
THE LOOIJENGA-LUNTS-VERBITSKY ALGEBRA AND APPLICATIONS

ALESSIO BOTTINI

Abstract. In this notes, following Looijenga-Lunts and Verbitsky, we define a Lie algebra
(called LLV algebra) that acts on the rational cohomology of a Kähler manifold. We describe
this algebra in the case of an Hyperkähler manifold. Morever, we give a proof of Verbitsky’s
Theorem: the subalgebra generated by degree 2 classes inside the rational cohomology is an
irreducible representation of the LLV algebra.

1. Introduction

1.1. Let V “ ‘kPZVk be a finite dimensional graded vector space over a field k, and denote
by h the operator:

h|Vk “ kid.

Definition 1.1. Let e : V // V be a degree 2 endomorphism. We say e has the Lefschetz
property if

ek : V´k // Vk

is an isomorphism.

Theorem 1.2 (Jacobson-Morozov). The operator e has the Lefschetz property if and only if
there exists a degree ´2 endomorphism f : V // V such that

re, f s “ h.

We say that the triple pe, h, fq is a sl2-triple. Indeed, we can define a representation of the
lie algebra on the vector space V as follows

sl2pkq //EndpV q
˜

0 1

0 0

¸

� // e.

˜

1 0

0 ´1

¸

� // h.

˜

0 0

1 0

¸

� // f.

This review was prepared in the context of the seminar organized by the ERC Synergy Grant HyperK, Grant
agreement ID 854361. The talk was delivered on April 23, 2021.
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2 A. BOTTINI

Remark 1.3. The set of operators with the Lefschetz property is a Zariski open subset of
End2pV q.

In particular we are interested in the graded vector space V “ H˚pX,Qqrns, where X is
a compact kähler manifold of dimension n. To any class α P H2pX,Qq we can associate the
operator in cohomology obtained by taking the cup product with alpha:

eα : H˚pX,Qq //H˚pX,Qq, ω � //α.ω.

The operator h becomes
h|Hn´kpX,Rq :“ pn´ kqid.

From Theorem 1.2 we see that if eα has the Lefschetz property (for example if α is kähler),
there is an operator fα of degree ´2 that makes peα, h, fαq an sl2-triple. Moreover, the map

f : H2pX,Qq //End´2pH˚pX,Qqq,

that sends α to the operator fα is defined on a Zariski open subset and rational.

Remark 1.4. If α P H1,1pX,Qq is kähler, from standard Hodge theory it follows that everything
can be defined at the level of forms, where the dual operator is fα “ ˚´1eα˚. The sl2 action
preserves the harmonic forms, and so induces the action in cohomology.

Definition 1.5. Let X be a compact kähler manifold. The total lie algebra gtotpXq, or LLV
algebra, of X is the Lie algebra generated by the sl2-triples

pea, h, faq,

where a P H2pX,Qq is a class with the Lefschetz property.

We state without proof a general result about this Lie algebra for compact kähler manifolds.
Denote by φ the pairing on H˚pX,Cq given by

φpα, βq “ p´1qq
ż

α.β,

if α has degree n` 2q or n` 2q ` 1.

Proposition 1.6 ([LL97, Proposition 1.6]). The lie algebra gtotpXq is semisimple and preserves
φ infinitesimally. Moreover, the degree 0 part gtotpXq0 is reductive.

1.2. Now let X be a compact hyperkähler manifold of complex dimension 2n. If we fix an
hyperkähler metric g on X we get an action of the quaternion algebra H on the real tangent
bundle TX. This means that we have three complex structures I, J,K such that

IJ “ ´JI “ K.

To each of this complex structure we can associate a kähler form ωI :“ gpIp´q,´q, ωJ :“

gpJp´q,´q, ωK “ gpKp´q,´q and a holomorphic symplectic form σI “ ωJ ` iωK , σJ “ ωK `

iωI , σK “ ωI ` iωJ .



3

Definition 1.7. We call the 3-plane

ă rωIs, rωJ s, rωKs ą“ă rωIs, r<σIs, r=σIs ąĂ H2pX,Rq

the charateristic 3-plane of the metric g, and denote it by F pgq.

