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A. Weil: . . . il s’agit des variétés kählériennes dites K3, nommées en
l’honneur de Kummer, Kähler, Kodaira, et de la belle montagne K3 au
Cachemire. Photograph <http://student.britannica.com/eb/art-55317>.
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Abelian and derived category for X = smooth projective /C

 Coh(X ) = abelian category of coherent sheaves.

 Db(X ) := Db(Coh(X )) = bounded derived category of X .

Objects: Bounded complexes of coherent sheaves:

· · · 0 //F i //F i+1 // · · · //F j−1 //F j //0 · · ·

Morphisms: Morphisms of complexes

· · · 0 //F i

��
	

//F i+1

��

// · · · //F j−1

��

//

	

F j

��

//0 · · ·

· · · 0 //G i //G i+1 // · · · //G j−1 //G j //0 · · ·

Add formal inverses of quasi-isomorphisms, i.e. morphisms inducing
isomorphisms H i (F •)

∼ // H i (G •) for all i are declared isomorphisms
in Db(X ).
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For F , G ∈ Coh(X ) one considers Hom(F , G ) as a C-vector space.
 Coh(X ) is a C-linear abelian category.
 Db(X ) is a C-linear additive category.

Db(X ) has two further structures:

Shift of complexes: F • � // F •[1], where (F •[1])i = F i+1.
Distinguished (or exact) triangles

E • // F • // G • // E •[1]

replacing short exact sequences in Coh(X ).

This makes Db(X ) a C-linear triangulated category. Equivalences
will always assumed C-linear and exact, i.e. to respect all the
additional structures.
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Main questions:

i) Db(X ) ' Db(X ′) ⇔ ?? and ii) Aut(Db(X )) = {Φ}/ ∼= ??

Orlov: Any C-linear exact equivalence Φ : Db(X )
∼ // Db(X ′) is of

Fourier–Mukai type, i.e. there exists E ∈ Db(X × X ′) such that

Φ(F •) ' Rp∗(Lq∗F • ⊗L E)

in a functorial way. Here, X X × X ′qoo p // X ′ .

Roughly: E defines an equivalence if X ′ is a very special ‘moduli
space’ of the objects E|X×{y} on X . (Make this precise!)

i) Which varieties X ′ are special moduli spaces of complexes on X?
ii) In how many ways can X be seen as a special moduli space of
complexes on itself?
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Classical case: abelian varieties

A = abelian variety  Â = dual abelian variety, i.e.

Â = Pic0(A) = H1(A,OA)/H1(A, Z).

P = Poincaré line bundle on A× Â such that P|A×{[L]} ' L.

Mukai: P ∈ Db(A× Â) induces Db(A) ' Db(Â).

Note: If Db(A) ' Db(X ), then X is an abelian variety.

Orlov, Polishchuk:
Db(A) ' Db(B) ⇔ A× Â ' B× B̂ isometry.
Aut(Db(A))/(Z×A× Â) = Aut(A× Â, qA)

n ∈ Z acts by shift F • � // F •[n].
x ∈ A acts by translations F • � // t∗x F •.
L ∈ Â acts by tensor product F • � // F • ⊗ L.
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Extreme cases: Ample K±
X

Bondal, Orlov: Suppose K±
X is ample. Then

Db(X ) ' Db(X ′) ⇔ X ' X ′

Aut(Db(X )) ' Z× (Aut(X ) n Pic(X ))

Orlov: Db(X ) ' Db(X ′) ⇒ kod(X ) = kod(X ′).

Recall: kod(X , KX ) := trdeg
⊕

n≥0 H0(X , K n
X )− 1.

Kawamata: Suppose kod(X , K±
X ) = dim(X ). Then

Db(X ) ' Db(X ′) ⇒ X , X ′ birational (K-equivalent).

Restrict to varieties with trivial KX !
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KX ≡ 0

Fact: The class of varieties X with KX ≡ 0 is invariant under
derived equivalences. More precisely, if Db(X ) ' Db(X ′) and
K n

X ' OX , then K n
X ′ ' OX ′ .

Question: Can one classify varieties X with KX ≡ 0 ?

Decomposition theorem: Suppose 0 = c1(X ) ∈ H2(X , R).
Then ∃ X̃ // X finite, étale (minimal) such that

X̃ ' A×
∏

Xi ×
∏

Yj

with A = abelian variety; Xi = hyperkähler manifold (HK);
Yj = Calabi–Yau manifold (CY).

Remark: Works as well for compact Kähler manifolds.
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HK and CY: Definitions

X = HK if X is projective, H0(X ,Ω2
X ) = Cσ with

σ : TX
∼ // ΩX and π1(X ) = {1}.

