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1. A bound on b2

Theorem 1.1. [2, Theorem 1] Let X be an irreducible compact hyperkähler mani-
fold of dimension 4. Then b2 ≤ 23. Moreover, if b2 = 23 the Hodge diamond of X
is the same as the Hodge diamond of the Hilbert square of a K3 surface.

Let X be an irreducible compact hyperkähler manifold of complex dimension 2n;
here we will always refer to the complex dimension. Let σ be a symplectic form on
X and let g be the Riemannian metric on X. For I, J,K a basis of the quaternions
H acting on the tangent bundle of X, we will consider the complex structures on
X in the form aI + bJ + cK for a2 + b2 + c2 = 1. We have b1 = 0, b2 ≥ 3 since
H2,0(X) = σ · C, H0,2(X) = σ̄ · C and g is Kähler with respect to any complex
structure defined above. About the higher Betti numbers, we have the following
result by Verbitsky.

Theorem 1.2. [6, Theorem 1.5] For k ≤ n, the canonical map SymkH2(X,R)→
H2k(X,R) given by the cup product is injective.

We denote by H(2k) ⊂ H2k(X,C) the image of the map above.
Guan found a sharp bound for b2 when X has dimension 4. To show it, we will

need the Riemann-Roch formula for irreducible compact hyperkähler manifolds of
dimension 2n, proved by Salamon, see [5, Theorem 4.1],

(1) nb2n = 2

2n∑
j=1

(−1)j(3j2 − n)b2n−j .

Proof of Theorem 1.1. For n = 2 then (1) reads b3 + b4 = 46 + 10b2. We also have

b4 ≥ b2(b2+1)
2 , hence

(2) b3 +
b2(b2 + 1)

2
≤ 46 + 10b2

b2(b2 + 1)

2
≤ 46 + 10b2

b22 − 19b2 − 23 · 4 ≤ 0 ⇔ (b2 + 4)(b2 − 23) ≤ 0.

So b2 ≤ 23. Now take b2 = 23: substituting in the inequality above we get b3+276 ≤
46 + 230 = 276, so b3 = 0, which is equal to the third Betti number of a Hilbert
square on a K3 surface. Now (1) gives b4, which is equal to the fourth Betti
number of a Hilbert square since the formula only depends on b2 and b3. Because
of the symmetries in the Hodge diamond of a hyperkähler manifold, the only Hodge
nubers for n = 2 are h1,1, h2,1 and h2,2. It is then sufficient to observe that the hp,q
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are completely determined by the Betti numbers i.e. h1,1 = b2 − 2, h2,1 = b3/2,
h2,2 = b4 − 2(1 + h1,1). �

2. The generalized Chern number N(c2)

For an irreducible compact hyperkähler manifold X of dimension 2n, we have
the Beauville-Bogomolov-Fujiki quadratic form q on H2(X,Q). We refer to [1] or
[4, Section 1.11]. There exists a rational constant cX > 0 such that

(3)

∫
X

β2n = cXq(β)n for any β ∈ H2(X,Q).

More generally, let α ∈ H4j(X,C) be of type (2j, 2j) on all small deformations of
X. Then there is a constant cα ∈ C such that

(4)

∫
X

αβ2(n−j) = cαq(β)n−j for any β ∈ H2(X,C).

For α = 1, (4) gives exactly (3).

Remark 2.1. The Chern classes of X are classes of type (2j, 2j) on all small
deformations, since Chern classes are constant under small deformations. This
happens because they are integral, hence they lie in a discrete subset of H2(X,C).

We can now define the generalized Chern numbers.

Definition 2.2. Let C ∈ H4j(X,C) be a polynomial in the Chern classes. We call
generalized Chern number of degree 4j the number

N(C) =

∫
X
Cu2(n−j)(∫
X
u2n
)n−j

n

for any u ∈ H2(X,C) with
∫
X
u2n 6= 0.