Definition 1.8. Denote by gg Ă EndpH˚pX,Rqq the Lie algebra generated by the sl2-triples
peα, h, fαq where α P F pgq.

Remark 1.9. This algebra is can be generated just by the three sl2-triples associated to α “
rωIs, rωJ s, rωKs.

2. The algebra gg

In this section we study the smaller algebra gg and its action on cohomology.

2.1. Let V be a left H-module, equipped with an H-invariant inner product

x´,´y : V ˆ V //R.

As before we have three complex structures I, J,K on V with corresponding “kähler” forms

ωI , ωJ , ωK P Λ2V ˚,

and holomorphic symplectic forms σI , σJ , σK .

Definition 2.1. Let gpV q Ă EndpΛ˚V ˚q be the Lie algebra generated by the sl2-triples

peλ, h, fλqλ“ωI ,ωJ ,ωK
.

In particular this definition makes sense for the rank 1 module H, and we get an alge-
bra gpHq Ă EndpΛ‚H˚q. We denote by H0 the pure quaternions, i.e. linear combinations
of I, J,K. We also denote by gpHq0 the degree 0 component of gpHq (here the degree is
meant as endomorphisms of a graded vector space). It is a Lie subalgebra, and we denote
by gpHq10 :“ rgpHq0, gpHq0s its derived Lie algebra.

Proposition 2.2. In the notation above we have the following.

(1) There is a natural isomorphism gpV q » gpHq.
(2) There is an isomorphism gpHq » sop4, 1q.
(3) The algebra decomposes with respect to the degree as

gpHq “ gpHq´2 ‘ gpHq0 ‘ gpHq2.

Furthermore, gpHq˘2 » H0 as Lie algebras, and gpHq0 “ gpHq10 ‘ Rh with gpHq10 » H0;
this last isomorphism is compatible with the actions on Λ‚V ˚.
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Proof. Proof of p1q. Since x´,´y is H-invariant, we can find an orthogonal decomposition

V “ H‘ ¨ ¨ ¨ ‘H.

Taking exterior powers we get Λ‚V ˚ “ Λ‚H˚ b ¨ ¨ ¨ b Λ‚H˚. This gives an injective map
gpHq //EndpΛ‚V ˚q, given by the natural tensor product representation. It is a direct check
that the image of this morphism is exactly the algebra gpV q.

Proof of p2q. Consider the subrepresentation W Ă Λ‚H˚ given by

W “ Λ0H˚ ‘ xωI , ωJ , ωKy ‘ Λ4H˚.

We equip it with the quadratic form given by setting Λ0H˚ ‘ Λ4H˚ to be an hyperbolic plane,
orthogonal to the 3-plane, and tωI , ωJ , ωKu to be an orthonormal basis of the 3-plane. By a
direct computation we can see that the action of gpHq respects infinitesimally this quadratic
form. This gives a map

gpHq // sopW q » sop4, 1q,

that we next show to be an isomorphism.
SinceW has dimension 5 the Lie algebra sopW q has dimension 10. Now consider the following

10 elements of gpHq:

h, eI , eJ , eK , fI , fJ , fK ,KIJ ,KIK ,KJK ,

where KIJ :“ reI , fJ s,KIK “ reI , fKs and KJK “ reJ , fKs. Verbitsky [Ver90] showed that
KIJ acts like the Weil operator associated with the Hodge structure given by K, and similarly
KJK and KIK . This means that on a pp, qq form with respect to K it acts as multiplication
by ipp´ qq. It follows that the ten operators above are linearly independent over W , hence the
map is surjective. Moreover they generate gpHq as a vector space. Indeed, they generate gpHq
as a Lie algebra, and one has the following relations (see [Ver90]):

rKλ,µ,Kµ,νs “ Kλ,ν , rKλ,µ, Hs “ 0,

rKλ,µ, eµs “ 2eλ, rKλ,µ, fµs “ 2fλ,

rKλ,µ, eνs “ 0, rKλ,µ, fνs “ 0,

where λ, µ, ν P I, J,K and ν ‰ λ, ν ‰ µ. This implies that they are a basis of gpHq, hence the
map is an isomorphism.

