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Abstract. Let X be a compact Kähler manifold of dimension m. One consequence of the
Hirzebruch–Riemann–Roch theorem is that the coefficients of the χy-genus polynomial

pX(y) :=

m∑
p,q=0

(−1)qhp,q(X)yp ∈ Z[y]

are (explicit) universal polynomials in the Chern numbers of X. In 1990, Libgober–Wood de-
termined the first three terms of the Taylor expansion of this polynomial about y = −1 and
deduced that the Chern number

∫
X
c1(X)cm−1(X) can be expressed in terms of the coefficients

of the polynomial pX(y) (Proposition 2.1).
When X is a hyperkähler manifold of dimension m = 2n, this Chern number vanishes.

The Hodge diamond of X also has extra symmetries which allowed Salamon to translate the
resulting identity into a linear relation between the Betti numbers of X (Corollary 2.4).
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1. Symmetries of the Hodge diamond of a hyperkähler manifold

Let X be a compact hyperkähler manifold of dimension 2n and let σ be a symplectic form
on X. Apart from the usual symmetries

hp,q(X) = hq,p(X) = h2n−p,2n−q(X)

coming from Kähler theory and Serre duality, there is another symmetry

(1) hp,q(X) = h2n−p,q(X)

coming from the fact that the wedge product ∧ σ∧(n−p) is an isomorphism Ωp
X
∼→Ω2n−p

X . So the
Hodge diamond of X has a D8-symmetry.
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Example 1.1 (n = 2). We represents the various symmetries of the Hodge diamond for an
irreducible hyperkähler fourfold (note that the extra “mirror” symmetry (1) is only visible
here on the outer edges of the diamond). The numbers in blue are for the Kum2-type and the
numbers in green are for the K3[2]-type.

1 b0 1 1001

0 b1 0 0100 0010

7 b2 23 1201 51121 1021

8 b3 0 0300 4210 4120 0030

108 b4 276 1401 53121 9622232 51321 1041

8 b5 0 0410 4320 4230 0140

7 b6 23 1421 53321 1241

0 b1 0 0430 0340

1 b0 1 1441

So, a priori, there are only three “free” Hodge numbers: h11, h21, and h22. We will see in
Example 2.6 that there is a relation between them.

Example 1.2 (n = 3). We represents some of the symmetries of the Hodge diamond of an
irreducible hyperkähler sixfold. The numbers in blue are for the Kum3-type, the numbers in
green are for the K3[3]-type, and the numbers in red are for the OG6-type.

1 b0
1
1 1001

1

0 b1
0
0 0100

0 0010
0

7 b2
8
23 1201

1 5116
21 1021

1

8 b3
0
0 0300

0 4210
0 4120

0 0030
0

51 b4
199
299 1401

1 63112
22 3722173

253 61312
22 1041

1

56 b5
0
0 0500

0 4410
0 24320

0 24230
0 4140

0 0050
0

458 b6
1504
2554 1601

1 5516
21 3742173

253 372331144
2004 3724173

253 5156
21 1061

1

56 b7
0
0 0610

0 4520
0 24430

0 24340
0 4250

0 0160
0

So, a priori, there are only six “free” Hodge numbers: h11, h21, h31, h22, h32, and h33. We will
see in Example 2.7 that there is a relation between them.

2. Salamon’s results on Betti numbers
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2.1. Hirzebruch–Riemann–Roch. Let X be a compact Kähler manifold of dimension m.
Following [H], we set

χp(X) :=
m∑
q=0

(−1)qhp,q(X) = χ(X,Ωp
X),

which satisfy

(2) χp(X) = (−1)mχm−p(X)

by Serre duality, and we define the χy-genus

(3) pX(y) :=
m∑
p=0

χp(X)yp =
m∑

p,q=0

(−1)qhp,q(X)yp ∈ Z[y].

