
DUAL LAGRANGIAN FIBRATIONS

T. BECKMANN & D. HUYBRECHTS

Abstract. These are notes of a survey talk on fibrations naturally associated with a La-
grangian fibration of a hyperkähler manifold and recent results by Arinkin–Fedorov [AF16],
Kim [Ki21], Nagai [Na05], and Saccà [Sa20, Sa21] addressing the possibility of (partially)
compactifying them.

1. Introduction

We consider a Lagrangian fibration f : X // //B of a projective hyperkähler manifold X and
denote by X0 Ă X the open union of all smooth fibres which comes with a smooth, projective
morphism f0 : X0

//B0 over some open subset B0 Ă B. With this situation, two abelian
schemes are naturally associated:

P0
//B0 and P_0 //B0.

The first one, P0 » Aut0pX0{B0q » AlbpX0{B0q, can be described as the relative Albanese
scheme or, alternatively, as a relative scheme of automorphisms, while the second one P_0 »

Pic0pX0{B0q is the (identity component of the) relative Picard scheme. The latter is the dual
abelian scheme of the former. Note that the original X0

//B0 is a torsor for P0
//B0, which

naturally compactifies to X //B.

From here, two parallel stories develop, but the main questions are the same for both:

(1) Can P0
//B0 and P_0 //B0 be (partially) compactified to a (smooth) symplectic variety

with a Lagrangian fibration over B?

(2) Can torsors for P0
//B0 or over P_0 //B0 be (partially) compactified to (smooth) sym-

plectic varieties with a Lagrangian fibration over B?

We will discuss work of Arinkin–Fedorov [AF16], Kim [Ki21], Nagai [Na05], and Saccà [Sa20,
Sa21] addressing these questions.

‚ In [AF16] a construction is described that partially compactifies P0
//B0 to a smooth

commutative group scheme P1
// //B1 over the open subscheme B1 Ă B of all points with

integral fibres, see Section 6. Furthermore, P1 acts faithfully on X over B.

This review was prepared in the context of the seminar organized by the ERC Synergy Grant HyperK, Grant
agreement ID 854361. The talk was delivered on December 17, 2021.
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‚ In [Na05] a smooth commutative group scheme (or, rather, a separated algebraic space)
P_1

// //B1 is constructed that partially compactifies P_0 //B0 and admits a symplectic struc-
ture, see Section 5.1 The construction extends to the open subset of B of all points with fibres
with at least one reduced component.

‚ In [Ki21], at least for the standard deformation types of compact hyperkähler manifolds, the
natural torsor for P_0 //B0 associated with the torsor X0

//B0 for P0
//B0 is compactified

to a projective but singular hyperkähler variety X_ //B, see Section 7.

‚ In the forthcoming work [Sa21], assuming B1 “ B, any torsor for the Arinkin–Fedorov
partial compactification P1

//B1 “ B is compactified to a smooth projective hyperkähler
manifold with Lagrangian fibration over B, see Section 8.

Apart from [AF16] the existence of the compact hyperkähler manifold X as the starting point
of the consideration is crucial.

Acknowledgement: We are grateful to D. Arinkin for answering our questions. Thanks also
to P. Belmans for comments on the first version.

2. Preparations I: Abelian schemes, Albanese, Picard

2.1. Let us start with a smooth complex projective variety Y (or, more generally, a compact
Kähler manifold). Classically, one associates two abelian varieties with Y (or, in the Kähler
case, two complex tori): The Albanese variety AlbpY q and the Picard variety Pic0pY q. The
Albanese variety is characterized by its universality property.2

Both, Picard and Albanese variety, admit an explicit description as complex tori naturally
associate with Hodge structures of weight one:

Pic0pY q » H0,1pY q{H1pY,Zq and AlbpY q » H1,0pY q˚{H1pY,Zq˚.

Note that using this description, there exists a natural isomorphism of integral Hodge structures
of weight one

H1pAlbpY q,Zq » H1pY,Zq

which immediately leads to the following classical consequence.

Corollary 2.1. The Albanese variety AlbpY q and the Picard variety Pic0pY q are dual abelian
varieties, i.e. there exist natural isomorphisms

AlbpY q_ :“ Pic0pAlbpY qq » Pic0pY q and AlbpY q » Pic0pPic0pY qq.

1The notation suggests that P1 and P_
1 are dual, but it is not clear whether (and in what sense) this is true.

2For any point y P Y there exists a morphism alby : Y //AlbpY q with albpyq “ 0AlbpY q such that every other
morphism Y // T , y � // 0T , to an abelian variety T factorizes through a unique morphism of abelian varieties
AlbpY q // T .
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Remark 2.2. (i) Although, both abelian varieties Pic0pY q and AlbpY q can be constructed
purely algebraically, i.e. they can be constructed for varieties over any field, they are very
different in nature. The Picard variety is a moduli space of sheaves on Y , while the Albanese
variety is described by its universal property. Once duality has been established, AlbpY q can
also be viewed as a moduli space of sheaves on PicpY q.

(ii) Also the Albanese morphism alby : Y //AlbpY q can be reconstructed using the descrip-
tion of AlbpY q as the dual of Pic0pY q. More precisely, consider the Poincaré bundle P on
Y ˆPic0pY q normalized such that P|yˆPic0pY q is trivial. Then, P as a family of line bundles on
Pic0pY q parametrized by Y determines the classifying morphism

Y //Pic0pPic0pY qq » AlbpY q, x � //P|xˆPic0pY q,

which is nothing but alby.

