
Seminar on ‘Stability conditions and Stokes factors’1

Content. In a recent paper Bridgeland and Toledano Laredo explain the analogy
between certain formulae arising in the study of irregular connections and in Joyce’s
work on counting functions of stable objects in abelian categories, thus leading to
a more conceptual understanding of the latter. In particular, a certain differential
equation studied by Joyce turns out to be equivalent to a similar one that comes up
when an irregular connection ∇ = d− ( Z

t2
+ f

t
)dt on C∗ is deformed. Roughly, the Z is

deformed in some open set U and the differential equation is a condition on the f , so
that the connections glue to a flat connection on U×C∗ (isomonodromic deformations).
The seminar will give us the opportunity to learn two rather different things: Ringel–
Hall algebras and irregular connections. We will not assume any familiarity with either
of the two.

The techniques, in particular the manipulation of the involved power series, should be
useful whenever objects are counted. So besides the abstract theory, learning how to
handle the various generating series is the main aim of the seminar.

The motivation for Joyce’s work comes from Donaldson–Thomas theory (or the more
recent version of Pandharipande–Thomas), which counts curves in Calabi–Yau three-
folds. However the algebraic geometry (or even the definitions) of these invariants will
not be discussed, at least not this term. It would be interesting to have a look also at
the recent paper of Kontsevich and Soibelman (early copies are available on request),
but we presumably won’t have the time for it either.

The main reference for the seminar is the paper

[BT] T. Bridgeland, V. Toledano Laredo Stability conditions and Stokes factors. Preprint
arXiv:0801.3974,

but we will also go through parts of articles by Joyce, Reineke, Schiffmann and others.

Organization. The seminar will take place every second Tuesday 2-6 pm starting
October 21, 2008 with a meeting in Bonn (SR A, Beringstr. 4). All talks will be
announced individually in the weekly program.

The dates for the meetings until Christmas are: October 21, November 4, November
11, November 25, December 2, December 16. The meeting on December 2 will take
place in Mainz. The locations (Bonn or Mainz) for the other meetings have still to be
decided.

For further information or if you are interested in giving a talk in the seminar please
contact Daniel Huybrechts or Sven Meinhardt (huybrech or sven at math.uni-bonn.de).
(DH and SM will give the talks at the first meeting, at least if no one else feels an urgent
desire to do so.)

Below we sketch a provisional plan for the seminar which we should feel free to change.
In particular, some talks might need more time than we think. The citations below
refer to the references given in [BT].

1Sponsored by the SFB/TR 45. Bonn–Essen–Mainz.



I. Introduction, Hall algebras over finite fields and Reineke inversion.

This is the warm-up meeting. After some motivation and explanations of the setup, we
will start with Hall algebras over finite fields. Proofs are easier than in characteristic
zero.

I.1. Introduction: Stability conditions on abelian categories (stability function, Harder–
Narasimhan property, examples). What we want to count and how.

I.2. Ringel–Hall algebras over finite fields: Sections 1.1.-1.5. in Schiffmann’s lecture
notes [35].

The Hall algebra HA for a finitary abelian categoriesA is generated by the isomorphism
classes of objects in A. Alternatively, it is the set of functions on Ob(A)/ ∼= with finite
support. The Hall algebra comes with a natural product [M ] · [N ] expressed in terms
of all possible extensions of M by N . The first result is: This product is associative
(Prop. 1.1 in [35]).

The Hall algebra H(A) also comes with a natural coproduct ∆ (Green’s coproduct).
Corresponding to the two definitions of the Hall algebra, there are two possible ways
of defining the coproduct. The more geometric one is in terms of functions on Ob(A).
That this does define a coproduct is Proposition 1.4 [35]. That it is compatible with
the product structure is Theorem 1.9 [35]. (The proof of the latter is a bit longer, but
seems elementary.)

I.3. As a more concrete example we will explain Section 4 and 5 of Reineke’s article
[29]. (We leave out Theorem 4.5 for the moment.) The new input is the existence of a
Harder–Narasimhan filtration. The Hall algebra contains the composition algebra that
is generated by characteristic functions χd of the natural strata Rd. Proposition 4.8
[29] expresses the characteristic function χss

d of the semi-stable part Rss
d in terms of χd

and products of characteristic functions χss
di

of strata occurring in the HN filtrations
in Rd. (This can be viewed as a recursion formula.) All these functions are put into
one generating function X(T ) =

∑
χd ∗ T d and Proposition 4.8 can be rephrased in

terms of X(T ) (see Proposition 4.12 [29]). The main result is then Theorem 5.1 which
resolves the recursion in Proposition 4.8. This should be treated on a very formal level,
for we will encounter the same formula in different settings later. Have a look also at
Sections 9.1-9.4 in [BT].

II. Ringel–Hall algebras in characteristic zero.

Based on parts of Section 3 in [BT].

