if and only if Eff(f)(D) is ample.

Proof. First note that if E is an effective divisor linearly equivalent to D given by a section
s ∈ Γ(X,OX(D)), then E is Cartier and a computation on affine open subschemes shows that

Supp(E) = {x ∈ X | sx ∈ mx · OX(D)x} = X \Xs.

By Definition 3.28 and the observations above, D is ample if and only if the sets

XE := X \ Supp(E)

for all E ∈ |mD| and m ≥ 1 form a basis of the topology on X. As f is a homeomorphism, this
is the case if and only if the sets f(XE) form a basis of the topology on Y . By Lemma 3.29, we
have

f(XE) = Y \ f(Supp(E)) = Y \ Supp(Eff(f)(E)) = YEff(f)(E).

As f induces a bijection between |mD| and |Eff(f)(mD)| by Lemma 3.14, we conclude that D
is ample if and only if the same holds for Eff(f)(D).

3.6 Reduction to the quasi-projective case

Recall that a schemeX over a field k is called quasi-projective if and only if there is an embedding
X ↪→ Pnk of k-schemes. Equivalently, X is quasi-projective if and only if X admits a (very)
ample invertible sheaf. The results of the previous section show that isomorphisms of divisorial
structures preserve quasi-projectivity. In this section, we will apply Chow’s lemma to show that
every definable scheme contains a quasi-projective definable open subscheme with a complement
in codimension two. This is the final reduction step, allowing us to reduce the proof of Theorem
1.1 to the locally-factorial quasi-projective case.
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Theorem 3.31 (Chow’s lemma). Let X be a separated scheme of finite type over k. Then there
exists a proper birational morphism X ′ → X, where X ′ is a quasi-projective scheme over k.

Proof. See [Stacks, 02O2].

Lemma 3.32. Every definable scheme X contains a quasi-projective definable open subscheme
U ⊆ X with codim(X \ U ⊆ X) ≥ 2.

Proof. By definition, the definable scheme X is separated and of finite type over the field
kX = Γ(X,OX). By Chow’s lemma, there thus exists a quasi-projective kX -scheme X ′ and
a proper birational morphism π : X ′ → X. As X is normal, there is an open subset U ⊆ X
containing all points of codimension one such that the restriction π|π−1(U) : π−1(U) → U is an
isomorphism. The claim follows.

Remark 3.33. Combining the results of Sections 3.3, 3.4 and 3.6, we see that it suffices to show
the claim of Theorem 1.1 for locally-factorial quasi-projective definable schemes of dimension
at least two.

Indeed, let X and Y be definable schemes of dimension at least two and f : τ(X)
∼−→ τ(Y )

an isomorphism of divisorial structures. By Lemma 3.26 and Lemma 3.32, there is a quasi-
projective, locally-factorial open subscheme U ⊆ X containing all points of codimension one.
We apply the same arguments to the definable scheme f(U) and, after possibly shrinking U
even further, may assume that both U and f(U) are quasi-projective, locally-factorial definable
schemes of dimension at least two, containing all points in codimension one of X (resp. Y ).

By Lemma 3.20, the isomorphism f restricts to an isomorphism of divisorial structures

f|U : τ(U)
∼−→ τ(f(U)).

Suppose that we can show that there is an isomorphism of schemes

ϕ : U
∼−→ f(U)

such that |ϕ| = f|U . Lemma 3.22 then implies that there is an isomorphism of schemes

ϕ′ : X
∼−→ Y

whose underlying map on topological spaces is equal to f .

Hence, it suffices to prove Theorem 1.1 in the case of locally-factorial, quasi-projective definable
schemes of dimension at least two.

3.7 Definable subspaces in linear systems

Recall that the linear system associated with an effective divisor D on a definable scheme is
naturally endowed with the structure of a projective space by Lemma 3.18. As mentioned
before, these are the projective spaces that we would like to apply the Fundamental Theorem
of Projective Geometry to. In this section, we lay the necessary foundations. In particular, we
will introduce a notion of definable lines on linear systems. Afterwards, we will show that these
are preserved by isomorphisms of divisorial structures and satisfy the conditions of the variant
Fundamental Theorem of Projective Geometry.

Definition 3.34 ([KLOS21, Def. 3.3.1]). Let D be an effective divisor on a definable scheme
X. A subset V ⊆ |D| is called a definable subspace if there is a subset Z ⊆ X such that

V = VX(Z) := V (Z) := {E ∈ |D| | Z ⊆ Supp(E)} ⊆ |D|.

A definable subspace of dimension one is called a definable line.
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Note that via the observations in Remark 3.19, this definition also applies to linear systems
associated with arbitrary invertible sheaves. Observe that if Z is the closure of Z in X, then
V (Z) = V (Z), since Supp(E) is closed. Hence, it suffices to work with closed sets Z. The
following lemma justifies calling V (Z) a definable subspace.

Lemma 3.35. Let Z be a closed subset of a definable scheme X. Let Zred denote be the
associated closed subscheme with reduced structure (cf. [Vak18, 8.3.9]). Let D be an effective
Cartier divisor on X. Then we have

V (Z) = P(ker(Γ(X,OX(D))→ Γ(Z,OX(D)|Zred
))) ⊆ |D|.

In particular, a definable subspace is a subspace in the sense of Definition 2.1.

Proof. Let L := OX(D) denote the associated invertible sheaf. For E ∈ |D| there is a section
0 6= s ∈ Γ(X,L) such that E = [s] ∈ P(Γ(X,L) = |D|. First assume Z ⊆ Supp(E). Then
we have sz ∈ mzLz for all z ∈ Z. As (L|Zred

)z ∼= Lz/mzLz, this yields (s|Zred
)z = 0 for all

z ∈ Z. As L|Zred
is a sheaf, we conclude s|Zred

= 0. Conversely, assume s|Zred
= 0. Then

we have (s|Zred
)z = 0 in (L|Zred

)z ∼= Lz/mzLz and thus sz ∈ mzLz for all z ∈ Z. Hence,
Z ⊆ Supp(E).

In order to get a feeling for definable subspaces, let us inspect an easy example.

Example 3.36. Let X = P2
C and consider the standard very ample invertible sheaf L := OP2

C
(1).

One can show that every line on |L| is definable: A line l ⊆ |L| is given by two linearly
independent elements F1, F2 ∈ Γ(X,L) = 〈X0, X1, X2〉C of the space of linear polynomials in
three variables. As F1 and F2 are linearly independent, the hyperplanes V+(F1) and V+(F2)
intersect in a single closed point x = [x0 : x1 : x2] ∈ P2

C.

We claim V ({x}) = l. Let Zred ⊆ X be the closed subscheme with reduced structure on {x}.
Transforming coordinates, we may assume x = [1 : 0 : 0] and thus F1, F2 ∈ 〈X1, X2〉C. The
restriction map

ϕ : Γ(X,L)→ Γ(Z,L|Zred
)

is given by
〈X0, X1, X2〉 → C, aX0 + bX1 + cX2 7→ a.

Hence, ker(ϕ) = 〈X1, X2〉C = 〈F1, F2〉C and we conclude l = V ({x}) by Lemma 3.35.

The following proposition shows that definable subspaces are determined by the divisorial struc-
ture.

Proposition 3.37. Let X and Y be normal separated schemes and f : X
∼−→ Y an isomorphism

of divisorial structures. If Z ⊆ |X| is a closed subset, then

Eff(f)(VX(Z)) = VY (f(Z)).

Proof. Observe that for a divisor D on X, we have Z ⊆ Supp(D) if and only if

f(Z) ⊆ f(Supp(D)) = Supp(Eff(f)(D)),

where the second equality holds by Lemma 3.29. As Eff(f) moreover induces a bijection between
the linear systems |D| and |Eff(f)(D)| by Lemma 3.14, the result follows.

The following lemma is the crucial step in showing that the set of definable lines on a linear
system is determined by the divisorial structure.

23



Lemma 3.38 ([KLOS21, Lem. 3.3.5]). Let D be an effective Cartier divisor on a definable
scheme X. Let V (Z) be a non-empty definable subspace of |D|. Then there is an ascending
chain of closed subsets

Z = Z1 ( · · · ( Zn

such that
V (Z) = V (Z1) ) · · · ) V (Zn)

is a full flag of linear subspaces ending in a point, i.e., dimV (Zi+1) + 1 = dimV (Zi) and
dimV (Zn) = 0.

Proof. If x ∈ X is a closed point, then V (Z ∪ {x}) = V (Z) or V (Z ∪ {x}) has codimension 1
in V (Z). Indeed, as kX is algebraically closed, the residue field of every closed point x ∈ X is
kX . Observe that the dimension of the kernel of the restriction map

Γ(X,OX(D))→ Γ({x},OX(D)|{x}red) ∼= OX(D)(x) ∼= kX

is at least dim Γ(X,OX(D))− 1. Thus, the vanishing of x imposes a codimension one condition
on the linear system |D|.
We have V (Z ∪ {x}) = V (Z) if and only if x ∈ Supp(E) for all E ∈ V (Z). Hence, it suffices
to find x ∈ X and E ∈ V (Z) such that x 6∈ Supp(E). Pick E ∈ |OX(D)| arbitrarily. As E
corresponds to a non-zero section of OX(D), there is a closed point x ∈ X not contained in
Supp(E). Applying this argument inductively, we obtain the desired chain of closed subsets.

