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Introduction

The present bachelor thesis concerns the notion of finite dimensionality for Chow motives and
how it enables us to lift properties from the Betti cohomology of a complex smooth projective
variety to properties of its Chow group, i.e. its group of algebraic cycles modulo rational
equivalence.

The algebraic cycles together with the intersection product form a theory that contains a
lot of information about the topology of varieties. This theory can be encapsulated into the
category of Chow motives, which has a richer structure. To a smooth projective variety X,
one can associate its Chow motive h(X) and cohomology factors through this category.

However, the intersection theory from which Chow motives are constructed only sees those
cohomological cycles that come from algebraic cycles, hence it does not seem to see the whole
cohomology of varieties. Grothendieck’s standard conjectures [Gro69; Kle68] are an attempt
to fill this gap and would imply that an essential part of the cohomological information is
already contained in Chow motives.

More recently, Kimura [Kim05] and O’Sullivan independently introduced a notion of finite
dimensionality for Chow motives. It is related to the former conjectures but has a more
algebraic nature from which important nilpotence consequences can be deduced. In a note,
Peters [Pet17] used these nilpotence consequences of finite dimensionality in order to lift a
splitting from the cohomology of complete intersections to their Chow motives. The goal of
this bachelor thesis is to understand this latter result.

The first chapter briefly introduces the notions of intersection theory that are needed for
the construction of the category of motives, which is the subject of the second chapter. We
give several examples along the way to illustrate the theory.

The third chapter introduces the notion of finite dimensionality in a Q-linear pseudo-
abelian tensor category. Due to its algebraic nature, this part has a different flavour from the
rest of the text. Then we specialize this notion to the category of Chow motives to understand
its geometric meaning.

In the last chapter, we present a proof of the Lefschetz theorem on hyperplane sections
relying on Morse theory [AF59]. This theorem induces a splitting in the cohomology of
a smooth complete intersection X into a fixed part, which is entirely determined by the
surrounding variety, and a variable part, which really depends on X. Finally, following Peters,
we apply the results of the previous chapter in order to deduce a splitting in the Chow motive of
X inducing the corresponding splitting in cohomology, assuming that the surrounding variety
has a finite dimensional Chow motive and satisfies the Lefschetz type standard conjecture.

Acknowledgements. I would like to thank my supervisor Prof. Daniel Huybrechts for
proposing the topic of this bachelor thesis, for his continued support and for introducing me
to algebraic geometry. I also thank Aaron Wild for his German translation of the introduction.
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Einleitung

Die vorliegende Bachelorarbeit beschäftigt sich mit dem Begriff der Endlichdimensionalität für
Chow-Motive und der Frage, welche Eigenschaften der Betti-Kohomologie einer komplexen,
glatten, projektiven Varietät zu deren Chow-Gruppe übertragen werden können. Die Chow-
Gruppe ist dabei die Gruppe der algebraischen Zykeln modulo rationaler Äquivalenz.

Algebraische Zykel, zusammen mit dem Schnittprodukt, bilden eine Theorie, die viele In-
formationen über die Topologie einer Varietät enthält. Diese Theorie kann in der Kategorie
der Chow-Motive kodiert werden, die eine reichhaltigere Struktur besitzt. Zu einer glat-
ten, projektiven Varietät X kann ihr Chow-Motiv h(X) assoziiert werden und Kohomologie
faktorisiert über diese Kategorie. Die Schnitttheorie, von der aus Chow-Motive konstruiert
werden, ist jedoch nur in der Lage kohomologische Zykel zu sehen die von algebraischen Zykeln
stammen, und damit nicht die ganze Kohomologie der Varietät. Die Grothendieck-Standard-
Vermutungen [Gro69; Kle68] sind ein Versuch diese Lücke zu füllen, und würden implizieren
dass ein essentieller Teil der kohomologischen Information bereits in den Chow-Motiven en-
thalten ist.

Kimura [Kim05] und O’Sullivan führten beide unabhängig voneinander einen Begriff der
Endlichdimensionalität für Chow-Motive ein. Er steht im Zusammenhang zu früheren Ver-
mutungen, ist aber algebraischer, sodass er Folgerungen über Nilpotenz ermöglicht. In einem
Preprint hat Peters [Pet17] diese Implikationen über Nilpotenz aus der Endlichdimensionalität
genutzt, um eine Hebung einer Spaltung von der Kohomologie vollständiger Schnitte zu deren
Chow-Motiven zu erhalten. Das Ziel dieser Bachelorarbeit ist es, dieses Ergebnis besser zu
verstehen.

Das erste Kapitel gibt eine kurze Einführung in Begriffe der Schnitttheorie, die in der
Konstruktion der Kategorie der Motive benötigt werden, was der Inhalt des zweiten Kapitels
ist. Wir werden mehrere Beispiele geben, um die Theorie verständlicher zu machen.

Das dritte Kapitel führt den Begriff der Endlichdimensionalität in einer Q-linearen pseudo-
abelschen Tensorkategorie ein. Dieser Teil unterscheidet sich vom Rest der Arbeit durch einen
stärkeren algebraischen Hintergrund.

Danach werden wir diese Begriffe auf die Kategorie der Chow-Motive anwenden, um deren
geometrischen Hintergrund besser zu verstehen.

In dem letzten Kapitel behandeln wir einen Beweis des Lefschetz-Theorems über Hyper-
ebenenschnitte, basierend auf Methoden der Morse-Theorie [AF59]. Dieser Satz induziert eine
Spaltung in der Kohomologie eines glatten, vollständigen Schnittes X in einen fixen Teil, der
quasi durch die umgebende Varietät bestimmt ist, und einen variablen Teil, der tatsächlich
von X abhängt. Peters folgend werden wir schlussendlich diese Ergebnisse anwenden um eine
Spaltung in dem Chow-Motiv von X abzuleiten, der die zugehörige Spaltung in der Koho-
mologie induziert, unter der Annahme, dass die umgebende Varietät ein endlichdimensionales
Chow-Motiv hat und die Lefschetz-Standardvermutung erfüllt.
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1 Algebraic cycles and equivalence relations

In this chapter, we introduce the different notions that will be needed for constructing the
category of pure motives.

1.1 Adequate equivalence relation

The presentation below follows closely [MNP13]. Let X be a variety. For i ≥ 0, we denote by

Zi(X)

the free abelian group generated by codimension i irreducible subvarieties of X. Its elements
are called algebraic cycles. Note that Z1(X) is the group of Weil divisors of X. Similarly, we
denote by Zi(X) the free abelian group generated by dimension i irreducible subvarieties of
X. If Xd has pure dimension d, we have Zi(X) = Zd−i(X).

Let us introduce a few basic operations on cycles:

1.1.1 Cartesian product. Given varieties X,X ′ and subvarieties Z ⊂ X,Z ′ ⊂ X ′ of
dimension i, i′, respectively, their product Z×Z ′ is a subvariety of dimension i+ i′ of X×X ′.
This extends linearly to a morphism

Zi(X)× Zi′(X ′)→ Zi+i′(X ×X ′).

1.1.2 Pushforward. Let f : X → Y be a proper morphism between k-varieties and let Z
be an irreducible subvariety of X. We define

deg(Z/f(Z)) =

{
[k(Z) : k(f(Z))] if dim f(Z) = dimZ

0 if dim f(Z) < dimZ.

We get a homomorphism
f∗ : Zi(X)→ Zi(Y )

given by f∗(Z) = deg(Z/f(Z))f(Z) and extended linearly.
When Y = Spec(k) and f : X → Spec(k) is the structural morphism, the induced map

deg := f∗ : Z0(X)→ Z0(Spec(k)) = Z

is called the degree map.

1.1.3 Intersection. Two subvarieties V,W of a smooth variety X of codimension i and
j intersect each other in a union of subvarieties of codimension ≤ i + j. If all of them have
codimension i + j, we say that V and W intersect properly, in which case we define the
intersection number of an irreducible component Z ⊂ V ∩W using Serre’s Tor formula

i(V ·W ;Z) :=
∑
r

(−1)r`A(TorAr (A/I(V ), A/I(W )))

where A = OX,Z and I(V ) is the ideal of V in A [Har77, App. A]. Then we define the
intersection product of V and W as

V ·W :=
∑
Z

i(V ·W ;Z)Z

where the sum runs over the irreducible components Z of V ∩W .
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1.1.4 Pullback. Let f : X → Y be a morphism in SmProj(k) and let T ⊂ Y be a subva-
riety. The graph of f is a subvariety Γf ⊂ X × Y . If it meets X × T properly, we define

f∗T := (prX)∗(Γf · (X × T )).

1.1.5 Correspondences. A correspondence fromX to Y is a cycle inX×Y . For example,
the graph of a morphism X → Y is a correspondence. Thus, correspondences generalize
morphisms, and act on cycles in a similar way: given a correspondence Z ∈ Zt(Xd × Y ) and
a cycle T ∈ Zi(X) we let

Z(T ) = (prY )∗(Z · (T × Y )) ∈ Zi+t−d(Y )

whenever the intersection product is defined. We call t− d the degree of the correspondence.
Note that correspondences of degree 0 preserve the codimension of the cycle.

1.1.6 Equivalence relations. We call an equivalence relation the data of an equivalence
relation on Z(X) :=

⊕
i Z

i(X) for each variety X. An equivalence relation ∼ is said to be
adequate if restricted to the category SmProj(k) it satisfies the following axioms:

(R1) compatibility with grading and addition;

(R2) compatibility with products: if Z ∼ 0 in Z(X), then for all Y one has Z × Y ∼ 0 in
Z(X × Y );

(R3) compatibility with intersections: if Z1 ∼ 0 and Z1 · Z2 is defined, then Z1 · Z2 ∼ 0;

(R4) compatibility with projections: if Z ∼ 0 on X × Y , then (prX)∗(Z) ∼ 0 on X;

(R5) moving lemma: given Z,W1, . . . ,Wl ∈ Z(X) there exists Z ′ ∼ Z such that Z ′ ·Wj is
defined for j = 1, . . . , l.

Note that the axioms (R2,3,4) are equivalent to the following single axiom [Sam60]:

(R’) compatibility with correspondences: if T ∼ 0 in X and Z ∈ Z(X × Y ), then Z(T ) ∼ 0
if it is defined.

Given such an equivalence relation, denote by Zi∼(X) the subgroup of codimension i cycles
that are equivalent to 0, and

Ci∼(X) = Zi(X)/Zi∼(X)

C∼(X) =
⊕
i

Ci∼(X).

Lemma 1.1.6.1. For any adequate equivalence relation ∼, we have:

(i) C∼(X) is a graded ring with product induced from intersection of cycles;
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(ii) For any proper1 morphism f : X → Y in SmProj(k) the maps f∗ and f∗ induce group
morphisms f∗ : C∼(X) → C∼(Y ) and a graded ring morphism f∗ : C∼(Y ) → C∼(X);
Moreover, the projection formula holds:

f∗(f
∗(α) · β) = α · f∗(β)

for all cycles α ∈ C∼(Y ), β ∈ C∼(X);

(iii) A correspondence Z from X × Y of degree r induces a group morphism Z∗ : Ci∼(X)→
Ci+r∼ (Y ) and equivalent correspondences induce the same morphism.

Remark 1.1.6.2. For any irreducible variety X, the group C0
∼(X) is freely generated by the

class of X itself, which is the unit in the ring C∼(X). 4
Remark 1.1.6.3. It can be more convenient to consider rational coefficients. For example, we
let

Zi(X)Q := Zi(X)⊗Z Q,

and similarly for Zi∼(X)Q, Ci∼(X)Q, C∼(X)Q. The above results clearly extend to these
groups when they are taken with rational coefficients. 4
Remark 1.1.6.4. Usually, adequate equivalence relations are written ∼sub for some subscript
sub, in which case we write

Zisub(X) := Zi∼sub
(X)

and similarly for Cisub(X), Csub(X) to ease notation. 4

1.2 Rational equivalence and Chow rings

1.2.1 Rational equivalence.

Lemma 1.2.1.1 ([And04, Lem. 3.2.2.1]). Any two points of P1 are equivalent with respect to
any adequate equivalence relation.

Proof. Let ∼ be an adequate equivalence relation. We first prove that 0 ∼ ∞. We write
P1 = k ∪ {∞} and [x] the class of the point x in Z0(P1). By (R5) there exists a 0-cycle∑

i ni[xi] ∼ [1] that intersects properly [1], i.e. , xi 6= 1. The graph Γ ⊂ P1 × P1 of the

polynomial 1−
∏
i

(
x−xi
1−xi

)mi
, for arbitrary mi > 0, sends

∑
i ni[xi] ∼ [1] to mn[1] ∼ m[0] by

(R’), where m =
∑

imi and n =
∑

i ni. Since the mi were arbitrary, we get n[1] ∼ [0]. Then
using (R’) again, the graph of x 7→ 1

x sends the latter equivalence to n[1] ∼ [∞]. Therefore
[0] ∼ [∞]. Since Aut(P1) acts 2-transitively on P1, the result follows by applying (R’) to send
any two distinct points to [0] and [∞].

From this lemma, it follows that C1
∼(P1) is freely generated by the class of any rational

point. The intersection product of two codimension 1 cycles is zero for degree reasons. To-
gether with Remark 1.1.6.2, this gives us the whole ring of cycles on the projective line with
respect to any equivalence relation:

C∼(P1) ∼= Z[α]/(α2) where α is the class of a point.

1The morphism is automatically proper because it is a morphism between projective varieties.
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Let ∼ be any adequate equivalence relation and X ∈ SmProj(k). For any cycle H ⊂ X×P1

and any two points a, b of P1 such that H intersects X×a and X×b properly, the equivalence
[a] ∼ [b] from the lemma above yields, by (R’),

H(a) ∼ H(b).

In fact, this describes an adequate equivalence relation, called rational equivalence and denoted
∼rat, which is the finest one. Note the choice of the letter H suggesting an homotopy. This
is the homotopy description of rational equivalence.

Rational equivalence has another description generalizing linear equivalence of divisors
[Ful84, p. 15]. To prove that it is indeed an adequate equivalence relation, (R1, 2, 3) are easy,
(R4) is more technical (see [Ful84, p. 12] or [Tra07, p. 29] for more details) and (R5) takes
more work (see [Stacks, Tag 0B0D] for a proof).

1.2.2 Chow rings. In the case of rational equivalence, the groups Cirat(X) deserve a
special name:

Definition 1.2.2.1. Let X ∈ SmProj(k) be a smooth projective variety. The group

CHi(X) := Cirat(X)

is called the i-th Chow group of X for each 0 ≤ i ≤ dim(X) and the ring

CH(X) := Crat(X)

is called the Chow ring of X. We also write CHi(Xd) := CHd−i(Xd).

Example 1.2.2.2. The Chow groups of affine spaces An are easy to compute:

CH0(An) ∼= Z and CHi(An) = 0 for i ≥ 1.

Indeed, any proper subvariety can be “moved to infinity”:
Consider a proper subvariety Y = V (f1, . . . , fr) = V (fi) ⊂ An. Up to translation, we can

assume that Y does not contain the origin (0, . . . , 0) ∈ An. Then the following “homotopy”

H = V

(
λ

deg(fi)
1 fi

(
λ0

λ1
x1, . . . ,

λ0

λ1
xn

))
⊂ Anx × P1

λ

“moves Y to infinity”. Indeed,

H([1 : 1]) = V (fi(x1, . . . , xn)) = Y

and
H([0 : 1]) = V (fi(0, . . . , 0)) = ∅

since Y does not contain the origin. Therefore, Y ∼rat 0 as desired. 4
Chow groups satisfy an exactness condition:

Proposition 1.2.2.3. If j : Y ↪−→ X is a closed embedding of arbitrary k-varieties and if we
write f : X − Y ↪−→ X the inclusion of its complement, then there is an exact sequence

CHi(Y )
j∗−→ CHi(X)

f∗−→ CHi(X − Y )→ 0.
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In particular, if a variety X has an affine stratification (see [EH16, Sec. 1.3.5]), then its
Chow groups can be computed. For example, this is the case for the projective space Pn or
for products of these:

CH(Pn × Pm) ∼= CH(Pn))⊗ CH(Pm) ∼= Z[α, β]/(αn+1, βm+1) (1)

where α (resp. β) is the class of the pulback of an hyperplane from the first (resp. second)
factor of Pn × Pm [EH16, Thm. 2.10].

