GUAN’S BOUNDS FOR BETTI NUMBERS OF HYPERKAHLER
MANIFOLD OF DIMENSION 4
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1. A BOUND ON by

Theorem 1.1. [2, Theorem 1] Let X be an irreducible compact hyperkdahler mani-
fold of dimension 4. Then by < 23. Moreover, if by = 23 the Hodge diamond of X
is the same as the Hodge diamond of the Hilbert square of a K3 surface.

Let X be an irreducible compact hyperkahler manifold of complex dimension 2n;
here we will always refer to the complex dimension. Let ¢ be a symplectic form on
X and let g be the Riemannian metric on X. For I, J, K a basis of the quaternions
H acting on the tangent bundle of X, we will consider the complex structures on
X in the form al + bJ + cK for a® + b + ¢> = 1. We have by = 0, b, > 3 since
H?%(X) =0-C, H*?(X) = 6 - C and g is Kéhler with respect to any complex
structure defined above. About the higher Betti numbers, we have the following
result by Verbitsky.

Theorem 1.2. [6, Theorem 1.5] For k < n, the canonical map Sym* H?(X,R) —
H?k(X,R) given by the cup product is injective.

We denote by H*) ¢ H?#(X,C) the image of the map above.

Guan found a sharp bound for b, when X has dimension 4. To show it, we will
need the Riemann-Roch formula for irreducible compact hyperkahler manifolds of
dimension 2n, proved by Salamon, see [5, Theorem 4.1],

2n
(1) nbon =23 (=1)7(35% = n)bgn_;.
j=1

Proof of Theorem 1.1. For n = 2 then (1) reads b + by = 46 + 10b,. We also have
by > %7 hence

2) bs + ba(b2 + 1)

2
b (bg + 1)

2

b3 —19hy —23-4<0 < (bo +4)(b2 —23) <0.

So by < 23. Now take by = 23: substituting in the inequality above we get b3+276 <
46 + 230 = 276, so bs = 0, which is equal to the third Betti number of a Hilbert
square on a K3 surface. Now (1) gives by, which is equal to the fourth Betti
number of a Hilbert square since the formula only depends on bs and b3. Because
of the symmetries in the Hodge diamond of a hyperkéhler manifold, the only Hodge

nubers for n = 2 are A, h>! and h?2. It is then sufficient to observe that the h?»¢
1

< 46 + 10b2

< 46 + 10by
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are completely determined by the Betti numbers i.e. ht'! = by — 2, h2! = b3/2,
h22 = by — 2(1 + hbY). 0

2. THE GENERALIZED CHERN NUMBER N (c2)

For an irreducible compact hyperkéhler manifold X of dimension 2n, we have
the Beauville-Bogomolov-Fujiki quadratic form ¢ on H?(X,Q). We refer to [1] or
[4, Section 1.11]. There exists a rational constant cx > 0 such that

3) /X B2 = cxq(B)" for any f € H?(X, Q).

More generally, let o € H* (X, C) be of type (2j,25) on all small deformations of
X. Then there is a constant ¢, € C such that

(4) [ @B D — caq(8) for any 5 € H(X,0).
X

For a =1, (4) gives exactly (3).

Remark 2.1. The Chern classes of X are classes of type (2j,27) on all small
deformations, since Chern classes are constant under small deformations. This
happens because they are integral, hence they lie in a discrete subset of H?(X, C).

We can now define the generalized Chern numbers.

Definition 2.2. Let C € H* (X, C) be a polynomial in the Chern classes. We call
generalized Chern number of degree 45 the number

Cu2(n—3)
N(C) = qui;J
()
for any v € H*(X,C) with fX u?n £ 0.

We prove that the definition does not depend on the choice of u. By Remark
2.1 we have [, Cu?("~9) = aq(u)"~7, where a is the sum of the ¢, as in (4) for all

n—j
monomials o in C. Moreover, [ u®" = cxq(u)", so N(C) = a/cy" .

In our case, n = 2, we are interested in the generalized Chern number N (c2(X))
of degree 4. Guan rewrote [3, (1)] as follows.

Lemma 2.3. [2, Lemma 2] Let X be an irreducible compact hyperkihler manifold
of dimension 2n. Then

((2n)H)" "IN (e (X))" 1
® @in@n 20" /Xtd ().
Moreover N(c2(X)) > 0.