Point p3q follows using this explicit basis. Indeed we have

gpHq´2 “ xfI , fJ , fKy,

gpHq2 “ xeI , eJ , eKy,

gpHq0 “ xKIJ ,KJK ,KIKy ‘ Rh.
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In particular we have

gpHq10
„
Ý // H0,

KIJ
� //K,

KJK
� // I,

KIK
� // J.

Since I, J,K P H0 act like Weil operators in cohomology, the isomorphism is compatible with
the actions. �

Now we can compute the algebra gg. As above we denote by pggq0 the degree 0 part, and by
pggq

1
0 :“ rpggq0, pggq0s its derived Lie algebra. One can show that g0 is reductive in a similar

way to Proposition 1.6, so the derived subalgebra is the semisimple part of pggq0.

Proposition 2.3. Let pX, gq be an hyperkähler manifold with a fixed hyperkähler metric.

(1) There is a natural isomorphism of graded Lie algebras gg » gpHq.
(2) The semisimple part pggq10 acts on H˚pX,Rq as derivations.

Proof. Proof of p1q. Consider the Lie subalgebra ĝg Ă EndpΩ‚Xq, generated by the sl2-triples
pea, h, faq at the level of forms, with a P F pgq. From the previous proposition, we see that
for every point x P X there is an inclusion gpHq�

� //EndpΩ‚x,Xq. This gives an inclusion
gpHq�

� //
ś

xPX EndpΩ‚x,Xq. It follows from the definitions that the two algebras of gpHq and ĝg
are equal as subalgebras of

ś

xPX EndpΩ‚x,Xq.
Since the metric g is fixed, the sl2-triples pea, h, faq preserve the harmonic forms H˚pXq, and

so does gpHq. Since H˚pXq » H˚pX,Rq we get a morphism

gpHq // gg.

This map is surjective, because the image contains the sl2-triples that generate gg. Moreover,
by explicit computations similar to the proof of the previous proposition, we can see that
dim gg ě 10. Hence the map is an isomorphism.

Now we prove p2q. We have

pggq
1
0 » gpHq10 » H0.

Hence it suffices to prove the statement for the action of I, J,K. Each of them gives a complex
structure, and acts as the Weil operator on the associated Hodge decomposition. So, the action
on pp, qq forms is given by multiplication by ipp´ qq, which is a derivation. �

Remark 2.4. In particular, we see that gg » sop4, 1q.
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3. The total Lie algebra

The goal of this section is to prove the following result.

Theorem 3.1. In the above notation we have:

(1) The total lie algebra gtotpXq lives only in degrees ´2, 0, 2, so it decomposes as:

gtotpXq “ gtotpXq´2 ‘ gtotpXq0 ‘ gtotpXq2.

(2) There are canonical isomorphisms gtotpXq˘2 » H2pX,Rq.
(3) There is a decomposition gtotpXq0 “ gtotpXq

1
0 ‘ Qh with gtotpXq

1
0 » sopH2pX,Qq, qq.

Furthermore gtotpXq
1
0 acts on H˚pX,Qq by derivations.

The main geometric input in the proof is the following result.

Lemma 3.2. If X is a compact hyperkähler manifold, then rfa, fbs “ 0 for every a, b P H2pX,Rq
where f is defined.

The proof relies on the following fact.

Proposition 3.3. The set of charateristic 3-planes is open in the Grassmannian of 3-planes in
H2pX,Rq.

This fact is a consequence of a celebrated Theorem by Calabi and Yau.

Theorem 3.4. Let X be an hyperkähler manifold, and let I be a complex structure on X. If ω
is a kähler class, then there is a unique hyperkähler metric g such that rωIs “ ω.