1.2.3 The class of the diagonal in CH(Pn×Pn). To illustrate the above, let us compute
the class of the diagonal ∆Pn in CHn(Pn × Pn). In the case n = 1, the diagonal ∆ = ∆P1 is
rationally equivalent to P1×e+e×P1 in P1×P1 where e ∈ P1(k) is any closed point. Indeed,
there is a linear homotopy

H = V (λ0x0y0 + λ1(x0y1 − x1y0)) ⊂ (P1
x × P1

y)× P1
λ

from H([0 : 1]) = ∆ to H([1 : 0]) = P1 × 0 ∪ 0× P1. By the homotopy description of rational
equivalence, we are done.

In the general case, translating the above argument is not obvious. However, under the
isomorphism (1) above, we can write

[∆] = c0α
nβ0 + c1α

n−1β1 + · · ·+ cnα
0βn

for some integers ci. To determine the ci, take the product of each side with αiβn−i to get

ci = deg([∆] · αiβn−i) = #(∆ ∩ (Λ× Γ)) = #(Λ ∩ Γ) = 1

where Λ and Γ are linear subspaces of codimensions i and n− i that intersect properly, i.e. in
one point. Therefore, ∆ is rationally equivalent to

∑
i Pn−i × Pi.

1.3 Algebraic, homological and numerical equivalence

There are other interesting adequate equivalence relations.

1.3.1 Algebraic equivalence. The homotopy description of rational equivalence states
that two cycles are rationally equivalent if we can go from one to the other through a rational
family of cycles, i.e. a family of cycles parametrized by P1. This definition can be weakened
by allowing families of cycles parametrized by any connected curve C.

Let x ∈ SmProj(k). For any smooth connected curve C ∈ SmProj(k) and any cycle
H ⊂ X × C, we let

H(a) ∼alg H(b)

for any points a, b ∈ C. This defines an adequate equivalence relation, called algebraic equiv-
alence and denoted ∼alg.

By definition, Zrat(X) ⊂ Zalg(X). Note that Bertini’s theorem implies that any two points
on a connected smooth variety Xd ∈ SmProj(k) can be joined by a smooth curve. This shows
that Cdalg(X) ∼= Z, as one would expect from the similarity between algebraic and topological

cycles. This is not at all the case for CHd(X). For example, if X is an elliptic curve, then no
two distinct points of X are rationally equivalent, but they are clearly algebraically equivalent:
take H = ∆X ⊂ X ×X the diagonal.
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1.3.2 Homological equivalence. In this paragraph, k = C. Given a complex variety
X ∈ SmProj(C), consider

H i(X,Q) := H i
sing(Xan,Q),

the singular cohomology with rational coefficients of the analytification Xan of X, called the
rational Betti cohomology of X, or just (rational) cohomology of X when there is no ambiguity.
These groups together with the cup-product constitute the cohomology ring of X

H(X,Q) :=
⊕
i

H i(X,Q),

whose elements are called cohomological or topological cycles on X.
A morphism f : Ye → Xd in SmProj(C) naturally induces a pullback map f∗ : H i(X,Q)→

H i(Y,Q), but there are several ways to define a map “in the other direction”, a pushforward
map f∗. One way to proceed is the following: Y,X are connected smooth complex projective
varieties of respective dimension e, d, so their analytification Yan, Xan are smooth oriented
connected compact manifolds of respective real dimension 2e, 2d. Poincaré duality yields
isomorphisms H i(Xan,Q) ∼= H2d−i(Xan,Q) for all i, similarly for Y . Then the pushforward
f∗ in cohomology is defined as the top map in the following diagram:

H i(Y,Q) H2(d−e)+i(X,Q)

H2e−i(Yan,Q) H2e−i(Xan,Q)

f∗

∼= ∼=
f∗

In particular, if f : Yd−i ↪−→ Xd is the inclusion of a subvariety Y of codimension i into X,
then f∗ maps the fundamental class [Y ] ∈ H0(Y,Q) to a cycle f∗[Y ] ∈ H2i(X,Q). Extended
linearly, this yields a map

γX = γiX : Zi(X)→ H2i(X,Q), (2)

called the cycle class map. It sends algebraic cycles to topological cycles.
An algebraic cycle Y ∈ Z(X) is said to be homologically equivalent to 0 if its cycle class

is homologically trivial, i.e. if γX(Y ) = 0 in H(X,Q), we write Y ∼hom 0. This defines
an adequate equivalence relation called homological equivalence. By definition, Zihom(X) =
ker(γiX) and Cihom(X) is isomorphic to a subgroup of H2i(X,Q), hence it is much smaller
than Cirat(X).

Since ∼rat is finer than ∼hom, γX factors through the Chow groups and

γX : CH(X)→ H(X,Q)

is a ring homomorphism which doubles the grading, i.e. γX(α · β) = γX(α) ∪ γX(β) for all
algebraic cycles α, β on X.

Remark 1.3.2.1. Understanding the image of γiX : Zi(X)Q → H2i(X,Q), i.e. which topological
cycles are linear combinations of classes of algebraic cycles, is a very hard question. The
Hodge conjecture is an attempt to answer it. See [EH16, App. C] for a nice introduction. The
Grothendieck’s standard conjectures are also related to it, see Section 2.4. 4
Remark 1.3.2.2. Homological equivalence can be defined for any classical Weil cohomology
theory in place of rational Betti cohomology, see [Stacks, Tag 0FGS]. Conjecturally, ∼hom

coincides with ∼num introduced below. Thus, it is expected that ∼hom does not depend on
the chosen cohomology theory, which is not clear a priori. 4
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1.3.3 Numerical equivalence. Let Xd ∈ SmProj(k). For 0 ≤ i ≤ d, the degree of the
intersection product

CHi(X)× CHd−i(X)
·−→ CHd(X)

deg−−→ Z

yields a pairing. Cycles α ∈ Zi(X) whose rational class [α] ∈ CHi(X) is such that

deg([α] · [β]) = 0

for all β ∈ Zd−i(X) are said to be numerically equivalent to 0, denoted α ∼num 0. This defines
an adequate equivalence relation, called numerical equivalence.

Remark 1.3.3.1. Given two adequate equivalence relations ∼ and ∼′, we say that ∼ is finer
than ∼′, written ∼≤∼′, if α ∼ 0 implies α ∼′ 0. The equivalence relations introduced above
are linearly ordered as follows [MNP13]:

∼rat < ∼alg < ∼hom ≤ ∼num .

This induces a chain of surjections

CH(X) Calg(X) Chom(X) Cnum(X)

H(X,Q)

?

where the conjecture “∼hom=∼num” is equivalent to the existence of the dashed arrow. 4
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2 Pure motives

The intersection theory of algebraic cycles introduced in the previous chapter can be encap-
sulated into the category of correspondences, which has smooth projective varieties as objects
and where correspondences replace usual morphisms, modulo a fixed equivalence relation.
Even though this category contains all the information we need, it does not have enough
structure. We formally turn it into a pseudo-abelian rigid tensor category called the category
of pure motives, with respect to the chosen equivalence relation.

The adjective “pure” refers to the fact that it only deals with smooth projective varieties.
It is hoped that there exists a category of mixed motives dealing with all quasi-projective
varieties. Although such a category has not been discovered yet, several constructions for
what would be its derived category already exist. See [And04] for a nice introduction to mixed
motives following Voevodsky’s construction. This chapter only deals with pure motives, which
will simply be called motives.

First, we describe the construction of the category of pure motives and we give several
examples. Then we briefly talk about the Grothendieck’s standard conjectures on algebraic
cycles, which were the main motivation for the development of this framework.

2.1 Construction of the category of pure motives

The construction of the category of pure motives, with respect to a given adequate equivalence
relation ∼, starts with the category SmProj(k) of smooth projective varieties over k and
proceeds in three steps:

SmProj(k)op −→ C∼ SmProj(k)Q −→ Moteff
∼ (k) −→ Mot∼(k).

This construction is an idea of Alexander Grothendieck, although he never published
anything about it. It first appeared in the litterature in [Man68].

Let us describe the steps of the construction, while giving examples along the way:

2.1.1 Category of correspondences. First, we enlarge morphisms by constructing the
category of correspondences C∼ SmProj(k). Its objects are those of SmProj(k) and morphisms
are the degree zero correspondences:

HomC∼ SmProj(k)(X,Y ) := Corr0
∼(X,Y ) :=

⊕
i

Cdi∼ (Xdi × Y )Q.

where X =
⋃
iXdi is the decomposition of X into connected components of respective dimen-

sion di. A correspondence f ∈ Corr0
∼(X,Y ) is denoted f : X 7− Y .

More generally, we let Corr∼(X,Y ) := C∼(X × Y )Q and

Corrr∼(X,Y ) :=
⊕
i

Cdi+r∼ (Xdi × Y )Q.

Composition of correspondences f ∈ Corr∼(X,Y ) and g ∈ Corr∼(Y, Z) is defined as follows:

g ◦ f := prXY ZXZ ∗

(
prXY ZXY

∗
(f) · prXY ZY Z

∗
(g)
)
.
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If f, g have degree r, s, respectively, then g ◦ f has degree r + s. This yields a well defined
composition in C∼ SmProj(k):

Corr0
∼(X,Y )× Corr0

∼(Y, Z) −→ Corr0
∼(X,Z),

and the identity idX ∈ Corr0
∼(X,X) is the class of the diagonal ∆X ⊂ X ×X.

X

Y

Z

f

g ◦ f

Figure 1: Composition of correspondences

Figure 1 illustrates the composition of correspondences f ∈ Corr∼(X,Y ) = C∼(X × Y )
and g ∈ Corr∼(Y, Z) = C∼(Y ×Z). Consider the “cube” X×Y ×Z. On the face X×Y lies f
and on the face Y ×Z lies g. We consider the intersection of their pullback pXY ZXY

∗
(f) = f×Z

and pXY ZY Z
∗
(g) = X × g (in gray on the figure). Then projecting this intersection of the face

X × Z yields the composition g ◦ f .
There is a contravariant functor

SmProj(k)→ C∼ SmProj(k)

X 7→ X

(Y
f−→ Xd) 7→ (Γf )ᵀ ∈ Corr0

∼(X,Y )

where Γf ∈ Cd∼(Y × Xd) is the graph of f and (Γf )ᵀ ∈ Cd∼(Xd × Y ) its transpose, i.e. its
image under the “swapping” automorphism Y ×X → X × Y . Note that the graph Γf also
induces a correspondence Γf ∈ Corrd−e∼ (Ye, Xd). In fact, Γf = f∗ and (Γf )ᵀ = f∗ as maps on
cycles as defined in Section 1.

Remark 2.1.1.1. The category C∼ SmProj(k) is a Q-linear category, i.e. its Hom-sets are Q-
modules and composition is bilinear. Direct sums are given by disjoint unions of varieties.
Product of varieties endows C∼ SmProj(k) with the structure of a symmetric monoidal cate-
gory, with the point Spec(k) as unit. 4
Remark 2.1.1.2. If f : Yd → Xd is a generically finite morphism of degree n, then f is surjective
and we have f∗ ◦ f∗ = n id. Indeed, for any cycle α ∈ C∼(X), we have

f∗(f
∗(α)) = f∗([Y ] · f∗(α)) = f∗([Y ]) · α

12



since [Y ] is the unit in C∼(Y ) and using the projection formula (Lemma 1.1.6.1). By definition
of the pushforward and generic finiteness, we have f∗([Y ]) = n[X], which concludes. 4

To conclude this section on correspondences, let us mention a Lemma that will be useful
at several points:

Lemma 2.1.1.3 (Lieberman’s Lemma [Ful84, Prop. 16.1.1][MNP13, Lem. 2.1.3]). Given
correspondences f ∈ Corr∼(X,Y ), α ∈ Corr∼(X,X ′), β ∈ Corr∼(Y, Y ′), we have

(α× β)∗(f) = β ◦ f ◦ αᵀ.

2.1.2 Category of effective motives. The second step is purely formal: the cate-
gory of effective motives Moteff

∼ (k) is obtained by taking the pseudo-abelian envelope2 of
C∼ SmProj(k), i.e. the smallest category containing it in which projectors split:

Definition 2.1.2.1. In an additive category C, a projector p on X is an endomorphism
p : X → X such that p ◦ p = p. A projector p on X is said to split if there exists an object

X ′ and a factorization of p as X
g−→ X ′

i−→ X such that i ◦ g = p and g ◦ i = idX′ .

Objects of Moteff
∼ (k) are pairs (X, p) where X ∈ SmProj(k) and p ∈ Corr0

∼(X,X) is a
projector. They are called effective motives. For two effective motives (X, p) and (Y, q), we
let

HomMoteff
∼ (k)((X, p), (Y, q)) := q ◦ Corr0

∼(X,Y ) ◦ p, (3)

and composition is given by composition of correspondences. The identity of (X, p) is p. We
often write (X, id) to mean (X,∆X). Again, direct sum is given by disjoint union:

(X, p)⊕ (Y, q) := (X t Y, p t q).

Remark 2.1.2.2. The effective motive (X, p) should be thought of as a piece of X corresponding
to the image of p. For a morphism f : (X, p)→ (Y, q), we have f = q◦f = f◦p. This illustrates
the fact that f should be defined on the image of p and should arrive into the image of q. 4

There is a fully faithful functor

C∼ SmProj(k)→ Moteff
∼ (k)

X 7→ (X,∆X)

f 7→ f

which preserves the monoidal structure, where ⊗ is given on Moteff
∼ (k) by

(X, p)⊗ (Y, q) := (X × Y, p× q).

Remark 2.1.2.3. The above functor is universal among functors from C∼ SmProj(k) to pseudo-
abelian categories. This is what is meant by the pseudo-abelian envelope. 4

Definition 2.1.2.4. The motive of a point is denoted 1 := (Spec(k), id) and called the unit
motive. The motive of a variety X ∈ SmProj(k) is denoted h(X) := (X,∆X) = (X, id).

2This is also called the Karoubi envelope after Max Karoubi, a student of Grothendieck.
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Remark 2.1.2.5. Given two orthogonal projectors p, q ∈ Corr0
∼(X,X) on X ∈ SmProj(k), i.e.

p ◦ q = q ◦ p = 0, we get an isomorphism of effective motives

(X, p+ q) ∼= (X, p)⊕ (X, q).

Indeed, we have (X, p)⊕ (X, q) = (X tX, p t q) by definition. Candidates for isomorphisms
between (X tX, p t q) and (X, p+ q) are not abundant. The only natural morphisms are:

(idX ×ι1)∗(p) + (idX ×ι2)∗(q) ∈Corr0
∼(X,X tX)

(idXtX ×∇)∗(p t q) ∈Corr0
∼(X tX,X)

where ι1, ι2 : X ↪−→ X tX are the inclusions and ∇ : X tX → X is the “fold” map. We need
to show that these are indeed morphisms of effective motives, and that their compositions
yield the identities. A direct computation is not hard, but figures are more informative. The
different correspondences in play are depicted on Figure 2 and their compositions on Figure
3. The meaning of these figures is explained on Figure 1. For example, In 3a, one “cube”
computes p ◦ p = p and the other computes q ◦ q = q. Projecting on the back face yield p+ q.
In 3b, orthogonality of p and q is crucial in order to obtain the identity on (X tX, p t q).

p+ q

q

p

0

0 p

q

qp

p ⊔ q X �− X ⊔X

X ⊔X �− X

Figure 2: The different correspondences

In particular, if q is a projector on (X, p), then p = q + (p − q) is a decomposition of
p = id(X,p) into orthogonal projectors: q ◦ (p− q) = q ◦ p− q ◦ q = 0 and (p− q) ◦ q = 0. We
obtain the splitting

(X, p) ∼= (X, q)⊕ (X, p− q)
where (X, q) is the image of q and (X, p − q) is its kernel. Therefore, Moteff

∼ (k) is indeed a
pseudo-abelian category, as expected. 4
Example 2.1.2.6. Let Xd ∈ SmProj(k) and e ∈ X(k) a rational point. The cycles

p0(X) := e×X, p2d(X) := X × e

define orthogonal projectors. By Remark 2.1.2.5, we obtain the decomposition

h(X) ∼= h0(X)⊕ h+(X)⊕ h2d(X)

where h?(X) := (X, p?(X)) for ? = 0, 2d,+, with p+(X) = idX −p0(X) − p2d(X). In fact,
h0(X) is isomorphic to the unit motive 1 and the “top dimensional part” h2d(X) only depends
on the dimension d of X.

