$D^{\mathrm{b}}(X)$ Examples Ample $K_{\mathbf{X}}^{\pm} = K_{\mathbf{X}} \equiv 0$ HK $D^{\mathrm{b}}(\mathrm{HK})$ $\operatorname{Aut}(D^{\mathrm{b}}(X))$ K3 surfaces Stability conditions

A. Weil: ... *il s'agit des variétés kählériennes dites K3, nommées en l'honneur de Kummer, Kähler, Kodaira, et de la belle montagne K3 au Cachemire.* Photograph http://student.britannica.com/eb/art-55317.

Holomorphic symplectic manifolds and derived categories

D. Huybrechts

Garda 0, March 2008

 $D^{\mathbf{b}}(\mathbf{X})$ Examples Ample $K_{\mathbf{X}}^{\pm} = K_{\mathbf{X}} \equiv 0$ HK $D^{\mathbf{b}}(\mathrm{HK})$ Aut $(D^{\mathbf{b}}(\mathbf{X}))$ K3 surfaces Stability conditions

Abelian and derived category for X = smooth projective $/\mathbb{C}$

 \rightsquigarrow Coh(X) = abelian category of coherent sheaves.

 \rightsquigarrow D^b(X) := D^b(Coh(X)) = bounded derived category of X.

Objects: Bounded complexes of coherent sheaves:

$$\cdots 0 \longrightarrow F^{i} \longrightarrow F^{i+1} \longrightarrow \cdots \longrightarrow F^{j-1} \longrightarrow F^{j} \longrightarrow 0 \cdots$$

Morphisms: Morphisms of complexes

Add formal inverses of quasi-isomorphisms, i.e. morphisms inducing isomorphisms $H^i(F^{\bullet}) \xrightarrow{\sim} H^i(G^{\bullet})$ for all *i* are declared isomorphisms in $D^{\mathrm{b}}(X)$.

For $F, G \in Coh(X)$ one considers Hom(F, G) as a \mathbb{C} -vector space. $\rightarrow Coh(X)$ is a \mathbb{C} -linear abelian category. $\rightarrow D^{b}(X)$ is a \mathbb{C} -linear additive category.

 $D^{b}(X)$ has two further structures:

- Shift of complexes: $F^{\bullet} \mapsto F^{\bullet}[1]$, where $(F^{\bullet}[1])^{i} = F^{i+1}$.
- Distinguished (or exact) triangles

$$E^{\bullet} \longrightarrow F^{\bullet} \longrightarrow G^{\bullet} \longrightarrow E^{\bullet}[1]$$

replacing short exact sequences in Coh(X).

This makes $D^{b}(X)$ a \mathbb{C} -linear triangulated category. Equivalences will always assumed \mathbb{C} -linear and exact, i.e. to respect all the additional structures.

Main questions:

 $\mathsf{i}) \ \mathrm{D^b}(X) \simeq \mathrm{D^b}(X') \Leftrightarrow \ref{eq: and } \mathsf{ii}) \ \mathrm{Aut}(\mathrm{D^b}(X)) = \{\Phi\}/\sim = \ref{eq: and } \ref{eq: and } \mathsf{ii} \in \mathbb{C}$

Orlov: Any \mathbb{C} -linear exact equivalence $\Phi : D^{\mathrm{b}}(X) \xrightarrow{\sim} D^{\mathrm{b}}(X')$ is of *Fourier–Mukai type*, i.e. there exists $\mathcal{E} \in D^{\mathrm{b}}(X \times X')$ such that

$$\Phi(F^{\bullet}) \simeq Rp_*(Lq^*F^{\bullet} \otimes^L \mathcal{E})$$

in a functorial way. Here, $X \xleftarrow{q} X \times X' \xrightarrow{p} X'$.

Roughly: \mathcal{E} defines an equivalence if X' is a very special 'moduli space' of the objects $\mathcal{E}|_{X \times \{y\}}$ on X. (Make this precise!)

i) Which varieties X' are special moduli spaces of complexes on X?ii) In how many ways can X be seen as a special moduli space of complexes on itself?