For instance,

• pX(0) = χ0(X) = χ(X,OX),
• pX(−1) = χtop(X) = e(X),
• pX(1) is the signature of the intersection form on Hm(X,R) (which vanishes when m is

odd).

Serre duality translates into the reciprocity property (−y)mpX
(
1
y

)
= pX(y).

One consequence of the Hirzebruch–Riemann–Roch theorem is that χp(X) can be ex-
pressed as a universal polynomial Tm,p(c1, . . . , cm) in the Chern classes of X evaluated on X
([H, Section IV.21.3, (10)]), that is,

(4) pX(y) =
m∑
p=0

yp
∫
X

Tm,p(c1(X), . . . , cm(X)) =

∫
X

Tm(y)(c1(X), . . . , cm(X)),

where Tm(y) :=
∑m

p=0 Tm,py
p, a polynomial with coefficients in Q[c1, . . . , cm]. One has

• Tm,p = (−1)mTm,m−p and (−y)mTm
(
1
y

)
= Tm(y);

• Tm,0 = tdm(c1, . . . , cm).

Libgober–Wood found in [LW, Lemma 2.2] the first three terms1 of the Taylor expansion of the
polynomial Tm(y) about y = −1:

(5) Tm(y − 1) = cm − 1
2
mcmy + 1

12

(
1
2
m(3m− 5)cm + c1cm−1

)
y2 + · · ·

The following is [LW, Proposition 2.3] (reproved later in [S, Theorem 4.1]).

Proposition 2.1 (Libgober–Wood). If X is a compact Kähler manifold of dimension m, one
has the relation

(6)

∫
X

c1(X)cm−1(X) =
m∑
p=0

(−1)p
(
6p2 − 1

2
m(3m+ 1)

)
χp(X).

Proof. The Taylor expansion of the polynomial pX about the point −1 is

pX(y − 1) =
m∑
p=0

χp(X)(y − 1)p

1It is not difficult to find the next term in this expansion:

Tm(y − 1) = cm − 1
2mcmy + 1

12

(
1
2m(3m− 5)cm + c1cm−1

)
y2 − 1

24 (m− 2)
(
1
2m(m− 3)cm + c1cm−1

)
y3 + · · ·

But this does not bring any new information since it is in fact a formal consequence of the reciprocity property
(−y)mTm

(
1
y

)
= Tm(y). The y4-term involves 7 Chern numbers. On a hyperkähler manifold, where all odd Chern

classes vanish, perhaps this term only involves cm and c2cm−2 (this holds for m ≤ 8; to be checked in general).
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=
m∑
p=0

(−1)pχp(X) + y
m∑
p=0

(−1)p−1
(
p

1

)
χp(X) + y2

m∑
p=0

(−1)p
(
p

2

)
χp(X) + · · ·

Using the Hirzebruch–Riemann–Roch theorem (4) and comparing with (5), we get, by identi-
fying the coefficients, the relations2

pX(−1) =

∫
X

cm(X) =
m∑
p=0

(−1)pχp(X),

p′X(−1) = −1
2
m

∫
X

cm(X) =
m∑
p=0

(−1)p−1pχp(X),(7)

p′′X(−1) = 1
6

∫
X

(
1
2
m(3m− 5)cm(X) + c1(X)cm−1(X)

)
= 2

m∑
p=0

(−1)p
(
p

2

)
χp(X),

from which it is not difficult to get (6). �

The following consequence of the proposition was obtained in [G, (1.14) and Proposi-
tion 2.4] using modular forms (but seems to have been known to Hirzebruch).3

Corollary 2.2 (Gritsenko). If X is a compact Kähler manifold of dimension m that satisfies
c1(X)R = 0, one has

(8) 1
12
me(X) =

m∑
p=0

(−1)p
(
1
2
m− p

)2
χp(X) = 2

∑
0≤p<m/2

(−1)p
(
1
2
m− p

)2
χp(X).

In particular, when m is even,4 me(X) is divisible by 24.