It follows that the nontrivial information about h(X) is concentrated in the middle part
h+(X). If X is a curve, this middle part h+(X) is related to its Jacobian, see Section 2.3. 4
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X

X ⊔X

X

p

q

p + q

(a) Composition X 7− X tX 7− X

X ⊔X

X

p

X ⊔X

q

p ◦ p = p

q ◦ q = qq ◦ p = 0

p ◦ q = 0

(b) Composition X tX 7− X 7− X tX

Figure 3: Their compositions

Definition 2.1.2.7. The Lefschetz motive is L := h2(P1) = (P1,P1 × e).

Remark 2.1.2.8. As is mentioned in Example 2.1.2.6, the top dimensional part of the motive
of a variety is the same for all d-dimensional varieties. In particular, they all coincide with
h2d((P1)d) = ((P1)d, (P1)d×ed) = L⊗d. As usual in this kind of result, finding an isomorphism
h2d(X) ∼= h2d(Y ) for two d-dimensional varieties X,Y ∈ SmProj(k) reduces to writing down
the only natural morphisms there are. In fact, the proof is contained inside Example 2.1.2.9
below. 4

Example 2.1.2.9. By the computation of the diagonal ∆P1 in Section 1.2.3, we have p+(P1) = 0
and thus

h(P1) ∼= 1⊕L,

which is a sort of cellular decomposition: “[P1] = [point]+[line]”. Thus, L can also be thought
of as standing for line.

In the case of Pn,

∆Pn =
∑
i

Pn−i × Pi

is a decomposition of the diagonal into orthogonal projectors, yielding

(Pn, id) ∼=
⊕
i

(Pn,Pi × Pn−i).

In fact, (Pn,Pi × Pn−i) ∼= (Y, Y × e) where we write Y := Pi in order not to confuse it with
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Pi ⊂ Pn. This isomorphism is given by the following correspondences

Pi × e = (Y × e) ◦ (Pi × e) ◦ (Pi × Pn−i) ∈HomMot∼(k)((Pn,Pi × Pn−i), (Y, Y × e))
= (Y × e) ◦ Corr0

∼(Pn, Y ) ◦ (Pi × Pn−i)
= (Y × e) ◦ Cn∼(Pn × Y ) ◦ (Pi × Pn−i)

Y × Pn−i = (Pi × Pn−i) ◦ (Y × Pn−i) ◦ (Y × e) ∈HomMot∼(k)((Y, Y × e), (Pn,Pi × Pn−i))
= (Pi × Pn−i) ◦ Corr0

∼(Y,Pn) ◦ (Y × e)
= (Pi × Pn−i) ◦ Ci∼(Y × Pn) ◦ (Y × e).

Indeed, we have

(Pi × e) ◦ (Y × Pn−i) = (p13)∗((Y × Pn−i × Y ) · (Y × Pi × e))
= (p13)∗(Y × (Pn−i · Pi)× e) = Y × e = id(Y,Y×e)

since Pn−i · Pi is the class of a point. The other composition is

(Y × Pn−i) ◦ (Pi × e) = (p13)∗((Pi × e× Pn) · (Pn × Y × Pn−i))
= (p13)∗(Pi × e× Pn−i)) = Pi × Pn−i = id(Pn,Pi×Pn−i) .

This concludes the proof that (Pn,Pi × Pn−i) ∼= (Y, Y × e) ∼= L⊗i. Note that the only fact
about Y that we used is that it is a i-dimensional variety, hence this also proves what was
claimed in Remark 2.1.2.8.

Therefore, the motive of the projective space of dimension n splits as follows

h(Pn) ∼= 1⊕L⊕L⊗2⊕ · · · ⊕ L⊗n .

Any cellular variety (e.g. Grassmanians) has a decomposition of that sort, with one Ld

for each cell of dimension d. 4
Example 2.1.2.10. Let f : Yd → Xd be a surjective generically finite morphism of degree n as
in Remark 2.1.1.2. We know that f∗ ◦ f∗ = n idh(X). Hence, p := 1

nf
∗ ◦ f∗ is a projector on

Y . In fact, (Y, p) ∼= h(X) and thus h(Y ) ∼= h(X)⊕ (Y, id−p). 4

2.1.3 Category of motives. This last step is again purely formal. It consists in adding
an inverse to the Lefschetz motive L. Objects of the category Mot∼(k) of pure motives are
triples (X, p,m) where X ∈ SmProj(k), p is a projector on X and m ∈ Z. Morphisms are
defined as follows:

HomMot∼(k)((X, p,m), (Y, q, n)) := q ◦ Corrn−m∼ (X,Y ) ◦ p (4)

and composition is given by composition of correspondences. The category of effective motives
Moteff

∼ (k) naturally embeds into the category of pure motives Mot∼(k) and all the computa-
tions from the previous section hold.

There is a contravariant functor

h : SmProj(k)op → Mot∼(k)

X 7→ h(X) := (X, id, 0)

f 7→ f∗ = (Γf )ᵀ,
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sending a variety X to its motive h(X).

The tensor product

(X, p,m)⊗ (Y, q, n) := (X × Y, p× q,m+ n)

turns Mot∼(k) into a symmetric monoidal category, which is now rigid, i.e. every object has
a dual:

(Xd, p,m)∨ := (X, pᵀ, d−m)

such that (−⊗M∨,−⊗M) and (M∨⊗−,M⊗−) are adjoint pairs. Dual morphisms are defined
by taking the transpose of (4). Moreover, the functor h preserves the monoidal structure.

Remark 2.1.3.1. The functor h : SmProj(k)op → Mot∼(k) is not conservative, i.e. there are
non-isomorphic varieties that have isomorphic motives. For example, two projective bundles
of the same dimension over the same variety have isomorphic motives, see [Man68, §7]. 4

Remark 2.1.3.2. There is a canonical isomorphism L = (Spec(k), id,−1). By definition,
L = (P1,P1× e, 0) where e ∈ P1 is any rational point. As before, candidates for isomorphisms
are not abundant. Writing ∗ := Spec(k), the only natural morphisms are:

f = (P1 × e) ◦ (∗ × e) ∈HomMot∼(k)((∗, id,−1), (P1,P1 × e, 0))

= (P1 × e) ◦ Corr1
∼(∗, X)

= (P1 × e) ◦ C1
∼(∗ × P1)

g = (P1 × ∗) ◦ (P1 × e) ∈HomMot∼(k)((P1,P1 × e, 0), (∗, id,−1))

= Corr−1
∼ (P1, ∗) ◦ (P1 × e)

= C0
∼(P1 × ∗) ◦ (P1 × e)

We have f = ∗ × e and g = P1 × ∗, which is canonical. Let us compute their compositions:

g ◦ f = p13∗((∗ × e× ∗) · (∗ × P1 × ∗)) = p13∗(∗ × e× ∗) = ∗ × ∗ = ∆∗ = id(∗,id,−1)

f ◦ g = p13∗((P1 × ∗ × P1) · (P1 × ∗ × e)) = P1 × e = id(P1,P1×e,0) .

Therefore, these morphisms yield a canonical isomorphism L ∼= (Spec(k), id,−1). 4

It follows from the above remark that L⊗r = (Spec(k), id,−r). For brevity, we sometimes
write Lr for L⊗r. We denote the dual of L by

L−1 := (Spec(k), id, 1),

and L−r = (L−1)⊗r for all r > 0. In particular, we have (X, p,m) = (X, p, 0)⊗ L−m for any
motive (X, p,m).

Remark 2.1.3.3. Sometimes, we use the notation

p h(X)(m) := (X, p,m)

to emphasize that (X, p,m) is the m-th twist of the “image” p h(X) of p. Then, L = 1(−1)
and Lr = 1(−r). 4
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Remark 2.1.3.4. Morphisms from L⊗r to the motive h(X) of a variety X ∈ SmProj(k) corre-
spond to cycles in Cr∼(X). Indeed, Lr = (Spec(k), id,−r) and by definition

HomMot∼(k)(L
⊗r, h(X)) = Corrr∼(Spec(k), X) = Cr∼(X).

4
Remark 2.1.3.5. The construction of the category of motives can be done without tensoring
with Q. In this case, we end up with a category with integral coefficients, denoted Mot∼(k)Z
and called the category of integral motives modulo ∼. Most of the above results hold for
integral motives in the same way, but not all of them. For instance, rational coefficients are
needed for Example 2.1.2.10 and they will be essential for defining symmetric and alternating
powers of motives in Section 3. 4

2.1.4 Chow motives. If ∼=∼rat is rational equivalence, then we call Motrat(k) the cate-
gory of Chow motives. It is sometimes denoted CHM(k). The object h(X) is called the Chow
motive of X ∈ SmProj(k).

Lemma 1.1.6.1 tells us that Chow groups are functorial over the category of Chow corre-
spondences CH SmProj(k) := Crat SmProj(k), i.e. the functor CHi : SmProj(k)→ Ab factors
through CH SmProj(k).

Hence, a projector p : X 7− X, p ◦ p = p induces a projector p∗ : CHi(X)Q → CHi(X)Q.
For the motive M = (X, p,m), we define the i-th Chow group of M as

CHi(M) := Im(p∗ : CHi+m(X)Q → CHi+m(X)Q). (5)

In particular, CH(h(X)) = CH(X)Q and CH(p h(X)) = p∗(CH(X)Q), i.e. the Chow group of
the image of a projector is its image in the Chow group.

Remark 2.1.4.1. For a motive M = (X, p,m), we have

CHi(M) ∼= HomMotrat(k)(L
i,M). (6)

Indeed,

HomMotrat(k)(L
i,M) = p ◦ Corri+mrat (Spec(k), X)

= p ◦ CHi+m(Spec(k)×X)

= {p ◦ α : α ∈ CHi+m(X)}

and a quick computation shows that p ◦α = p∗(α) under the identification Spec(k)×X ∼= X.
In particular, the functors CHi become representable in the category Motrat(k). 4
The above remark enables us to introduce the following notation [Sch94]: Given a cycle α ∈

CHi(X), we denote α∗ ∈ HomMotrat(k)(L
i, h(X)) the corresponding morphism, represented by

Spec(k) × α. Tensoring its dual α∨∗ ∈ HomMotrat(k)(X ⊗ L−d,L−i) with Ld yields α∗ :=

α∨∗ ⊗ Ld ∈ HomMotrat(k)(X,L
d−i), which is simply represented by α× Spec(k).

Example 2.1.4.2. Taking the Chow group of the decomposition h(P1) ∼= 1⊕L yields

CH(P1) = CH(1)⊕ CH(L).

In fact, under this decomposition we have CH(1) = CH0(P1) and CH(L) = CH1(P1). Thus,
each summand is responsible for a specific part of the Chow group of P1. We will see below
that this happens for cohomology as well. 4
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Remark 2.1.4.3. For any equivalence relation ∼, we can define the cycles groups Ci∼(M) of a
motive M in the same way and formula (6) holds. 4

2.2 Cohomology of motives

In this section k = C and H denotes Betti cohomology. Note that everything can be stated in
terms of a classical Weil cohomology. If ∼ is an equivalence relation that is finer than ∼hom,
then the cohomology functor

H : SmProj(k)→ GrVectQ

to the category of graded Q-vector spaces factors through C∼ SmProj(k).

Hence, a projector p : X 7− X, p ◦ p = p induces a projector p∗ : H(X) → H(X). For the
motive M = (X, p,m), we define the cohomology groups of M as

H i(M) := Im(p∗ : H i+2m(X)→ H i+2m(X)).

Remark 2.2.0.1. Let Xd ∈ SmProj(k) be a variety of dimension d. Taking cohomology of the
decomposition of example 2.1.2.6: h(X) = h0(X)⊕ h+(X)⊕ h2d(X) yields

H(X) = H(h(X)) = H(h0(X))⊕H(h+(X))⊕H(h2d(X)).

In fact, H(h0(X)) = H0(X) and H(h2d(X)) = H2d(X). Hence all the nontrivial cohomologi-
cal information about X is contained in the motive h+(X). If ∼ is strictly finer than ∼hom,
then h+(X) contains more information than just the cohomological one, as we shall see for
curves in Section 2.3. 4

2.3 The Chow motive of a curve

In this section, ∼=∼rat and we consider integral Chow motives, see Remark 2.1.3.5.

Let X ∈ SmProj(k) be a curve, i.e. a one-dimensional irreducible variety, and pick a
rational point e ∈ X. From Example 2.1.2.6, the motive of X splits as

h(X) = h0(X)⊕ h1(X)⊕ h2(X)

where h0(X) = (X, p0 = e × X) ∼= 1, h2(X) = (X, p2 = X × e) ∼= L and the remaining
part h1(X) is the projection of h(X) along the projector p1 := ∆X − e ×X −X × e. These
projectors are illustrated on Figure 4, where white lines depict cycles taken with a negative
sign.

2.3.1 Chow groups of a curve. We have3 p0∗[X] = [X], p2∗[X] = 0 and p1∗[X] = 0.
For a rational point z ∈ X, we have p0∗[z] = 0 and p2∗[z] = [e], hence p1∗[z] = [z] − [e]. In
particular,

CH0(h0(X)) = Z.[X]

CH1(h2(X)) = Z.[e]

3This follows from quick computations, but looking at the figure should be convincing.
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Xe

e

X

p0 = e×X p1 = ∆− p0 − p2 p2 = X × e

Figure 4: The projectors p0, p1, p2 on the motive of a curve

are the only nontrivial Chow groups of h0(X) and h2(X), and the remaining part

CH(h1(X)) = CH1(h1(X)) = Im(p1∗ : CH1(X)→ CH1(X))

consists of the degree zero 1-cycles, that is, CH1(h1(X)) = Pic0(X) is the subgroup of the
Picard group consisting of the degree zero divisors.

Remark 2.3.1.1. Suppose k = C. From Remark 2.2.0.1, we know that H(h1(X)) = H1(X).
It is free of rank 2g where g is the genus of the curve X. 4

2.3.2 Morphisms between motives of curves. Let X,X ′ ∈ SmProj(k) be two curves.
By definition of morphisms in CHMZ, we have a surjective homomorphism

ψ : CH1(X ×X ′) −→ HomCHMZ(h1(X), h1(X ′))

T 7−→ p1(X ′) ◦ T ◦ p1(X).

We say that a 1-cycle T on X × X ′ is degenerate if it equals D × X ′ + X × D′ for some
1-cycles D ∈ CH1(X) and D′ ∈ CH1(X ′). Degenerate 1-cycles on X × X ′ form a subgroup
CH1
≡(X ×X ′) ⊂ CH1(X ×X ′), which is precisely the kernel of the above homomorphism:

Lemma 2.3.2.1. The homomorphism ψ induces an isomorphism

CH1(X ×X ′)
CH1
≡(X ×X ′)

∼=−→ HomCHMZ(h1(X), h1(X ′)).

Proof. Write pi, i = 0, 1, 2, the projectors associated to X and p′i, i = 0, 1, 2, those associated
to X ′, corresponding to fixed rational points e ∈ X and e′ ∈ X ′, respectively.

Let T ∈ CH1(X ×X ′), applying ψ yields

ψ(T ) = (∆X′ − p′0 − p′2) ◦ T ◦ (∆X − p0 − p2) =
T − T ◦ p0 − T ◦ p2

− p′0 ◦ T + p′0 ◦ T ◦ p0 + p′0 ◦ T ◦ p2

− p′2 ◦ T + p′2 ◦ T ◦ p0 + p′2 ◦ T ◦ p2

Using Lieberman’s Lemma and the fact that p0, p2 are transposes of each other, we can
compute these terms. For example, the terms

p′2 ◦ T ◦ p2 = (p0 × p′2)∗(T ) = (pr2)∗((T ×X ×X ′) · (e×X ′ ×X × e′))
= deg(T · (e×X ′)).X × e′

p′2 ◦ T = (pr13)∗((T ×X ′) · (X ×X ′ × e′))
= deg(T · (e×X ′)).X × e′
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cancel each other out. Similarly, the terms T ◦ p0 and p′0 ◦ T ◦ p0 cancel each other out. The
terms p′0 ◦ T ◦ p2 and p′2 ◦ T ◦ p0 are zero. There only remains

ψ(T ) = T − p′0 ◦ T − T ◦ p2

= T − (pr13)∗((T ×X ′) · (X × e′ ×X ′))− (pr13)∗((X × e×X ′) · (X × T ))

= T − (p1)∗(T ·X × e′)×X ′ −X × (p2)∗((e×X ′) · T )

which is zero if and only if T is degenerate. This shows that CH1
≡(X × X ′) is precisely the

kernel of ψ, which concludes the proof.