Corollary 3.39 ([KLOS21, Cor. 3.3.6]). Let X and Y be definable schemes and

f : τ(X)
∼−→ τ(Y )

an isomorphism of divisorial structures. If D and Eff(f)(D) are effective Cartier divisors, then
we have

dimkX |D| = dimkY |Eff(f)(D)|,

where |D| and |Eff(f)(D)| are viewed as projective spaces via Lemma 3.18.

Proof. Setting Z = ∅ in Lemma 3.38, we obtain a full flag of linear subspaces

|D| = VX(∅) ) · · · ) VX(Zn)

of length dimkX |D|. By Lemma 3.37, the isomorphism of divisorial structures f takes this chain
of linear subspaces to a proper descending chain of linear subspaces

|Eff(f(D))| = VY (∅) ) · · · ) VY (f(Zn)).

This implies dimkX |D| ≤ dimkY |Eff(f(D))| and equality follows by symmetry.

We can finally show that definable lines are preserved by isomorphisms of divisorial structures.

Corollary 3.40 ([KLOS21, Cor. 3.3.7]). Let X and Y be definable schemes and

f : τ(X)
∼−→ τ(Y )

an isomorphism of divisorial structures. If D and Eff(f)(D) are effective Cartier divisors, then
the induced bijection

fD : |D| ∼−→ |Eff(f)(D)|

sends definable lines to definable lines.
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Proof. We have already seen in Lemma 3.37 that fD maps definable subspaces to definable
subspaces. By symmetry, the same holds for the inverse map f−1

D . Lemma 3.38 shows that the
definable lines in |D| are precisely the minimal (with respect to inclusion) definable subspaces
containing more than one point. The claim follows.

The proof of Lemma 3.38 is one of the few parts of this thesis, where we use the fact that we
are working over an algebraically closed field. The following example shows the statement of
the lemma may fail over fields that are not algebraically closed.

Example 3.41 ([KLOS21, Ex. 3.3.8]). Consider the R-scheme X := V+(X2
0 +X2

1 +X2
2 ) ⊆ P2

R
and let OX(1) be a very ample invertible sheaf on X. Note that for X0, X1, X2 ∈ R, the equation
X2

0 + X2
1 + X2

2 = 0 implies X0 = X1 = X2 = 0. Hence, there are no R-valued closed points
on X. Therefore, every closed point of X has residue field C and imposes a codimension two
condition on |OX(1)|. This shows that there is no definable line on |OX(1)| and that Lemma
3.38 may fail if one does not assume the field kX to be algebraically closed.

As an explicit example, let OX(1) be the very ample invertible sheaf associated to the given
embedding V+(X2

0 +X2
1 +X2

2 ) ⊆ P2
R and consider the closed point x ∈ X given by the maximal

ideal
(X0, X1 − 1, X2

2 + 1) ⊆ R[X0, X1, X2].

Then the restriction map

ϕ : Γ(X,OX(1))→ Γ(X,OX(1)|Zred
)

for Z = {x} can be written explicitly as

ϕ : 〈X0, X1, X2〉R → R⊕ R
aX0 + bX1 + cX2 7→ (b, c).

We conclude ker(ϕ) = 〈X0〉R and thus V ({x}) = {[X0]} ⊆ V (∅) = |OX(1)| ∼= P2
R.

In view of the variant Fundamental Theorem of Projective Geometry, it remains to show that
the set of definable lines contains a dense subset of the Grassmannian Gr(1, |OX(1)|). The
proof will essentially be an application of Bertini’s theorem. The following two lemmas give
characterizations of definable lines, making the notion tangible to statements of Bertini type.

Lemma 3.42 ([KLOS21, Lem. 3.3.10]). Let D be an effective Cartier divisor on a definable
scheme X of dimension at least two and l ⊆ |D| be a line. Let Z :=

⋂
E∈l Supp(E) ⊆ |X| and

Zred denote the associated reduced closed subscheme. Then l is a definable line if and only if
the dimension of the kernel

K := ker(Γ(X,OX(D))→ Γ(Z,OX(D)|Zred
))

is equal to two.

Proof. Let T ⊆ Γ(X,OX(D)) denote the two-dimensional subspace corresponding to the line
l ⊆ |D|. Observe that T is contained in K, since Z is contained in the zero locus of every
element of T . If the dimension of K is equal to two, then this inclusion is an equality as T is a
two-dimensional vector space. Lemma 3.35 then implies that l = V (Z) is a definable line.

Conversely, suppose that l is a definable line. Then there is a closed subset Z ′ ⊆ |X| such that
l = V (Z ′). Let Z ′red denote the associated closed subscheme with reduced structure. By Lemma
3.35, l is the projective space associated to the kernel of the restriction map

ϕ : Γ(X,OX(D))→ Γ(Z ′,OX(D)|Z′red).

25



In particular, T = ker(ϕ). Every section s ∈ T vanishes on Z ′. Hence, Z ′ is contained in the
set-theoretic intersection of the zero-loci of elements of T and thus Z ′ ⊆ Z. Therefore, the
restriction map

Γ(X,OX(D))→ Γ(Z ′,OX(D)|Z′red)

factors as
Γ(X,OX(D))→ Γ(Z,OX(D)|Zred

)→ Γ(Z ′,OX(D)|Z′red).

Thus K ⊆ ker(ϕ). All in all, we have T ⊆ K ⊆ ker(ϕ) = T and thus T = K.

Lemma 3.43 ([KLOS21, Lem. 3.3.11]). Let L be an invertible sheaf on a definable scheme of
dimension at least two. Let F1, F2 ∈ Γ(X,L) be two linearly independent sections with zero loci
Z1 and Z2. Assume that

(i) Z1 is reduced;

(ii) the global sections Γ(Z1,OZ1) form a one-dimensional kX-vector space;

(iii) the intersection Z := Z1 ∩ Z2 is reduced and does not contain any irreducible component
of Z1.

Then the line spanned by F1 and F2 in |L| is definable.

Proof. As Z1 is the zero locus of F1, the section F1 : OX → L yields the short exact sequence

0→ OX
F1→ L p1→ L|Z1

→ 0. (3.1)

As Z1 is reduced and Z does not contain any components of Z1, the restriction of F2 to Z1

yields another short exact sequence

0→ OZ1

F2→ L|Z1

p2→ L|Z → 0. (3.2)

Let K be the kernel of the morphism p2 ◦ p1 : L → L|Z . Using the exactness of (3.1) and (3.2)
and the universal property of the kernel, we obtain the short exact sequence

0→ OX
F1→ K → OZ1 → 0

of quasicoherent sheaves on X. Taking global sections then yields the following exact sequence
of kX -vector spaces:

0→ kX · F1 → Γ(X,K)→ Γ(Z1,OZ1).

As dimkX Γ(Z1,OZ1) = 1 and F1, F2 both vanish on Z, we conclude

dimkX ker(Γ(X,L)→ Γ(Z,L|Z)) = 2.

Hence, the line spanned by F1 and F2 is definable by Lemma 3.42.

Using this characterization, we can finally show that the definable lines considered in this section
are definable lines in the sense of Section 2.

Proposition 3.44 ([KLOS21, Prop. 3.3.12]). Let X be a definable scheme of dimension at least
two and let OX(1) be a very ample invertible sheaf on X. Then the set of definable lines in
|OX(1)| contains a dense open subset of Gr(1, |OX(1)|).

Remark 3.45. Note that we do not claim that the set of definable lines is open in Gr(1, |OX(1)|).
An example where this set is not open will be given after the proof of the proposition.
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The proof uses the following variant of Bertini’s theorem:

Theorem 3.46 (Bertini). Let k be an infinite field. Let X be a quasi-projective k-scheme
and X ⊆ Pnk an embedding. Let Z ⊆ X be a reduced finite (possibly empty) subscheme of Pnk
contained in the regular locus of X.

(i) If X is reduced, then for a general hyperplane H ⊆ Pnk containing Z, the intersection
H ∩X is reduced.

(ii) If X is integral of dimension ≥ 2, then for a general hyperplane H ⊆ Pnk containing Z,
the intersection X ∩H is integral.

Proof. A proof of this theorem is given in [GK20, Sec. 3]. Similar results may be found in
[FOV99, 3.4.10, 3.4.14].

Remark 3.47. In the proof of Proposition 3.44, we will only apply Theorem 3.46 with Z = ∅.
However, in a later part of this thesis we will need a version of Bertini’s Theorem with basepoints,
i.e., Z non-empty.

Proof of Proposition 3.44. Let us first consider the case that X is projective.