(iii) This point of view has the advantage to work more generally for normal projective (or
complete) varieties Y . In this case, Pic0pY q is still an abelian variety (in positive characteristic
one needs to pass to the reduction) and the dual abelian variety of Pic0pY q can be taken as the
definition of AlbpY q.

The automorphism group AutpY q acts naturally on AlbpY q and Pic0pY q. More precisely,
any g P AutpY q acts on both varieties as an isomorphism of abelian varieties, i.e. preserving the
origin. Note however, that this action is trivial on the connected component idY P Aut0pY q Ă

AutpY q, as any continuous group acts trivially on the discrete cohomology H1pY,Zq.3 However,
there is another action of Aut0pY q on the Albanese variety defined via the universality property
by the commutativity of the diagram:

Y

g

��

alby // AlbpY q

Albpgq

��
Y

alby

// AlbpY q.

Note that with this definition Albpgq is only an isomorphism of varieties but does not necessarily
fix the origin. The definition of Albpgq is independent of the choice of y P Y . A point x P Y is
being sent to the functional given by integrating 1-forms along

şx
y and its image under Albpgq

is given by integration along
şgpxq
y “

şx
y `

şgpxq
x . The second summand is independent of y.

In particular, with this definition, the action of Aut0pY q Ă AutpY q on AlbpY q is usually not
trivial.4 Using that AlbpY q is an abelian variety and Aut0pY q is connected, every Albpgq is in

3We consider Aut0pY q as a group variety, which in general is neither compact nor abelian. Also note that
AlbpY q is a birational invariant while Aut0pY q is not.

4Note that for the same reason as before this action of Aut0pY q on the variety(!) AlbpY q induces a trivial
action on its Picard variety Pic0pAlbpY qq » Pic0pY q.
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fact given by translation. This yields a (natural) morphism of group schemes

(2.1) Aut0pY q //AlbpY q.

2.2. We next consider the case that Y is isomorphic to an abelian variety A, but we do not
fix any such isomorphism and, in particular, we do not fix a distinguished point of Y as the
origin. In this case, the universality property of the Albanese variety shows that as varieties
Y » AlbpY q, but there is no natural choice of such an isomorphism, a point y P Y needs to be
fixed. In fact, the more natural thing to do is to view Y as a torsor.

Lemma 2.3. If Y is isomorphic to an abelian variety, then there exists a canonical isomorphism
of group varieties

Aut0pY q » AlbpY q.

Via this isomorphism, Y can be naturally considered as a torsor for AlbpY q.

Proof. Since Y is isomorphic to an abelian variety, the scheme Aut0pY q is isomorphic to Y and
acts on Y as well as AlbpY q free and transitively. Hence, the morphism

Aut0pY q //AlbpY q

from (2.1) is injective as well as surjective and sends the identity to 0AlbY . �

2.3. Let us recall another bit of the classical theory of abelian varieties. Any line bundle L on
a smooth projective variety Y induces a natural homomorphism of algebraic groups

(2.2) φL : Aut0pY q //Pic0pY q, g � // g˚Lb L´1.

In the case that Y is isomorphic to an abelian variety, i.e. for any point y P Y the Albanese
map alby : Y

„ //AlbpY q is an isomorphism, the morphism φL can be described alternatively as

(2.3) ϕLy : Aut0pY q » AlbpY q //AlbpY q_ » Pic0pY q.

Here, Ly is the line bundle on AlbpY q satisfying alb˚yLy » L and ϕM : A //A_ for a line bundle
M on an abelian variety A is the standard morphism x � // t˚xM bM´1 (which only depends
on the class M P NSpAq). Note although Ly depends on the choice of the point y P Y , the
morphism ϕLy does not, simply because it coincides with ϕL. Also, as explained earlier, the
two isomorphisms involved in (2.3) are canonical.

2.4. We now turn to the relative situation. Assume f : Y // T is a smooth projective morphism
with connected fibres. The relative versions of Albanese and Picard provide two abelian schemes

(2.4) g : AlbpY{T q // T and h : Pic0pY{T q // T.

By definition, an abelian scheme A // T is a smooth projective group scheme over T with
connected fibres. In particular, it comes with a zero-section σ : T //A and each fibre At, t P T ,
is an abelian variety with its origin given by σptq P At. For the two abelian schemes (2.4) the
fibres are AlbpYtq and Pic0pYtq. For the latter, σ is simply t � //OYt .



5

The Hodge-theoretic description and the duality in the absolute case carry over to the relative
description. For example, there exists a natural isomorphism of variation of Hodge structures

R1f˚Z » R1g˚Z

and the dual abelian scheme of AlbpY{T q // T is Pic0pY{T q // T , i.e.

Pic0pAlbpY{T q{T q » Pic0pY{T q and AlbpY{T q » Pic0pPic0pY{T q{T q.

Remark 2.4. As in Remark 2.2, the situation generalizes in a straightforward way to projective
families f : Y // T with connected normal fibres over a smooth (reduced is enough) base. The
relative Picard variety Pic0pY{T q // T is known to exist as a smooth abelian scheme over T , see
[FAG]. The Albanese AlbpY{T q // T is defined as the dual abelian scheme Pic0pPic0pY{T q{T q.

For any smooth projective morphism f : Y // T one can also consider

Aut0pY{T q // T,

which in general is only a group scheme, neither abelian nor proper, cf. [Br18, Sec. 2] for
standard facts and references. The natural morphisms (2.1) for all fibres glue to a morphism

Aut0pY{T q //AlbpY{T q

of group schemes over T . Similarly, if L is a line bundle on Y, then the morphisms φLt in (2.7)
glue to a morphism of group schemes over T

(2.5) φL : Aut0pY{T q //Pic0pY{T q.