Classical case: abelian varieties

A= abelian variety $\rightsquigarrow \hat{A}=$ dual abelian variety, i.e.

$$\hat{A} = \operatorname{Pic}^{0}(A) = H^{1}(A, \mathcal{O}_{A})/H^{1}(A, \mathbb{Z}).$$

 $\mathcal{P} = \text{Poincaré line bundle on } A \times \hat{A} \text{ such that } \mathcal{P}|_{A \times \{[L]\}} \simeq L.$ **Mukai:** $\mathcal{P} \in D^{b}(A \times \hat{A})$ induces $D^{b}(A) \simeq D^{b}(\hat{A}).$ **Note:** If $D^{b}(A) \simeq D^{b}(X)$, then X is an abelian variety. **Orlov, Polishchuk:**

- $D^{b}(A) \simeq D^{b}(B) \Leftrightarrow A \times \hat{A} \simeq B \times \hat{B}$ isometry.
- $\operatorname{Aut}(D^{\mathrm{b}}(A))/(\mathbb{Z} \times A \times \hat{A}) = \operatorname{Aut}(A \times \hat{A}, q_{A})$
- $n \in \mathbb{Z} \text{ acts by shift } F^{\bullet} \longmapsto F^{\bullet}[n].$ $x \in A \text{ acts by translations } F^{\bullet} \longmapsto t_{x}^{*}F^{\bullet}.$ $L \in \hat{A} \text{ acts by tensor product } F^{\bullet} \longmapsto F^{\bullet} \otimes L.$

Extreme cases: Ample K_X^{\pm}

Bondal, Orlov: Suppose K_X^{\pm} is ample. Then

•
$$\mathrm{D^b}(X) \simeq \mathrm{D^b}(X') \Leftrightarrow X \simeq X'$$

• $\operatorname{Aut}(\operatorname{D^b}(X)) \simeq \mathbb{Z} \times (\operatorname{Aut}(X) \ltimes \operatorname{Pic}(X))$

Orlov: $D^{\mathrm{b}}(X) \simeq D^{\mathrm{b}}(X') \Rightarrow \operatorname{kod}(X) = \operatorname{kod}(X').$

Recall: $\operatorname{kod}(X, K_X) := \operatorname{trdeg} \bigoplus_{n \ge 0} H^0(X, K_X^n) - 1.$

Kawamata: Suppose $kod(X, K_X^{\pm}) = dim(X)$. Then $D^{b}(X) \simeq D^{b}(X') \Rightarrow X, X'$ birational (K-equivalent).

Restrict to varieties with trivial K_X !

D^b(X) Examples Ample κ_X^{\pm} $\kappa_X \equiv 0$ HK D^b(HK) Aut(D^b(X)) K3 surfaces Stability conditions $K_X \equiv 0$

Fact: The class of varieties X with $K_X \equiv 0$ is invariant under derived equivalences. More precisely, if $D^{\mathrm{b}}(X) \simeq D^{\mathrm{b}}(X')$ and $K_X^n \simeq \mathcal{O}_X$, then $K_{X'}^n \simeq \mathcal{O}_{X'}$.

Question: Can one classify varieties X with $K_X \equiv 0$?

Decomposition theorem: Suppose $0 = c_1(X) \in H^2(X, \mathbb{R})$. Then $\exists \widetilde{X} \longrightarrow X$ finite, étale (minimal) such that

$$\widetilde{X} \simeq A \times \prod X_i \times \prod Y_j$$

with A = abelian variety; X_i = hyperkähler manifold (HK); Y_i = Calabi–Yau manifold (CY).

Remark: Works as well for compact Kähler manifolds.

 $\mathrm{D^{b}}(X) \quad \text{Examples} \quad \text{Ample } K_{\boldsymbol{X}}^{\pm} \quad \boldsymbol{K}_{\boldsymbol{X}} \equiv \boldsymbol{0} \quad \text{HK} \quad \mathrm{D^{b}}(\mathrm{HK}) \quad \mathrm{Aut}(\mathrm{D^{b}}(X)) \quad \text{K3 surfaces} \quad \text{Stability conditions}$

HK and CY: Definitions

Remarks: i) For HK X the holomorphic form σ is called a *holomorphic symplectic structure*.

ii) HK = irreducible holomorphic symplectic manifold. Here 'irreducible' = $\pi_1 = \{1\}' + h^{2,0}(X) = 1'$.

iii) If X = HK, then any Kähler class $\omega \in H^{1,1}(X)$ is uniquely represented by a special Ricci-flat Kähler form (hyperkähler metric).