By the definition of definable schemes, X is integral, separated and of finite type over the
algebraically closed field kX = Γ(X,OX). In particular, kX is infinite.

Let U ⊆ Gr(1, |OX(1)|) be the set of lines spanned by linearly independent elements F1, F2 ∈
Γ(X,OX(1))) with zero loci Z1 and Z2 such that

(i) Z1 is integral;

(ii) Z2 is reduced;

(iii) Z1 ∩ Z2 is reduced and does not contain any components of Z1.

Note that the scheme Z1 is integral and projective over the algebraically closed field kX . Hence
Γ(X,OX) ∼= kX ∼= Γ(Z1,OZ1) (cf. [Stacks, 0BUG]). Therefore, F1 and F2 satisfy the assump-
tions of Lemma 3.43 and thus all lines in U are definable.

It remains to show that U contains the closed points of a dense open subset of Gr(1, |OX(1)|). Let
X ⊆ Proj(Sym•(Γ(X,OX(1)))) ∼= PnkX be the closed embedding given by the very ample invert-
ible sheaf OX(1). By Bertini’s Theorem 3.46, a general choice of sections F1, F2 ∈ Γ(X,OX(1))
will yield hypersurfaces H1, H2 ⊆ Pn such that the intersections Z1 = H1 ∩X and Z2 = H2 ∩X
satisfy the conditions listed above. Therefore, there is a non-empty open subset of Gr(1, |OX(1)|)
containing the closed points corresponding to lines in U . As Gr(1, |OX(1)|) is irreducible, the
subset is dense. This finishes the proof in case X is projective.

Now consider the general case. Let X denote the scheme-theoretic closure of X in the embedding
determined by the very ample invertible sheaf OX(1). As the non-zero sections of the finite-
dimensional vectorspace Γ(X,OX(1)) determine the embedding

i : X → X → |OX(1)|∨ ∼= PnkX ,

we have |OX(1)| = |OX(1)|, where OX(1) is the very ample invertible sheaf corresponding to
the embedding X → |OX(1)|∨. Additionally, the fact that X is scheme-theoretically dense in
X implies VX(Z ∩X) = VX(Z). Hence, the arguments above applied to the projective scheme
X already yield the desired result on X.
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Example 3.48 ([KLOS21, Ex. 3.3.14]). In the Examples 3.36 and 3.41 the sets of definable
lines (trivially) form the kX -points of an open subscheme of Gr(1, |L|). As hinted at in Remark
3.45, this is not the case in general:

Consider the projective plane X := P2
k. Let [X0 : X1 : X2] denote the coordinates on X. For

α, β ∈ kX consider the line L ⊆ X cut out by the equation

αX0 + βX1 = 0

and the two-dimensional linear subspace

TL = {aX0X1 + b(αX0 + βX1)X2 | a, b ∈ k} ⊆ Γ(P2,OX(2)).

In particular, TL gives rise to a line in |OP2(2)|.
If α and β are non-zero, then the set theoretic intersection of the zero loci of sections in TL is
the set

Z := {[0 : 0 : 1], [0 : 1 : 0], [0 : 0 : 1]}.

The space of homogenous quadratic polynomials over kX vanishing on Z is three-dimensional.
Hence, TL is not definable by Lemma 3.42.

If α = 0 or β = 0, then the intersection of zero loci Z is given by the union of the line L and the
point [0 : 1 : 0] (resp. [1 : 0 : 0]). In particular, we see that the space of quadratic homogenous
polynomials over kX vanishing on Z is precisely TL. Therefore, the line in |OP2

k
(2)| given by TL

is definable.

The image of the morphism P1
k → Gr(1, |OP2(2)|), sending [α : β] ∈ P2

k to the line P(TL) ⊆
|OP2

k
(2)|, is closed and irreducible. As only two points in the image correspond to definable

lines by the computation above, we see that the set of definable lines on |OP2
k
(2)| is not open in

Gr(1, |OP2(2)|).

Remark 3.49. Combining the propositions given in this section, we see that for a very ample
invertible sheaf OX(1) on a definable scheme X of dimension at least two, the set of definable
lines on |OX(1)| satisfies the assumptions of the variant Fundamental Theorem of Projective
Geometry. In particular, note that the existence of an embedding X ↪→ |OX(1)|∨ implies

dimkX |OX(1)| ≥ dimX ≥ 2.

Recall that the sweep of the subset of definable lines is the set of all points contained in a line
in the maximal open subset of the set of definable lines. We conclude this section by showing
that certain kinds of divisors are contained in this set.

Corollary 3.50. Let OX(1) be a very ample invertible sheaf on a definable scheme X of di-
mension at least two. Then every irreducible divisor D ∈ |OX(1)| is contained in the sweep of
the set of definable lines in Gr(1, |OX(1)|).

Proof. As in the proof of Proposition 3.44, it suffices to consider the case of X being projective.
Being an irreducible divisor, D can be viewed as an integral closed subscheme Z1 of X. By
Bertini’s Theorem 3.46, a general section F2 ∈ Γ(X,OX(1)) yields a hyperplane H ⊆ PnkX such
that Z1 and the intersection Z2 := H ∩X ⊆ PnkX satisfy the conditions (i) - (iii) in the proof of
Proposition 3.44 and thus, the line spanned by D and [F2] ∈ |OX(1)| is definable.

In particular, D is contained in this line and thus in the sweep of definable lines.

Corollary 3.51 ([KLOS21, Lem. 4.2.2]). Let OX(1) be a very ample invertible sheaf on a defin-
able scheme X of dimension at least two. Then for a general point (D1, . . . , Dm) ∈ |OX(1)|m, the
sum

∑m
i=1Di ∈ |OX(m)| is contained in the sweep of the set of definable lines in Gr(1, |OX(m)|).

28



Proof. Once again, it suffices to consider the case of X being projective. The idea is the same as
in the previous proof. By Bertini’s Theorem 3.46, for a general point (D1, . . . , Dm) ∈ |OX(1)|m,
each of the Di is reduced. The sum

∑m
i=1Di ∈ |OX(m)| is reduced if and only there is no

pair Di, Dj (i 6= j) such that Di and Dj share a common irreducible component. As this
is an open condition, we conclude that a general sum

∑m
i=1Di ∈ |OX(m)| is reduced. Set

Z2 :=
∑m

i=1Di ∈ |OX(m)|. Applying Bertini’s Theorem once more, we see that a general
section F1 ∈ Γ(X,OX(1)) yields a hyperplane H ⊆ PnkX such that Z1 := H ∩X ⊆ PnkX and Z2

satisfy the conditions (i) - (iii) in the proof of Proposition 3.44.

Therefore, a general sum
∑m

i=1Di of divisors in |OX(1)| is contained in the sweep of definable
lines in Gr(1, |OX(m)|).
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4 The reconstruction theorem

In this section, we combine the results of Sections 2 and 3 to prove Theorem 1.1.

4.1 Final preparations

First, we need some further preparations.

Lemma 4.1 ([KLOS21, Lem. 4.2.4]). Let OX(1) be a very ample invertible sheaf on a definable
scheme of dimension at least two. For m ≥ 1 and a regular closed point x ∈ X, we have

{x} =
⋂
D∈S

Supp(D) ⊆ |X|,

where S is the set of irreducible divisors in |OX(m)| containing x.

Proof. The very ample invertible sheaf OX(m) determines an embedding X ⊆ PnkX . As x is a
regular closed point, Bertini’s Theorem (i.e., Theorem 3.46) shows that intersecting a general
hyperplane H ⊆ PnkX containing x with X ⊆ PnkX yields an irreducible divisor D ∈ |OX(m)|
with x ∈ Supp(D). Observe that the intersection of n general hyperplanes in PnkX is zero-
dimensional. Hence, the intersection of n + 1 general hyperplanes containing x in PnkX is just
{x}. This finishes the proof.

The claim of Lemma 4.1 may fail if we do not assume x to be a regular point. The crucial
difference to Lemma 3.24, which implies that a (possibly non-regular) closed point is the unique
point in the intersection of all codimension one subvarieties of X containing x, is that we are
only taking the intersection over the set of irreducible divisors in a fixed linear system on X.

Example 4.2. Consider the quadric cone X := V+(X2
0 +X2

1 +X2
2 ) ⊆ P3

C. The point x := [0 :
0 : 0 : 1] ∈ X is a non-regular closed point of X. One can check that every divisor containing
x which is given by a hyperplane section s ∈ |OX(1)| is reducible. In fact, such a divisor is
always given as the union of two distinct lines going through the point x. Hence, the claim of
the previous lemma does not hold in this situation.

4.2 The proof

We finally give the proof of Theorem 1.1. Note that by the reduction steps discussed in Section
3.6, it suffices to prove the following theorem:

Theorem 4.3. Let X and Y be locally-factorial quasi-projective definable schemes of dimension
at least two. If there is an isomorphism of divisorial structures f : τ(X)

∼−→ τ(Y ), then there
is an isomorphism of schemes ϕ : X

∼−→ Y such that the underlying map on topological spaces
|ϕ| : |X| → |Y | agrees with f .