In fact, we only need the data of line bundles Lt on all fibres Yt varying algebraically with
t and not the global line bundle L on Y. In other words, there exists a natural morphism
φ : Aut0pY{T q //Pic0pY{T q for any section of PicpY{T q // T .

2.5. Assume now that all fibres of the smooth projective morphism f : Y // T are isomorphic
to abelian varieties (but not assuming that any such isomorphism has been fixed). Again,
the discussion in the previous sections carries over and shows that there exists a canonical
isomorphism

(2.6) P0 :“ Aut0pY{T q » AlbpY{T q

and that Y // T is naturally a torsor for Aut0pY{T q » AlbpY{T q. We denote the dual abelian
scheme by

P_0 :“ Pic0pY{T q » Pic0pP0{T q.

Thus, for any relative ample line bundle L on Y // T we have have a finite étale morphism

(2.7) φL : P0
// //P_0

of abelian schemes over T . Note that (2.5) does not necessarily admit an alternative description
that globalizes the morphisms ϕLy in (2.3), since typically we cannot choose points yt P Yt
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in a uniform manner. As noted before, in order to define φL one only needs a section of
PicpY{T q // T and not necessarily a global line bundle. Moreover, since ϕM : A //A_ for an
abelian variety A only depends on the class M P NSpAq, (2.7) is well defined for any global
section of R2f˚Z that fibrewise is contained in H1,1pYt,Zq and is locally (in T ) induced by a
line bundle.

2.6. Still assuming Y // T to be a smooth projective morphism with fibres isomorphic to
abelian varieties, we consider the finite étale morphism φL : P0

// //P_0 . Its kernel

K :“ KerpφLq Ă P0

is a finite subgroup scheme over T . Furthermore, its quotient is P_0 :

P0{K » P_0 .

As K Ă P0, it acts on P0 but since P0 » Aut0pY{T q it also acts (over T ) on Y. We denote the
quotient of this action by Y_ :“ Y{K. It is naturally a torsor for P_0 :

YGG
// // Y_ “ Y{K

II

P0
// // P_0 “ P0{K

.

In the applications, K will be a constant group scheme associated with a finite group of
automorphisms K Ă AutpYq. Conversely, any automorphism of Y that commutes with f

and is fibrewise isotopic to the identity defines a section of P0
// T . Thus, the subgroup

AutpY, fq Ă AutpYq of all such gives a constant subgroup scheme AutpY, fqT �
� //P0.

3. Preparations II: Elliptic K3 surfaces

This section can be read as a preparation for the subsequent parts or as an illustration of
the abstract results to be presented there. The reader should feel free to skip this section at
a first reading. The theory of Lagrangian fibrations of K3 surfaces, so elliptic K3 surfaces, is
rather explicit and can help to understand the more complicated picture in higher dimensions.
However, as elliptic curves are principally polarized, at certain points the difference between
the Albanese fibration and the Picard fibration is blurred and certain general features are less
clear.

Let f : X //B :“ P1 be an elliptic K3 surface. As we are not assuming the existence of a
section, this is often just called a genus one fibration. Denote by

X0 Ă X 1 Ă X

the two open subsets consisting of all smooth fibres respectively all points at which f is regular.
Hence, the image of the restriction f0 :“ f |X0 : X0

//B0 is the proper open subset B0 Ă B “ P1

of all points with smooth fibre and f 1 : X 1 //B is still surjective, as every fibre admits at least
one reduced component, cf. [Hu16, Sec. 11.1.3].
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3.1. As in the general situation (2.6), two out of the three abelian schemes naturally associated
with f : X0

//B0 are isomorphic:

P0 :“ AlbpX0{B0q » Aut0pX0{B0q

and X0
//B0 is naturally a torsor for g0 : P0

//B0. Furthermore, the dual abelian scheme is

P_0 :“ Pic0pX0{B0q » Pic0pP0{B0q.

To a line bundle L on X (on X0 suffices) one associates a morphism φL : P0
//P_0 . If L is

fibrewise ample, φL is étale of degree degpL|Xtq2. In general, X or, equivalently, X0 may not
admit a line bundle L that is fibrewise of degree one. However, as explained above, φL really
only depends on the induced section of R2f0˚Z over B0, Moreover, one can in fact define φL
for any given section of R2f0˚Z. Since the fibres are curves, the condition to be of type p1, 1q
is automatic.

It turns out that the local system R2f0˚Z is trivial and that a global trivializing section
restricts to a generator of H2pXt,Zq for any smooth fibre Xt. Indeed, the class of a fibre rXts P

H2pX,Zq is primitive and the intersection form is unimodular. Thus, there is a distinguished
isomorphism

φ : P0
„ //P_0 .

3.2. Clearly, X0
//B0 can be compactified to an elliptic K3 surface, namely to X //B itself.

What about P0 and P_0 ? It turns out that the latter can in fact be compactified to a K3 surface.
As a first step, one considers the partial compactification provided by the relative Picard variety

Pic0pX{Bq //B,

which is projective only over B0. Thinking of Pic0pX{Bq as parametrizing sheaves on X,
namely those of the form i˚M for M a line bundle of degree zero on a fibre Xt, it is natural to
compactify it further by the moduli space MHpvq of sheaves with Mukai vector v “ p0, rXts, 0q

that are stable with respect to a generic polarization. Then the general theory, see [Hu16, Sect.
11.4], shows that P_0 :“MHpvq is a K3 surface and the support map extends Pic0pX{Bq //B

to an elliptic fibration

P_0
//B.

Moreover, it comes with a zero section given by t � //OXt . Note that P_0 does not depend on the
choice of the polarization H on X, simply because two birational K3 surfaces are isomorphic.