Proof of the lemma. Fix an HK metric g on X, then for every a, b P F pgq we have rfa, fbs “ 0.
We can see this holds already at the level of forms, using the definition fa “ ˚´1ea˚. Let
a P H2pX,Rq be a class where f is defined. Since f is rational, the condition rfa, fbs “ 0 is
Zariski closed with respect to b P H2pX,Rq. From Proposition 3.3 it follows that the set

tb P H2pX,Rq | a, b P F pgq for some metric gu

is open. Since rfa, fbs “ 0 for every b in this open set, we get rfa, fbs “ 0 for every b where f is
defined. �

While the statement of Theorem 3.1 is over Q, we will give the proof over R following [LL97].

Proof of the Proposition. Consider the subspace

V :“ V´2 ‘ V0 ‘ V2 Ă gtotpXq,

where V2 is the abelian subalgebra generated by eα with α P H2pX,Rq, V´2 is the abelian
subalgebra generated by the fα with α P H2pX,Rq where f is defined, and V0 is the subalgebra
generated by reα, eβs. To prove p1q and p2q, it is enough to show that V is a subalgebra
of gtotpXq. Indeed, since gtotpXq is generated by elements contained in V this would imply
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V “ gtotpXq. Since V2 and V´2 are abelian subalgebras, it suffices to show that rV0, V2s Ă V2
and rV0, V´2s Ă V´2.

For this, consider the subalgebra V 10 :“ rV0, V0s. We first show that V0 “ V 10 ‘ Rh where
V 10 acts on cohomology via derivations. Since the set tpa, bq | a, b P F pgq for some metric gu
is open, the argument in the lemma above shows that V0 is generated by the elements rea, fbs
with a, b P F pgq. If we fix the HK metric g, the elements rea, fbs with a, b P F pgq generate
the algebra pggq0 and their brackets the subalgebra pggq10. Thus the subalgebra V 10 is generated
by the various algebras pggq10 and their brackets. Since the algebras pggq10 act via derivations,
the same is true for their the brackets, hence V 10 acts via derivations. This argument combined
with point p3q of 2.2 also shows the decomposition V0 “ V 10 ` Rh. The sum is direct, because
h R V 10 Ă gtotpXq

1
0, since gtotpXq0 is reductive (Proposition 1.6) and h is in the center.

Now we show that rV0, V2s Ă V2. Since the adjoint action of h gives the grading, it is enough
to show that rV 10 , V2s Ă V2. Let u P V 10 and ea P V2. For every x P H2pX,Rq we have

ru, easpxq “ upa.xq ´ a.upxq “ upaq.x “ eapxq,

because u is a derivation.
The inclusion rV0, V´2s Ă V´2 is more difficult. Consider G10 Ă GLpH˚pX,Rqq the closed

Lie subgroup with lie algebra V 10 . For every t P G10 we have teat´1 “ etpaq and tht´1 “ h, by
integrating the analogous relations at the level of Lie algebras. Since the third element of an
sl2-triple is unique, we get that tfat´1 “ ftpaq. This implies that the adjoint action of G10 leaves
V´2 invariant, hence so does the lie algebra V 10 .

To summarize, at this point we showed p1q and p2q, and also that gtotpXq10 acts via derivations.
It remains to see that gtotpXq10 » sopH2pX,Rq, qq.

We begin by defining the map gtotpXq
1
0

// sopH2pX,Rq, qq.For this, we consider the restric-
tion of the action of gtotpXq10 to H2pX,Rq, and show that it preserves infinitesimally the BBF
form. We can fix an HK metric g and check this for pggq10, because these subalgebras generate
gtotpXq

1
0. From Proposition 2.2 it is enough to check it for the Weil operators associated to the

three complex structures I, J,K induced from g. Fix one of them, say I, we have to verify that

qpIα, βq ` qpα, Iβq “ 0,

for every α, β P H2pX,Rq. This follows with a direct verification using the q-orthogonal Hodge
decomposition

H2pX,Rq “ pH2,0pXq ‘H0,2pXqqRq ‘H
1,1pX,Rq,

with respect to the complex structure I. To conclude the proof it remains to show that this
map is bijective, for this see [LL97, Proposition 4.5]. �

Definition 3.5. We define the Mukai completion of the quadratic vector space pH2pX,Qq, qq,
as the quadratic vector space

pH̃pX,Qq, q̃q :“ pH2pX,Qq, qq ‘ U
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where U is an hyperbolic plane: a two dimensional vector space with quadratic form given by
˜

0 1

1 0

¸

Corollary 3.6. There is a natural isomorphism

gtotpXq » sopH̃pX,Qq, q̃q.