Proof. We follow the proof given in [KLOS21, Prop. 4.2.5]. Let D be a very ample effective
Cartier divisor on X. Let OX(1) := OX(D) denote the associated very ample invertible sheaf.
As Y is locally-factorial, the divisor Eff(f)(D) is Cartier. By Proposition 3.30, the fact that
D is ample implies that Eff(f)(D) is ample as well. Let OY (1) := OY (Eff(f)(D)) denote the
associated invertible sheaf. Replacing D by nD for some n� 0, we may assume that OY (1) is
very ample and that the multiplication maps

Γ(X,OX(1))⊗m → Γ(X,OX(m))
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and
Γ(Y,OY (1))⊗m → Γ(Y,OY (m))

are surjective for all m ≥ 1 (cf. [Laz04, 1.2.22]).

Let SX := Sym•(Γ(X,OX(1))) and SY := Sym•(Γ(Y,OY (1))) denote the symmetric algebras
generated by the global sections of OX(1) and OY (1). The very ample invertible sheaves give
rise to embeddings

X ↪→ Proj(SX) and Y ↪→ Proj(SY ).

Let IX ⊆ SX and IY ⊆ SY denote the homogenous ideals cutting out the scheme-theoretic
closures X,Y of the images of X and Y in Proj(SX) and Proj(SY ). Observe that the m-th
graded part of IX coincides with the kernel of the multiplication map given above:

IX,m = ker(Γ(X,OX(1))⊗m � Γ(X,OX(m)).

By Lemma 3.14, the isomorphism of divisorial structures f induces bijections

fm : |OX(m)| → |OY (m)|.

As discussed in Section 3.7, the definable lines on the linear system |OX(m)| introduced in
Definition 3.34 satisfy the conditions of the variant Fundamental Theorem of Projective Geom-
etry stated in Section 2. Hence, there are isomorphisms of fields σm : kX → kY and σm-linear
isomorphisms γm : Γ(X,OX(m))→ Γ(Y,OY (m)) such that the projectivization

P(γm) : |OX(m)| → |OY (m)|

agrees with fm on a dense open subset containing the sweep of the set of definable lines in
|OX(m)|.
Note that the σ-linear isomorphism γ1 : Γ(X,OX(1))

∼−→ Γ(Y,OY (1)) induces an isomorphism

γ# : SX
∼−→ SY

of algebras. Our aim is to show that γ# induces an isomorphism between X and Y .

Let +X,m : |OX(1)|×m → |OX(m)| (respectively +Y,m) denote the addition map on divisors.
Explicitely, this map is given as

|OX(1)|×m = P(Γ(X,OX(1))×m → P(Γ(X,OX(m)) = |OX(m)|
([s1], . . . , [sm]) 7→ [s1 · · · sm].

Observe that the diagram

|OX(1)|×m |OY (1)|×m

|OX(m)| |OY (m)|

f×m1

+X,m +Y,m

fm

of maps of sets commutes since addition of divisors is compatible with f . As a general sum of
divisors in |OX(1)| is contained in the set on which P(γm) and fm agree by Lemma 3.51, the
diagram

|OX(1)|×m |OY (1)|×m

|OX(m)| |OY (m)|

P(γ1)×m

+X,m +Y,m

P(γm)

(4.1)

commutes on a dense open subset of |OX(1)|m.
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Claim 4.4. The two isomorphisms of fields σ1, σm : kX
∼−→ kY are equal.

The proof of this claim is elementary but tedious. Therefore, we postpone it to the end of the
section.

Set σ := σ1 = σm. The maps P(γm) ◦ (+X,m) and (+Y,m) ◦ P(γ1)×m are projectivizations of
σ-linear maps. As σ-linear maps over infinite fields are determined by their evaluation on non-
empty open subsets, we see that diagram (4.1) commutes not only on a dense open subset but
the whole of |OX(1)|×m. This then implies that the associated diagram of σ-linear maps

IX,m IY,m

Γ(X,OX(1))⊗m Γ(Y,OY (1))⊗m

Γ(X,OX(m)) Γ(Y,OY (m))

γ⊗m1

γm

commutes up to a scalar. In particular, we get γ#
m(IX,m) = IY,m and thus γ#(IX) = IY . Hence,

we obtain an isomorphism ϕ : X
∼−→ Y of schemes fitting into the diagram

X Y

Proj
(⊕

m≥0 Γ(X,OX(m))
)

Proj
(⊕

m≥0 Γ(Y,OY (m))
)

Proj(SX) Proj(SY )

f

∼ ∼

γ#

(4.2)

of morphisms of schemes.

However, a priori, it is not clear whether ϕ restricts to an isomorphism ϕ|X : X
∼−→ Y . In

the remaining part of the proof, we fix this by possibly modifying ϕ|X on a closed subset of
codimension two.

Claim 4.5. The continuous maps |ϕ| and f agree on the regular locus of X.

Proof. Let D ⊆ X be an irreducible divisor in |OX(m)|. As diagram (4.2) commutes, it follows
that the restriction Eff(ϕ)(D)|Y ∈ |OY (m)| of the image of D under f is given by P(γm)(D).
The irreducible divisor D is contained in the sweep of the set of definable lines by Lemma 3.50.
Hence,

Eff(ϕ)(D)|Y = P(γm)(D) = fm(D).

By the characterization of regular closed points as intersections of irreducible divisors in |OX(m)|
given in Lemma 4.1, we conclude that |ϕ| and f agree on the underlying topological space of
the regular locus of X.

Let U ⊆ |X| denote the regular locus of X. We have codim(X \ U) ≥ 2, as X is normal.
Additionally, U is open, non-empty and thus dense in the integral scheme X. As |ϕ| agrees
with f on U , Proposition 3.22 implies that there is a unique isomorphism ϕ′ : X

∼−→ Y such that
|ϕ′| = f . This finishes the proof of Theorem 4.3, modulo the proof of Claim 4.4.

Proof of Claim 4.4. We closely follow the proof given in [KLOS21, Lem. 4.2.6]. Let Um ⊆
|OX(m)| be the sweep of the maximal open subset in the set of definable lines. Then U×m1 ⊆
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|OX(1)|×m is a nonempty open subset, and therefore

V := +−1
X (Um) ∩ U×m1 ⊆ |OX(1)|×m

is non-empty and open as well. In particular, there are points

P,Q,R, P2, . . . , Pm ∈ |OX(1)|

such that the points

(P, P2, . . . , Pm), (Q,P2, . . . , Pm), (R,P2, . . . , Pm) ∈ |OX(1)|×m

are contained in V and P,Q,R ∈ |OX(m)| lie on a line L ⊆ |OX(1)|. Since P(γ1) and P(γm)
agree with the maps induced by f on U1 and Um, we have

P := (P(γm) ◦+X)(P, P2, . . . , Pm) = (+Y ◦ P(γ1)×m)(P, P2, . . . , Pm) ∈ |OY (m)|

Q := (P(γm) ◦+X)(Q,P2, . . . , Pm) = (+Y ◦ P(γ1)×m)(Q,P2, . . . , Pm) ∈ |OY (m)|

R := (P(γm) ◦+X)(R,P2, . . . , Pm) = (+Y ◦ P(γ1)×m)(R,P2, . . . , Pm) ∈ |OY (m)|

Let L ⊆ |OY (m)| denote the line through P and Q. Observe that +X(L× {P2} × · · · × {Pm})
is the line in |OX(m)| through the two points

+X(P, P2, . . . , Pm) and +X (Q,P2, . . . , Pm).

As γm is a σm-linear map, P(γm) sends lines to lines and thus the above implies that

(P(γm) ◦+X)(L× {P2} × · · · × {Pm}) = L.

Similarly, P(γ1) sends lines to lines and agrees on U1 with the map defined by f . It follows that

(+Y ◦ P(γ1)×m)(L× {P2} × · · · × {Pm}) = L.

Via the identification
L ∼= L× {P2} × · · · × {Pm},

we can view L as a subset of |OX(1)|×m. Recall that P(γm) ◦+X and +Y ◦ P(γ1)×m agree on a
dense open subset of |OX(1)|×m containing the point (P1, . . . , Pm). Hence, the two compositions

kX
α→ L ⊆ |OX(1)|×m P(γm)◦+X−−−−−−→ L

β−1

→ kY

and

kX
α→ L ⊆ |OX(1)|×m +Y ◦P(γ1)×m−−−−−−−−→ L

β
−1

→ kY

agree on all but finitely many elements of kX . Here, α : kX
∼−→ L, β : kY

∼−→ L (resp. a, β)
are the bijections obtained as in the proof of Theorem 2.9 using the three points P,Q,R (resp.
P ,Q,R). Observe that the first map is σm and the second one is σ1. All in all, we have seen
that σ1(a) = σm(a) for all but finitely many elements a ∈ kX . As kX is an infinite field, this
implies σ1 = σm.