Remark 3.1. (i) Since P0 » P_0 , the dual K3 surface P_0 can also be viewed as a compactifi-
cation P0 of P0

//B0. Note however, that a priori we do not have a natural compactification
of P0 that would not make use of the isomorphism P0 » P_0 , one that would only depend on
the interpretation of P0 as Alb or Aut0. This has been attempted only recently by Saccà, in
the context of higher-dimensional hyperkähler manifolds and using MMP, see Section 8.
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(ii) Since P0 » P_0
//B restricted to B0 is isomorphic to P0 » P_0 , the elliptic fibration

X //B, restricted to B0 Ă B can be viewed as a torsor for the restriction of P0 » P_0 . Hence,
X defines a class rXs PXpP0{P1q in the Tate–Shafarevich group, cf. [Hu16, Sect. 11.5].

(iii) In fact, every class α PXpP0{P1q, so a torsor X0pαq //B0 for P0 » P_0
//B0, can be

compactified to an elliptic K3 surface Xpαq //B, though most of these K3 surfaces Xpαq are
not projective.

3.3. There is another open set one can consider

X0 Ă X1 Ă X,

the union of all integral fibres, i.e. X1 is obtained from X0 by adding all fibres of type I1
(rational curve with one node) and II (rational curve with one cusp). We can view f1 :“

f |X1 : X1
//B1 :“ fpX1q Ă B as a partial compactification of X0

//B0. In fact, the general
elliptic K3 surface will have exactly 24 singular fibres all of type I1, in which case X1 “ X.

Let us next consider the open subset X 11 “ X1 X X 1 of all f1-regular points. Hence, the
fibre of X 11 //B1 are either smooth curves of genus one, isomorphic to P1zt0, 1u (in case I1),
or P1zt0u (in case II).

Remark 3.2. There exists an abelian group scheme g1 : P1
//B1 acting on X1

//B1 and such
that restriction turns X 11 //B1 into a torsor for P1

//B1. The fibres of g1 are either smooth
elliptic curves, Gm (case I1), or Ga (case II). More precisely, P1 is constructed as a partial
compactification of P0 and there are two ways to do this:

(i) Since P0 » P_0 , we can construct P1 as a partial compactification of P_0 . Namely,
P1 :“ Pic0pX1{B1q. Note that Pic0 of a rational curve with one node is indeed just Gm which
parametrizes the gluing of the fibres of OP1 at the two points 0, 1 P P1. Similarly, Pic0 of a
rational curve with one cusp is the additive group Ga. With this construction it is easy to see
that X1

//B1 is a torsor for P1
//B1.

(ii) In the second approach X1
//B1 is a torsor for P1

//B1 by construction, but the
construction of P1 itself is more involved. Consider Aut0pX1{B1q //B1. Its restriction to B0

gives back P0. The fibre over t P B1 with Xt a singular curve of type I1 is the subgroup of
AutpP1q fixing 0, 1 P P1, which is indeed Gm. The automorphism group of a fibre of type II is
isomorphic to Gm oGa and for our purposes of constructing P1 we restrict to the action of Ga,
see Example 6.2 for details. The natural action Aut0pX1{B1q ˆB1 X1

//X1 restricted to P1

has all the required properties.

(iii) This example also shows why, when one wants to construct the abelian scheme P1 for
certain singular fibres, one needs to use Aut0 instead of Alb. Indeed, the Albanese variety is a
birational invariant and the normalization of singular fibres of type I1 or II is isomorphic to P1,
which has trivial first cohomology. Thus, we see that the dimension of the relative automorphism
scheme can increase in singular fibres and we can restrict to a certain closed subgroup of
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automorphisms that deform infinitessimally to nearby fibres, whereas for the Albanese variety
no such construction is possible.

For K3 surfaces, this procedure can be extended to all of B. More precisely, there exists
an abelian group scheme P 1 // //B acting on X //B and such that with respect to this action
X 1 //B is a torsor for P 1.5

4. Lagrangian fibrations of abelian schemes and hyperkähler manifolds

We explain how symplectic structures are transferred between abelian schemes and torsors
for them. Eventually, this is applied to the smooth part of a Lagrangian fibration X //B of a
projective hyperkähler manifold.

4.1. Let us begin with an abelian scheme g : A // T and assume that A is endowed with
a symplectic structure, i.e. we are given a non-degenerate (closed) two-form σ P H0pA,Ω2

Aq

for which g is a Lagrangian fibration. In particular, each fibre At is a Lagrangian torus and
dimpAq “ 2 dimpT q.

Assume now that we are given another section τ : T //A of g : A // T (different from the
given zero-section). Translation by τ defines an automorphism τ : A „ //A (over T ) which
induces a map τ˚ on H0pA,Ω2

Aq.

Lemma 4.1. Any symplectic structure on A for which g : A // T is a Lagrangian fibration is
invariant under the action of translations by sections of g.

Proof. Consider the short exact sequence 0 //N ˚
At{A

//ΩA|At //ΩAt // 0 and the induced
exact sequence

0 // Sym2pN ˚
At{Aq

//N ˚
At{A b ΩAt //Ω2

A|At //Ω2
At

// 0.

The fact that g is a Lagrangian fibration with respect to the given symplectic structure σ P
H0pA,Ω2

Aq translates into the statement that the restriction σ|At P H0pAt,Ω
2
A|Atq is the image

of a class in H0pAt,N ˚
At{A b ΩAtq that induces an isomorphism NAt{A » ΩAt .

