GUAN'S BOUNDS FOR BETTI NUMBERS OF HYPERKÄHLER MANIFOLD OF DIMENSION 4

PIETRO BERI

1. A bound on b_2

Theorem 1.1. [2, Theorem 1] Let X be an irreducible compact hyperkähler manifold of dimension 4. Then $b_2 \leq 23$. Moreover, if $b_2 = 23$ the Hodge diamond of X is the same as the Hodge diamond of the Hilbert square of a K3 surface.

Let X be an irreducible compact hyperkähler manifold of complex dimension 2n; here we will always refer to the complex dimension. Let σ be a symplectic form on X and let g be the Riemannian metric on X. For I, J, K a basis of the quaternions \mathbb{H} acting on the tangent bundle of X, we will consider the complex structures on X in the form aI + bJ + cK for $a^2 + b^2 + c^2 = 1$. We have $b_1 = 0, b_2 \geq 3$ since $H^{2,0}(X) = \sigma \cdot \mathbb{C}, H^{0,2}(X) = \overline{\sigma} \cdot \mathbb{C}$ and g is Kähler with respect to any complex structure defined above. About the higher Betti numbers, we have the following result by Verbitsky.

Theorem 1.2. [6, Theorem 1.5] For $k \leq n$, the canonical map $\operatorname{Sym}^k H^2(X, \mathbb{R}) \to H^{2k}(X, \mathbb{R})$ given by the cup product is injective.

We denote by $H^{(2k)} \subset H^{2k}(X, \mathbb{C})$ the image of the map above.

Guan found a sharp bound for b_2 when X has dimension 4. To show it, we will need the Riemann-Roch formula for irreducible compact hyperkähler manifolds of dimension 2n, proved by Salamon, see [5, Theorem 4.1],

(1)
$$nb_{2n} = 2\sum_{j=1}^{2n} (-1)^j (3j^2 - n)b_{2n-j}$$

Proof of Theorem 1.1. For n = 2 then (1) reads $b_3 + b_4 = 46 + 10b_2$. We also have $b_4 \geq \frac{b_2(b_2+1)}{2}$, hence

(2)
$$b_3 + \frac{b_2(b_2 + 1)}{2} \le 46 + 10b_2$$
$$\frac{b_2(b_2 + 1)}{2} \le 46 + 10b_2$$
$$b_2^2 - 19b_2 - 23 \cdot 4 \le 0 \iff (b_2 + 4)(b_2 - 23) \le 0.$$

So $b_2 \leq 23$. Now take $b_2 = 23$: substituting in the inequality above we get $b_3 + 276 \leq 46 + 230 = 276$, so $b_3 = 0$, which is equal to the third Betti number of a Hilbert square on a K3 surface. Now (1) gives b_4 , which is equal to the fourth Betti number of a Hilbert square since the formula only depends on b_2 and b_3 . Because of the symmetries in the Hodge diamond of a hyperkähler manifold, the only Hodge nubers for n = 2 are $h^{1,1}$, $h^{2,1}$ and $h^{2,2}$. It is then sufficient to observe that the $h^{p,q}$

P. BERI

are completely determined by the Betti numbers i.e. $h^{1,1} = b_2 - 2$, $h^{2,1} = b_3/2$, $h^{2,2} = b_4 - 2(1 + h^{1,1})$.

2. The generalized Chern number $N(c_2)$

For an irreducible compact hyperkähler manifold X of dimension 2n, we have the Beauville-Bogomolov-Fujiki quadratic form q on $H^2(X, \mathbb{Q})$. We refer to [1] or [4, Section 1.11]. There exists a rational constant $c_X > 0$ such that

(3)
$$\int_X \beta^{2n} = c_X q(\beta)^n \text{ for any } \beta \in H^2(X, \mathbb{Q}).$$

More generally, let $\alpha \in H^{4j}(X, \mathbb{C})$ be of type (2j, 2j) on all small deformations of X. Then there is a constant $c_{\alpha} \in \mathbb{C}$ such that

(4)
$$\int_X \alpha \beta^{2(n-j)} = c_\alpha q(\beta)^{n-j} \text{ for any } \beta \in H^2(X, \mathbb{C}).$$

For $\alpha = 1$, (4) gives exactly (3).