This finally completes the proof of Theorem 1.1. Let us conclude the section with a few remarks.
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Remark 4.6. As alluded to in Example 3.12, we do not recover the isomorphism class of X as a
kX -scheme but only as an abstract scheme over Z. Note however, that the construction above
yields an isomorphism of fields σ : kX

∼−→ kY fitting into the commutative diagram

X Y

Spec(kX) Spec(kY ).

ϕ

σ

A posterio, this isomorphism of fields may also be recovered using the isomorphisms

kX ∼= Γ(X,OX)
∼−→ Γ(Y,OY ) ∼= kY .

Remark 4.7. The assumption that kX is algebraically closed may be dropped if one instead
assumes X to be geometrically integral over an infinite field kX . We will not prove this but give
a rough sketch of the changes which have to be made to obtain the more general result. Recall
the parts of this thesis where we used the fact that the ground field is algebraically closed:

• In the proof of Proposition 3.44, i.e., the proof of the claim that the set of definable lines
on a linear system contains a dense open subset, we utilized the fact that the field kX
is algebraically closed in two ways. On the one hand, kX being infinite allowed us to
apply Bertini’s theorem. On the other hand, we used the fact that X is integral over
the algebraically closed field kX to deduce that Γ(X,OX) ∼= kX . This then allowed us to
apply the characterization of definable lines given in Lemma 3.43. Note that this is still
possible if we just assume X to be geometrically integral over an infinite field.

• In the proof of the fact that the set of definable lines is determined by the divisorial
structure, i.e., Lemma 3.38 and Corollary 3.40, we used the fact that kX is algebraically
closed to deduce that one can always find full flags of linear subspaces on a given linear
system. This is not possible over arbitrary fields (cf. Example 3.41). Hence, for arbitrary
infinite fields one must apply different methods to conclude that the divisorial structure
determines the set of definable lines. In [KLOS21], this issue is resolved by proving the
following lemma, using methods similar to the ones we have seen in Section 2.

Lemma 4.8 ([KLOS21, Thm. 2.2.1]). Let (k1, V1, U1) and (k2, V2, U2) be definable projective
spaces. Assume that

ϕ : P(V1)→ P(V2)

is a bijection such that for every definable line L ∈ U1, the image ϕ(L) ⊆ P(V2) is a linear
subspace and for every definable line L′ ∈ U2, ϕ−1(L′) ⊆ P(V1) is a linear subspace. Then
ϕ maps definable lines to lines in P(V2).

Note that by Proposition 3.37, which does not critically rely on the fact that kX is al-
gebraically closed, the bijections between linear systems induced by an isomorphism of
divisorial structures satisfy the conditions of Lemma 4.8.

Applying the changes listed in the remark above, one obtains the following generalization of
Theorem 1.1:

Theorem ([KLOS21, Main Theorem]). Let X be a proper normal geometrically integral variety
of dimension at least 2 over an infinite field. Then X is determined as a scheme by the pair

(|X|, c : X(1) → Cl(X)),

where X(1) is the set of codimension one points of X and c is the map sending a codimension
one point of X to its divisor class.
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5 Examples and stronger results

In this section, we discuss examples and stronger results related to Theorem 1.1. In particular,
we are interested in the following question.

Question 5.1. Given a scheme X as in the statement of Theorem 1.1, is τ(X) already deter-
mined by the topological space |X| alone?

One is immediately tempted to formulate the following corollary to Theorem 1.1:

Corollary 5.2. Let X and Y be proper normal integral schemes of dimension at least 2 over
algebraically closed fields kX and kY . If Cl(X) and Cl(Y ) are trivial, then X and Y are isomor-
phic as schemes if and only if the underlying topological spaces |X| and |Y | are homeomorphic.

However, it is easy to see that this corollary is somewhat tautological.

Proposition 5.3. Every definable projective scheme X with trivial class group is zero-dimensional.

Proof. Since X is projective, there is a very ample invertible sheaf OX(1) on X. As Pic(X) ↪→
Cl(X) = 0, we have OX(1) ∼= OX . Therefore

dimX ≤ dimkX Γ(X,OX(1))− 1 = dimkX Γ(X,OX)− 1 = 0

and hence, X is zero-dimensional.

Remark 5.4. If we drop the condition on X to be projective, then the claim of the previous
proposition may fail. One construction of a proper normal surface with trivial Picard group is
given in [Sch99].

5.1 Curves

In this section, a curve over a field k is a proper geometrically integral one-dimensional k-scheme.
We will present a counterexample to Theorem 1.1 in the case of curves over non-algebraically
closed fields (cf. 4.7). Afterwards, we apply a Theorem of Torelli type proved by B. Zilber to
obtain a variant of Theorem 1.1 in the case of curves over algebraically closed field.

Franchetta’s conjecture [Sch03, Thm. 5.1] states that the class group of the generic curve of
genus g over k is an infinite cyclic group generated by the canonical divisor. We exploit this
fact to give an example of non-isomorphic curves with isomorphic divisorial structures. Let us
first recall the definition of the generic curve, following the exposition given in [Sch03, p. 3].

Fix an algebraically closed field k. Let g ≥ 3 be an integer. Let Mg be the coarse moduli space
of smooth curves of genus g over k. Deligne and Mumford [DM69] have shown that Mg is an
irreducible scheme of finite type over k. The closed points of Mg correspond to isomorphism
classes of smooth curves over k. Moreover, there is a coarse moduli space Mg,1 of pointed smooth
curves of genus g over k. Forgetting the pointed structure yields a morphism Mg,1 →Mg. The
fiber of this morphism over the generic point ηg ∈Mg is denoted Cg and called the generic curve
of genus g over k. It turns out that Cg is again a smooth curve of genus g over the function field
k(ηg) (cf. [Sch03, p. 3]). Note that, while k is assumed to be algebraically closed, the function
field k(ηg) is not algebraically closed.

Proposition 5.5 ([KLOS21, Prop. 4.5.1.]). For any pair of integers g, h ≥ 3, there is an
isomorphism of divisorial structures

τ(Cg)
∼−→ τ(Ch).
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Proof. As observed multiple times before, a homeomorphism between Cg and Ch is nothing but
a bijection between the sets of closed points. The difficult part is finding such a bijection that
respects the class group. By Franchetta’s conjecture [Sch03, Thm. 5.1], we have

Cl(Cg) = Z · [KCg ],

where KCg is the canonical divisor on the curve Cg. Let cg : C
(1)
g → Cl(Cg) = Z · [KCg ] denote

the map sending a closed point to its class in the divisor class group. As degKCg = 2g− 2 > 0,
we have im(cg) ⊆ N · [KCg ]. For n ∈ N, we define

Dg(n) := {x ∈ C(1)
g | cg(x) = n · [KCg ]}.

We claim that there is a bijection Dg(n)↔ k(ηg). Consider the linear system |nKCg | for n ≥ 1.
We want to show that Dg(n) ⊆ |nKCg | is a non-empty open subset. The claim then follows
from the fact that, over an infinite field, a non-empty open subset of a positive-dimensional
projective space has the same cardinality as the ground field.

Using the Riemann–Roch formula (cf. [Har77, Thm. IV.1.3]), we compute

dim |nKCg | = dim |(1− n)KCg |+ n deg(KCg) + 1− g
= dim |(1− n)KCg |+ (2n− 1)g + 1− 2n.

As deg(1− n)KCg = (1− n)(2g − 2) < 0 for n > 1, the above simplifies to

dim |nKCg | =

{
g − 1 if n = 1

(2n− 1)g − 2n if n > 1.

In particular, we have dim |nKCg | + dim |mKCg | < dim |(n + m)KCg | for all n,m ≥ 1. Hence,
the image of the natural map

+n,m : |nKCg | × |mKCg | → |(n+m)KCg |,

given by addition of divisors, is a proper closed subset. Observe that Dg(n) ⊆ |nKCg | is precisely
the set of points not contained in the images of any of the addition maps. We conclude that
Dg(n) ⊆ |nKCg | is a non-empty open subset.

Hence, we have established the existence of bijections Dg(n)↔ k(ηg). Furthermore, as k(ηg)/k
is a field extension of finite transcendence degree 3g− 3 and k is infinite, we observe that k(ηg)
and k have the same cardinality. We conclude that there is a bijection Dg(n)↔ k.

Applying the arguments above to Ch, we see that for each n ≥ 1, there is a bijection

Dg(n)↔ k ↔ Dh(n).

As C
(1)
g =

⊔
n≥1Dg(n), these bijections compose to a bijection C

(1)
g ↔ C

(1)
h that respects the

divisorial structure. This finishes the proof.

For g 6= h, the curves Cg and Ch are not isomorphic as schemes, since they are geometrically
integral smooth curves of different genus. Hence, Proposition 5.5 shows that Theorem 1.1 may
fail for schemes of dimension one over non-algebraically closed fields (cf. Remark 4.7).

On the other hand, it turns out that a variant of Theorem 1.1 holds for curves over algebraically
closed fields.