Proof. Recall that for a rational quadratic space pV, qq there is an isomorphism

Λ2V
„
Ý // sopV, qq,

x^ y � // 1

2
pqpx,´qb´ qpb,´qaq

The desired isomorphism follows from this, at least at the level of vector spaces. The compu-
tations to show that it is in fact an isomorphism of lie algebra are carried out in [GYJLR20,
Proposition 2.7]. �

Example 3.7. If X is a K3 surface, then the Mukai completion H̃pX,Qq is the rational
cohomology H˚pX,Qq with the usual Mukai pairing. This identification is compatible with the
action of gtotpXq.

Corollary 3.8. The Hodge structure on H˚pX,Rq is determined by the Hodge structure on
H2pX,Rq and by the action of gtotpXq2,R » H2pX,Rq on H˚pX,Rq.

Proof. Let I, J,K be the three complex structures associated to an HK metric g, and assume
I is the given one. As recalled before, the commutator KJK “ reJ , fKs acts like the Weil
operator for I; hence it recovers the Hodge structure. By definition, it depends only on the
classes rωIs, rωKs and their action on H˚pX,Rq. Since the Hodge structure is given by the class
of the symplectic form rσIs “ rωJ s ` irωKs, the thesis follows. �

Recall that if g is a Lie algebra, the universal enveloping algebra of g is the smallest associative
algebra extending the bracket on g. It is defined as the quotient of the tensor algebra by the
relations:

xb y ´ y b x´ rx, ys x, y P g.

In particular if g is abelian, then Ug “ Sym˚g.

Corollary 3.9. There is a natural decomposition:

UgtotpXq “ UgtotpXq2.UgtotpXq0.UgtotpXq´2.

4. Primitive decomposition

Definition 4.1. If V is a gtotpXq-representation, we define the primitive subspace as:

PrimpV q “ tx P V | pgtotpXq´2q.x “ 0u.
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If V “ H˚pX,Qq is the standard representation we denote the primitive subspace as PrimpXq.

Remark 4.2. The primitive subspace PrimpV q is a gtot,0pXq-subrepresentation. This follows
from the fact that rgtotpXq0, gtotpXq´2s Ă gtotpXq´2.

Definition 4.3. The Verbitsky component SH2pX,Qq Ď H˚pX,Qq is the graded subalgebra
generated by H2pX,Qq.

Proposition 4.4. The cohomology H˚pX,Qq is generated by PrimpXq as a SH2pX,Qq module.
Moreover, if W Ă PrimpXq is a gtotpXq0 irreducible subrepresentation, then SH2pX,Qq.W Ă

H˚pX,Qq is an irreducible gtotpXq-module.

Proof. Since gtotpXq is semisimple, we can decompose the cohomology in irreducible gtotpXq-
representations:

H˚pX,Qq “ V1 ‘ ¨ ¨ ¨ ‘ Vk.

The primitive part is compatible with this decomposition, so we get the decomposition

PrimpXq “ PrimpV1q ‘ ¨ ¨ ¨ ‘ PrimpVkq,

of gtotpXq0-representations.
We first want to show that SH2pX,Qq.PrimpViq “ Vi. We have

(4.1) SH2pX,Qq.PrimpViq “ UgtotpXq2.PrimpViq “ UgtotpXq.PrimpViq Ă Vi,

where the first equality follows from the fact that gtotpXq2 is abelian, and the second from Corol-
lary 3.9. Thus SH2pX,Qq.PrimpViq is a gtotpXq subrepresentation of Vi, but Vi is irreducbile,
so the equality holds. This proves the first part of the proposition.