- i) dim = 2: K3 surfaces.
 - (By definition: K3 = compact complex surface with $K_X \simeq \mathcal{O}_X$ and $b_1(X) = 0$. 'Kähler' and ' $\pi_1(X) = \{1\}$ ' are automatic.)
- ii) Hilbert schemes: $Hilb^n(S)$ for S = K3 surface and deformations thereof.
- iii) Generalized Kummer varieties and their deformations: $K^n(A)$ for A = abelian surface. Fibre of $\sum :$ Hilbⁿ $(A) \longrightarrow A$.
- iv) Compact moduli spaces of stable sheaves on K3 surfaces. (Deformations of ii).) Similar for abelian surfaces.
- iv) O'Grady's sporadic examples in dimensions 6 and 10. (Resolutions of singular moduli spaces. 'Sporadic' due to Kaledin/Lehn/Sorger and Choy/Kiem.)

 $D^{b}(X)$ Examples Ample $K_{\mathbf{x}}^{\pm} = K_{\mathbf{x}} \equiv 0$ **HK** $D^{b}(HK)$ $Aut(D^{b}(X))$ K3 surfaces Stability conditions

How to study HKs?

Slogan:

with

- Complex tori are ruled by H^1 .
- HKs are ruled by H^2 , and
- CY *n*-folds by H^n .

 $X = HK \rightsquigarrow H^2(X, \mathbb{Z}) \simeq \mathbb{Z}^{b_2(X)}$ comes with the Hodge structure of weight two:

$$H^{2}(X,\mathbb{C}) \simeq H^{0,2}(X) \oplus H^{1,1}(X) \oplus H^{2,0}(X)$$

with $H^{2,0}(X) = H^{0}(X,\Omega_{X}^{2}) = \mathbb{C}\sigma$, $H^{0,2}(X) = \overline{H^{2,0}(X)} = \mathbb{C}\overline{\sigma}$.
Note: $\operatorname{Pic}(X) = H^{1,1}(X) \cap H^{2}(X,\mathbb{Z}) \simeq \mathbb{Z}^{\rho}$ with

 $0 \le \rho \le b_2(X) - 2$ (everything possible).

Quadratic forms

K3 surfaces:

- Intersection pairing (,) yields even unimodular quadratic form on $H^2(X, \mathbb{Z})$ abstractly isomorphic to $(-E_8)^{\bigoplus 2} \oplus U^{\bigoplus 3}$.
- Mukai pairing (,) is an even unimodular quadratic form on H*(X, Z) abstractly isomorphic to (-E₈)^{⊕ 2} ⊕ U^{⊕ 4} given by (,)|²_H ⊕ -(,)|_{H⁰⊕H⁴}. Write H(X, Z).

HKs:

۲

• Beauville-Bogomolov-Fujiki form q_X on $H^2(X, \mathbb{Z})$ is a quadratic form of signature $(3, b_2(X) - 3)$ which is a root of $\alpha \mapsto \int_X \alpha^{2n}$.

D^b(X) Examples Ample K_X^{\pm} $K_X \equiv 0$ HK D^b(HK) Aut(D^b(X)) K3 surfaces Stability conditions H² and cones

K3 surfaces: Let $C_X := \{ \alpha \in H^{1,1}(X, \mathbb{R}) \mid \alpha^2 > 0 \}^o$ and $\mathcal{K}_X \subset C_X$ Kähler cone. Then

$$\mathcal{K}_{X} = \{ \alpha \in \mathcal{C}_{X} \mid \int_{\mathcal{C}} \alpha > \mathbf{0} \ \forall \ \mathbb{P}^{1} \simeq \mathcal{C} \subset X \}.$$

HK: Let $C_X := \{ \alpha \in H^{1,1}(X, \mathbb{R}) \mid q_X(\alpha) > 0 \}$ and $\mathcal{K}_X \subset C_X$ Kähler cone. Then

•
$$\mathcal{K}_X = \{ \alpha \in \mathcal{C}_X \mid \int_C \alpha > 0 \ \forall \ \mathbb{P}^1 \twoheadrightarrow C \subset X \}.$$

• $\overline{\operatorname{Bir}\mathcal{K}_X} = \{ \alpha \in \overline{\mathcal{C}}_X \mid q_X(\alpha, [D]) > 0 \ \forall \ D \subset X \text{ uniruled} \}.$

H^2 and Global Torelli

K3 surfaces: $X \simeq X' \Leftrightarrow H^2(X, \mathbb{Z}) \simeq H^2(X', \mathbb{Z})$ respecting the Hodge structure and (,) (Hodge isometry).