Let k be an algebraically closed field and C a smooth projective curve over k of genus g greater
than one. Recall that the group Pic0(C) ⊆ Cl(X) is the subgroup of divisors of degree zero
modulo rational equivalence. Fixing a point P on C, we obtain an injective map

iP : C(1) → Pic0(C), x 7→ [x]− [P ].
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The following theorem of Torelli type proved by B. Zilber in [Zil12] using model-theoretic
methods states that this datum is enough to recover C as a scheme:

Theorem 5.6 ([Zil12]). Let k be an algebraically closed field. Let C and D be smooth projective
curves over k of genus at least two. Assume that there are points P ∈ C(1), Q ∈ D(1), a bijection

f : C(1) → D(1)

between the sets of closed points, and an isomorphism of groups

f̃ : Pic0(C)
∼−→ Pic0(D)

such that the diagram

C(1) D(1)

Pic0(C) Pic0(D)

f

iP iQ

f̃

commutes. Then C and D are isomorphic as schemes.

Observing that the divisorial structure already determines the datum considered in the above
theorem, we obtain a variant of Theorem 1.1 for smooth projective curves of genus at least two:

Corollary 5.7. Let k be an algebraically closed field. Let C and D be smooth projective curves
over k of genus at least two over k. If there is an isomorphism of divisorial structures

f : τ(C)
∼−→ τ(D),

then C and D are isomorphic as schemes.

Proof. Let cf : Cl(C)
∼−→ Cl(D) denote the group isomorphism given by the isomorphism of

divisorial structures. Let us first show that cf restricts to an isomorphism Pic0(C)→ Pic0(D).
By definition, we have

Pic0(C) = ker(deg : Cl(C)→ Z).

Hence, it suffices to show that the degree map deg : Cl(C)→ Z is determined by the divisorial
structure. Indeed, for every x ∈ C(1) one has deg([x]) = 1 = deg([f(x)]) = deg(cf ([x])) as k is
algebraically closed. As the divisor class group is generated by the classes of closed points, the
claim follows.

Fix a point P ∈ C(1). Set Q := f(P ) ∈ D(1). Then we have

cf ◦ iP = cf ([x]− [P ]) = cf ([x])− cf ([P ]) = [f(x)]− [f(P )] = [f(x)]− [Q] = iQ ◦ f

for all x ∈ C(1). All in all, we see that the assumptions of Theorem 5.6 are satisfied and thus C
and D are isomorphic as schemes.

5.2 Positive characteristic

Recall the question posed at the beginning of this section.

Question. Given a scheme X as in the statement of Theorem 1.1, is τ(X) already determined
by the topological space |X| alone?

In general, the answer to this question is negative:
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Proposition 5.8 ([Wie81, Cor. 1]). Let p, q ∈ Z be prime numbers. Then the underlying
topological spaces of the projective planes

P2
Fp

and P2
Fq

over the algebraic closures of the respective finite fields are homeomorphic.

Proof. See [Wie81, Cor. 1]. In fact, the proof shows that every homeomorphism

|C| ∼−→ |C ′|

between curves C ⊆ P2
Fp

and C ′ ⊆ P2
Fq

can be extended to a homeomorphism |P2
Fp
| ∼−→ |P2

Fq
|.

Note that for p 6= q, the schemes P2
Fp

and P2
Fq

are not isomorphic as the rings of global regular

functions are of different characteristic. In case p = q, the proof of the proposition allows
us to construct homeomorphisms between isomorphic definable schemes that do not arise as
underlying continuous maps of morphisms of schemes:

Example 5.9. Let k := Fp and H ⊆ P2 be a hyperplane, i.e., a line. Pick two distinct closed
points x1, x2 ∈ H. The bijection f : |H| → |H|, given by swapping the points x1 and x2, and
the identity everywhere else, is a self-homeomorphism of the Zariski topology on H. On the
other hand, one easily verifies that f is not the underlying map of a morphism of schemes.

By [Wie81, Cor. 1], the homeomorphism between H and itself can be extended to a homeomor-
phism

|P2
k|
∼−→ |P2

k|.
Restriction to H ⊆ P2 then shows that this homeomorphism is not the underlying map of a
morphism of schemes.

Similarly, we obtain a counterexample to Theorem 1.1 in the affine case.

Proposition 5.10. There is an isomorphism

f : τ(A2
Fp

)
∼−→ τ(A2

Fq
)

between the divisorial structures of affine planes over the algebraic closures of finite fields.

Proof. To simplify notation, set K := Fp and L := Fq. As K[x, y] and L[x, y] are unique
factorization domains, we have Cl(A2

K) = 0 = Cl(A2
L). Hence, it suffices to construct a homeo-

morphism f : A2
K
∼−→ A2

L.

Let Hp ⊆ P2
K , Hq ⊆ P2

L be hyperplanes (i.e., lines). Note that Hq and Hp are both countable
as sets. Any bijection Hp ↔ Hq that maps the generic point of Hp to the generic point of Hq is
a homeomorphism of Zariski topologies. The proof of Proposition 5.10 ([Wie81, Cor. 1]) shows
that one can extend this homeomorphism to a homeomorphism f : |P2

K | → |P2
L|. Restricting f

to the complements of Hp and Hq then yields a homeomorphism

A2
K
∼= P2

K \Hp
f−→ P2

L \Hq
∼= A2

L

between the underlying topological spaces of the affine planes.

Note that for p 6= q, the schemes A2
K and A2

L are not isomorphic, since the corresponding rings
K[x, y] and L[x, y] are of different characteristic.

Another class of examples of homeomorphisms, which are not induced by isomorphisms of
schemes, arises from purely inseparable morphisms, i.e., morphisms that induce purely insepa-
rable extensions on function fields. A prototypical example is the so-called Frobenius morphism.

From now on, fix a perfect field k of characteristic p > 0.
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Definition 5.11. Let X be a scheme over k. The absolute Frobenius is the morphism

FX : X → X

given as the identity on the underlying topological spaces and

F#
X : OX → OX , f 7→ fp

on structure sheaves.

Note that FX is not a morphism in the category of k-schemes in general.

Definition 5.12. The Frobenius twist X(p) of a k-scheme X is the fiber product

X(p) := X ×Spec(k),FSpec(k)
Spec(k) X

Spec(k) Spec(k),

ϕ

FSpec(k)

where the projection ϕ : X(p) → Spec(k) realizes X(p) as a k-scheme. Via the universal property
of the fiber product applied to (X → Spec(k), FX : X → X), we obtain a morphism

FX/k : X → X(p),

which is called the relative Frobenius. By construction, FX/k is a morphism of k-schemes.

Note that as k is perfect, FSpec(k) is an isomorphism of schemes, and thus, X(p) and X are

isomorphic as abstract schemes. However, we will later see examples where X and X(p) are not
isomorphic over k.

Example 5.13. For n ≥ 1, we have canonical isomorphisms

(Pnk)(p) ∼= Pnk ×Fk,k Spec(k) ∼= (PnFp ×Fp Spec(k))×k,Fk Spec(k) ∼= PnFp ×Fp Spec(k) ∼= Pnk .

Under this identification, the relative Frobenius FPn/k : Pnk → Pnk is given by [x, y] 7→ [xp, yp].

We recall some properties of the Frobenius twist and relative Frobenius.

Lemma 5.14. Let X be a geometrically integral, proper k-scheme. Then X(p) is a geometrically
integral, proper k-scheme as well, and the relative Frobenius FX/k is a finite dominant morphism

of degree pdimX . Furthermore, FX/k is a universal homeomorphism in the sense of [Stacks,
04DC].

Proof. See [Stacks, 0CC6].

Lemma 5.15. Let f : X → Y be a morphism of k-schemes. Then the diagram

X X(p)

Y Y (p)

f

FX/k

f (p)

FY/k

commutes, where f (p) := f ×k,Fk idk is the base change of f along FSpec(k).

Proof. See [Stacks, 0CCA].
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Lemma 5.16. If C is a smooth curve (cf. Section 5.1) over k, then C(p) is smooth as well and

g(C) = g(C(p)).

Proof. Since smoothness is stable under base change (cf. [Stacks, 01VB]), smoothness of C over
k directly implies smoothness of C(p) over k. The claim about the genus of C(p) follows from
the fact that g(C) = dimkH

1(C,OC) and

H1(C(p),OC(p)) = H1(C,OC)⊗k,F k

by flat base change (cf. [Stacks, 02KH]).

Remark 5.17. As stated initially, we are interested in homeomorphisms that are not induced
by isomorphisms of schemes. Lemma 5.14 shows that, for dimX > 0, the relative Frobenius
FX/k is not an isomorphism of schemes for degree reasons. However, the underlying map on
topological spaces is induced by an isomorphism of schemes.

To see this, let G : X(p) → X denote the projection of the Frobenius twist onto X. Being the
pullback of the isomorphism FSpec(k) along X → Spec(k), the morphism G is an isomorphism.
By construction, we have G ◦ FX/k = FX . As the absolute Frobenius FX is the identity on
topological spaces, this implies that the underlying continuous maps of FX/k and G−1 agree.