To prove the second part it is enough to show that PrimpViq are irreducible as gtotpXq0-
representations. Assume it is not and write PrimpViq “ W1 ‘W2. The identities (4.1) show
that acting with SH2pX,Qq gives a decomposition Vi “ SH2pX,Qq.W1 ‘ SH2pX,Qq.W2.
Again, this is a contradiction to the fact that Vi is irreducible. �

Corollary 4.5. The Verbitsky component SH2pX,Qq Ă H˚pX,Qq is an irreducible gtotpXq

subrepresentation.

Proof. By definition we have SH2pX,Qq “ SH2pX,Qq.H0pX,Qq, and H0pX,Qq Ă PrimpXq.
So it is enough to show that H0pX,Qq is preserved by gtotpXq0. Thanks to Theorem 3.1 we
only need to show that it is preserved by the action of h and gtotpXq

1
0. The first is obvious, and

the second follows from the fact that the action of gtotpXq10 is via derivation. �

5. Verbitsky’s Theorem

In this section we give a proof of a result by Verbitsky on the structure of the irreducible
component SHpXq. The argument presented is due to due to Bogomolov [Bog96], and works
over C. For the statement over Q see [Ver95, Proposition 15.1], [GYJLR20, Proposition 2.15].
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Theorem 5.1. There is a natural isomorphism of algebras and gtotpXq0-representations:

SH2pX,Cq » Sym˚pH2pX,Cqq{xαn`1 | qpαq “ 0y.

Lemma 5.2. Denote by A the graded C-algebra Sym˚pH2pX,Cqq{xαn`1 | qpαq “ 0y. Then we
have:

(1) A2n » C.
(2) The multiplication map Ak ˆA2n´k

//A2n induces a perfect pairing.

Proof of the Theorem. From the Local Torelli Theorem we have that αn`1 “ 0 for an open
subset of the quadric tα P H2pX,Cq | qpαq “ 0u. Since the condition αn`1 “ 0 is Zariski closed,
we get that it holds for the entire quadric. Consider the multiplication map

Sym˚pH2pX,Cqq //SH2pX,Cq.

The kernel contains tαn`1 | qpαq “ 0u, hence it factors via the ring A. It is an algebra
homorphism by construction, and a map of gtotpXq0-representations because gtotpXq

1
0 acts via

derivations.
The induced map A //SH2pX,Cq is surjective by construction. If it were not injective, by

the above lemma, the kernel would contain A2n. But this is impossible, because in top degree
the map A2n

//H4npX,Cq is non-zero. Indeed if σ is a holomorphic symplectic form, the form
pσ ` σq is non-zero. �

Example 5.3. If X is of K3r2s-type, for dimensional reasons, the Verbitsky component SHpXq
is the only irreducible component in the cohomology, that is we have an equality H˚pX,Qqq “
SHpXq.

6. Spin action

In this section we study how the action of sopH2pX,Qq, qq integrates to an action of the
simply connected algebraic group SpinpH2pX,Qq, qq. Recall that there is an exact sequence of
algebraic groups

1 //˘1 // SpinpH2pX,Qq, qq // SOpH2pX,Qq, qq // 1.

Proposition 6.1. The action of sopH2pX,Qq, qq on H˚pX,Qq integrates to an action of the
algebraic group SpinpH2pX,Qq, qq via ring homomorphism. On the even cohomology it induces
an action of SOpH2pX,Qq, qq.

Proof. The first part of the statement is clear: we can always lift the action because the algebraic
group SpinpH2pX,Qq, qq is simply connected, and it via ring homomorphism because the Lie
algebra action is via derivation.

To show the second part of the statement we proceed as follows. We first notice that the
inclusion sopH2pX,Qq, qq Ă sopH̃pX,Qq, q̃q induces an inclusion

SpinpH2pX,Qq, qq Ă SpinpH̃pX,Qq, q̃q,
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that sends´1 to´1. The last fact can be checked via the construction with the Clifford algebras.
At this point it is not hard to show (see [Tae21, Lemma 5.1]) that ´1 P SpinpH̃pX,Qq, q̃q acts
like p´1qk on HkpX,Qq. Hence the action of SpinpH2pX,Qq, qq on even cohomology descends
to an action of SOpH2pX,Qq, qq. �
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