Proof. (Hitchin and Sawon, and then Guan, use the A%—genus instead of td?. In
general A = e®/2td, in our case they coincide since ¢; = 0.)
We know that, for any hyperkéhler manifold, [y (o + &)*" = exq(o + )" > 0.

Hence we can write
[y ealo )22

 Uxlo+opm)s

N(e2)
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The result is a rearrangement! of [3, (1)],

1 [ 1
(6) (19272n)" Vol(X)n—1 /Xtd (X)

where
e Vol(X) is the volume form on X, Vol(X) = m fX(U + )",
e ||R| the £? norm of the Riemann curvature tensor,

82

RIZ = 5)2n—2
IRI* = gomsgn gy | @+ )

Note that [, ca(0 + )*"~2 > 0 since it is, up to a positive constant, equal to
|R|[?. If [y c2(0 + )22 = 0 then X would be flat, hence a torus by Bieberbach
Theorem, absurd.

(I

We write ¢(-,-) for the bilinear form associated to ¢; there is a non-degenerate
scalar product on Sym? H?(X,C) given by

(7) ([1 ® val, [w1 ® wa]) = %(q(m, wy)q(ve, w2) + q(v1, w2)q(va, w1)).

We denote by ¢¥ the unique element of Sym? H2(X,C) such that ([v; ® va],¢") =
q(v1,ve) for every vy, vy € H?(X,C). We call ¢¥ also the corresponding element of
H®,

Let a € H® be of type (2,2) on all small deformations of X. Then « is a

multiple of ¢¥. To prove it, consider the quadratic form on H?(X,C) given by
B [y aB?(=1: by (4) the form is a multiple of ¢, so up to a multiple « satisfies
the condition defining ¢".
To show that ¢ is of type (2,2): the coefficient of ¢¥ on H*C (resp. H"?) is
zero since it is generated by Sym? H?0 (resp. Sym? H%2) and ¢(¢) = 0 (resp.
q() = 0). The coefficients of ¢¥ on H>! (resp. H3) are zero since q(o,z) = 0
(resp. q(&,z) = 0) for every x € hL.

Proposition 2.4. [2, Lemma 3] Let X be an irreducible compact hyperkihler man-
ifold of dimension 4. Then

(8) 3baN(c2(X))? < (b + 2)c3.
The equality holds if and only if co(X) € H®.

Proof. The orthogonal complement of H(*) with respect to the intersection form is

the primitive chomology H7 ;. (X,C) ie. HY(X,C) = HY @ H}; (X, C). We can
write c2(X) = A¢¥ + r for some A € C*, r € ngim(X, C). By the second Hodge-

Riemann bilinear relations, the intersection form is positive on r and vanishes if
and only if r = 0, since 7 is still of type (2,2) and is primitive. So we have

d=x [ @+ [ rzx [ @

Hitchin and Sawon use a different convention for exterior products of differential forms.
The two conventions differ by a binomial coefficient: if we use Hitchin and Sawon’s formu-
lation for Vol(X) and ||R||, in terms of o”&™ and o™ ~15"~! respectively, then (5) becomes

2(n—1)\"
(@n)H" "IN (ea (XN™ ( n-1 )
(24n(2n—2)H" (211)"*1

= [ tdZ (X).
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But A [\ (¢V)? = X [ (MY +7)¢¥ = X [ c2(X)q" and so
2 2 VA2 >‘f c2(X)g")? . (f ca(X)q")?
5> A /x(q )" = )\);fx(qv)z = XfX(qV)z :

Now let {e;}i=1,...», be a orthonormal basis of H?(X,C) with respect to g. Then
we use (7) to compute the coefficients of q in the basis {[e; ® ¢;]};,; and we obtain
(lei®ej],q") = bijie ¢V =30,y € in Sym? H?(X,C). So we have

,,,,,

For i # j

dex = qle; +ej)’cx = /
X

(e; +e)t = /X(e? +4ele; + Ge?e? + 461‘6? + e?),
dex = / (e; —ej)t = / (e} —dede; + 6eje; — deie’ + 64)
X p's