However, we can use the relative Frobenius to construct examples of the desired form in the
following way:

Proposition 5.18. Let X be an integral proper variety over an algebraically closed field k of
characteristic p. If X and X(p) are not isomorphic as k-schemes, then

|FX/k ×k idX | : |X ×k X| → |X(p) ×k X|

is a homeomorphism that is not induced by an isomorphism of schemes.

Proof. This is a generalization of [KLOS21, Ex. 5.5.1]. Note that FX/k ×k idX is a well-defined
morphism as both the relative Frobenius and the identity are morphisms over k. Let us first
show that |FX/k×k idX | is a homeomorphism. As |FX/k| and | idX | are homeomorphisms and X
is a variety over an algebraically closed field, we see that the continuous map |FX/k×k idX | is a

bijection. Since X×kX and X(p)×kX are proper over k, the continuous bijection |FX/k×k idX |
is closed, hence a homeomorphism.

It remains to show that the map is not induced by an isomorphism of schemes. On the contrary,
suppose

G : X ×k X → X(p) ×k X

were an isomorphism of schemes such that |G| = |FE/k ×k idX |. Then, as X and X(p) are
integral proper schemes over the algebraically closed field k, the action of G on global sections
induces an isomorphism

sG : k = Γ(X ×k X,OX×kX)
∼−→ Γ(X(p) ×k X,OX(p)×kX) = k

of fields, fitting into the commutative diagram

X ×k X X(p) ×k X

Spec(k) Spec(k).

G

sG
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As G agrees with |FX/k ×k idX | on the level of topological spaces, the restriction to fibers of
the two projections over closed points yields isomorphisms of abstract schemes

G1 : X
∼−→ X(p) and G2 : X

∼−→ X,

which fit into the commutative diagrams

X X(p)

Spec(k) Spec(k)

G1

sG

and

X X

Spec(k) Spec(k).

G2

sG

Hence, G1◦G−1
2 : X

∼−→ X(p) is an isomorphism in the category of k-schemes. Contradiction.

Note that elliptic curves over k are geometrically integral and proper. In the following, we
will give examples of elliptic curves E/k for which E and E(p) are not isomorphic over k. For
the theory of elliptic curves over fields of positive characteristic, we refer to [Sil09, III.]. In
particular, recall that to every elliptic curve E over k, we can associate a quantity j(E) ∈ k
called the j-invariant of E. Furthermore, two elliptic curves E,E′/k are isomorphic over the
algebraic closure of k if and only if j(E) = j(E′), see [Sil09, III.1.4.c].

Example 5.19. Let k := Fp be the algebraic closure of Fp for some prime p > 3. Choose
j0 ∈ k \ Fp. Consider the elliptic curve given by the Weierstrass equation

E : y2 + xy = x3 − 36

j0 − 1728
x− 1

j0 − 1728
.

A straightforward calculation shows that the j-invariant j(E) of E is equal to j0. Moreover,
the Frobenius twist of E is given by the Weierstrass equation

E(p) : y2 + xy = x3 − 36

jp0 − 1728
x− 1

jp0 − 1728
,

see [Sil09, Ex. III.4.6]. Hence, j(E(p)) = jp0 and, as j0 6∈ Fp, we conclude j(E) 6= j(E(p)). As
desired, this shows that E and E(p) are not isomorphic over k. Combining the above with
Proposition 5.18, we conclude that the homeomorphism

|FE/k ×k idE | : |E ×k E| → |E(p) ×k E|

is not induced by an isomorphism of schemes.

Example 5.20. Let k := Fp be the algebraic closure of Fp for some prime p > 3 and set
X := Pnk ×k E. Then the Albanese morphism (cf. [Bad01, Ch. 5])

X → E ∼= Alb(X)

is given by the projection onto the second factor, as the Albanese is compatible with taking
products and the Albanese of Pnk is trivial. One can show that there is an isomorphism

Alb(X(p)) ∼= Alb(X)(p)

of k-schemes (cf. [Moc12, Prop. A.3]). Furthermore, an isomorphism X
∼−→ X(p) over k induces

an isomorphism
E ∼= Alb(X)

∼−→ Alb(X(p)) ∼= Alb(X)(p) ∼= E(p)

over k. We conclude, that X and X(p) are isomorphic over k if and only if the same holds for E.
For elliptic curves E as in Example 5.19, Proposition 5.18 then implies that the homeomorphism

|FX/k ×k idX | : |X ×k X| → |X(p) ×k X|

is not induced by an isomorphism of schemes.
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Recall that a smooth curve C over k is called hyperelliptic if there is a finite k-morphism
f : C → P1

k of degree two. In the following, we generalize Example 5.19 to hyperelliptic curves
of arbitrary genus. From now on, fix an algebraically closed field k of characteristic different
from two.

Example 5.21. Every curve C of genus two is hyperelliptic. The linear system |ωX | associated
with the canonical sheaf has dimension one and degree two by Riemann–Roch. Moreover, |ωX |
is basepoint-free (cf. [Har77, Lem. V.5.1]) and therefore determines a finite morphism C → P1 of
degree two. For genera strictly greater than two, one can always find non-hyperelliptic curves.
For example, plane quartic curves are not hyperelliptic.

Lemma 5.22. If C is a hyperelliptic curve of genus g ≥ 2, then there is a unique finite k-
morphism f : C → P1 of degree two, up to automorphism of P1

k.

Proof. See [Har77, Prop. IV.5.3].

Lemma 5.23. Let C be smooth curve over k. A finite k-morphism f : C → P1 of degree two is
ramified over exactly 2g(C) + 2 distinct points.

Proof. This directly follows from the Hurwitz formula (cf. [Har77, IV.2.4]).

Lemma 5.24. For every set of points R = {x1, . . . , x2g+2}, there is a unique hyperelliptic curve
C over k and a finite k-morphism f : C → P1

k, ramifying precisely over R.

Proof. For a proof, see [Vak18, Prop. 19.5.2].

All in all, we conclude that, up to isomorphism, hyperelliptic curves of genus at least two over
k correspond precisely to unordered sets of 2g + 2 distinct points on P1, modulo the action of
Aut(P1

k). The following lemma shows that the Frobenius twist of a hyperelliptic curve is again
a hyperelliptic curve.

Lemma 5.25. Let C be a hyperelliptic curve of genus g ≥ 2 such that the unique morphism
f : C → X ramifies precisely over the points x1, . . . , x2g+2 ∈ P1. Then C(p) is a hyperelliptic
curve over k, and the morphism f (p) : C(p) → (P1)(p) = P1 is finite of degree two and ramifies
precisely over the points xp1, . . . , x

p
2g+2.

Proof. As being finite is stable under base change (cf. [Stacks, 01WL]), the morphism f (p) is
finite. Moreover, by Lemma 5.15, the diagram

C C(p)

P1
k P1

k

FC/k

f f (p)

FP1/k

commutes. Applying Lemma 5.14, we obtain

2p = deg(FP1/k ◦ f) = deg(f (p) ◦ FC/k) = p deg(f (p))

and conclude deg f (p) = 2. Hence, the curve C(p) is hyperelliptic. As k is algebraically closed,
the points over which f (p) is ramified are precisely the points x ∈ P1 whose preimage under f (p)

consists of a single point. As FC/k and FP1/k are bijective on the underlying sets, the morphism

f (p) is therefore ramified precisely over the points FP1/k(xi) = xpi ∈ P1
k (cf. Example 5.13).
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Example 5.26. In this example, we construct hyperelliptic curves C/k of genus ≥ 2 such
that C and C(p) are not isomorphic over k. By Proposition 5.18, it then follows that the
homeomorphism

|FC/k ×k idC | : |C ×k C| → |C ×k C(p)|

is not induced by an isomorphism of schemes.

Fix an integer g ≥ 2 and a prime p ≥ 2g. Set q := p(p+1)!. Recall that there is a unique subfield
Fq ⊆ Fp with q elements. As Fp is infinite, we may choose x ∈ Fp \Fq. In particular, this implies
F (x) 6= 0 for every non-zero polynomial 0 6= F ∈ Fp[X] of degree at most p+ 1.

Consider the hyperelliptic curve f : C → P1 over Fp of genus g ramified over the 2g + 2 points

R := {x, 0, 1,∞, 2, 3, . . . , 2g − 1} ⊆ P1,

where we identify z =
∧

[z : 1] and ∞ =
∧

[1 : 0] for z ∈ Fp. By Lemma 5.25, the morphism
f (p) : C(p) → P1 endows C(p) with the structure of a hyperelliptic curve ramified over the points

R(p) := {xp, 0, 1,∞, 2, 3, . . . , 2g − 1} ⊆ P1.

We claim that C and C(p) are not isomorphic over Fp. Assume the contrary. Then, by the
discussion above, there is an automorphism Ψ ∈ Aut(P1) = PGL(2) such that Ψ(R(p)) = R.
Set

[α0 : β0] := Ψ([0 : 1]), [α1 : β1] := Ψ([1 : 1]) and [α∞ : β∞] := Ψ([1 : 0]).