To a curve X ∈ SmProj(k), one can associate an abelian variety J(X) called the Jacobian
variety of X, whose set of rational points is Pic0(X). It satisfies a certain universal property,
which can be used to show the existence of natural isomorphisms

CH1(X ×X ′)
CH1
≡(X ×X ′)

∼= HomAV(J(X), J(X ′))

for curves X,X ′, where AV is the category of abelian varieties [MNP13, App. A]. Together
with the isomorphism given by the above lemma, we get:

Theorem 2.3.2.2 ([MNP13, Thm. 2.7.2]). For two smooth projective curves X,X ′ over k,
there is a natural isomorphism

HomCHMZ(h1(X), h1(X ′)) ∼= HomAV(J(X), J(X ′)).

Consequently, the full subcategory of Motrat(k) whose objects are direct factors and sums of
h1(X), for curves X, is equivalent to the category of abelian varieties up to isogenies.

2.4 Grothendieck’s standard conjectures

In this section, k = C and H(X) is the rational Betti cohomology of X ∈ SmProj(k), see
Section 1.3.2.

The standard conjectures were introduced by Grothendieck in 1968 as a plan to prove the
last parts of Weil’s conjectures. The latter were finally proved by Deligne via other means,
while the standard conjectures remain open. They concern existence problems for algebraic
cycles.

The first conjecture was already mentioned in Section 1.3.2. Let us recall it:

Conjecture (Conjecture D(X)). Homological equivalence and numerical equivalence coincide
for algebraic cycles on X.

Another conjecture is called the standard conjecture of Hodge type, which states that a
certain pairing is positive definite. We do not describe it here, see [Gro69].

2.4.1 Künneth conjecture. Let Xd ∈ SmProj(k) be a smooth projective variety of di-
mension d and let ∆X ⊂ X × X be its diagonal. Under the Künneth decomposition, the
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cohomology class of the diagonal admits a decomposition

H2d(X ×X) =
2d⊕
i=0

H2d−i(X)⊗H i(X)

γX×X(∆X) =

2d∑
i=0

∆topo
i

where ∆topo
i is the i-th Künneth component of the diagonal.

Remark 2.4.1.1. A topological cycle γ ∈ H(X×Yd) is called a topological correspondence from
X to Y . It acts on cohomological cycles in the same way as an algebraic correspondence:

γ : H(X)→ H(Y ) : α 7→ γ(α) := (prY )∗(γ ∪ (α× Y )).

In fact, we can show H(X×Y ) ∼= H(X)⊗H(Y ) ∼= H(X)∨⊗H(Y ) ∼= Hom(H(X), H(Y )) using
the Künneth formula and Poincaré duality. Hence, linear maps H(X) → H(Y ) correspond
to topological correspondences. 4

As a topological correspondence, the i-th Künneth component ∆topo
i is precisely the pro-

jector of H(X) onto the degree i part H i(X).

Conjecture (Künneth conjecture C(X)). The Künneth components ∆topo
i are algebraic, i.e.

they come from algebraic cycles ∆i ∈ CHd(X ×X).

If the Künneth conjecture holds for X, then we may wonder whether
∑d

i=0 ∆i already
equals ∆X in CHd(X ×X). If this is the case, then the Chow motive of X splits as

h(X) =
2d⊕
i=0

hi(X)

where hi(X) = (X,∆i), such that each summand contributes only to the corresponding degree
in cohomology: H(hi(X)) = H i(X). This motivates the following stronger version of the
Künneth conjecture:

Conjecture (Chow–Künneth conjecture CK(X)). There exist orthogonal Chow projectors
∆i whose cohomology classes are the Künneth components, such that ∆X =

∑2d
i=0 ∆i.

Example 2.4.1.2. The extremal Künneth components ∆topo
0 and ∆topo

2d are always algebraic
by Example 2.1.2.6.

In particular, if X is a curve, the 1-st Künneth component is automatically algebraic and
CK(X) holds. It also holds for projective spaces by Example 2.1.2.9. It is also known to hold
for surfaces and abelian varieties. 4

2.4.2 Lefschetz operator and Lefschetz type conjecture. Let Xd ∈ SmProj(k) and
j : Y ↪−→ X the inclusion of a smooth hyperplane section. On the cohomology of X, taking
cup-product with j∗[Y ] yields a degree 2 homomorphism

L : H i(X)→ H i+2(X) : α 7→ α ∪ j∗[Y ]

called the Lefschetz operator. We write Lr = L ◦ · · · ◦ L for its r-iterated composition. Then
we have the following:
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Theorem 2.4.2.1 (Hard Lefschetz theorem, [Voi02, Thm. 6.25]). For each 0 ≤ i ≤ d, the
homomorphism

Li : Hd−i(X)→ Hd+i(X)

is an isomorphism.

Using this, we can define an “almost inverse” Λ: H(X)→ H(X) to L:

Hd−2(X) Hd−1(X) Hd(X) Hd+1(X) Hd+2(X)

L2

L L L

Λ Λ Λ

Concretely, let

Λ :=

{
(Li+2)−1 ◦ Li+1 on Hd−i(X) with i ≥ −1

Li−1 ◦ (Li)−1 on Hd+i(X) with i ≥ 1,
(7)

then Λ: H(X)→ H(X) is a degree−2 homomorphism and one can check that Λi : Hd+i(X)→
Hd−i(X) is the inverse isomorphism to Li. Moreover, L ◦ Λ is a cohomological projector, i.e.
L ◦ Λ ◦ L ◦ Λ = L ◦ Λ, hence it induces a splitting

H(X) = Hpr(X)⊕ L ◦ Λ(H(X)) (8)

where Hpr(X) := ker(L ◦ Λ) is called the primitive cohomology of X. In fact, ker(L ◦ Λ) =
ker(Λ) as L is injective on H≤d−1 and L ◦ Λ = id on H≥d+1. In other words,

Πpr = id−L ◦ Λ (9)

is a cohomological projector onto the primitive cohomology of X.
Note that L = j∗ ◦ j∗ where j : Y ↪−→ X is the inclusion. Indeed, for α ∈ H(X),

j∗ ◦ j∗(α) = j∗(j
∗(α) ∪ [Y ]) = α ∪ j∗([Y ]) = L(α)

by the projection formula. We can define a Lefschetz operator on the level of Chow rings

L : CH(X)→ CH(X) : α 7→ α · [Y ]

inducing the one on cohomology, and the same formula holds: L = j∗ ◦ j∗. This means that
L is given by the algebraic cycle j∗ ◦ j∗ = Γj ◦ (Γj)

ᵀ ∈ CHd+1(X ×X).

Remark 2.4.2.2. Let us fix an embedding X ⊂ PN and consider a smooth hypersurface section
j′ : Y ′ := X ∩ H ↪−→ X where H ⊂ PN is an hypersurface of degree e. Since H is rationally
equivalent to ePN−1, one has j′∗[Y

′] = e.j∗[Y ], hence j′∗ ◦ j′∗ = eL. 4
The map Λ can be viewed as a topological correspondence, i.e. an element ofH2d−2(X×X),

where d = dim(X).
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Conjecture (Lefschetz type conjecture B(X)). The topological correspondence Λ is algebraic,
i.e. it comes from an algebraic cycle in CHd−1(X ×X)Q.

Example 2.4.2.3. Let X = Pd be the projective space of dimension d. Its (rational) Chow ring
is CH(Pd)Q ∼= Q[α]/(αd+1) where α is the class of an hyperplane. The Lefschetz operator

L : CH(Pd)→ CH(Pd)

is simply multiplication by α. A quick computation shows that it is represented by the degree
1 correspondence

αdβ + αd−1β2 + · · ·+ αβd ∈ CHd+1(Pd × Pd) ∼= Q[α, β]/(αd+1, βd+1).

Similarly, the operator Λ is represented by the degree −1 correspondence

λ = αd−1 + αd−2β + · · ·+ αβd−2 + βd−1 ∈ CHd−1(Pd × Pd).

Thus, the Lefschetz type standard conjecture holds for the projective space. 4

2.5 Grothendieck’s dream: motives as a universal Weil cohomology

The title of the present section is taken from the very nice introduction to motives by Milne
[Mil13]. A (classical) Weil cohomology is a functor

H : SmProj(k) −→ GrVectF

from the category of smooth projective varieties into the category of finite dimensional graded
vector spaces over a field F of characteristic 0, the coefficient field, satisfying certain axioms,
see [Stacks, Tag 0FGS]. From these axioms, it follows that any Weil cohomology H factors
through the category of Chow motives [Stacks, Tag 0FH2]:

SmProj(k) Motrat(k)

GrVectF

H

h

Example 2.5.0.1. If k = C and F = Q, rational Betti cohomology is a Weil cohomology theory
and the vertical arrow is defined in Section 2.2. 4

We may wonder to what extent properties of cohomology are apparent on the level of Chow
motives. Such properties would then be invariant on the chosen Weil cohomology, resulting
in a better understanding of how they are related one to each other.

The target category of a Weil cohomology is an abelian semi-simple4 category consisting
of graded and finite dimensional objects. The Künneth standard conjecture aims to make
the grading apparent on Chow motives. Similarly, the next chapter concerns an attempt to
make finite dimensionality already apparent on the level of Chow motives. In other words,
the grading and the finite dimensionality of Weil cohomologies are conjecturally induced from
the structure of Chow motives.

4An abelian category is semi-simple if every object is a finite direct sum of simple objects, i.e. objects
without non-trivial subobjects.
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2.5.1 Jannsen’s theorem. Unfortunately, the category of Chow motives is in general
not an abelian category, as is shown by the following example [Sch94, Cor. 3.5]:

Example 2.5.1.1. Suppose that k is algebraically closed of characteristic 0, then we show that
the category of Chow motives Motrat(k) is not an abelian category.

Let E be an elliptic curve over k, with identity 0 ∈ E. By the assumption on the field k,
there is a non-torsion point5 x ∈ E. Consider the cycle α := [x]− [0] ∈ CH1(E). Since α has
degree 0, it is an element of CH1(h1(E)) by Section 2.3.1. Under the isomorphism

CH1(h1(E)) ∼= HomMotrat(k)(L, h
1(E))

from Remark 2.1.4.1, the nonzero cycle α corresponds to a nonzero morphism α∗ : L→ h1(E)
represented by ∗ × ([x] − [0]). If we tensor its dual with L2, we get a nonzero morphism
α∗ : h1(E)⊗ L→ L represented by ([x]− [0])× ∗.

By definition of composition of correspondences, their composition

α∗ ◦ α∗ : h1(E)⊗ L→ h1(E)

is represented by the cycle in CH2(E × E)

η :=
(
∗ ×([x]− [0])

)
◦
(
([x]− [0])× ∗

)
= pr13

(
(([x]− [0])× ∗ × E) · (E × ∗ × ([x]− [0]))

)
= ([x]− [0])× ([x]− [0])

= ([x]× [x]) + ([0]× [0])− ([x]× [0])− ([0]× [x]).

We can assume that x = y + y in the group E(k), for a point y ∈ E. Then we have

η =
(

([x]× [x]) + ([0]× [0])− 2([y]× [y])
)

+
(

2([y]× [y])− ([x]× [0])− ([0]× [x])
)
. (10)

• The part on the left is rationally trivial because it is the pushforward along the diagonal
of [x] + [0]− [y]− [y], which is rationally trivial by the group law on E.

• The part on the right is symmetric, hence it is the pullback of the cycle η′ := [y, y]−[0, x]
in CH2(E(2)) along the two-fold projection

E × E −→ E(2) := E × E/S2

from E×E to the 2-nd symmetric product of E, where [a, b] denotes the class {a×b, b×a}.
Observe that the addition E×E → E factors through f : E(2) → E, which is a P1-bundle
(see Section 3.4.2 for more details). By [EH16, Thm. 9.6], one has

CH(E(2)) ∼= CH(E) · ζ0 ⊕ CH(E) · ζ1

for some ζ ∈ CH1(E(2)). In particular, the summand CH(E) · ζ0 has no element of
degree two and

f∗ : CH2(E(2))→ CH1(E)

is an isomorphism. Applied to η′, we have

f∗(η
′) = [y] + [y]− [x]− [0],

5For example, if k is uncountable, it follows from the fact that there are only countably many torsion points.
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which is rationally trivial on E for the same reason as the left part. Therefore, η′ is
trivial and the part on the right of (10) vanishes6.

Therefore, η is rationally trivial and α∗ ◦ α∗ = 0, hence α∗ is not a monomorphism.
If Motrat(k) was abelian, then ker(α∗) would be a proper nonzero subobject of L. Then,
tensoring with L−1 would yield a nonzero proper subobject of the unit motive 1. But 1 is
simple by [DM82, Prop. 1.17] since End(1) = Q is a field. Thus Motrat(k) cannot be an
abelian category. 4

The conjectures of Lefschetz and Hodge type together imply that Motnum(k) is an abelian
semi-simple category. It was believed that they would be needed for a proof of that fact.
Jannsen’s unconditional proof of the following theorem came as a surprise.

Theorem 2.5.1.2 ([Jan92]). Let ∼ be any adequate equivalence relation. The following prop-
erties are equivalent:

(i) The category Mot∼(k) is an abelian semi-simple category;

(ii) The relation ∼ is numerical equivalence;

(iii) The Q-algebra Corr0
∼(X,X)Q is a finite-dimensional, semi-simple Q-algebra for any

smooth projective variety X ∈ SmProj(k).

Remark 2.5.1.3. The geometric ingredient of the proof is the existence of a Weil cohomology
theory over the field k. What remains can be abstracted, as we shall mention is Section
3.2.3. 4

If homological and numerical equivalences coincide, then the Weil cohomology functor H
factors through the category of numerical motives, which is abelian semi-simple by Jannsen’s
theorem. We can then decompose the numerical motive h(X) of a variety into simple submo-
tives, each of which being responsible for a certain cohomological property of X.

There is a lot more to say about motives. We close this chapter with the conclusion
of Grothendieck’s article introducing the standard conjectures of Hodge and Lefschetz type
[Gro69]:

The proof of the two standard conjectures would yield results going considerably
further than Weil’s conjectures. They would form the basis of the so-called “theory
of motives” which is a systematic theory of “arithmetic properties” of algebraic
varieties, as embodied in their groups of classes of cycles for numerical equivalence.
We have at present only a very small part of this theory in dimension one, as
contained in the theory of abelian varieties. Alongside the problem of resolution
of singularities, the proof of the standard conjectures seems to me to be the most
urgent task in algebraic geometry. (Grothendieck 1968)

6This argument works without introducing y since the cycle η is already symmetric. But then we would
have to use rational coefficients, while this argument works in the category of integral motives.
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3 Finite dimensionality of Chow motives

This chapter concerns a notion of finite dimensionality for Chow motives, which was intro-
duced by Kimura [Kim05] and O’Sullivan independently.

First, we state basic facts about the representation theory of the symmetric group which
will be useful for subsequent results. Then we introduce the notion of finite dimensionality
in a general setting. In the last section, we specialize this notion to the category of Chow
motives and we see some consequences.

3.1 Representation theory of the symmetric group

This section concerns the representation theory of the symmetric group, see [FH91, Ch. 4] for
more details. Let Sn denote the symmetric group on n objects, i.e. the group of permutations
of {1, . . . , n}. There are bijections between the sets of:

(i) Irreducible representations of Sn;

(ii) Partitions of n, i.e. tuples λ = (λ1, . . . , λs) with
∑
λi = n and λ1 ≥ · · · ≥ λs;

(iii) Young diagrams of weight n, i.e. diagrams consisting of n boxes arranged in rows of
decreasing size;

where a partition λ = (λ1, . . . , λs) corresponds to the Young diagram with s rows of lengths
λ1, . . . , λs. A Young tableau on a Young diagram is a numbering of the boxes by the integers
1, . . . , n. Given a tableau T on the Young diagram corresponding to λ, we define two subgroups
of Sn

Rλ := {σ ∈ Sn | σ only permutes elements in each row}
Cλ := {σ ∈ Sn | σ only permutes elements in each column}

and corresponding elements in the group ring Q[Sn]

aλ(T ) :=
∑

σ∈Rλ(T )

σ ; bλ(T ) :=
∑

σ∈Rλ(T )

sgn(σ)σ and cλ(T ) := aλ(T )bλ(T ),

the last one is called the Young symmetrizer of T .