Remark 2.1. The Chern classes of X are classes of type (2j, 2j) on all small deformations, since Chern classes are constant under small deformations. This happens because they are integral, hence they lie in a discrete subset of $H^2(X, \mathbb{C})$.

We can now define the generalized Chern numbers.

Definition 2.2. Let $C \in H^{4j}(X, \mathbb{C})$ be a polynomial in the Chern classes. We call generalized Chern number of degree 4j the number

$$N(C) = \frac{\int_X C u^{2(n-j)}}{\left(\int_X u^{2n}\right)^{\frac{n-j}{n}}}$$

for any $u \in H^2(X, \mathbb{C})$ with $\int_X u^{2n} \neq 0$.

We prove that the definition does not depend on the choice of u. By Remark 2.1 we have $\int_X Cu^{2(n-j)} = aq(u)^{n-j}$, where a is the sum of the c_{α} as in (4) for all monomials α in C. Moreover, $\int_X u^{2n} = c_X q(u)^n$, so $N(C) = a/c_X^{\frac{n-j}{n}}$.

In our case, n = 2, we are interested in the generalized Chern number $N(c_2(X))$ of degree 4. Guan rewrote [3, (1)] as follows.

Lemma 2.3. [2, Lemma 2] Let X be an irreducible compact hyperkähler manifold of dimension 2n. Then

(5)
$$\frac{((2n)!)^{n-1}N(c_2(X))^n}{(24n(2n-2)!)^n} = \int_X \operatorname{td}^{\frac{1}{2}}(X).$$

Moreover $N(c_2(X)) > 0$.

Proof. (Hitchin and Sawon, and then Guan, use the $\hat{A}^{\frac{1}{2}}$ -genus instead of $td^{\frac{1}{2}}$. In general $\hat{A} = e^{c_1/2} td$, in our case they coincide since $c_1 = 0$.) We know that, for any hyperkähler manifold, $\int_X (\sigma + \bar{\sigma})^{2n} = c_X q (\sigma + \bar{\sigma})^n > 0$. Hence we can write

$$N(c_2) = \frac{\int_X c_2(\sigma + \bar{\sigma})^{2n-2}}{(\int_X (\sigma + \bar{\sigma})^{2n})^{\frac{n-1}{n}}}$$

GUAN'S BOUNDS FOR BETTI NUMBERS OF HYPERKÄHLER MANIFOLD OF DIMENSION 3

The result is a rearrangement¹ of [3, (1)],

(6)
$$\frac{1}{(192\pi^2 n)^n} \frac{\|R\|^{2n}}{\operatorname{Vol}(X)^{n-1}} = \int_X \operatorname{td}^{\frac{1}{2}}(X)$$

where

- Vol(X) is the volume form on X, Vol(X) = $\frac{1}{2^{2n}(2n)!} \int_X (\sigma + \bar{\sigma})^{2n}$,
- ||R|| the \mathcal{L}^2 norm of the Riemann curvature tensor,

$$||R||^{2} = \frac{8\pi^{2}}{2^{2n-2}(2n-2)!} \int_{X} c_{2}(\sigma + \bar{\sigma})^{2n-2}.$$

Note that $\int_X c_2(\sigma + \bar{\sigma})^{2n-2} \geq 0$ since it is, up to a positive constant, equal to $||R||^2$. If $\int_X c_2(\sigma + \bar{\sigma})^{2n-2} = 0$ then X would be flat, hence a torus by Bieberbach Theorem, absurd.