Question: Which Hodge isometries are induced by isomorphisms? Will give natural explanation using $D^{b}(X)$.

HKs: One knows that for birational HKs $X \sim X'$ there exists a Hodge isometry $H^2(X, \mathbb{Z}) \simeq H^2(X', \mathbb{Z})$ (using *q*). In fact, *X* and *X'* define non-separated points in the moduli space.

Namikawa example: $H^2(\mathcal{K}^3(A), \mathbb{Z}) \simeq H^2(\mathcal{K}^3(\hat{A}), \mathbb{Z})$ Hodge isometry, but $\mathcal{K}^3(A)$ and $\mathcal{K}^3(\hat{A})$ not birational.

Question: GT for HKs?

 $\mathrm{D^b}(X) \quad \mathsf{Examples} \quad \mathsf{Ample} \ \mathsf{K}^\pm_X \ \mathsf{K}_X \equiv 0 \quad \mathsf{HK} \quad \mathrm{D^b}(\mathrm{HK}) \quad \mathrm{Aut}(\mathrm{D^b}(X)) \quad \mathsf{K3} \ \mathsf{surfaces} \quad \mathsf{Stability} \ \mathsf{conditions}$

Derived decomposition theorem?

Question: Suppose $c_1(X) = 0$ and $D^{\mathrm{b}}(X) \simeq D^{\mathrm{b}}(X')$. Let

$$A \times \prod X_i \times \prod Y_j \longrightarrow X$$
 and $A' \times \prod X'_i \times \prod Y'_j \longrightarrow X'$

be the minimal covers. Is then $\mathrm{D}^{\mathrm{b}}(\mathrm{A})\simeq\mathrm{D}^{\mathrm{b}}(\mathrm{A}'),$

$$\mathrm{D^b}(X_i) \simeq \mathrm{D^b}(X'_{\sigma(i)}), \ \ \mathrm{and} \ \ \mathrm{D^b}(Y_j) \simeq \mathrm{D^b}(Y'_{\tau(j)}) \ ?$$

Restrict to irreducible factors!

Abelian factors understood by work of Mukai, Orlov, Polishchuk.

D^b(X) Examples Ample K_X^{\pm} $K_X \equiv 0$ HK D^b(HK) Aut(D^b(X)) K3 surfaces Stability conditions X = HK

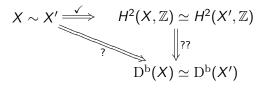
H., Nieper-Wißkirchen: If $D^{\mathrm{b}}(X) \simeq D^{\mathrm{b}}(X')$, then $X' = \mathsf{HK}$.

Conjecture (Bondal, Orlov): $X \sim X'$ birational HKs \Rightarrow $D^{b}(X) \simeq D^{b}(X')$.

Ploog: OK for Hilbert schemes.

Kawamata, Namikawa: OK for Mukai flops.

Expect:



Test: Is $D^{b}(K^{3}(A)) \simeq D^{b}(K^{3}(\hat{A}))$??

 $\operatorname{Aut}(\operatorname{D^b}(X))$ for $K_X = \mathcal{O}_X$

• $E \in D^{\mathrm{b}}(X)$ is spherical if $\mathrm{Ext}^*(E, E) \simeq H^*(S^n, \mathbb{C})$.

Seidel, Thomas: $C(E^{\vee} \boxtimes E \longrightarrow \mathcal{O}_{\Delta})$ defines the *spherical twist*

$$T_E: \mathrm{D^b}(X) \xrightarrow{\sim} \mathrm{D^b}(X), \ F \mapsto \mathrm{C}(\mathrm{Hom}^*(E, F) \otimes E \longrightarrow F).$$

• $E \in D^{\mathrm{b}}(X)$ is a \mathbb{P}^{n} -object if $\mathrm{Ext}^{*}(E, E) \simeq H^{*}(\mathbb{P}^{n}, \mathbb{C})$.

H., Thomas: $C(C(E^{\vee} \boxtimes E[-2] \longrightarrow E^{\vee} \boxtimes E) \longrightarrow \mathcal{O}_{\Delta})$ defines the \mathbb{P}^{n} -twist

$$\mathsf{P}_{\mathsf{E}}:\mathrm{D^{b}}(X) \xrightarrow{\sim} \mathrm{D^{b}}(X).$$

Examples: Line bundles on CYs and HKs are spherical respectively \mathbb{P}^n -objects. There is no spherical object E with $\operatorname{rk}(E) \neq 0$ on a HK of dimension > 2.