II.1. Section 3.1, 3.2 (leave the Ringel–Hall Lie algebra to the next talk), 3.7 and 3.8.
We work in the abelian category A = Mod(R) of finite-dimensional modules over a
finite-dimensional algebra R. The space of d-dimensional representations Repd is an
affine variety with a natural GLd-action. The Ringel–Hall algebra H(A) in this setting
consists of all constructible equivariant functions on Rep. Define product and coproduct
in this new setting and explain the analogy to the Ringel–Hall algebra over finite
fields. Counting points is replaced by taking Euler characteristics using cohomology
with compact support. The analogue of the composition algebra C(A) ⊂ H(A) is
introduced. Explain why the coproduct is only defined in C(A). Prove Theorem 3.1
and Theorem 3.3 in analogy to last time. (The notation in Joyce’s paper is heavy, but
maybe this can be simplified in our situation and with what we have learnt already
in mind.) Define the functions δγ in 3.7 and explain why Reineke’s inversion formula
works and yields Theorem 3.11.
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II.2. Introduce the Ringel–Hall algebra and its extended version. Prove that with these
definitions they are Lie algebras. Show that the composition algebra is the universal
enveloping algebra of the Ringel–Hall algebra (Proposition 3.7). Maybe one could first
look at the corresponding statement for Hall algebras over finite fields (see Reineke’s
article) and then explain what has to be modified in characteristic zero. We might
need professional help here.

We suggest to skip Section 3.4 and 3.5, where certain completed versions of the Ringel–
Hall algebra and the composition algebra are introduced. Later we should make clear
where this is needed.

A brief outlook, following Sections 1.4 and 1.5, sketching how all this leads to irregular
connections would be good. Those will be dicussed in the following meeting.

III. Irregular connections and Stokes.

Based on parts of Section 2 in [BT]

III.1. Recall the Riemann–Hilbert correspondence between flat connections on the
trivial bundle on C∗ and the monodromy π1(C

∗) → GL(n,C). Explain Hilbert’s 21st
problem which asks under which conditions a given monodromy can be realized by
a flat connection with a pole of order one: ∇ = d − f

t
dt. Discuss isomonodromic

deformations of flat connections of this type and the equations that arise. (What is
the best reference here? Maybe a good point to start is the article by C. Sabbah The
work of Bolibruch on isomonodromic deformations. See his personal webpage.)

Generalize to the case of irregular connections (pole order two), see Section 2.3. The
connection has now the form ∇ = d − ( Z

t2
+ f

t
)dt with constant f and Z satisfying

additional conditions. Restrict to the case GL(n) and leave all Lie algebra consider-
ations for later. Prove Theorem 2.2 (see Section 6), which asserts the existence and
uniqueness of flat sections. (The paper On the generalized Riemann–Hilbert problem
with irregular singularities by Bolibruch, Malek, and Mitschi could be helpful.)

III.2. Prove Proposition 2.4 (see Section 5) and introduce Stokes factors, multipliers,
etc. Conclude with an explanation of the relation to isomonodromic deformations in
this case (see Section 2.15).

IV. Analogy: Stokes and Hall

The first part is based on Sections 2.7, 2.8, 2.9 in [BT]. For the second it is the beginning
of Section 4.

IV.1. This part discusses the Lie algebra incarnations of the Stokes factor: εα, δα

and κα. Section 2.7 introduces a certain completion Ûg of the universal enveloping
algebra. (Is this a standard procedure? Is there another reference for this part?)
Taking the logarithm of the Stokes factors yields the Stokes map mapping f to

∑
εα

(which implicitly depends on Z). Introduce N` ⊂ G and its Lie algebra n` (depending
on a Stokes ray `) and explain Lemma 2.9 (in particular the infinite sums that occur).
Proposition 2.10 is the analogue of Reineke’s formula. Explain that the analogy is valid.
At this point we could add a comparison of the Stokes setting with the Ringel–Hall
setting. What is missing in the Ringel–Hall setting is the connection ∇ = d−( Z

t2
+ f

t
)dt.

The stability function yields the Z, but f is a priori not present. The next step is to
express the f in the Stokes world in terms of the ε and δ.
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IV.2. Start with Section 2.10 and state Theorem 2.14 which expresses the δ in terms
of f by a formula of the form δ =

∑∑
Mn(Z(αi))

∏
fαi

. The coefficients Mn are
iterated integrals and we have to learn what this is. Go to Section 4. This part should
be in collaboration with V.1.

V. Explicit formulae comparing ε and δ with f .

Based on 2.10 and 2.11 and the relevant parts in Section 9 and 10 in [BT]

V.1 Continuation of IV.2. Prove Theorem 2.14.

V.2 This part should prove the analogous formula in Theorem 2.19 which expresses
the ε in terms of f by an equation of the type ε =

∑∑
Ln(Z(αi))

∏
fαi

. Roughly
the Ln are the logarithm of the Mn. We need to cover parts of Section 9 (starting
with 9.5) and 10 but should restrict to those that are strictly needed for Theorem 2.19.
(Lemma 2.18 could be stated without proof.) If time permits discuss Theorem 2.20,
which eventually expresses f in terms of the ε, should be included. It is this formula
that completes the analogy between Joyce’s Ringel–Hall setting and the more classical
Stokes picture.

VI. The final pieces.

VI.1. The aim is to prove Theorem 2.21 and in particular that the function f in the
Ringel–Hall setting is a holomorphic function on the space of stability conditions. This
is Corollary 10.4. It seems that Joyce’s functions Fn in Theorem 3.13, which are not
explained in [BT], should simply be replaced by the Jn.

If time permits, one could also discuss the explicit formula relating f to κ. This is
Theorem 2.23.

VI.2 This talk should summarize the discussion and explain Theorem 3.14 and Theo-
rem 3.18.
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