As the [αi : βi] are pairwise distinct, the morphism

Φ: P1 → P1

[a : b] 7→ [(β0a− α0b)(α1β∞ − β1α∞) : (β∞a− α∞b)(β0α1 − β1α0)]

is an automorphism of P1. Moreover, Φ satisfies

Φ([α0 : β0]) = [0 : 1],Φ([α1 : β1]) = [1 : 1] and Φ([α∞ : β∞]) = [1 : 0].

As every element of Aut(P1) = PGL(2) is uniquely determined by its image over three distinct
points, we see that Φ and Ψ are mutual inverses. Therefore, Φ(R) = R(p).

Claim 5.27. For i = 0, 1,∞, we have [αi : βi] 6= [x : 1].

Proof. First assume [α0 : β0] = [x : 1]. Possibly multiplying by elements in F×p , we may then

assume α1, β1, α∞, β∞ ∈ Fp. Since |R(p)| = 2g + 2 > 4, we can pick [a : b] ∈ R with a, b ∈ Fp
such that Φ([a : b]) ∈ R(p) \ {0, 1,∞, xp}. In particular, this implies Φ([a : b])p = Φ([a : b]). On
the other hand, we compute

Φ([a : b]) = [(a− xb)(α1β∞ − β1α∞) : (β∞a− α∞b)(α1 − β1x)]

and
Φ([a : b])p = [(a− xpb)(α1β∞ − β1α∞) : (β∞a− α∞b)(α1 − β1x

p)],

as every occurring term except x is contained in Fp. Since Φ([a : b])p = Φ([a : b]) and [a, b] 6=
[αi : βi], we obtain

(a− xb)(α1 − β1x
p) = (a− xpb)(α1 − β1x).

Simplifying both sides of this equation yields

α1bx+ aβ1x
p = α1bx

p + aβ1x.

As x and xp are linearly independent over Fp, we conclude α1b = β1a and thus [a : b] = [α1 : β1].
Contradiction.

Therefore, [α0 : β0] 6= [x : 1]. Very similar arguments show [α1 : β1] 6= [x : 1] 6= [α∞ : β∞].
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Hence, we have [αi, βi] ∈ R \ {[x : 1]} ⊆ Fp ∪ {∞} and may assume αi, βi ∈ Fp. Observe that

this implies Φ(a) = Φ(a)p for all a ∈ R \ {[x : 1]}. Since x 6= xp implies xp 6= xp
2
, we thus have

Φ([x : 1]) = [xp : 1]. Explicitely,

[(β0x− α0)(α1β∞ − β1α∞) : (β∞x− α∞)(β0α1 − β1α0)] = [xp : 1],

i.e.,
(β0x− α0)(α1β∞ − β1α∞) = xp(β∞x− α∞)(β0α1 − β1α0).

In other words, there is a non-zero polynomial 0 6= F ∈ Fp[X] of degree at most p+ 1 satisfying
F (x) = 0. Contradiction.

All in all, we conclude that C and C(p) are not isomorphic over Fp. Hence, the homeomorphism

|FC/Fp × idC | : |C ×Fp C| → |C
(p) ×Fp C|

is not induced by an isomorphism of schemes by Proposition 5.18.

5.3 Characteristic zero

Note that the examples in the previous section heavily relied on working over a field of positive
characteristic. The following proposition states that any morphism between normal varieties
over an algebraically closed field of characteristic zero, which induces a homeomorphism on
the underlying topological spaces, already is an isomorphism. This is an obstruction to the
existence of counterexamples of the form of Proposition 5.18 in characteristic zero.

Proposition 5.28. Let X and Y be irreducible varieties of dimension at least two over an
algebraically closed field k of characteristic zero and let f : X → Y be a morphism over k. If Y
is normal and f induces a homeomorphism on the underlying topological spaces, then f is an
isomorphism of k-varieties.

Proof. This is an application of Zariski’s Main Theorem. For a proof, see [Vit87, Thm. 3.8].

Example 5.29. If we drop the condition on Y to be normal, then the claim of the previous
proposition may fail. For example, consider the pinched plane (cf. [Vak18, Ex. 12.5.I])

Y := Spec(A) with A := C[x2, x3, xy, y] ⊆ C[x, y].

Observe that Ax2 ∼= C[x, y]x and Ay ∼= C[x, y]y. Hence, the normalization

f : A2
C = Spec(C[x, y])→ Spec(C[x2, x3, xy, y]) = Y

is an isomorphism on A2
C \ {(0, 0)}. In particular, Y is regular in codimension one and f is

injective. Being a normalization, f is also surjective and closed, hence a homeomorphism of the
underlying Zariski topologies. But since A is not normal, f is not an isomorphism of varieties.

In fact, for fields of characteristic zero, it turns out that the answer to Question 5.1 is positive.
Building upon Theorem 1.1, J. Kollár proved the following theorem:

Theorem 5.30 ([Kol20; KLOS21]). Let K,L be fields of characteristic zero and XK , YL nor-
mal, geometrically integral projective varieties over K (resp. L) satisfying one the following two
conditions:

(i) XK and YL are of dimension at least four.

(ii) K and L are uncountable, algebraically closed fields and XK and YL are of dimension at
least two.
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If Φ: |XK |
∼−→ |YL| is a homeomorphism of the underlying Zariski topologies, then Φ is the

composition of a field isomorphism φ : K
∼−→ L and an isomorphism of L-varieties Xφ

K
∼−→ YL.

Proof. By Theorem 1.1, it suffices to show that the underlying topological space determines the
linear equivalence relation on divisors. See [Kol20] for a proof of the theorem assuming (i). A
proof of the theorem under the assumption (ii) is given in [KLOS21].

Note that Theorem 5.30 has slightly stronger assumptions than Theorem 1.1 (also note Remark
4.7). However, this not due to the existence of counterexamples, but limitations of the techniques
applied in the proof. In fact, in [Kol20], J. Kollár formulates the following conjecture:

Conjecture 5.31 ([Kol20]). Let K,L be fields of characteristic zero and XK , YL normal, geo-
metrically integral proper varieties over K (resp. L) of dimension at least two . If

Φ: |XK |
∼−→ |YL|

is a homeomorphism, then Φ is the composition of a field isomorphism φ : K
∼−→ L and an

isomorphism of L-varieties Xφ
K
∼−→ YL.

Recall that for a smooth variety X over C, the set of closed points X(C) can be endowed with
the structure of a complex manifold (cf. [Har77, App. B]). The corresponding topology on X(C)
is called the analytic topology on X.

Example 5.32. As stated before in Example 2.5, the only automorphisms of the fields Q, R and
Qp are the respective identities. On the other hand, there are infinitely many automorphisms
of the field of complex numbers. Moreover, one can even find examples of automorphisms
σ : C ∼−→ C and projective varieties X over C such that the analytic topologies on X and its
conjugate Xσ := X ×C,σ Spec(C) are not homeomorphic. For example, in [Ser64], J.-P. Serre

constructed a projective C-variety X and an automorphism σ : C ∼−→ C such that

π1(X(C)) 6∼= π1(Xσ(C)).

Conversely, as X and Xσ are isomorphic as schemes, the underlying Zariski topologies |X| and
|Xσ| are homeomorphic.

On the other hand, one can also find examples of varieties over C with homeomorphic analytic
topologies but non-homeomorphic Zariski topologies.

For n ≥ 0, consider the n-th Hirzebruch surface Fn := P(OP1
C
⊕OP1

C
(n))→ P1

C (cf. [Bad01, 12.5]).

In his thesis [Hir51], F. Hirzebruch showed that, as real manifolds, Fn and Fm are diffeomorphic
if and only if n ≡ m mod 2, while as complex manifolds, they are isomorphic if and only if
n = m. Using the well-known fact that Fn and Fm are isomorphic as abstract schemes if and
only if n = m, we show that the underlying Zariski topologies of distinct Hirzebruch surfaces
are not homeomorphic:

Proposition 5.33. For n 6= m ≥ 0, the underlying Zariski topologies of the Hirzebruch surfaces
Fn and Fm are not homeomorphic.

Proof. Observe that C is an uncountable algebraically closed field and Fn is a two-dimensional
integral smooth projective C-variety. By Theorem 5.30, it thus suffices to see that Fn and Fm are
not isomorphic as schemes. One way of proving this fact is the following: Using basic intersection
theory (cf. [Har77, Ch. V.1]), one deduces that for n ≥ 1, there is a unique irreducible curve
C ⊆ Fn with negative self-intersection (cf. [Bad01, 12.5]). Furthermore, one computes C2 = −n.
In the case of n = 0, observe that every curve C ⊆ F0

∼= P1 × P1 has non-negative self-
intersection.
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Assume that there is an isomorphism F : Fn
∼−→ Fm of schemes. Then F carries irreducible

curves C ⊆ Fn to irreducible curves on Fm and preserves self-intersection numbers. By the
observations above, we conclude n = m. This finishes the proof.
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