 $D^{b}(X)$ Examples Ample $K_{X}^{\pm} = 0$ HK $D^{b}(HK)$ Aut $(D^{b}(X))$ K3 surfaces Stability conditions X, X' = K3 surfaces

Derived Global Torelli (Mukai, Orlov): $D^{b}(X) \simeq D^{b}(X')$ $\Leftrightarrow H^{*}(X, \mathbb{Z}) \simeq H^{*}(X', \mathbb{Z})$ Hodge isometry of Mukai lattices. $\Leftrightarrow X' \simeq X$ or \simeq moduli space of slope stable vector bundles.

Study $Aut(D^b(X))$ via the action

$$\rho:\operatorname{Aut}(\operatorname{D^b}(X)) \longrightarrow \operatorname{Aut}(\widetilde{H}(X,\mathbb{Z}))$$

Theorem: $Im(\rho) = O_+(\widetilde{H}(X,\mathbb{Z})) = group of all Hodge isometries preserving the orientation of the positive directions (Mukai; Orlov; Hosono/Lian/Oguiso/Yau; Ploog; H./Macrì/Stellari).$

What about the kernel?

 $\mathrm{D^{b}}(X) \quad \text{Examples} \quad \text{Ample } K_{\boldsymbol{X}}^{\pm} \quad K_{\boldsymbol{X}} \equiv 0 \quad \text{HK} \quad \mathrm{D^{b}}(\mathrm{HK}) \quad \mathrm{Aut}(\mathrm{D^{b}}(X)) \quad \text{K3 surfaces} \quad \text{Stability conditions}$

Bridgeland's conjecture

Conjecture: Ker $(\rho) = \pi_1(\mathcal{P}_0^+(X))$. (*)

 $\mathcal{P}_0^+(X) = \text{period domain for the space } \operatorname{Stab}(X) \text{ of stability conditions on } \operatorname{D^b}(X).$

General: π : $\operatorname{Stab}(X) \longrightarrow \pi(\operatorname{Stab}(X)) \subset H^*(X, \mathbb{C})$ with equivalences $\Phi \in \operatorname{Ker}(\rho)$ acting continuously and fibrewise.

K3 surfaces (Bridgeland): There is a distinguished connected component $\Sigma \subset \operatorname{Stab}(X)$ such that:

- P⁺₀(X) := π(Σ) admits explicit description similar to description of the Kähler cone.
- If $\Sigma = \operatorname{Stab}(X)$ and simply connected, then (*).

The idea of stability: abelian

Recall: For a coherent sheaf E on a curve C one has the unique *Harder–Narasimhan filtration*:

$$0 \subset E_0 \subset E_1 \subset \ldots \subset E_{n-1} \subset E_n = E,$$

where E_0 = is the torsion of E and $F_{i+1} := E_{i+1}/E_i$ are semi-stable vector bundles with slopes $\mu(F_1) > \ldots > \mu(F_n)$.

 \rightsquigarrow Decomposes Coh(C) in smaller abelian categories

$$\mathcal{P}(\phi) \subset \operatorname{Coh}(\mathcal{C}), \quad \phi \in (0,1]$$

st. $\mathcal{P}(1)$ = subcategory of torsion sheaves and $\mathcal{P}(\phi)$ for $\phi \in (0, 1)$ is the subcategory of semi-stable vector bundles of slope $-\cot(\pi\phi)$. Classical stability: $\operatorname{Hom}(\mathcal{P}(\phi), \mathcal{P}(\phi')) = 0$ for $\phi > \phi'$.

The idea of stability: derived

Same idea for $D^{b}(X)$: Decompose into abelian subcategories

 $\mathcal{P}(\phi) \subset \mathrm{D^b}(X), \ \phi \in \mathbb{R} \ (!).$

Need in addition additive stability function

$$Z: K(X) \longrightarrow H^*(X) \longrightarrow \mathbb{C}$$

such that $Z(E) = r(E) \exp(i\pi\phi(E)), \ r(E) \in \mathbb{R}_{>0}$ for $E \in \mathcal{P}(\phi)$.

Bridgeland:

- $Stab(X) := \{(\mathcal{P}, Z)\}$ has a natural topology.
- The projection π : Stab(T) → H*(X, C)*, (P, Z) → Z, is a local homeomorphism from each connected component Σ to a linear subspace V_Σ ⊂ H*(X, C)*.