Y = CY if KY ' OY , H0(Y ,Ωi
Y ) = 0 for

0 < i < dim(Y ) ≥ 3 and π1(Y ) = {1}.

Remarks: i) For HK X the holomorphic form σ is called a
holomorphic symplectic structure.
ii) HK = irreducible holomorphic symplectic manifold. Here
‘irreducible’ = ‘π1 = {1}’ + ‘h2,0(X ) = 1’.
iii) If X = HK, then any Kähler class ω ∈ H1,1(X ) is uniquely
represented by a special Ricci-flat Kähler form (hyperkähler metric).
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Examples of HKs

i) dim = 2: K3 surfaces.
(By definition: K3 = compact complex surface with KX ' OX
and b1(X ) = 0. ‘Kähler’ and ‘π1(X ) = {1}’ are automatic.)

ii) Hilbert schemes: Hilbn(S) for S = K3 surface and
deformations thereof.

iii) Generalized Kummer varieties and their deformations: Kn(A)
for A = abelian surface. Fibre of

∑
: Hilbn(A) // A.

iv) Compact moduli spaces of stable sheaves on K3 surfaces.
(Deformations of ii).) Similar for abelian surfaces.

iv) O’Grady’s sporadic examples in dimensions 6 and 10.
(Resolutions of singular moduli spaces. ‘Sporadic’ due to
Kaledin/Lehn/Sorger and Choy/Kiem. )
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How to study HKs?

Slogan:
Complex tori are ruled by H1.
HKs are ruled by H2, and
CY n-folds by Hn.

X = HK  H2(X , Z) ' Zb2(X ) comes with the Hodge structure of
weight two:

H2(X , C) ' H0,2(X )⊕ H1,1(X )⊕ H2,0(X )

with H2,0(X ) = H0(X ,Ω2
X ) = Cσ, H0,2(X ) = H2,0(X ) = Cσ̄.

Note: Pic(X ) = H1,1(X ) ∩ H2(X , Z) ' Zρ with
0 ≤ ρ ≤ b2(X )− 2 (everything possible).
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Quadratic forms

K3 surfaces:
Intersection pairing ( , ) yields even unimodular quadratic
form on H2(X , Z) abstractly isomorphic to (−E8)

⊕
2 ⊕ U

⊕
3.

Mukai pairing 〈 , 〉 is an even unimodular quadratic form on
H∗(X , Z) abstractly isomorphic to (−E8)

⊕
2 ⊕ U

⊕
4 given by

( , )|2H ⊕−( , )|H0⊕H4 . Write H̃(X , Z).

HKs:
Beauville–Bogomolov–Fujiki form qX on H2(X , Z) is a
quadratic form of signature (3, b2(X )− 3) which is a root of
α � //

∫
X α2n.
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H2 and cones

K3 surfaces: Let CX := {α ∈ H1,1(X , R) | α2 > 0}o and
KX ⊂ CX Kähler cone. Then

KX = {α ∈ CX |
∫

C
α > 0 ∀ P1 ' C ⊂ X}.

HK: Let CX := {α ∈ H1,1(X , R) | qX (α) > 0} and KX ⊂ CX
Kähler cone. Then

KX = {α ∈ CX |
∫
C α > 0 ∀ P1 // // C ⊂ X}.

BirKX = {α ∈ C̄X | qX (α, [D]) > 0 ∀ D ⊂ X uniruled}.
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H2 and Global Torelli

K3 surfaces: X ' X ′ ⇔ H2(X , Z) ' H2(X ′, Z) respecting the
Hodge structure and ( , ) (Hodge isometry).

Question: Which Hodge isometries are induced by isomorphisms?
Will give natural explanation using Db(X ).

HKs: One knows that for birational HKs X ∼ X ′ there exists a
Hodge isometry H2(X , Z) ' H2(X ′, Z) (using q). In fact, X and
X ′ define non-separated points in the moduli space.

Namikawa example: H2(K 3(A), Z) ' H2(K 3(Â), Z) Hodge
isometry, but K 3(A) and K 3(Â) not birational.

Question: GT for HKs?
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Derived decomposition theorem?

Question: Suppose c1(X ) = 0 and Db(X ) ' Db(X ′). Let

A×
∏

Xi ×
∏

Yj // X and A′ ×
∏

X ′
i ×

∏
Y ′

j
// X ′

be the minimal covers. Is then Db(A) ' Db(A′),

Db(Xi ) ' Db(X ′
σ(i)), and Db(Yj) ' Db(Y ′

τ(j)) ?