Since translation acts trivially on H0pAt,N ˚
At{AbΩAtq, the restriction σ|At P H0pAt,Ω

2
A|Atq

and hence σ itself remain unchanged under translation. �

Let us now consider in addition a torsor f : Y // T for the abelian scheme g : A // T or, in
other words, A » AlbpY{T q. The next result establishes a link between symplectic structures
on the two fibrations

Proposition 4.2. There is a natural bijection between (closed) symplectic structures on A and
Y for which the two fibrations g and f are Lagrangian.

5Due to the existence of multiple fibres, this is not expected to generalize to higher dimensions. The analogue
of P 1 in higher dimension could either be (i) Pic0 as in Nagai, see Section 5, or (ii) the relative P1 Ă Aut0 by
Arininkin–Fedorov, see Section 6.
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Proof. Étale locally, the two fibrations f : Y // T and g : A // T are isomorphic. The glueings
for the two fibrations differ by translations, which according to the lemma leave invariant the
symplectic structure. For example, a given symplectic structure σ on A, restricts to symplectic
structures σ|Ui on A|Ui » Y|Ui for some open covering T “

Ť

Ui and those then glue back to a
symplectic structure on Y. The converse is similar. �

4.2. We are interested in Lagrangian fibrations f : X //B of a projective hyperkähler manifold
X of dimension 2n. According to results of Matsushita, any morphism f : X // //B to a normal
variety of dimension 0 ă dimpBq ă dimpXq is a Lagrangian fibration. So, all fibres are of
dimension n and the smooth part of the reduction of any fibre is Lagrangian. In particular, for
a smooth fibre Xt the symplectic structure induces naturally an isomorphism ΩXt » NXt{X and
since the normal bundle is NXt{X » TtB b OXt is trivial, smooth fibres are abelian varieties.
The smoothness of B or, equivalently, the flatness of f is expected and has to be assumed for
most of the things that will follow. We refer to [HM21] for further information on Lagrangian
fibrations and references.

As for K3 surfaces, one denotes by X0 Ă X the union of all smooth fibres which comes with
a proper smooth fibration f0 : X0

//B0 over some open subset B0 Ă B with fibres isomorphic
to abelian varieties.

4.3. As before, we associate two abelian schemes with the situation: The relative Albanese

g0 : P0 “ AlbpX0{B0q //B0

and its dual
P_0 “ Pic0pX0{B0q » Pic0pP0{B0q //B0.

Remark 4.3. As in Remark 2.4, one could consider more generally the normal part, i.e. the
union of all normal fibres. The relative Picard and Albanese would still exist as abelian schemes.
However, it seems that normality of a fibre is often (always?) equivalent to its smoothness. So,
we do not gain anything by this generalization.

As in Section 2.6, we view X0
//B0 as a torsor for P0

//B0. Following the discussion in
Section 2, we consider

φ : P0
// //P_0

associated with the generator of the image of the restriction map H2pX,Zq //R2f0˚Z. Its
kernel K “ kerpφq Ă P0 “ AutpX0{B0q is a smooth finite group scheme over B0.

4.4. The restriction of the given symplectic structure on X endows the open subset X0 with
a closed symplectic structure for which X0

//B0 is a Lagrangian fibration. According to the
preceding discussion, this structure is passed on to the two abelian schemes P0

//B0 and
P_0

//B0. More precisely, we draw two consequences of Proposition 4.2, see [DM96, Ma96,
Na05].
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Corollary 4.4 (Donagi–Markman, Markushevich). The two abelian schemes P0
//B0 and

P_0
//B0 are both naturally (up to scaling) endowed with a closed symplectic structure for

which the projections are Lagrangian fibrations6.

Proof. Since the polarization defines étale morphisms of abelian group schemes

P0
// //P_0 // //P0,

the existence of a symplectic structure on one of the two abelian schemes induces a symplectic
structure on the other one such that the Lagrangian properties are transferred.

By virtue of Proposition 4.2, P0 “ AlbpX0{B0q is endowed with a symplectic structure for
which g is Lagrangian. This suffices to conclude. �

See also the more recent paper [BGO20], where one finds an explicit description of the
symplectic structure on P0, similar to the one by Markushevich [Ma96], and on P_0 .

Corollary 4.5. All torsors h : Y0 //B0 for P0
//B0 are naturally (up to scaling) endowed with

a closed symplectic structures for which h is a Lagrangian fibration. An anologous statement
holds for torsors for P_0 //B0. �

Note that in the above proof the composition P0
// //P_0

// //P0 is multiplication by the
square of the degree of the polarization. Under this pull-back, a symplectic structure on P0 is
multiplied by a scalar (the fourth power of the degree).

Remark 4.6. The abelian scheme P_0 //B0 can be viewed as an open subset of a moduli space
of sheaves on X, namely those of the form i˚L, where i : Xt

� � //X is the closed embedding of a
smooth fibre and L is a degree zero line bundle on Xt. The tangent space of Xt and X at the
point rLs are canonically isomorphic to Ext1XtpL,Lq and Ext1Xpi˚L, i˚Lq respectively. It would
be more natural to describe the symplectic form on P_0 as given by the pairing

Ext1Xpi˚L, i˚Lq ˆ Ext1Xpi˚L, i˚Lq // Ext2Xpi˚L, i˚Lq
tr // H2pX,Oq » C.

The Lagrangian property should then be deduced from this paring being trivial when restricted
to Ext1XtpL,Lq. Indeed, the pairing factorizes through

H2pXt,HomXtpL,Lqq

��

„ // Ext2XtpL,Lq

��
H2pX,HomXpi˚L, i˚Lqq // Ext2Xpi˚L, i˚Lq

tr // H2pX,OXq,

but tr : HomXpi˚L, i˚Lq //OX is trivial.