Remark 3.1.0.1. Let V be a vector space and let Sn act on V ⊗n by permuting the factors.
Then

Im(aλ) ∼= Symλ1(V )⊗ · · · ⊗ Symλs(V ) and Im(bλ) ∼= Altλ1(V )⊗ · · · ⊗Altλs(V )

where µ = λᵀ is the conjugate partition to λ, i.e. the partition obtained by interchanging the
rows and the columns in the corresponding Young diagram. 4

Let Wλ be the irreducible representation corresponding to a partition λ. The elements

eλ :=
dim(Wλ)

n!

∑
σ∈Sn

χλ(σ) · σ

in Q[Sn] are orthogonal idempotents: eλ · eµ = 0 if λ 6= µ and eλ · eλ = eλ. Moreover, their
sum

∑
λ eλ equals 1.

The following proposition describes the correspondence between irreducible representa-
tions and partitions.
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Proposition 3.1.0.2. (i) cλ(T ) · cλ(T ) = nλ(T )cλ(T ) for some 0 6= nλ(T ) ∈ Q;

(ii) Q[Sn] · cλ(T ) is a minimal left ideal in Q[Sn], hence it is an irreducible representation
of Sn. Moreover, Q[Sn] · aλ(T )bλ(T ) = Q[Sn] · bλ(T )aλ(T );

(iii) Q[Sn] · cλ(T ) = Q[Sn] · cµ(T ′) if and only if λ = µ;

(iv) eλ ∈ Q[Sn]·cλ(T ), i.e. the idempotent eλ is a linear combination of monomials in cλ(T ).

3.2 Finite dimensionality in a tensor category

Let (C,⊗,1) be a pseudo-abelian Q-linear rigid tensor category. That is, ⊗ : C × C → C is a
bifunctor satisfying compatible associativity and commutativity constraints7 with 1 as unit.
Every projector splits, hence the image of a projector makes sense. Furthermore, assume
End(1) = Q.

We shall keep in mind that C will eventually stand for the category of motives. The results
are stated in a greater generality in order to emphasize the fact that they are not of geometric
nature.

3.2.1 Even and odd objects. Given an object M ∈ C, the symmetric group Sn acts
on the n-th tensor power M⊗n by permuting the factors. Formally this is done via the
commutativity constraint and the hexagon axiom ensures that it is well-defined.

This action induces a ring morphism Γ(M) : Q[Sn]→ End(M⊗n). Given a partition λ of
n, the idempotent eλ ∈ Q[Sn] acts as a projector on M , denoted

dλ(M) := Γeλ(M) : M⊗n →M⊗n.

Definition 3.2.1.1. Let M ∈ C and λ a partition of n, define TλM := Im(dλ(M)). In
particular, we define the n-th symmetric and alternating products of M as

Symn(M) := T(n)M =

(
1

n!

∑
σ∈Sn

σ

)
(M⊗n)

Altn(M) := T(1,...,1)M =

(
1

n!

∑
σ∈Sn

sgn(σ)σ

)
(M⊗n)

Definition 3.2.1.2. An object M ∈ C is said to be

(i) evenly finite dimensional or even if Altn(M) = 0 for some n > 0. In that case, its
dimension dim(M) is the largest n such that Altn(M) 6= 0;

(ii) oddly finite dimensional or odd if Symn(M) = 0 for some n > 0. In that case, its
dimension dim(M) is the largest n such that Symn(M) 6= 0;

(iii) finite dimensional if it splits as a sum M = M+ ⊕M− where M+ is even and M− is
odd. In that case, dim(M) := dim(M+) + dim(M−).

7These constraints are expressed as natural isomorphisms φX,Y,Z : X ⊗ (Y ⊗ Z) → (X ⊗ Y ) ⊗ Z and
ψX,Y : X ⊗ Y → Y ⊗X, satisfying certain commutative diagrams, called the pentagon and hexagon axioms.
See [Del02] for more details.
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Remark 3.2.1.3. The definition of dimension is ambiguous if M is both even and odd, but it
will turn out that this can only happen if M = 0. Similarly, we will show that the splitting
M = M+ ⊕M− is essentially unique. 4
Example 3.2.1.4. In the category of finite dimensional Q-vector spaces, any object is even and
its dimension is the usual one.

In the category of Z-graded finite dimensional Q-vector spaces with the Koszul rule as
commutativity constraint, the even (resp. odd) objects are those concentrated in even (resp.
odd) degree. In particular, any object is finite dimensional. 4
Example 3.2.1.5. In Motrat(k), a Chow motive M = (X, p,m) is evenly finite dimensional of
dimension n if Altn+1(M) = (M⊗n+1, d(1,...,1) ◦ p⊗n+1,m) = 0, i.e. if d(1,...,1) ◦ p⊗n+1 = 0. In
particular, (X, p,m) is finite dimensional if and only if (X, p, 0) is finite dimensional.

The unit motive 1 = (Spec(k), id, 0) is even of dimension 1 because

Alt2(1) = (Spec(k), d(1,1) ◦ id, 0) = (Spec(k), 1
2(id− id), 0) = 0.

Consequently, L⊗r = (Spec(k), id,−r) is also even of dimension 1 for all r ∈ Z. In particular,
the submotives h0(X) ∼= 1 and h2d(X) ∼= Ld from Example 2.1.2.6 are even of dimension
1. 4
Remark 3.2.1.6. Following the same argument as in the above example, the unit object 1 in
C is always even of dimension 1. 4
Remark 3.2.1.7. The definition of finite dimensionality involves the vanishing of a symmetric
or alternating power. There exists a weaker notion called Schur-finiteness. An object M ∈ C
is said to be Schur-finite if TλM = 0 for some partition λ of some positive integer n. It is
clear that any even or odd object is Schur-finite. However, the converse does not hold, see
[Maz04, Ex. 1.12, Cor. 5.20] for counterexamples. 4

3.2.2 Sums and tensors products. As one would expect, sums, summands and tensors
products of finite dimensional objects are finite dimensional. First, we only deal with even
and odd objects. The case of summands of finite dimensional objects, i.e. sums of even and
odd objects, will be studied in Section 3.3.2.

Proposition 3.2.2.1. Sums and summands (and quotients) of even (resp. odd) objects are
even (resp. odd). Moreover, if M and N are finite dimensional, then dim(M⊕N) = dim(M)+
dim(N).

Proof. In the even case, this follows from the isomorphism

Altn(M ⊕N) ∼=
⊕
p+q=n

Altp(M)⊗Altq(N).

If M and N are even, then in each summand of Altdim(M)+dim(N)+1(M ⊕N) one factor will
vanish, implying that M ⊕N is even with dim(M ⊕N) ≤ dim(M) + dim(N). An argument
involving the rank shows that equality holds, see [AK02, Thm. 9.1.7].

Conversely, if M ⊕ N is even, then the p = n summand Altn(M) will vanish for n >
dim(M ⊕N).

The argument is the same in the odd case.
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Example 3.2.2.2. The Chow motive of the projective space Pd is evenly finite dimensional of
dimension d. Indeed, we have

h(Pd) =

d⊕
i=0

L⊗i

by Example 2.1.2.9 and each term L⊗i is even of dimension 1 by Example 3.2.1.5. 4

Lemma 3.2.2.3 (Vanishing Lemma [Kim05]). Let q ≥ n and λ = (λ1, . . . , λs) be a partition
of q. Then

(i) if Symn+1(M) = 0 and λ1 > n, then TλM = 0;

(ii) if Altn+1(M) = 0 and λn+1 6= 0, then TλM = 0.

Proof. The proof relies on Remark 3.1.0.1 in the general context. We show (i). Let T be a
Young tableau for λ. Then

Im(aλ,T ) ∼= Symλ1(M)⊗ · · · ⊗ Symλs(M).

Since λ1 > n, the first factor Symλ1(M) vanishes. Thus, aλ,T (M) = 0 and hence, cλ,T (M) = 0
as well by Proposition 3.1.0.2(ii). By (iv) of the same proposition, eλ = rcλ,T for some
r ∈ Q[Sn], hence dλ(M) = 0.

For (ii), pass to the dual partition λᵀ of λ and apply a similar argument.

Proposition 3.2.2.4. If M and N are finite dimensional of the same (resp. different) parity,
then M ⊗N is even (resp. odd). In particular, if M,N are finite dimensional, then M ⊗N
is finite dimensional.

Moreover, dim(M ⊗N) ≤ dim(M) · dim(N).

Proof. For example, assume M is even and N is odd, i.e. Altm+1(M) = 0 = Symn+1(N).
Put q = mn + 1. The other cases are similar. We need to prove d(q)(M ⊗N)⊗q = 0. Using∑
eλ = 1 ∈ Q[Sq] twice, we get

d(q)(M ⊗N)⊗q ∼= d(q)

(
M⊗q ⊗N⊗q

)
= d(q)

⊕
λ,ν

dλM
⊗q ⊗ dνN⊗q. (11)

By [FH91, Ex. 4.51], one has

e(q) · (eλ ⊗ eν) =

{
0 if λ 6= ν

e(q) if λ = ν

hence the only remaining terms in (11) are projections of dλM
⊗q ⊗ dλN⊗q. If λ1 > n, then

dλN
⊗q = 0 by the vanishing Lemma 3.2.2.3(i). Else, a pigeonhole argument yields λm+1 6= 0,

hence dλM
⊗q = 0 again by the vanishing Lemma 3.2.2.3(ii). This shows that (11) vanishes,

i.e. Symq(M ⊗N) = 0 as desired.

Distributivity of tensor products over sums yields the general result.
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3.2.3 Tensor ideals and equivalence relations. A Q-linear tensor category is to a
Q-algebra what a groupoid is to a group. The notion of ideal generalizes well:

Definition 3.2.3.1. An ideal I in C is the data of a Q-sub-module I(M,N) ⊂ C(M,N)
for each pair of objects M,N , satisfying the following property: for any f ∈ C(M ′,M), g ∈
C(N,N ′), we have

g ◦ I(M,N) ◦ f ⊂ I(M ′, N ′).

Given an ideal I in C, we can form the quotient C/I whose objects are those of C, with
morphisms C/I(M,N) := C(M,N)/I(M,N).

An ideal I in C is a tensor-ideal if it is stable under tensor product: I(M,N)⊗I(M ′, N ′) ⊂
I(M ⊗M ′, N ⊗N ′). In that case, C/I inherits the structure of a tensor category.

Remark 3.2.3.2. There is a one-to-one correspondence between tensor ideals of Motrat(k)
and adequate equivalence relations on SmProj(k). Given an equivalence relation ∼, let
I∼(M,N) ⊂ Motrat(M,N) be the sub-module of correspondences f with f ∼ 0. Then
Mot∼(k) is the pseudo-abelian envelope of Motrat(k)/I∼ [And04, Lem. 4.4.1.1]. This gives a
convenient way to study equivalence relations. 4

Rigidity of C gives evaluation and coevaluation morphisms, defined for an object M as the
adjuncts of idM under C(M,M) ∼= C(M∨⊗M,1) and C(M,M) ∼= C(1,M⊗M∨), respectively.
We can define the trace of an endomorphism f ∈ C(M,M) as the element tr(f) ∈ End(1) = Q
given by

tr(f) : 1
coevM−−−−→M∨ ⊗M

idM∨ ⊗f−−−−−→M∨ ⊗M
ψM∨,M−−−−−→M ⊗M∨ evM−−→ 1 .

Example 3.2.3.3. In the category VectQ of finite dimensional Q-vector spaces, the trace tr(f)
of a morphism is the usual trace: the sum of the diagonal entries in a matrix representation
of f .

Note that tr(idV ) is the dimension of V as a Q-vector space. This can be used to define
another notion of dimension of an object. In fact, it coincides, up to a sign, with our definition
of dimension for even and odd objects [AK02, Thm. 9.17]. 4

Definition 3.2.3.4. The following defines a tensor ideal in C:

N (M,N) := {f ∈ C(M,N) : tr(g ◦ f) = 0 for all g ∈ C(N,M)}.

It is the largest proper tensor ideal in C.

Example 3.2.3.5. In the category of finite dimensional (graded) vector spaces, the tensor ideal
N is the zero ideal. 4
Remark 3.2.3.6. In Motrat(k), the ideal N corresponds to numerical equivalence ∼num.

Let Xd ∈ SmProj(k). Pick a cycle α ∈ CHi(X). With the notation of Remark 2.1.4.1,
we get a morphism α∗ ∈ HomMotrat(k)(L

i, h(X)). A cycle β ∈ CHd−i(X) of complementary

codimension induces a morphism β∗ ∈ HomMotrat(k)(h(X),Li), and every morphism h(X) →
Li is of that form.

Using that α∗ is represented by ∗ × α and β∗ is represented by β × ∗, we have

β∗ ◦ α∗ = (p13)∗((∗ × α× ∗) · (∗ × β × ∗)) = (p13)∗(∗ × (α · β)× ∗)) = deg(α · β),
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hence α∗ ∈ N (1, h(X)) if and only if α ∼num 0.
Remark 2.1.4.1 allows us to consider morphisms as cycles, and the above argument applies

to the general setting. For a motiveM = (X, p,m), the trace of an endomorphism f ∈ End(M)
equals tr(f) = deg(f · pᵀ). 4
Remark 3.2.3.7. Using the notion of tensor ideal, André and Kahn give an abstract version
of Jannsen’s Theorem [AK02, Thm. 8.2.2]. 4

3.3 Finite dimensionality and nilpotence

Again, let (C,⊗,1) be a pseudo-abelian Q-linear rigid tensor category, with End(1) = Q.
In this section, we shall see that an object being finite dimensional has strong nilpotency
consequences.

3.3.1 Tensor nilpotence.

Definition 3.3.1.1. A morphism f : M → N in C is tensor nilpotent, or ⊗-nilpotent, if
f⊗n : M⊗n → N⊗n vanishes for some n > 0.

In fact, tensor nilpotence implies nilpotence:

Proposition 3.3.1.2. Let f : M → N be tensor nilpotent, say f⊗n = 0, and gi : N → M ,
i = 1, . . . , n− 1, any morphisms. Then f ◦ gn−1 ◦ f ◦ · · · ◦ f ◦ g1 ◦ f = 0.

In particular, a tensor nilpotent morphism is nilpotent.

Proof. The idea is the following: Rigidity yields isomorphisms C(1, X∨ ⊗ Y ) → C(X,Y )
enabling us to “pull back” everything to the tensor product M⊗n ⊗ N⊗n−1 where tensor
nilpotence applies [AK02, Lem. 7.4.2(ii)].

3.3.2 Morphisms between finite dimensional objects.

Proposition 3.3.2.1. Any morphism between finite dimensional objects of different parity is
tensor nilpotent.

Proof. Let f : M → N be a morphism in C, with M odd and N even, i.e. Symm+1(M) = 0 =
Altn+1(N). Let q = nm+ 1 and consider, for partitions λ, ν of q, the composition

M⊗q
dλ(M)−−−−→M⊗q

f⊗q−−→ N⊗q
dν(N)−−−−→ N⊗q. (12)

The action of Sq on q-th tensor powers is natural, i.e. the dµ commute with morphisms.
Hence, the above composition equals f⊗q ◦ dν ◦ dλ, which is zero unless λ = ν. In that case,
we claim that (12) vanishes: By the vanishing Lemma 3.2.2.3(i), if λ1 > m, then dλ(M) = 0;
else, λn+1 6= 0 and dλ(N) = 0. Thus, (12) is the zero map and, using

∑
λ dλ = id, also f⊗q is

the zero map.

Corollary 3.3.2.2. An object that is both even and odd is the zero object.

Proof. Let M be such an object. The identity idM : M → M is a morphism from an even
object to an odd object. Thus it is tensor nilpotent by Proposition 3.3.2.1, hence nilpotent
by Proposition 3.3.1.2, say of order n. Then 0 = idnM = id and M is the zero object.
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Proposition 3.3.2.3. Summands and quotients of finite dimensional objects are finite di-
mensional.

Proof. Let M be finite dimensional and M = M+ ⊕M− a decomposition into its even and
odd parts.