Restrict to irreducible factors!

Abelian factors understood by work of Mukai, Orlov, Polishchuk.
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X = HK

H., Nieper-Wißkirchen: If Db(X ) ' Db(X ′), then X ′ = HK.

Conjecture (Bondal, Orlov): X ∼ X ′ birational HKs ⇒
Db(X ) ' Db(X ′).

Ploog: OK for Hilbert schemes.
Kawamata, Namikawa: OK for Mukai flops.

Expect:

X ∼ X ′

? %-RRRRRRRRRRRRRR

RRRRRRRRRRRRRR
X +3 H2(X , Z) ' H2(X ′, Z)

??
��

Db(X ) ' Db(X ′)

Test: Is Db(K3(A)) ' Db(K3(Â)) ??



Db(X ) Examples Ample K±X KX ≡ 0 HK Db(HK) Aut(Db(X )) K3 surfaces Stability conditions

Aut(Db(X )) for KX = OX

E ∈ Db(X ) is spherical if Ext∗(E , E ) ' H∗(Sn, C).

Seidel, Thomas: C(E∨ � E //O∆) defines the spherical twist

TE : Db(X )
∼ // Db(X ), F � // C(Hom∗(E , F )⊗ E // F ).

E ∈ Db(X ) is a Pn-object if Ext∗(E , E ) ' H∗(Pn, C).

H., Thomas: C(C(E∨ � E [−2] // E∨ � E ) //O∆) defines the
Pn-twist

PE : Db(X )
∼ // Db(X ).

Examples: Line bundles on CYs and HKs are spherical respectively
Pn-objects. There is no spherical object E with rk(E ) 6= 0 on a HK
of dimension > 2.
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X , X ′ = K3 surfaces

Derived Global Torelli (Mukai, Orlov): Db(X ) ' Db(X ′)
⇔ H∗(X , Z) ' H∗(X ′, Z) Hodge isometry of Mukai lattices.
⇔ X ′ ' X or ' moduli space of slope stable vector bundles.

Study Aut(Db(X )) via the action

ρ : Aut(Db(X )) // Aut(H̃(X , Z))

Theorem: Im(ρ) = O+(H̃(X , Z)) = group of all Hodge isometries
preserving the orientation of the positive directions (Mukai; Orlov;
Hosono/Lian/Oguiso/Yau; Ploog; H./Macrì/Stellari).

What about the kernel?
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Bridgeland’s conjecture

Conjecture: Ker(ρ) = π1(P+
0 (X )). (∗)

P+
0 (X ) = period domain for the space Stab(X ) of stability

conditions on Db(X ).

General: π : Stab(X ) // π(Stab(X )) ⊂ H∗(X , C) with
equivalences Φ ∈ Ker(ρ) acting continuously and fibrewise.

K3 surfaces (Bridgeland): There is a distinguished connected
component Σ ⊂ Stab(X ) such that:

P+
0 (X ) := π(Σ) admits explicit description similar to

description of the Kähler cone.
If Σ = Stab(X ) and simply connected, then (∗).
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The idea of stability: abelian

Recall: For a coherent sheaf E on a curve C one has the unique
Harder–Narasimhan filtration:

0 ⊂ E0 ⊂ E1 ⊂ . . . ⊂ En−1 ⊂ En = E ,

where E0 = is the torsion of E and Fi+1 := Ei+1/Ei are semi-stable
vector bundles with slopes µ(F1) > . . . > µ(Fn).

 Decomposes Coh(C ) in smaller abelian categories

P(φ) ⊂ Coh(C ), φ ∈ (0, 1]

st. P(1) = subcategory of torsion sheaves and P(φ) for φ ∈ (0, 1)
is the subcategory of semi-stable vector bundles of slope − cot(πφ).

Classical stability: Hom(P(φ),P(φ′)) = 0 for φ > φ′.



Db(X ) Examples Ample K±X KX ≡ 0 HK Db(HK) Aut(Db(X )) K3 surfaces Stability conditions

The idea of stability: derived

Same idea for Db(X ): Decompose into abelian subcategories

P(φ) ⊂ Db(X ), φ ∈ R (!).

Need in addition additive stability function

Z : K (X ) // H∗(X ) // C

such that Z (E ) = r(E ) exp(iπφ(E )), r(E ) ∈ R>0 for E ∈ P(φ).

Bridgeland:
Stab(X ) := {(P, Z )} has a natural topology.
The projection π : Stab(T ) // H∗(X , C)∗, (P, Z ) � // Z , is a
local homeomorphism from each connected component Σ to a
linear subspace VΣ ⊂ H∗(X , C)∗.
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