6The associated zero sections are Lagrangian as well.
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5. Extended Picard after Nagai

Let as before f : X //B be a Lagrangian fibration of a smooth projective hyperkähler man-
ifold of dimension 2n. We assume that B is smooth, which according to a result by Hwang
[Hw08] is equivalent to B » Pn. Note that the smoothness of the base also implies that f is
flat. It is convenient to also assume that f admits local analytic sections or, equivalently, that
every fibre of f has at least one generically reduced component. If the latter assumption is not
met, we tacitly shrink B.

5.1. The Picard functor is the étale sheafification of the functor that associates with each
T //B the relative Picard group

PicpXT {T q :“ PicpXT q{PicpT q.

The Picard variety Pic0pX0{B0q represents a connected component of the Picard functor for
the smooth morphism f0 : X0

//B0. If f0 admits a section, then there exists a universal line
bundle on X0 ˆB0 Pic0pX0{B0q. However, the Picard functor can be represented under weaker
hypotheses, cf. [BLR90, Ch. 8] or [FAG, Part 5]:

‚ Grothendieck: Let f1 : X1
//B1 be the union of all integral fibres. Then the identity

component of the associated Picard functor can be represented by a quasi-projective morphism

P1 :“ Pic0pX1{B1q // //B1.

The fibres are the quasi-projective varieties Pic0pXtq, which are projective for normal fibres.

‚ Artin: Without any assumption, the unit component of the Picard functor for the whole
family f : X //B is represented by a group object in the category of algebraic spaces

Pic0pX{Bq // //B

which is locally of finite type, but possibly not separated. The non-separatedness is caused by
the non-integral fibres.

‚ Mumford: Assume all fibres of f : X //B are reduced (but possibly reducible). Then
the unit component of its Picard functor is represented by a (possibly non-separated) scheme
Pic0pX{Bq //B locally of finite type.7

Note that the projections Pic0pX1{B1q // //B1 resp. Pic0pX{Bq // //B come with a section
induced by the structure sheaf.

The fact that Pic0pX{Bq is typically not separated makes it unsuitable for any geometric
considerations. Nagai [Na05] suggested to remedy the situation by applying a procedure origi-
nally due to Raynaud [Ra70]: Let G Ă Pic0pX{Bq be the closure of the zero section, which is

7In [AF16, Cor. 3.8] Arinkin and Fedorov complement Mumford’s result by showing that the open subspace
Picτ pX{Bq Ă PicpX{Bq of line bundles that are numerically trivial on all fibres is separated. The assumption
here is that all fibres are reduced and connected.
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a group scheme over B, and define

P_ :“ Pic0pX{Bq{G //B.

Then P_ is a separated algebraic space.8

Remark 5.1. Nagai [Na05, Thm. 1.6] shows that P_ //B has the Néron property asserting
that every morphism Z0

//P_0 from a smooth family Z //B extends to a morphism Z //P_.

5.2. In order for P_ to be considered a partial compactification in the hyperkähler sense, one
needs to make sure it inherits the symplectic structure.

Theorem 5.2 (Nagai). Assume that every fibre of f : X //B has a reduced component or,
equivalently, that f admits local sections (in the analytic or étale topology). Then the natural
closed symplectic structure on P_0 extends to a closed symplectic structure on P_ for which
P_ // //B is a smooth (possibly non-proper) Lagrangian fibration9.

Proof. The smoothness of P_ //B and, therefore, of P_ itself follows from R1f˚OX » ΩB

being locally free. The construction of the symplectic structure and the verification of the
Lagrangian property rely heavily on the classification of the singular fibres of X //B by Mat-
sushita. �

Remark 5.3. As in Remark 4.6, one could hope for a more functorial description of the
symplectic structure on P_ in terms of a pairing on Ext1Xpi˚L, i˚Lq.

Remark 5.4. The motivation for Nagai’s work comes from results of Cho, Miyaoka, and
Shepherd-Barron who attempted to prove that the base of a Lagrangian fibration X //B

with a section is Pn. Nagai’s idea now was to apply their reasoning to the Lagrangian fibration
P_ //B. The extension of P_0 //B0 to a fibration over the whole B (and not only over B0

or some smaller open subset) is of course essential for the idea to work. In fact, in his ap-
proach Nagai only needs to assume that X //B admits local section over an open subset with
a complement of codimension at least two.

6. Extended Albanese after Arinkin–Fedorov and Markushevich

As before, f : X //B denotes a Lagrangian fibration of a projective hyperkähler manifold
of dimension 2n. In addition we assume that B is smooth, which implies that f is flat and, in

8It seems that Raynaud only treats the case of the base being the spectrum of a DVR, but this particular
result should hold in our setting. Nagai does not addressed this issue. Also, it seems likely that P_ //B
is actually quasi-projective. It is possible that Raynaud’s techniques actually also cover families without local
sections. However, the next step in the program, the construction of a symplectic structure would fail in this
broader generality.

9The zero section σ : B // P_ is Lagrangian as well.
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fact, B » Pn. By B1 Ă B we denote the open subset of all points with integral fibres and let
f1 : X1

//B1 be restriction of f . Clearly, B0 Ă B1 so that we are in the following situation

X0

ˆf0
��

� � // X1

ˆf1
��

� � // X

f
��

B0
� � // B1

� � // B.

Recall from Section 2 that f0 : X0
//B0 is naturally a torsor for the relative Albanese scheme

g0 : P0 “ AlbpX0{B0q » Aut0pX0{B0q //B0. We will use the notation X 11 :“ X1 XX 1, where
X 1 Ă X is the open subset of all f -regular points.