In turn the two equalities above implies cx — 3 fX €5 e = fX el e; + ez =—(ex —

3/xe
X Z]
cx
CX—S/ e?e?zO{z}/ e?e?:—.
X X 3

Now we can compute
2

ba(ba + 2)
VY2 — g 2 =b b—l—CX—i—b = 22T e
/(q ) / 1 €; 2 (b2 ) 3 2CX 3 cx,

i=1,...,b2

c
/ Z / Z fX L o)k (/ ) = ba N (e2(X)) (ex) .
X b 2)2 X
Putting all together we obtain
U ealX)g")"

Jx (g

Finally, the equality holds if and only if [, 7* = 0 if and only if r = 0, c2(X) =
N € H®, O

Z = 3b2N(CQ(X))2/(b2 +2)

3. BOUNDS ON b3

Consider again X of dimension 4. A formal computation shows
1 1 1
9 td?2 (X) =td2 (X
9 [ 1t ) = (304 = e
Moreover, by Hirzebruch-Riemann-Roch we have

(10) 3= X(X.0x) = [ 1d(X) = td(X)s =

7c3 — 4cy).

1
720 720"

Theorem 3.1. [2, Theorem 2] Let X be an irreducible compact hyperkahler mani-
fold of dimension 4. Then

302 4).

an SPECEAES
If by > 7, then (ba,bs) € {(8,0),(23,0)}.
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Proof. We substitute Lemma 2.3, with n = 2, in Proposition 2.4 to obtain

42
3b2%/ td? (X) < (by +2)c3.
- X

By substituting in (9) the expression for e(X) = ¢4 given by (10) we get
3 c3

, 1
td2(X) = ——(7c2 — 4(3¢2 —720-3)) = = — :
/X (X) = 5760 (T2 —4B2 = 720-3)) = 5 = 7955

Hence

1 3 62
12 2)¢c2 > 2.242 2(X)=2-24%hy (= — —2
(12) (b +2)c; > bg/Xtd( ) ba(55 153

We have ht'! —2p%! = 1 =12 — %, see Olivier’s talk; using
bo =2+ pbt by = 212
a simple computation gives ¢4 = 3(16 + 4by — b3). We use this in (10) to have
€3 = 736 + 4by — bz. Then (12) becomes (b + 1)b3 < 4(23 — b2)(8 — b2) as in the
statement,

If by > 7 then the RHS of (11) is at most zero, since by < 23, so it has to be
Z€ero. [l

Corollary 3.2. [2, Corollary 1] If by < 7, then one of the following holds:
e by =3 and bs = 40 with £ < 17;

by =4 and by = 40 with £ < 15;

bo =5 and bs = 40 with £ < 9;

by = 6 and bs = 40 with £ < 4;

by =7 and by = 40 with ¢ € {0,2}.

Proof. By [1, Lemma 1.2], 4|by for k odd. Then the bounds are obtained using either
(2) or (11). Guan proved in [2] that the case (bs,bs) = (7,4) cannot occur. O

Remark 3.3. When b, = 7, either b3 = 0 or the Hodge diamond of X is the same
of the Hodge diamond of a Kummer variety.

) = b2(3 . 242 - C%)

Remark 3.4. Given a couple (by, b3), it is possible to compute N (cq) using Lemma 2.3,
since the Chern numbers of X are computed in the proof of Theorem 3.1. Then it is
possible to check which couples give an equality in (8). Hence, using Proposition 2.4,
one can check that ¢y € H® if and only if (b, b3) € {(5,36), (7,8), (8,0), (23,0)}.

REFERENCES

[1] A. Fujiki, On the de rham cohomology group of a compact kihler symplectic manifold, 1987.

[2] D. Guan, On the betti numbers of irreducible compact Hyperkahler manifolds of complex di-
mension four, Mathematical Research Letters (2001).

[3] Nigel Hitchin and Justin Sawon, Curvature and characteristic numbers of hyperKahler mani-
folds, Duke Math. J. 106 (2001), 599-615, available at math/9908114.

[4] D. Huybrechts, Compact hyperkdhler manifolds: Basic results, Invent. Math. 135 (1999), no. 1,
63-113.

[5] S.M. Salamon, On the cohomology of Kdhler and hyperKdahler manifolds, Topology 35 (1996),
no. 1, 137-155.

[6] M. Verbitsky, Cohomology of compact hyperkdhler manifolds and its applications, Geometric
and Functional Analysis 73 (1996), no. 6, 601-611.


math/9908114

	1. A bound on b2
	2. The generalized Chern number N(c2)
	3. Bounds on b3
	References