We write $q(\cdot, \cdot)$ for the bilinear form associated to q; there is a non-degenerate scalar product on $\operatorname{Sym}^2 H^2(X, \mathbb{C})$ given by

(7)
$$\langle [v_1 \otimes v_2], [w_1 \otimes w_2] \rangle \mapsto \frac{1}{2} (q(v_1, w_1)q(v_2, w_2) + q(v_1, w_2)q(v_2, w_1)).$$

We denote by q^{\vee} the unique element of $\operatorname{Sym}^2 H^2(X, \mathbb{C})$ such that $\langle [v_1 \otimes v_2], q^{\vee} \rangle = q(v_1, v_2)$ for every $v_1, v_2 \in H^2(X, \mathbb{C})$. We call q^{\vee} also the corresponding element of $H^{(4)}$.

Let $\alpha \in H^{(4)}$ be of type (2,2) on all small deformations of X. Then α is a multiple of q^{\vee} . To prove it, consider the quadratic form on $H^2(X, \mathbb{C})$ given by $\beta \mapsto \int_X \alpha \beta^{2(n-1)}$: by (4) the form is a multiple of q, so up to a multiple α satisfies the condition defining q^{\vee} .

To show that q^{\vee} is of type (2,2): the coefficient of q^{\vee} on $H^{4,0}$ (resp. $H^{0,4}$) is zero since it is generated by $\operatorname{Sym}^2 H^{2,0}$ (resp. $\operatorname{Sym}^2 H^{0,2}$) and $q(\sigma) = 0$ (resp. $q(\bar{\sigma}) = 0$). The coefficients of q^{\vee} on $H^{3,1}$ (resp. $H^{1,3}$) are zero since $q(\sigma, x) = 0$ (resp. $q(\bar{\sigma}, x) = 0$) for every $x \in h^{1,1}$.

Proposition 2.4. [2, Lemma 3] Let X be an irreducible compact hyperkähler manifold of dimension 4. Then

(8)
$$3b_2N(c_2(X))^2 \le (b_2+2)c_2^2.$$

The equality holds if and only if $c_2(X) \in H^{(4)}$.

Proof. The orthogonal complement of $H^{(4)}$ with respect to the intersection form is the primitive chomology $H^4_{\text{prim}}(X, \mathbb{C})$ i.e. $H^4(X, \mathbb{C}) = H^{(4)} \oplus H^4_{\text{prim}}(X, \mathbb{C})$. We can write $c_2(X) = \lambda q^{\vee} + r$ for some $\lambda \in \mathbb{C}^*$, $r \in H^4_{\text{prim}}(X, \mathbb{C})$. By the second Hodge-Riemann bilinear relations, the intersection form is positive on r and vanishes if and only if r = 0, since r is still of type (2, 2) and is primitive. So we have

$$c_2^2 = \lambda^2 \int_X (q^{\vee})^2 + \int_X r^2 \ge \lambda^2 \int_X (q^{\vee})^2.$$

¹Hitchin and Sawon use a different convention for exterior products of differential forms. The two conventions differ by a binomial coefficient: if we use Hitchin and Sawon's formulation for Vol(X) and ||R||, in terms of $\sigma^n \bar{\sigma}^n$ and $\sigma^{n-1} \bar{\sigma}^{n-1}$ respectively, then (5) becomes $\frac{((2n)!)^{n-1}N(c_2(X))^n}{(24n(2n-2)!)^n} \cdot \frac{\binom{2(n-1)}{n-1}^n}{\binom{2n}{n-1}} = \int_X \operatorname{td}^{\frac{1}{2}}(X).$

P. BERI

But $\lambda^2 \int_X (q^{\vee})^2 = \lambda \int_X (\lambda q^{\vee} + r) q^{\vee} = \lambda \int_X c_2(X) q^{\vee}$ and so

$$c_2^2 \ge \lambda^2 \int_X (q^{\vee})^2 = \frac{(\lambda \int_X c_2(X)q^{\vee})^2}{\lambda^2 \int_X (q^{\vee})^2} = \frac{(\int_X c_2(X)q^{\vee})^2}{\int_X (q^{\vee})^2}$$