6.1. The following is one of the main results of [AF16].

Theorem 6.1 (Arinkin–Fedorov). There exists a smooth group scheme g1 : P1
//B1 with an

action P1 ˆB1 X1
//X1 such that with this action X 11 //B1 is a torsor for P1

//B1.

Note that the projection P1
//B1 is necessarily surjective, but it is typically not proper over

B1zB0.
We cannot give details of their proof, but here are some ideas.10 The group scheme P1 is

constructed as a closed subgroup-scheme of AutpX1{B1q. A posteriori, it can be viewed as the
closure of Aut0pX0{B0q inside AutpX1{B1q

Aut0pX0{B0q Ă P1 “ Aut0pX0{B0q Ă AutpX1{B1q,

but to ensure that this results in a smooth scheme, one needs to single out those automorphisms
of the singular fibre Xt that deform in all infinitesimal directions of t P B.

Recall that in the absolute case, that is Y // k, the Lie algebra of Aut0pY q, i.e. the tangent
space at idY is H0pY, TY q. In the relative setting, one considers the sheaf of Lie algebras of
Aut0pX1{B1q. The key is to observe that on the level of vector fields, the automorphisms that
deform in all infinitesimal directions correspond on the Lie algebra level to the Hamiltonian
vector fields. In particular, the tangent space of the fibre P1

//X1 over t is by construction
naturally isomorphic to T ˚t B. The latter observation ensures that P1 and P1

//B1 are both
smooth (since the flatness of X //B implies that B is smooth).

Example 6.2. Here is the simplest example showing that Aut0pX1{B1q //B1 is in general
not smooth. Consider the degeneration of a smooth elliptic curve to a curve C with a cusp.
Let ρ : P1 //C be its normalization with coordinates rx : ys such that the cusp has preimage
r1 : 0s. Automorphisms of C can be described on the normalization as

rx : ys � // rax` by, ys

with a P C˚ and b P C. Thus, over the point in the base corresponding to the curve C, the
dimension increases by one and therefore the morphism Aut0pX1{B1q //B1 cannot be flat.

10Thanks to D. Arinkin for an instructive email exchange.
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Looking at the Lie algebra, we have e.g. for the chart t “ x{y

TidCAut0pCq “

"

pat` bq
B

Bt
| a, b P C

*

which is of course also two-dimensional. The Hamiltonian vector fields are now exactly the
abelian Lie sub-algebra of translations which correspond to setting a “ 0. That these deform
to nearby fibers can be seen easily in this example.

Remark 6.3. By construction, the restriction of g1 : P1
//B1 to the open subset B0 Ă B1

gives back g0 : P0
//B0. In this sense, P1

//B1 has to be viewed as a partial compactification
of the relative Albanese scheme of f0 : X0

//B0:

P0

ˆg0
��

� � // P1

g1
��

B0
� � // B1

� � // B.

6.2. The group scheme P1
//B1 as a partial compactification of P0

//B0 is of interest to us
only if it can be endowed with a symplectic structure. For this, the next result is [AF16, Prop.
7.1] is crucial.

Proposition 6.4 (Arinkin–Fedorov). The étale morphism φ : P0
//P_0 extends naturally to

an étale morphism

φ1 : P1
//PicpX1{B1q.

Proof. The morphism is extended by the same formula as in Section 2.3. The assertion follows,
on the one hand, from the construction and the observation above that Tidg´11 ptq » T ˚t B and,
on the other hand, from TOXtPicpXtq » H1pXt,OXtq » T ˚t B, where the last isomorphism is
the fibre of Matsushita’s isomorphism R1f˚OX » ΩB (which makes use of the polarization).
The proof then consists of showing that with these identifications the differential of φ induces
the identity of T ˚t B. �

Since φ : P0
//PicpX0{B0q takes image in P_0 , the extension φ1 composed with the projection

to the maximal separated quotient defines an étale morphism

P1
//P_|B1 ,

where P_ //B is the restriction of the Picard scheme introduced in 5.1. As a consequence of
Theorem 5.2, this immediately yields the following.

Corollary 6.5. The smooth group scheme g1 : P1
//B1 admits a closed symplectic structure

for which g1 is a Lagrangian fibration. �
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7. The dual hyperkähler variety after Kim

7.1. Assume now that there exists a subgroup K Ă AutpXq of automorphisms of X that
commutes with f and such that the constant group scheme KB0 is isomorphic to K compatible
with the action on X0

//B0.
Under these assumptions, Kim [Ki21] introduces the notion of the dual hyperkähler fibration.

Definition 7.1. The dual of f : X //B is the fibration

f_ : X_ :“ X{K //B.

Note that X_ has at most finite quotient singularities and the open part

f_´1pB0q “ X0{K Ă X_

is a torsor for P_0 . There are good reason to call X_ the dual variety, but be aware that
X_ //B typically has no section (which one might expect from a dual fibration), see Re-
mark 7.3. Note that P_0 //B0 comes with a natural section, but not much is known about
hyperkähler compactifications of it.

X // B

Y Y

X0
// B0

	 ‖

P0
// B0

X_ “ X{K // B

Y Y

X_0 “ X0{KB0
// B0

	 ‖

P_0 “ P0{KB0
// B0

7.2. The main result of [Ki21] is the following.

Theorem 7.2 (Kim). Let X //B » Pn be a Lagrangian fibration of a projective hyperkähler
manifold of one of the known deformation types K3rns, Kumn, OG6, or OG10.

Then there exists a subgroup K Ă AutpXq such that

KB0 » kerpP0
//P_0 q.