Suppose M = N⊕K, with projection f : M � N and inclusion s : N ↪−→M , i.e. f◦s = idN .
We want to show that N is finite dimensional. More precisely, we will show that N = N+⊕N−
where f projects M± onto N±. Then one concludes by Proposition 3.2.2.1.

The splitting M = M+ ⊕M− comes from an orthogonal decomposition idM = p+ + p−.
Then

idN = f ◦ s = f ◦ (p+ + p−) ◦ s = f ◦ p+ ◦ s︸ ︷︷ ︸
:=q′+

+ f ◦ p− ◦ s︸ ︷︷ ︸
:=q′−

is almost the splitting we need. Indeed, q′+ ◦ q′− = f ◦ p+ ◦ s ◦ f ◦ p− ◦ s factors through a
morphism p+ ◦ s ◦ f ◦ p− : M− → M+ between objects of different parity, which is tensor
nilpotent by Proposition 3.3.2.1. Hence, q′+ ◦ q′− is nilpotent by Proposition 3.3.1.2, say of
order k. Hence, 0 = (q′+ ◦ q′−)k = q′k+ ◦ q′k− since q′+ and q′− = idN −q′+ commute. We claim
that

q+ := (idN −q′k−)k and q− := idN −q+

are orthogonal projectors. To prove this, we need the following elementary formula: for any
morphism t : N → N , one has

idN −(idN −t)k = P (t) ◦ t

for some polynomial P which only depends on k.
Applying the above formula with t = q′+ and t = q′− yields

q+ = P (q′+)k ◦ q′k+ and q− = P (q′k−) ◦ q′k− . (13)

From the first one and using q′k− ◦ q′k+ = 0, we deduce q+ ◦ q′k+ = (idN −P (q′k−) ◦ q′k−) ◦ q′k+ = q′k+ .
Thus, q+ ◦ q+ = q+ ◦ q′k+ ◦ P (q′+)k = q′k+ ◦ P (q′+)k = q+, i.e. q+ is a projector. Therefore,
q− = idN −q+ is also a projector and q+, q− are orthogonal.

To conclude, it remains to show that f projects M± onto N± := Im(q±). We have q′± =
f ◦p± ◦s, hence q′k± = f ◦ t± for some morphisms t± : N →M . (13) yields idN± = q± = f ◦s±
for some morphisms s± : N →M , which concludes the proof.

Corollary 3.3.2.4. The decomposition M = M+⊕M− of a finite dimensional object M into
its even and odd parts is essentially unique, i.e. if M = M ′+ ⊕M ′− is another decomposition,
then M± ∼= M ′±. In particular, the dimension of M is well defined.

Proof. The identity of M is an isomorphism φ : M+⊕M− →M ′+⊕M ′−. Composed with the
projection M ′+ ⊕M ′− �M ′+, we get a surjection

f : M+ ⊕M− �M ′+.

Proposition 3.3.2.3 tells us that f induces a decomposition M ′+ = (M ′+)+ ⊕ (M ′+)− into even
and odd parts. But (M ′+)− = 0 by corollary 3.3.2.2, hence f is a surjection M+ � M ′+.
By symmetry, the inverse isomorphism φ−1 induces a surjection M ′+ � M+. Therefore,
M+
∼= M ′+ and similarly for the odd part.
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3.3.3 Nilpotence theorem.

Proposition 3.3.3.1 ([Kim05, Prop. 7.2], [AK02, Prop. 7.2.7]). Let M ∈ C be an object
which is even or odd, of dimension n− 1. Then,

(i) There is a nonzero polynomial G(T ) ∈ Q[T ] of degree n with G(f) = 0;

(ii) If f ∈ N (M,M), then f is nilpotent: fn = 0;

(iii) The ideal N (M,M) is a nilpotent ideal, with order ≤ 2n + 1;

(iv) If M is a nonzero object, then its image in C/N is nonzero.

Proof. The proof is a formal computation. We only give a skecth, see [AK02] 7.2.7 for more
details. Assume Altn(M) = 0, then d(1,...,1) ◦ f⊗M : M⊗n → M⊗n is zero since it factors
through Altn(M). Under the adjunction C(M⊗n,M⊗n) ∼= C(1, (M∨)⊗n⊗M⊗n), the morphism
d(1,...,1) ◦ f⊗M corresponds to a morphism 1 → (M∨)⊗n ⊗ M⊗n. Evaluating the middle

2(n−1) factors, i.e. composing with evM⊗(n−1) : (M∨)⊗(n−1)⊗M⊗(n−1) → 1, yields a morphism
1→M∨ ⊗M . Adjunction gives back a morphism G(f) := (d(1,...,1) ◦ f⊗n)1 : M →M . Then
a combinatorial argument shows that G(f) is a nonzero polynomial of degree n, whose lower
degree coefficients are traces of nonzero powers of f . Since d(1,...,1)◦f⊗n = 0, we haveG(f) = 0.
This proves (i).

For (ii), note that f ∈ N (M,M) implies that tr(f i) = 0 for all i ≥ 1. In particular, only
fn remains in G(f). Thus, fn = 0, concluding the proof. Part (iii) follows from (ii) and
Nagata–Higman Theorem.

For (iv), assume M 6= 0, then the identity idM is not nilpotent, hence idM represents a
nonzero class in C(M,M)/N (M,M), that is, M 6= 0 in C/N .

Remark 3.3.3.2. There is a stronger version of the above proposition, with n replaced by n−1
in (ii) and (iii). See [Jan07, Thm. 6.4.3]. 4

Theorem 3.3.3.3 ([Kim05, Thm. 7.5], [AK02, Thm. 9.1.14]). Let M ∈ C be a finite dimen-
sional object. Then any endomorphism f : M →M which belongs to N is nilpotent. In fact,
N (M,M) is nilpotent with order bounded in function of dim(n).

Proof. Let M = M+ ⊕M− be the decomposition of M into its even and odd parts, induced
by idM = p+ + p−. Then an endomorphism f : M+ ⊕M− →M+ ⊕M− can be written as

f = (p+ + p−) ◦ f ◦ (p+ + p−) = p+ ◦ f ◦ p+︸ ︷︷ ︸
f+

+ p− ◦ f ◦ p−︸ ︷︷ ︸
f−

+ (p+ ◦ f ◦ p− + p− ◦ f ◦ p+)︸ ︷︷ ︸
fmix

.

The non-parity preserving part fmix is nilpotent by Propositions 3.3.2.1 and 3.3.1.2, say
f rmix = 0. The parity preserving parts f+ and f− belong to N (M,M), hence they are nilpotent
by Proposition 3.3.3.1, say f s+ = fs− = 0.

Since f+ ◦ f− = f− ◦ f+ = 0, a typical term in the expansion of fn = (f+ + f− + fmix)n

looks like
m = fk1

± ◦ fmix ◦ fk2
± ◦ fmix ◦ · · · ◦ fkr−1

± ◦ fmix ◦ fkr±
where ki ≥ 0 and r − 1 +

∑
i ki = n. Indeed, if fmix appears more than r times, then m = 0

by proposition 3.3.1.2. Hence, if n ≥ (r − 1) + r(s− 1) + 1 = rs, then one of the ki must be
≥ s and m = 0 because fs± = 0.
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Corollary 3.3.3.4. Let M ∈ C be a finite dimensional object and M its image in C/N .

(i) Any projector p : M →M in C/N can be lifted to a projector p : M →M in C.

(ii) More generally, any decomposition of idM into orthogonal projectors in C/N lifts to a
decomposition of idM into orthogonal projectors in C.

Proof. The projector p in C/N is represented by a morphism p : M →M in C. However, p is
not necessarily a projector in C, i.e. the difference p2 − p does not necessarily vanish.

We still know that the induced morphism p2− p is zero since p is a projector. This means
that p2− p belongs to N , hence it is nilpotent by Theorem 3.3.3.3, say (p2− p)k = 0 for some
k > 0.

Consider the endomorphism p′ := (1 − (1 − p)k)k where 1 := idM . In C/N , it induces
p′ = p since p and 1− p are projectors. As in the proof of Proposition 3.3.2.3, we show that
p′ is indeed a projector.

On one hand, we can write

p′ = (1− (1− p)k)k = (P (p) ◦ p)k = P (p)k ◦ pk

for some polynomial P . On the other hand, we can write

p′ = (1− (1− p)k)k = 1−
k∑
j=1

(−1)j
(
k

j

)
(1− p)jk.

Then

p′ ◦ p′ = p′ ◦

1−
k∑
j=1

(−1)j
(
k

j

)
(1− p)jk

 = p′ − P (p)k ◦ pk ◦
k∑
j=1

(−1)j
(
k

j

)
(1− p)jk

= p′

because the second term has pk ◦ (1− p)k = (p− p2)k = 0 as a factor. This shows that p′ is a
projector.

For the second part, we argue by induction. Suppose there is a decomposition idM =
p1 + · · · + pn into orthogonal projectors in C/N . By the first part, we can find a projector
p′1 : M → M in C that lifts p1. Then q′ := idM −p′1 is a projector orthogonal to p′1 which
lifts p2 + · · · + pn. Then M ′ := Im(q′) is finite dimensional by Proposition 3.3.2.3 and the
decomposition idM ′ = p2 + · · · + pn in C/N lifts to an orthogonal decomposition in C by
induction hypothesis. This concludes the proof.

Corollary 3.3.3.5. If a finite dimensional object M ∈ C becomes M = 0 in C/N , then it is
the zero object.

Proof. From M = 0, it follows that the identity idM belongs to N , hence it is nilpotent by
Theorem 3.3.3.1. Therefore, 0 = idkM = idM , hence M is the zero object.

3.4 Finite dimensionality of Chow motives

The category of Chow motives Motrat(k) is a pseudo-abelian Q-linear rigid tensor category,
with End(1) = Q. Thus, all the results from the last sections hold for Motrat(k). This section
focuses on their application in the case of Chow motives.
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3.4.1 Surjective morphisms. From Example 2.1.2.10, we know that a generically finite
surjective morphism X → Y allows us to express h(Y ) as a submotive of h(X). In particular,
finite dimensionality of h(X) implies finite dimensionality of h(Y ) by Proposition 3.3.2.3. In
fact, this last statement also holds if f is surjective but not necessarily generically finite.

Lemma 3.4.1.1. Let X,Y ∈ SmProj(k) be projective varieties and f : X → Y a surjective
morphism. Then the induced map f∗ : Z(X)Q → Z(Y )Q on algebraic cycles is surjective.

Proof. Let V ⊂ Y be an irreducible subvariety of Y and η ∈ V its generic point. By sur-
jectivity of f , we can pick a closed point ξ ∈ X ×Y η over η. Since X ×Y η is a finite type
K(η)-scheme, the degree d = [K(ξ) : K(η)] is finite by Hilbert Nullstellenstaz. Let Ṽ be the
closure of ξ in X, it is a subvariety of X and f∗(Ṽ ) = dV by definition of the push-forward
f∗. Since we work with rational coefficients, this shows that f∗ is surjective.

Using the above lemma, the next Proposition generalizes Remark 2.1.1.2.

Proposition 3.4.1.2. If f : X → Y is surjective, then f∗ : h(X) → h(Y ) is split surjective.
In particular, h(Y ) is a submotive of h(X).

Proof. Let f : X → Y be a surjective morphism. Then f × idY : X×Y → Y ×Y is surjective.
By Lemma 3.4.1.1, it induces a surjection

(f × idY )∗ : CH(X × Y )� CH(Y × Y ).

Take a preimage s ∈ CH(X × Y ) of the diagonal ∆Y ∈ CH(Y × Y ). Then

∆Y = (f × idY )∗(s) = s ◦ (f∗)
ᵀ

by Lieberman’s Lemma. Taking the transpose yields ∆Y = f∗ ◦ sᵀ where sᵀ ∈ CH(Y ×X).
Therefore, as a correspondence, sᵀ is a right-inverse of f∗.

Remark 3.4.1.3. A morphism f : M → N between Chow motives is said to be surjective if
the induced map

CH(M ⊗ h(Z))→ CH(N ⊗ h(Z))

is surjective for all Z ∈ SmProj(k). The above result holds for surjective morphisms between
Chow motives in the same way, see [Kim05, Lem. 6.8]. 4

The next result follows immediately from the above Proposition and Proposition 3.3.2.3.

Corollary 3.4.1.4. Let f : X → Y be a surjective morphism. If h(X) is finite dimensional,
then h(Y ) is finite dimensional.

3.4.2 Curves have finite dimensional Chow motives. From Section 2.3, the motive
of a curve C ∈ SmProj(k), i.e. a 1-dimensional irreducible smooth projective variety, splits as

h(C) = 1⊕ h1(C)⊕ L

where 1 and L are even of dimension 1 by Example 3.2.1.5.

Remark 3.4.2.1. If k = C and H denotes rational Betti cohomology, then we have H(h1(C)) =
H1(C) ∼= Q2g where g is the genus of C. Thus H(Sym2g(h1(C))) = Alt2gH1(C) 6= 0, hence
the dimension of h1(C) is at least 2g. 4
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Let C ∈ SmProj(k) be a smooth projective curve. In fact, h1(C) is odd of dimension 2g.
We follow [Kim05, Thm. 4.2][MNP13, Thm. 4.6.1] and divide the proof into smaller steps.
Before diving into the proof, we need to introduce some notations.

Since C is smooth projective of dimension 1, its n-th symmetric product

C(n) := Cn/Sn

is a smooth projective variety of dimension n, for each n ≥ 1. Let ϕn : Cn → C(n) be the
natural morphism.

Let J be the Jacobian variety of C, it is an abelian variety of dimension g, where g is the
genus of the curve C. Recall from Section 2.3.1 that rational points on J are in bijection with
degree zero divisors on C, i.e. J(k) ∼= CH1(h1(C)). Given a fixed point x0 ∈ C, the morphism
Cn → J sending the tuple (x1, . . . , xn) to the class of the cycle x1 + · · · + xn − nx0 factors
through C(n) and induces the morphism (see [Mil08, Ch. III.5] for more details)

π : C(n) −→ J

whose fibers are either empty or projective spaces. More precisely, after identifying J(k) ∼=
CH1(h1(C)) with the group Pic0(C) of degree 0 line bundles on C, the morphism π becomes

[x1, . . . , xn] 7−→ O(x1 + · · ·+ xn − nx0)

and the fiber over L ∈ Pic0(C) is the projective space P(H0(C,L ⊗ O(nx0))), which may be
empty. Riemann-Roch formula yields

h0(C,L ⊗O(nx0))− h0(C,L∨ ⊗O(−nx0)⊗ ωC) = deg(L ⊗O(nx0)) + 1− g = n+ 1− g,

where L∨⊗O(−nx0)⊗ωC has degree −n+2g−2, hence it has no global section if n > 2g−2.
Thus, if n > 2g−2, then h0(C,L⊗O(nx0)) = n+ 1−g, hence π is surjective with fiber Pn−g.
In fact, C(n) = P(E) for a locally free sheaf E on J of rank n+ 1−g. This allows us to express
the Chow group of C(n) in terms of the Chow group of J (see [EH16, Thm. 9.6]):

CH(C(n)) ∼= CH(J)[1, ζ, . . . , ζr] =

r⊕
i=0

CH(J) · ζi (14)

where r+ 1 = n+ 1− g is the rank of E , and ζ is the divisor associated with the tautological
line bundle OP(E)(1) on P(E).

for n ≥ 1, we have Symn(h1(C)) = (Cn, αn) where

αn := d(n) ◦ p⊗n1 =
1

n!

(∑
σ∈Sn

σ

)
◦ p⊗n1 ∈ CHn(Cn × Cn).

Hence, the claim that h1(C) is odd of dimension 2g, i.e. Sym2g+1(h1(C)) = 0, reduces to the
vanishing of α2g+1.

The natural morphism ϕn : Cn → C(n) from above allows us to transport the cycle αn to
the cycle

βn :=
1

n!
(ϕn)∗ ◦ αn ◦ ϕ∗n =

1

n!
(ϕn × ϕn)∗αn ∈ CHn(C(n) × C(n)),

where the second equality follows from Lieberman’s Lemma. The cycle βn vanishes if only if
αn vanishes, as is shown by the following lemma:
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Lemma 3.4.2.2. For all n ≥ 1, we have:

(i) βn is a projector on C(n);

(ii) αn = 1
n!ϕ
∗
n ◦ βn ◦ (ϕn)∗;

(iii) The morphisms 1
n!(ϕn)∗ and ϕ∗n induce an isomorphism Symn(h1(C)) ∼= (C(n), βn).