Proof. The first equality in (8) is easily obtained from the relations (7), and the second equality
from the symmetries (2). �

Remark 2.3. The polynomials Tm can be computed. Setting for simplicity c1 = 0 (the case of
interest for us), we have, for even dimensions m ∈ {2, 4, 6} (see [LW] or [D, Section 9]),

T2(y − 1) = c2 − c2y + 1
12
c2y

2,

T4(y − 1) = c4 − 2c4y + 7
6
c4y

2 − 1
6
c4y

3 + 1
720

(3c22 − c4)y4,
T6(y − 1) = c6 − 3c6y + 13

4
c6y

2 − 3
2
c6y

3 + 1
240

(−c23 + c2c4 + 62c6)y
4

+ 1
720

(3c23 − 3c2c4 − 6c6)y
5 + 1

60480
(10c32 − c23 − 9c2c4 + 2c6)y

6.

Setting χ := tdm (this is the constant term and leading coefficient of Tm), we get

T2(y) = χ+ (2χ− c2)y + χy2,

2The first two relations are in fact formally equivalent upon using the symmetries (2), which give

p′X(−1) =

m∑
p=0

(−1)p−1(m− p)χp(X) = −mpX(−1)− p′X(−1)

(see footnote 1).
3Gritsenko also gives in [G, (1.13)] relations between the χp(X) when m ∈ {4, 6, 8, 10}, but they are all

rewritings of (8).
4Gritsenko does not make this assumption, but when m is odd and we write m = 2n+ 1, we have

m−3
12 e(X) = 2

∑
0≤p≤n

(−1)p
((

1
2m− p

)2 − 1
4

)
χp(X) = 2

∑
0≤p≤n

(−1)p
(
n(n+ 1)− p(2n+ 1) + p2

)
χp(X),

which is divisible by 4. So what we get is that m−3
2 e(X) is divisible by 24.
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T4(y) = χ+ (4χ− 1
6
c4)y + (6χ+ 2

3
c4)y

2 + (4χ− 1
6
c4)y

3 + χy4.(9)

2.2. Application to hyperkähler manifolds. Assume now that m is even and that we have
the extra “mirror” symmetry hp,q(X) = hm−p,q(X) like we do when X is a hyperkähler manifold.
We define polynomials

hX(s, t) :=
m∑

p,q=0

hp,q(X)sptq ∈ Z[s, t],

bX(t) :=
2m∑
j=0

bj(X)tj = hX(t, t).

The polynomial hX is symmetric and pX(y) = hX(−1, y). Now we use the evenness of m and
the extra symmetry to get

∂2hX
∂s∂t

(−1,−1) =
m∑

p,q=0

pq(−1)p+qhp,q(X)

=
m∑

p,q=0

(m− p)q(−1)m−p+qhp,q(X)

= −∂
2hX
∂s∂t

(−1,−1) +m
m∑

p,q=0

q(−1)p+qhp,q(X)

= −∂
2hX
∂s∂t

(−1,−1)−m ∂hX
∂t

(−1,−1),

so that

(10) 2
∂2hX
∂s∂t

(−1,−1) = −m ∂hX
∂t

(−1,−1) = −mp′X(−1).

In terms of the polynomial bX , we have, by symmetry of hX ,

b′X(t) = 2
∂hX
∂t

(t, t),

b′′X(t) = 2
∂2hX
∂s∂t

(t, t) + 2
∂2hX
∂t2

(t, t),

so that we get, using (10),

(11) b′X(−1) = 2p′X(−1) , b′′X(−1) = −mp′X(−1) + 2p′′X(−1).