More precisely, K is the subgroup of all automorphisms of X that act trivially on H2pX,Zq and
commute with f :

K “ tφ P AutpXq | f ˝ φ “ φ ˝ f and f˚ “ id on H2pX,Zqu.

Remark 7.3. The group K can be described explicitly in all known cases:

(i) Assume first that X is deformation equivalent to a Hilbert scheme of a K3 surface. Then
AutpXq //OpH2pX,Zqq is injective [Be83]. Hence,

K “ t1u, X » X_, and P0 » P_0 .
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Indeed, it is known that the the fibres of X //B are principally polarized and that the image
of the restriction map H2pX,Zq //H2pXt,Zq to the generic fibre is spanned by the principal
polarization.

(ii) For hyperkähler manifolds deformation equivalent to O’Grady’s ten-dimensional example
the situation is analogous. That is, the smooth fibres are again known to be principally polarized
abelian varieties, the restriction map H2pX,Zq //H2pXt,Zq is surjective onto the subgroup
spanned by the principal polarization. Mongardi–Wandel [MW17] computed that againK “ t1u

and, therefore, we have

X » X_, and P0 » P_0 .

(iii) In the other two cases, the situation is more involved, since K ‰ t1u and the fibres do
not carry a principal polarization. Let X be deformation equivalent to a generalized Kummer
variety of dimension 2n. Then Kim shows, building on previous results of Wieneck [Wi16, Wi18],
by studying moduli spaces of pure one-dimensional sheaves on abelian surfaces that

K “ pZ{d1 ‘ Z{d2q‘2.

Here, d1d2 “ n ` 1 and the general fibre of f : X //B is a p1, . . . 1, d1, d2q-polarized abelian
variety. The automorphisms of K are all induced from translations along n ` 1-torsion points
on the abelian surface. The dual fibration

X_ “ X{K //B

in this case is a singular primitive symplectic orbifold.

(iv) This case is similar to the previous one. The smooth fibres are p1, 2, 2q-polarized abelian
threefolds and the group K was already computed by Mongardi–Wandel [MW17] to be

K “ pZ{2q‘4.

The dual fibration X{K //B is again an irreducible symplectic variety.

(v) Kim constructs in the case of hyperkähler manifolds deformation equivalent to Kumn or
OG6 a singular symplectic compactification of the smooth P_0 -torsor X0{KB0 . In particular,
this shows that there does not exist a smooth hyperähler compactification X̄ //B extending
X{KB0

//B0.
Indeed, these varieties would be birational and after passing to another birational model X̃

of X̄ the birational map would extend to a morphism X̃ //X{K, cf. [LP16]. In particular,
X{K would admit a crepant resolution, which is a contradiction.
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8. Compactifying torsors à la Saccà

As before, let f : X //B be a Lagrangian fibration of a projective hyperkähler manifold
X. Assume that B1 “ B, i.e. all fibres of f are integral.11 In this situation, the result of
Arinikin–Fedorov, see Section 6, provide a commutative group scheme P1

//B1 “ B acting on
X //B “ B1 such that the open set X 1 Ă X of f -regular points is a torsor for it.

Theorem 8.1 (Saccà). Assume that all fibres of X //B “ B1 are integral. Then any P1-
torsor Y1 //B can be compactified to a smooth projective hyperkähler manifold Y //B with a
Lagrangian fibration.

Example 8.2. For K3 surfaces, the result holds without any assumptions on the fibre, see
Section 3, but in general the assumption on the integrality of all fibres is needed as shown by
the following example.

Consider a K3 surface S with an ample divisor H of square H2 ě 4 and consider the Mukai
vectors v1 “ p0,mH,mχq and v2 “ p0,mH,χ1q for m ě 3 and χ coprime. For a generic
polarization we obtain two moduli spaces of semistable sheaves with morphisms

f1 : Mpv1q // |mH| and f2 : Mpv2q // |mH|.

Over the open subset U Ă |mH| of smooth curves, we have that both morphisms fi re-
strict to fi : PicdipC{Uq //U where C //U is the universal curve. They are both torsors
for Pic0pC{Uq //U , which using the principal polarization is seen to be isomorphic to the
restriction of P1 to U .

Note that the variety Mpv2q is a smooth hyperkähler manifold, while the results of Kaledin–
Lehn–Sorger [KLS] show that the variety Mpv1q does not admit a smooth resolution and there-
fore the restricition of f1 to the preimage of the open set U cannot be smoothly compactified.
From this argument it is not easy to see why the Lagrangian fibration f1 : Picd1 //U can-
not be smoothly compactified when just viewing it as a smooth Lagrangian fibration over a
quasi-projective base.12

Remark 8.3. (i) A weaker form of the above result has been used by Saccà in [Sa20] where she
studied the intermediate Jacobian fibrations associated to the Fano variety of lines of a smooth
cubic fourfold.

(ii) If one only assumes that the complement of B1 Ă B has codimension at least two,
then Saccà constructs a Q-factorial terminal symplectic compactification Ȳ //B of P1-torsors
Y1 //B1. Similarly, given a finite subgroup G Ă P1 Ă Aut0pX1{B1q, e.g. G “ K, Saccà also
constructs a Q-factorial terminal symplectic compactification of P1{G //B1.

11Since then the fibration has local sections, the base is smooth and, therefore, B » Pn. Note that integrality
of the fibre is not needed for the argument, the existence of local sections is enough.

12Saccà uses this example to argue that the assumption on the integrality of the fibres is necessary, but for
this one would also need to view f1 over the bigger open subset of all integral fibres as a torsor for P1.
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