Proof. Observe that the morphism ϕn is surjective and generically finite of degree n!, hence
1
n!(ϕn)∗ ◦ ϕ∗n is the identity as a correspondence on C(n) by Remark 2.1.1.2. On the other
hand, one has

ϕ∗n ◦ (ϕn)∗ = n!

(
1

n!

∑
σ∈Sn

σ

)
= n!d(n).

Using the fact that αn is a projector, (i) and (ii) follow by computation. For (iii), recall that
Symn(h1(C)) = (Cn, αn) and consider the following morphisms:

(Cn, αn) (C(n), βn)αn

1
n!βn◦(ϕn)∗◦αn

βn

αn◦ϕ∗n◦βn

A quick computation shows that both compositions indeed yield αn and βn, which are the
identities on the considered objects.

Now assume that n > 2g − 2. Using the description (14) of the Chow group of C(n), we
can write βn in terms of cycles on J . We need two additional lemmata. The first one consists
in making explicit the isomorphism (14):

Lemma 3.4.2.3 ([Kim05, Lem. 4.2.1]). Let E be a rank r + 1 locally free sheaf on J , let
π : P(E)→ J be the associated projective bundle and ζ the divisor associated to the tautological
line bundle OP(E)(1). The morphism

f : CH(P(E)) −→
r⊕
i=0

CH(J) : β 7−→ (π∗(ζ
i · α))i

is bijective.

Proof. From [EH16, Thm. 9.6], we have the isomorphism

g :
r⊕
i=0

CH(J) −→ CH(P(E)) : (ai)i 7−→
r∑
i=0

π∗(ai) · ζi

and the multiplicative structure on the right is given by ζr+1 = −c1(E)ζr − · · · − cr+1(E),
where cj(E) are the Chern classes of E [EH16, Ch. 5]. For i, j = 0, . . . , r, we have by the
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projection formula

π∗(ζ
j · π∗(ai) · ζi) = ai · π∗(ζi+j) =


0 if i+ j < r

1 if i+ j = r

−c1(E) if i+ j = r + 1
...

All in all, the matrix representing f ◦ g has 1’s on the anti-diagonal i+ j = r and zeros above,
thus it is bijective.

Lemma 3.4.2.4 ([Kim05, Prop. 4.1]). Let e ∈ C be a point. Define

i : C(n) −→ C(n+1) : (x1, . . . , xn) 7−→ (x1, . . . , xn, e).

For n > 2g− 2, one can choose En+1 in C(n+1) = P(En+1) so that i∗[C
(n)] = ζn+1 where ζn+1

corresponds to OP(En+1)(1).

Finally, we have all the tools at hand to prove the desired result:

Theorem 3.4.2.5. Let C ∈ SmProj(k) be a curve of genus g. The motive h1(C) is odd of
dimension 2g. Hence, h(C) is finite dimensional of dimension 2g + 2.

Proof. We need to show that Sym2g+1(h1(C)) = (C2g+1, α2g+1) ∼= (C(2g+1), β2g+1) vanishes,
i.e. the cycle β2g+1 ∈ CH2g+1(C(2g+1) × C(2g+1)) is zero.

Let pr1, pr2 : C(2g+1)×C(2g+1) → C(2g+1) be the projections. The morphism π : C(2g+1) →
J is a Pg+1-bundle and the cycle ζ corresponds to the associated tautological line bundle,
chosen according to Lemma 3.4.2.4. Applying Lemma 3.4.2.3 twice, it suffices to show that

(π ◦ pr1×π ◦ pr2)∗(pr∗1 ζ
i · pr∗1 ζ

j · β2g+1) = 0 (15)

for 0 ≤ i, j ≤ g + 1. For i = j = 0, it is zero for dimenion reasons: the cycle β2g+1 has
dimension 2g + 1, hence its projection on the dimension 2g product J × J must be zero.

Now suppose i > 0 or j > 0. In fact, we shall see that the intersection product pr∗1 ζ ·β2g+1

already vanishes, thus (15) vanishes. By definition of β2g+1 and by the projection formula,
we have (where n = 2g + 1)

pr∗1 ζ · β2g+1 =
1

n!
pr∗1 ζ · (ϕ× ϕ)∗α2g+1

=
1

n!
(ϕ× ϕ)∗

(
(ϕ× ϕ)∗ pr∗1 ζ · α2g+1

)
.

Since ζ was chosen so that it equals i∗[C
(2g)] = C(2g)× e, we have pr∗1 ζ = C(2g)× e×C(2g+1).

Hence,

pr∗1 ζ · β2g+1 =
1

n!
(ϕ× ϕ)∗

(
(ϕ× ϕ)∗C(2g) × e× C(2g+1) · α2g+1

)
=

1

n!
(ϕ× ϕ)∗

2g+1∑
j=1

C × · · · × e
j-th
× · · · × C × C2g+1

 · α2g+1


=

1

(n!)2
(ϕ× ϕ)∗

2g+1∑
j=1

∑
σ∈S2g+1

(
C × · · · × e

j-th
× · · · × C × C2g+1 ·

(
Γσ ◦ p⊗2g+1

1

))
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where p1 = ∆− e×C −C × e. By symmetry of what is inside the last parentheses, it suffices
to show that e×C2g×C2g+1 · (Γσ ◦p⊗2g+1

1 ) vanishes for all σ ∈ S2g+1, which is the case since

(e× C) · p1 = (e× C) · (∆− e× C − C × e) = 0.

This concludes the proof that (15) is zero for all 0 ≤ i, j ≤ g+ 1, hence that β2g+1 is zero.
Therefore, Sym2g+1(h1(C)) = 0 and h1(C) is oddly finite dimensional of dimension 2g.

Remark 3.4.2.6. Using a similar computation as in the proof above, we can show that
Sym2g(h1(C)) ∼= Lg, see [Kim05, Rem. 4.5]. 4

Corollary 3.4.2.7. The Chow motive of a variety dominated by a product of curves is finite
dimensional. In particular, abelian varieties have finite dimensional chow motives.

Proof. The first part follows immediately from the fact that finite dimensionality is preserved
under products (3.2.2.4), the above theorem and Corollary 3.4.1.4.

The second part follows from the fact that any abelian variety is a quotient of a Jacobian
variety [Mil08, Thm. III.10.1], and the Jacobian of a curve is dominated by a product of the
curve [Mil08, Thm. III.5.1] as we have seen above.

3.4.3 Kimura–O’Sullivan conjecture. Apart from cellular varieties, curves and abelian
varieties, very few varieties are known to have a finite dimensional Chow motive. Motivated
by the strong consequences of finite dimensionality of Chow motives, Kimura [Kim05] and
O’Sullivan independently stated the following conjecture:

Conjecture (Kimura–O’Sullivan conjecture). Every Chow motive is finite dimensional.

3.4.4 Nilpotence and phantom motives. From Remark 3.2.3.6, we know that the ideal
N corresponds to numerical equivalence in Motrat(k). In other words, a morphism between
Chow motives belongs to the ideal N if and only if it is numerically trivial as an algebraic
cycle. The nilpotence Theorem 3.3.3.3 translates into:

Theorem 3.4.4.1. Let M be a Chow motive and f : M → M an endomorphism of M . If f
is numerically trivial (in particular, if f is homologically trivial), then f is nilpotent.

A nonzero Chow motive M ∈ Motrat(k) whose homological motive Mhom(k) is zero is
called a phantom motive. In other words, M is a phantom motive if M 6= 0 but H(M) = 0.
It is expected that phantom motives do not exist. If Kimura–O’Sullivan conjecture holds, it
is the case by Corollary 3.3.3.5. In fact, if M is a finite dimensional Chow motive, we even
have dim(M) = dimQ(H(M)).

Remark 3.4.4.2. Assuming finite dimensionality of Chow motives, Corollary 3.3.3.4(ii) sug-
gests that, if a splitting appears naturally in cohomology and is given by projectors coming
from algebraic cycles, then the splitting already appears on the level of Chow motives. In the
next paragraph, this idea is applied to the Künneth decomposition. In Chapter 4, it will be
applied to a splitting appearing in the cohomology of a complete intersection. 4
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3.4.5 Finite dimensionality and Künneth decomposition. In Section 2.4.1 were in-
troduced the Künneth conjecture C(X) and the Chow–Künneth conjecture CK(X). The
latter is stronger, but it is not known whether they are equivalent. For varieties with a finite
dimensional Chow motive, it turns out that it is the case.

Proposition 3.4.5.1. Let X ∈ SmProj(k) be a smooth projective variety with a finite di-
mensional Chow motive. The Künneth conjecture C(X) holds for X if and only if the Chow–
Künneth conjecture CK(X) holds for X.

Proof. Assume that C(X) holds. Let d be the dimension of X. Then there exist algebraic
cycles ∆0, . . . ,∆2d lifting the topological Künneth components ∆topo

0 , . . . ,∆topo
2d . In particular,

the induced homological cycles ∆i are projectors and the equality

∆X = ∆0 + · · ·+ ∆2d

holds in Mothom(k), i.e. as homological cycles. Since h(X) is finite dimensional, Corollary
3.3.3.4(ii) yields orthogonal Chow projectors lifting the Künneth components, whose sum is
the diagonal in Motrat(k). In other words, the Chow–Künneth conjecture holds for X.
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4 Motivic interpretation of variable and fixed cohomology

Lifting a decomposition appearing in cohomology to a decomposition on the deeper level of
Chow motives results in a better understanding of its essence. However, there are very few
cases where this task has been achieved. The part of the theory which concerns curves and
abelian varieties is well-understood, but the standard conjectures separate us from a complete
understanding of this question.

This chapter focuses on a specific case where the Lefschetz type and Kimura–O’Sullivan
conjectures bring a partial answer to the above general question. More precisely, we will
focus on a smooth complete intersection X inside a surrounding variety V . The Lefschetz
theorem on hyperplane sections, also known as the weak Lefschetz theorem, tells us that the
cohomology of V determines almost all the cohomology of X. This induces a decomposition
of the cohomology of X into a fixed part, the part that is determined by V , and what remains,
the variable part.

In the first section of this chapter, we present a proof of the Lefschetz theorem on hyper-
plane sections which relies on Morse theory.

In the second section, we study how the splitting of the cohomology of X into fixed and
variable parts can be lifted to the level of Chow motives if the Lefschetz type and Kimura–
O’Sullivan conjectures hold for the surrounding variety V , following a note of C. Peters [Pet17].

4.1 Weak Lefschetz for singular cohomology: The Lefschetz theorem on
hyperplane sections

Morse theory is a powerful tool that enables us to study the topology of smooth manifolds
through the study of the critical points of an appropriate smooth function on it, which we
will call a Morse function.

After introducing the basics of Morse theory, we apply it to complex varieties to prove the
Lefschetz theorem on hyperplane sections.

4.1.1 Reconstructing a torus. Let us first consider an example. Let M be a torus,
embedded vertically in R3 as depicted on Figure 5. Let f : M → R be the restriction to M of
the vertical coordinate of R3. This function has four critical points, i.e. points where df = 0,
namely A,B,C,D. Their images under f are called critical values. These critical points are
non-degenerate in the sense that the Hessian quadratic form of f (whose definition we recall
below) is non-degenerate at these points.

For every a ∈ R, write M≤a for the subspace of M where f ≤ a. Using f , we can now
reconstruct the torus step by step by attaching cells, see Figure 6. The idea is to “scan” M
via f and to study how its homotopy type changes whenever we pass through a critical point.

• For a < f(A), the subspace M≤a is empty.

• At the first critical value, M≤f(A) is a point. It corresponds to attaching a 0-cell. It is
homotopy equivalent to a 2-cell, see (0) on Figure 6.

• Between f(A) and f(B), there are no critical values, so M≤a is a 2-cell for all a between
these values.
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A

B

C

Df(D)

f(C)

f(B)

f(A)

Figure 5: Torus

• At the next critical value, M≤f(B) is a 2-cell with two points of its boundary identified.
This corresponds to the attachment of a 1-cell (1), which results in a space homotopy
equivalent to a cylinder (2). For all a ∈ (f(B), f(C)), M≤a has the same homotopy
type.

• Now, M≤f(C) is a cylinder where we identify one point of each boundary. This corre-
sponds to the attachment of a 1-cell (3), which results in a space homotopy equivalent
to a torus minus a disk (4). For all a ∈ (f(C), f(D)), M≤a has the same homotopy
type.

• At the last critical value f(D), M≤f(D) is the whole torus M . This corresponds to the
attachment of a 2-cell (5), ending the reconstruction.

1

2

3

4

5

≃

≃

0

Figure 6: Reconstruction of the torus using the function f

From this we can conclude that the torus is homotopy equivalent to a CW-complex with
one 0-cell, two 1-cells and one 2-cell.

4.1.2 Morse functions. Let us recall the definition of the Hessian bilinear form of a
smooth function f on a smooth manifold M . Let x1, . . . , xn be local coordinates around a
point 0 ∈M . Then the vectors ∂/∂xi, i = 1, . . . , n, form a basis of the tangent space TM,0 of
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M at 0. The Hessian quadratic form of f at 0 is defined by

Hess0 f

(
∂

∂xi
,
∂

∂xj

)
=

(
∂2f

∂xi∂xj

)
(0).

Now assume 0 ∈M is a critical point of f . If Hess0 f is non-degenerate, it can be represented
by a diagonal matrix with only 1’s and -1’s in an appropriate basis of TM,0. In this case, we
say that 0 is a non-degenerate critical point of f . The number of -1’s is independent of the
basis and is called the Morse index of f at 0, denoted ind0 f .

Around a non-degenerate critical point, the function f is characterized by its Morse index
at that point. This local description is the basis of Morse theory:

Lemma 4.1.2.1 (Morse lemma). If 0 is a non-degenerate critical point of a function f on
a smooth manifold M , then there exist local coordinates x1, . . . , xn around 0 such that, for
x = (x1, . . . , xn) around 0, we have

f(x) = f(0)−
r∑
i=1

x2
i +

n∑
i=r+1

x2
i (16)

with r = ind0 f .

In particular, the critical points are isolated, and the critical values are isolated locally
on M . A function f : M → R is said to be an exhaustion function if M≤a is compact for all
a ∈ R. If f : M → R is a smooth function whose critical points are non-degenerate, it is called
a Morse function. In that case, there are only finitely many critical values ≤ a, for any a ∈ R.

Note that, in the example of the torus above, the Morse indices of the critical points
correspond to the dimension of the cells that we attached: indA f = 0, indB f = indC f = 1
and indD f = 2. This can be understood visually using the lemma above. Indeed, around A,
f looks like (in appropriate coordinates) f(x) = f(A) + x2

1 + x2
2, so locally M looks like the

graph of x2
1 +x2

2, i.e. a paraboloid. Around B and C it looks like a saddle. Around D it looks
like a paraboloid again, but this time it is pointing downward.

This is in fact a general phenomenon, which can be proven by studying the topology of
level sets of functions of the form of equation (16). This results in the following theorem, see
[MSW69, Thm. 2.10], or [Voi02, Thm. 13.15]:

Theorem 4.1.2.2. Let f : M → R be a Morse function on a smooth manifold M , λ ∈ R a
critical value and ε > 0 such that it is the only critical value of f in [λ − ε, λ + ε]. Let 0i,
i = 1, . . . , r be the corresponding critical points of f and ri their Morse index. Then M≤λ+ε

deformation retracts onto the attachment of ri-cells to Mλ−ε. The images of the attaching
maps are pairwise disjoint.

The next natural question to ask concerns the existence of a Morse function on a given
smooth manifold M . It turns out that, given a smooth embedding M ↪−→ RN , the function
square of distance f0 : M → R : x 7→ d(0, x)2 = |x − 0|2 is a Morse function for almost any
point 0 in RN , i.e. for all point in a dense subset of RN [Voi02, Lem. 13.17].
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4.1.3 Lefschetz theorem on hyperplane sections. Given a complex affine manifold
M of (complex) dimension n, embedded in some affine complex space CN , the usual hermitian
metric on CN and a point 0 ∈ CN ∼= R2N such that f0 is a Morse function on M , it turns out
that the Morse index of f0 is ≤ n at any critical point of f0. In other words, it implies that
M has the homotopy type of a CW-complex of (real!) dimension ≤ n.8 From this result, we
obtain a proof of the Lefschetz theorem on hyperplane sections [AF59]:

Theorem 4.1.3.1 (Lefschetz theorem on hyperplane sections). Let X ⊂ PN be a smooth
complex projective subvariety of dimension n and Y = PN−1 ∩X an hyperplane section of X.
Then the morphism

j∗ : H i(X,Z)→ H i(Y,Z),

induced by the inclusion j : Y ↪−→ X, is an isomorphism for all i < n− 1 and is injective for
i = n− 1. Similarly, the morphism

j∗ : Hi(X,Z)→ Hi(V,Z)

is an isomorphism for all i < n− 1 and is injective for i = n− 1.