Proceeding as in the proof of Proposition 2.1, we write the Taylor expansion of the polyno-
mial bX about the point −1:

bX(t− 1) =
2m∑
j=0

bj(X)(t− 1)j

=
2m∑
j=0

bj(X)(−1)j + t
2m∑
j=0

bj(−1)j−1
(
j

1

)
+ t2

2m∑
j=0

bj(X)(−1)j
(
j

2

)
+ · · ·

Using (11) and (7), we get

2m∑
j=0

bj(−1)jj = −b′X(−1) = −2p′X(−1) = m

∫
X

cm(X),
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2m∑
j=0

bj(X)(−1)j
(
j

2

)
= 1

2
b′′X(−1) = −1

2
mp′X(−1) + p′′X(−1)

= 1
4
m2

∫
X

cm(X) + 1
6

∫
X

(
1
2
m(3m− 5)cm(X) + c1(X)cm−1(X)

)
.

Putting everything together, we obtain the analogue of (6) ([S, Theorem 4.1]):

2

∫
X

c1(X)cm−1(X) =
2m∑
j=0

(−1)j(6j2 −m(6m+ 1))bj(X).

Corollary 2.4 (Salamon). If X is a compact hyperkähler manifold of dimension 2n, one has5

4n∑
j=0

(−1)j(3j2 − n(12n+ 1))bj(X) = 0.

Using the symmetry bj = b4n−j, one checks that one gets the equivalent relations (in the
spirit of (8))

ne(X) = 6
2n∑
j=1

(−1)jj2b2n−j(X) , nb2n(X) = 2
2n∑
j=1

(−1)j(3j2 − n)b2n−j(X).

Example 2.5 (n = 1). We obtain b2(X) = 22 and e(X) = 24.

Example 2.6 (n = 2). Salamon’s relation reads

b4(X) = 46 + 10b2(X)− b3(X).

On an irreducible hyperkähler fourfold, because of the symmetries, there are only 3 unkown
Hodge numbers: h11(X), h21(X), and h22(X). One has

b2(X) = 2 + h11(X) , b3(X) = 2h21(X) , b4(X) = 2 + 2h11(X) + h22(X).

Salamon’s relation translates into

h22(X) = 64 + 8h11(X)− 2h21(X).

There are two Chern numbers, c4 :=
∫
X
c4(X) = e(X) and c22 :=

∫
X
c2(X)2. They satisfy

3 = χ(X,OX) = T4(0) = td4(X) = 1
720

(3c22 − c4).
But we also have, using (9),

χ1(X) = 12− 1
6
c4 , χ2(X) = 18 + 2

3
c4.

A priori though, the value of c4 is not enough to determine all the Hodge numbers but, once
we know c4, one Hodge number determines all the others.

The Chern numbers for the two known deformation types of irreducible hyperkähler four-
folds are in the following table.

χtop = e = c4 c22

Kum2 108 756

K3[2] 324 828

5There is a misprint in [Hu, 24.4.2].
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Example 2.7 (n = 3). Salamon’s relation reads

b6(X) = 70 + 30b2(X)− 16b3(X) + 6b4(X).

Because of the symmetries, there are only 6 Hodge numbers: h11(X), h21(X), h31(X), h22(X),
h32(X), and h33(X). One has

b2(X) = 2 + h11(X),

b3(X) = 2h21(X),

b4(X) = 2 + 2h31(X) + h22(X),

b5(X) = 2h41(X) + 2h32(X),

b6(X) = 2 + 2h11(X) + 2h22(X) + h33(X).

Salamon’s relation translates into

h33(X) = 140 + 28h11(X)− 32h21(X) + 12h31(X) + 4h22(X).

There are three Chern numbers, c6 :=
∫
X
c6(X) = e(X), c2c4 :=

∫
X
c2(X)c4(X) = e(X), and

c32 :=
∫
X
c2(X)2. They satisfy

4 = χ(X,OX) = T6(0) = td6(X) = 1
60480

(10c32 − 9c2c4 + 2c6).

The three known examples in dimension 6 are in the following table taken from [N2, Re-
mark 4.13] (see also [N1, Appendix A]) and [MRS, Corollary 6.8].

χtop = e(X) = c6 c2c4 c32

Kum3 448 6784 30208

K3[3] 3200 14720 36800

OG6 1920 7680 30720
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