Now let $\{e_i\}_{i=1,...,b_2}$ be a orthonormal basis of $H^2(X,\mathbb{C})$ with respect to q. Then we use (7) to compute the coefficients of q^{\vee} in the basis $\{[e_i \otimes e_j]\}_{i,j}$ and we obtain $\langle [e_i \otimes e_j], q^{\vee} \rangle = \delta_{i,j}$ i.e. $q^{\vee} = \sum_{i=1,...,b_2} e_i^2$ in Sym² $H^2(X,\mathbb{C})$. So we have

$$q(e_i) = 1 \Longrightarrow \int_X e_i^4 = c_X.$$

For $i \neq j$

$$4c_X = q(e_i + e_j)^2 c_X = \int_X (e_i + e_j)^4 = \int_X (e_i^4 + 4e_i^3 e_j + 6e_i^2 e_j^2 + 4e_i e_j^3 + e_j^4),$$
$$4c_X = \int_X (e_i - e_j)^4 = \int_X (e_i^4 - 4e_i^3 e_j + 6e_i^2 e_j^2 - 4e_i e_j^3 + e_j^4)$$

In turn the two equalities above implies $c_X - 3 \int_X e_i^2 e_j^2 = \int_X e_i^3 e_j + e_i e_j^3 = -(c_X - 3 \int_X e_i^2 e_j^2)$. So

$$c_X - 3\int_X e_i^2 e_j^2 = 0 \Longleftrightarrow \int_X e_i^2 e_j^2 = \frac{c_X}{3}.$$

Now we can compute

$$\int_{X} (q^{\vee})^{2} = \int_{X} \left(\sum_{i=1,\dots,b_{2}} e_{i}^{2} \right)^{2} = b_{2}(b_{2}-1)\frac{c_{X}}{3} + b_{2}c_{X} = \frac{b_{2}(b_{2}+2)}{3}c_{X},$$

$$\int_{X} c_{2}(X)q^{\vee} = \sum_{i=1,\dots,b_{2}} \int_{X} c_{2}(X)e_{i}^{2} = \sum_{i=1,\dots,b_{2}} \frac{\int_{X} c_{2}(X)e_{i}^{2}}{(\int_{X} e_{i}^{4})^{\frac{1}{2}}} \cdot \left(\int_{X} e_{i}^{4} \right)^{\frac{1}{2}} = b_{2}N(c_{2}(X))(c_{X})^{\frac{1}{2}}$$
But time all treatments are solution

Putting all together we obtain

$$c_2^2 \ge \frac{(\int_X c_2(X)q^{\vee})^2}{\int_X (q^{\vee})^2} = 3b_2 N(c_2(X))^2/(b_2+2).$$

Finally, the equality holds if and only if $\int_X r^2 = 0$ if and only if r = 0, $c_2(X) = \lambda q^{\vee} \in H^{(4)}$.

3. Bounds on b_3

Consider again X of dimension 4. A formal computation shows

(9)
$$\int_X \operatorname{td}^{\frac{1}{2}}(X) = \operatorname{td}^{\frac{1}{2}}(X)_4 = \frac{1}{5760}(7c_2^2 - 4c_4).$$

Moreover, by Hirzebruch-Riemann-Roch we have

(10)
$$3 = \chi(X, \mathcal{O}_X) = \int_X \operatorname{td}(X) = \operatorname{td}(X)_4 = \frac{1}{720} (3c_2^2 - c_4).$$

Theorem 3.1. [2, Theorem 2] Let X be an irreducible compact hyperkähler manifold of dimension 4. Then

(11)
$$b_3 \le \frac{4(23-b_2)(8-b_2)}{b_2+1}.$$

If $b_2 > 7$, then $(b_2, b_3) \in \{(8, 0), (23, 0)\}$.