Proof. We show the statement for cohomology, the argument for homology is similar. The
inclusion j yields a long exact sequence in cohomology with compact support (which coincides
with singular cohomology for X and Y since they are compact)

· · · → H i
c(X − Y,Z)→ H i(X,Z)→ H i(Y,Z)→ H i+1

c (X − Y,Z)→ . . . .

By Poincaré duality for orientable manifolds,

H i
c(X − Y,Z) ∼= H2n−i(X − Y,Z)

for all 0 ≤ i ≤ 2n. Moreover, X−Y is an n-dimensional affine complex manifold, hence it has
the homotopy type of a ≤ n-dimensional CW-complex by the discussion above. Therefore, its
singular homology vanishes in all degrees > n. In particular, H i

c(X − Y,Z) = 0 for all i < n
and the result follows from the long exact sequence above.

Remark 4.1.3.2. In the proof above, we only need that X −Y is a smooth manifold, so it still
works if X is not smooth and Y contains the singular locus of X. Note also that a Veronese
embedding enables us to generalize this theorem to hypersurface sections. 4

4.2 Splitting of the cohomology of a complete intersection

Let V be an irreducible smooth projective variety and X = H1 ∩ · · · ∩Hr ⊂ V be a smooth
complete intersection of r smooth hypersurfaces in V . Let d be the dimension of X, thus V
has dimension d+r. By applying Lefschetz theorem 4.1.3.1 r times, we find that the inclusion
j : X ↪−→ V induces an isomorphism

j∗ : H i(V )→ H i(X)

8Note that it is clearly not the case for complex projective manifold, for example the complex projective
line does not have the homotopy type of a ≤ 1 dimensional CW-complex because H2(P1

C,Z) ∼= Z.
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for all i < d, and it is injective for i = d. Hard Lefschetz tells us that H i(X) ∼= H2d−i(X)
for all i < d. Thus, the knowledge of the cohomology of V implies the knowledge of the
cohomology of X, except for its middle part Hd(X). We still know that j∗ : Hd(V )→ Hd(X)
is injective, its image is called the fixed part of the cohomology of X

Hd
fix(X) := Im(j∗ : Hd(V )→ Hd(X)).

We define the variable part Hd
var(X) as the orthogonal complement of Hd

fix(X) in Hn(X) with
respect to the cup product, which yields a nondegenerate bilinear form on Hd(X) by Poincaré
duality. In fact,

Hd
var(X) = ker(j∗ : Hd(X)→ Hd+2r(V )).

This follows from the projection formula j∗(j
∗x∪ y) = x∪ j∗y, for all x ∈ Hd(V ), y ∈ Hd(X)

[Har75, Thm. 7.5], [Hat02, p. 241]. Therefore, we have

Hd(X) = Hd
fix(X)⊕Hd

var(X) (17)

where Hd
fix(X) only depends on the cohomology of V and Hd

var(X) is the part of the cohomol-
ogy of X that really depends on X.

4.2.1 Projector on the fixed cohomology. With the same notations as above, we
define the total fixed and total variable parts of the cohomology of X as

Hfix(X) := Im(j∗ : H(V )→ H(X))

Hvar(X) := ker(j∗ : H(X)→ H(V )).

In degree d, they coincide with the fixed and variable parts introduced above. In every other
degree, as one would expect, the variable part is trivial and the fixed part is everything.
Indeed, the morphism j∗ is surjective in all degrees 6= d:

• In degrees d− i with 0 < i ≤ d, j∗ is even an isomorphism by Weak Lefschetz.

• In degrees d+ i with 0 < i ≤ d, consider the following commutative diagram:

Hd+i(V ) Hd+i(X)

Hd−i(V ) Hd−i(X)

j∗

LiLi

j∗

The right arrow is an isomorphism by Hard Lefschetz. The bottom arrow is an isomor-
phism by Weak Lefschetz. Thus, the top j∗ must be surjective.

On the other hand, j∗ is injective in all degrees 6= d:

• In degrees d + i with 0 < i ≤ d, j∗ is even an isomorphism by Weak Lefschetz for
homology and Poincaré duality.
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• In degrees d− i with 0 < i ≤ d, consider the following commutative diagram:

Hd−i(X) Hd+2r−i(V )

Hd+i(X) Hd+2r+i(V )

j∗

Li ∼=

j∗

∼=

Li

The left arrow is an isomorphism by Hard Lefschetz. As above, the bottom arrow is an
isomorphism by Weak Lefschetz in homology together with Poincaré duality. Thus, the
top j∗ must be injective.

The projection formula implies that Hfix(X) and Hvar(X) are orthogonal. All in all, we
have an orthogonal splitting

H(X) = Hfix(X)
⊥
⊕Hvar(X) (18)

of the total cohomology H(X) of X into its fixed part, determined by V , and its variable
part.

Since this splitting appears naturally in the cohomology of any complete intersection
X ↪−→ V , we can wonder whether it already appears on the level of Chow motives. In the next
section, we will see that it is the case if the surrounding variety V satisfies certain conditions.
In order to make this precise, we first need to make explicit the projectors of H(X) onto the
fixed and variable parts.

Lemma 4.2.1.1. The composition Lr ◦Λr is the identity on LrH(V ), i.e. Lr ◦Λr ◦Lr = Lr.

Proof. We prove this by induction on r, using the definition (7) of Λ.
For r = 1, we have

L ◦ Λ ◦ L =

{
L ◦ (Li+2)−1 ◦ Li+1 ◦ L
L ◦ Li−1 ◦ (Li)−1 ◦ L

}
= L

where the cases subdivision and i depend on the degree we are considering in H(V ).
Let r > 1 and assume that the result holds for r − 1. In the first case, we have

Lr ◦ Λr ◦ Lr = Lr ◦ Λr−1 ◦ (Li+2)−1 ◦ Li+1 ◦ Lr = Lr ◦ Λr−1 ◦ (Li+2)−1 ◦ Li+2︸ ︷︷ ︸
=id

◦Lr−1

= Lr ◦ Λr−1 ◦ Lr−1 = L ◦ Lr−1 ◦ Λr−1 ◦ Lr−1 = L ◦ Lr−1 = Lr

and in the second case, we have

Lr ◦ Λr ◦ Lr = Lr ◦ Λr−1 ◦ Li−1 ◦ (Li)−1 ◦ Lr{
i≤r
= Lr ◦ Λr−1 ◦ Li−1 ◦ (Li)−1 ◦ Li ◦ Lr−i = Lr ◦ Λr−1 ◦ Li−1 ◦ Lr−1

i>r
= Lr ◦ Λr−1 ◦ Lr−1 ◦ Li−r ◦ (Li)−1 ◦ Lr = L ◦ Lr−1 ◦ Li−r ◦ (Li)−1 ◦ Lr

= Lr.

Thus, the result holds no matter which degree in H(V ) we are considering. This concludes
the induction step, hence the proof.
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Remark 4.2.1.2. The degree e of the complete intersection X ⊂ V is the product of the degrees
of the hypersurfaces H1, . . . ,Hr defining it. It follows from 2.4.2.2 that the composition j∗ ◦j∗
equals eLi where L is the Lefschetz operator. 4

We are finally ready to make explicit the projector of H(X) onto Hfix(X):

Proposition 4.2.1.3. The cohomological correspondence

Πfix :=
1

e
j∗ ◦ Λr ◦ j∗

is a projector of H(X) onto the fixed part Hfix(X). Thus, the cohomological correspondence
Πvar := idH(X)−Πfix is a projector of H(X) onto the variable part Hvar(X).

Proof. First, it is clear that Πfix acts as zero on Hvar(X) = ker(j∗).
We show that Πfix acts as the identity on Hfix(X) = Im(j∗), onto which j∗, resp. on which

j∗, is surjective, resp. injective, by the above discussion. Hence, it suffices to show that

j∗ ◦Πfix ◦ j∗ = j∗ ◦ j∗

on H(V ). We have

j∗ ◦Πfix ◦ j∗ =
1

e
j∗j
∗Λrj∗j

∗ =
e2

e
LrΛrLr = eLr = j∗ ◦ j∗

where the one before last equality follows from Lemma 4.2.1.1. This shows that Πfix acts as
the identity on H 6=d(X). This concludes the proof.

4.2.2 Motivic nature of the splitting. In this section, ∼=∼rat and we only deal with
Chow motives. Following Peters [Pet17], we explain how the splitting (17) has a motivic
nature for varieties V with finite-dimensional Chow motive and such that B(V ) holds. From
now on, we make these assumptions: h(V ) is finite dimensional and B(V ) holds.

The standard conjecture of Lefschetz type B(V ) states that Λ is induced by an algebraic
correspondence λ ∈ Corr−1

rat(V, V ). Thus, the projector Πfix is algebraic: it comes from the
algebraic correspondence 1

e j
∗◦λr ◦j∗. However, this latter correspondence may not be a Chow

projector, i.e. a projector on h(X). A first idea would be to apply Corollary 3.3.3.4 in order
to find a Chow projector lifting Πfix. For this, we would need h(X) to be finite dimensional
but this was only assumed for h(V ). Thus this approach does not work. However, one can
show that Πfix factors through a projector on H(V ), for which we can apply Corollary 3.3.3.4.

Lemma 4.2.2.1. If h(V ) is finite dimensional and B(V ) holds, then there exists a cor-
respondence λr ∈ Corr−r(V, V ) such that Lr ◦ λr : h(V ) → h(V ) is a projector inducing
Lr ◦ Λr : H(V )→ H(V ) in cohomology.

Proof. The argument is almost the same as the one in the proof of Corollary 3.3.3.4. The
Chow correspondence p = Lr ◦ λr induces a projector p on H(V ), hence p2 − p is nilpotent
by Theorem 3.3.3.3. Thus (p2 − p)k = 0 for some k > 0. Then

p′ := (1− (1− p)k)k = pk ◦ P (p)k = Lr ◦ λr ◦ pk−1 ◦ P (p)k

is a projector on h(V ) and we put λr := λr ◦ pk−1 ◦ P (p)k.
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Remark 4.2.2.2. For r = 1, the above lemma implies that the cohomological projector Πpr =
idH(V )−L◦Λ (9) is induced by a Chow projector πpr := idh(V )−L◦λ1. Therefore, the splitting
(8) of H(V ) is induced by a splitting

h(V ) = hpr(V )⊕ (L ◦ λ1) h(V )

where hpr(V ) := (V, πpr) could be defined as the primitive part of the Chow motive of V and
its cohomology is precisely H(hpr(V )) = Hpr(V ), that is, the primitive cohomology of V .

Note that we do not define hpr(V ) as the primitive Chow motive of V because the definition
of πpr is not canonical: defining λ1 involves a choice.

On the level of homological motives, the correspondence Πpr = id−L ◦ λ is already a
projector and defines a canonical primitive homological motive of V . It is not clear whether
there is a canonical primitive Chow motive of V . 4

The idea from the above remark applies for the splitting into fixed and variable parts, as
is made explicit in the following result, in which we recall the situation for clarity:

Proposition 4.2.2.3 ([Pet17]). Let V ∈ SmProj(C), for which B(V ) holds and assume that
h(V ) is finite dimensional. Let X ↪−→ V be a smooth complete intersection of dimension d.
Then there exist orthogonal Chow projectors πfix and πvar on h(X) inducing projection onto
the fixed and variable parts in cohomology. In other words, the Chow motive of X admits a
splitting

h(X) = hfix(X)⊕ hvar(X)

inducing the splitting (18) in cohomology.

Proof. Let r be the codimension of X in V , that is, the number of hypersurfaces defining it.
Put

πfix :=
1

e
j∗ ◦ λr ◦ Lr ◦ λr ◦ j∗.

It is a projector:

(πfix)2 =
1

e2
j∗ ◦ λr ◦ Lr ◦ λr ◦ j∗ ◦ j∗︸ ︷︷ ︸

=eLr

◦λr ◦ Lr ◦ λr ◦ j∗

=
1

e
j∗ ◦ λr ◦ Lr ◦ λr ◦ Lr ◦ λr ◦ Lr ◦ λr︸ ︷︷ ︸

=Lr◦λr

◦j∗

= πfix

where we used that Lr ◦ λr is a projector by construction. Thus πvar := idh(X)−πfix is also a
projector and they are orthogonal.

It remains to show that πfix induces projection onto the fixed part in cohomology. Write
πfix = 1

ej
∗ ◦ λr ◦ Lr ◦ Λr ◦ j∗ the projector in cohomology induced by πfix. As in the proof of

Proposition 4.2.1.3, it suffices to show that j∗ ◦ πfix ◦ j∗ = j∗ ◦ j∗:

j∗ ◦ πfix ◦ j∗ =
1

e
j∗ ◦ j∗︸ ︷︷ ︸
=eLr

◦λr ◦ Lr ◦ λr ◦ j∗ ◦ j∗︸ ︷︷ ︸
=eLr

= eLr ◦ λr ◦ Lr ◦ λr ◦ Lr

= eLr = j∗ ◦ j∗
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where we used that Lr ◦λr = Lr ◦Λr by construction and then Lemma 4.2.1.1. This concludes
the proof.

Remark 4.2.2.4. Note that the fixed part hfix(X) = (X,πfix) as defined in the above result
is a submotive of the motive h(V ) of the surrounding variety. This is made explicit by the
following diagram:

h(V ) hfix(X)

1
e
πfix◦j∗◦λr◦Lr

pfix:=λr◦Lr◦λr◦Lr

λr◦j∗◦πfix

idhfix(X)=πfix

The correspondence pfix is a projector by construction of λr and the two maps between h(V )
and h(X) yield an isomorphism

pfix h(V ) ∼= hfix(X).

In particular, since we assumed h(V ) to be finite dimensional, h(X) is also finite dimensional.
4

Example 4.2.2.5. Following Example 2.4.2.3, the r-th power of the Lefschetz and Λ operators
on CH(Pd+r) are represented by the correspondences

Lr =
d+r∑
j=r

αd+2r−j
1 αj2 and λr =

d∑
j=0

αd−j1 αj2

in CH(Pd+r × Pd+r) = Q[α1, α2]/(αd+r+1
1 , αd+r+1

2 ). Their composition λr ◦ Lr is given by the
coefficient of αd+r

2 in the product(
d+r∑
j=r

αd+2r−j
1 αj2

)
·

(
d∑
l=0

αd−l2 αl3

)
=

d+r∑
j=r

d∑
l=0

αd+2r−j
1 αd−l+j2 αl3.

We find

λr ◦ Lr =

d∑
l=0

αd+r−l
1 αl2

which is already a projector. Hence the projector pfix from Remark 4.2.2.4 is

pfix = λr ◦ Lr =

d∑
l=0

αd+r−l
1 αl2,

which is known from Example 2.1.2.9 as the projector onto the submotive 1⊕ · · · ⊕ Ld in
h(Pd+r).

As a result, the Chow motive of any smooth complete intersection X of dimension d in
Pd+r splits as

h(X) = 1⊕ · · · ⊕ Ld︸ ︷︷ ︸
hfix(X)

⊕ hvar(X). (19)

4
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In the example above, the splitting (19) is a Chow–Künneth decomposition. Indeed, it
gives a decomposition

∆X = q0 + q2 + · · ·+ q2d︸ ︷︷ ︸
πfix

+πvar

of the diagonal of X into orthogonal projectors. For i 6= d, the projector qi induces the i-th
Künneth component. The middle degree Künneth component is induced by qd + πvar if d is
even and πvar if d is odd. In particular, this shows:

Corollary 4.2.2.6. Complete intersections in projective spaces admit a Chow–Künneth de-
composition.

See [MNP13, App. C] for a different proof of that fact.

Example 4.2.2.7. If d = r = 1 in the above example, then X is a smooth curve in P2 and we
get

h(X) = 1⊕L⊕ hvar(X).

Thus, the variable part hvar(X) is precisely the middle part h1(X). 4
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