Proof. We substitute Lemma 2.3, with n = 2, in Proposition 2.4 to obtain

$$Bb_2 \frac{(24\cdot 4)^2}{4!} \int_X \operatorname{td}^{\frac{1}{2}}(X) \le (b_2+2)c_2^2$$

By substituting in (9) the expression for $e(X) = c_4$ given by (10) we get

$$\int_X \operatorname{td}^{\frac{1}{2}}(X) = \frac{1}{5760} (7c_2^2 - 4(3c_2^2 - 720 \cdot 3)) = \frac{3}{2} - \frac{c_2^2}{1152}.$$

Hence

(12)
$$(b_2+2)c_2^2 \ge 2 \cdot 24^2 b_2 \int_X \operatorname{td}^{\frac{1}{2}}(X) = 2 \cdot 24^2 b_2 (\frac{3}{2} - \frac{c_2^2}{1152}) = b_2 (3 \cdot 24^2 - c_2^2).$$

We have $h^{1,1} - 2h^{2,1} = \chi^1 = 12 - \frac{c_4}{6}$, see Olivier's talk; using

$$b_2 = 2 + h^{1,1} \qquad b_3 = 2h^{1,2}$$

a simple computation gives $c_4 = 3(16 + 4b_2 - b_3)$. We use this in (10) to have $c_2^2 = 736 + 4b_2 - b_3$. Then (12) becomes $(b_2 + 1)b_3 \le 4(23 - b_2)(8 - b_2)$ as in the statement,

If $b_2 > 7$ then the RHS of (11) is at most zero, since $b_2 \leq 23$, so it has to be zero.

Corollary 3.2. [2, Corollary 1] If $b_2 \leq 7$, then one of the following holds:

- $b_2 = 3$ and $b_3 = 4\ell$ with $\ell \le 17$;
- $b_2 = 4$ and $b_3 = 4\ell$ with $\ell \le 15$;
- $b_2 = 5$ and $b_3 = 4\ell$ with $\ell \le 9$;
- $b_2 = 6$ and $b_3 = 4\ell$ with $\ell \leq 4$;
- $b_2 = 7$ and $b_3 = 4\ell$ with $\ell \in \{0, 2\}$.

Proof. By [1, Lemma 1.2], $4|b_k$ for k odd. Then the bounds are obtained using either (2) or (11). Guan proved in [2] that the case $(b_2, b_3) = (7, 4)$ cannot occur.

Remark 3.3. When $b_2 = 7$, either $b_3 = 0$ or the Hodge diamond of X is the same of the Hodge diamond of a Kummer variety.

Remark 3.4. Given a couple (b_2, b_3) , it is possible to compute $N(c_2)$ using Lemma 2.3, since the Chern numbers of X are computed in the proof of Theorem 3.1. Then it is possible to check which couples give an equality in (8). Hence, using Proposition 2.4, one can check that $c_2 \in H^{(4)}$ if and only if $(b_2, b_3) \in \{(5, 36), (7, 8), (8, 0), (23, 0)\}$.

References

- [1] A. Fujiki, On the de rham cohomology group of a compact kähler symplectic manifold, 1987.
- [2] D. Guan, On the betti numbers of irreducible compact Hyperkähler manifolds of complex dimension four, Mathematical Research Letters (2001).
- [3] Nigel Hitchin and Justin Sawon, Curvature and characteristic numbers of hyperKahler manifolds, Duke Math. J. 106 (2001), 599–615, available at math/9908114.
- [4] D. Huybrechts, Compact hyperkähler manifolds: Basic results, Invent. Math. 135 (1999), no. 1, 63–113.
- [5] S.M. Salamon, On the cohomology of Kähler and hyperKähler manifolds, Topology 35 (1996), no. 1, 137–155.
- [6] M. Verbitsky, Cohomology of compact hyperkähler manifolds and its applications, Geometric and Functional Analysis 73 (1996), no. 6, 601–611.