We prove that the definition does not depend on the choice of u. By Remark
2.1 we have

∫
X
Cu2(n−j) = aq(u)n−j , where a is the sum of the cα as in (4) for all

monomials α in C. Moreover,
∫
X
u2n = cXq(u)n, so N(C) = a/c

n−j
n

X .

In our case, n = 2, we are interested in the generalized Chern number N(c2(X))
of degree 4. Guan rewrote [3, (1)] as follows.

Lemma 2.3. [2, Lemma 2] Let X be an irreducible compact hyperkähler manifold
of dimension 2n. Then

(5)
((2n)!)n−1N(c2(X))n

(24n(2n− 2)!)n
=

∫
X

td
1
2 (X).

Moreover N(c2(X)) > 0.

Proof. (Hitchin and Sawon, and then Guan, use the Â
1
2 -genus instead of td

1
2 . In

general Â = ec1/2 td, in our case they coincide since c1 = 0.)
We know that, for any hyperkähler manifold,

∫
X

(σ + σ̄)2n = cXq(σ + σ̄)n > 0.
Hence we can write

N(c2) =

∫
X
c2(σ + σ̄)2n−2

(
∫
X

(σ + σ̄)2n)
n−1
n

.
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The result is a rearrangement1 of [3, (1)],

(6)
1

(192π2n)n
‖R‖2n

Vol(X)n−1
=

∫
X

td
1
2 (X)

where

• Vol(X) is the volume form on X, Vol(X) = 1
22n(2n)!

∫
X

(σ + σ̄)2n,

• ‖R‖ the L2 norm of the Riemann curvature tensor,

‖R‖2 =
8π2

22n−2(2n− 2)!

∫
X

c2(σ + σ̄)2n−2.

Note that
∫
X
c2(σ + σ̄)2n−2 ≥ 0 since it is, up to a positive constant, equal to

‖R‖2. If
∫
X
c2(σ + σ̄)2n−2 = 0 then X would be flat, hence a torus by Bieberbach

Theorem, absurd.
�

We write q(·, ·) for the bilinear form associated to q; there is a non-degenerate
scalar product on Sym2H2(X,C) given by

(7) 〈[v1 ⊗ v2], [w1 ⊗ w2]〉 7→ 1

2
(q(v1, w1)q(v2, w2) + q(v1, w2)q(v2, w1)).

We denote by q∨ the unique element of Sym2H2(X,C) such that 〈[v1 ⊗ v2], q∨〉 =
q(v1, v2) for every v1, v2 ∈ H2(X,C). We call q∨ also the corresponding element of
H(4).

Let α ∈ H(4) be of type (2, 2) on all small deformations of X. Then α is a
multiple of q∨. To prove it, consider the quadratic form on H2(X,C) given by
β 7→

∫
X
αβ2(n−1): by (4) the form is a multiple of q, so up to a multiple α satisfies

the condition defining q∨.
To show that q∨ is of type (2, 2): the coefficient of q∨ on H4,0 (resp. H0,4) is
zero since it is generated by Sym2H2,0 (resp. Sym2H0,2) and q(σ) = 0 (resp.
q(σ̄) = 0). The coefficients of q∨ on H3,1 (resp. H1,3) are zero since q(σ, x) = 0
(resp. q(σ̄, x) = 0) for every x ∈ h1,1.

Proposition 2.4. [2, Lemma 3] Let X be an irreducible compact hyperkähler man-
ifold of dimension 4. Then

(8) 3b2N(c2(X))2 ≤ (b2 + 2)c22.

The equality holds if and only if c2(X) ∈ H(4).

Proof. The orthogonal complement of H(4) with respect to the intersection form is
the primitive chomology H4

prim(X,C) i.e. H4(X,C) = H(4)⊕H4
prim(X,C). We can

write c2(X) = λq∨ + r for some λ ∈ C∗, r ∈ H4
prim(X,C). By the second Hodge-

Riemann bilinear relations, the intersection form is positive on r and vanishes if
and only if r = 0, since r is still of type (2, 2) and is primitive. So we have

c22 = λ2
∫
X

(q∨)2 +

∫
X

r2 ≥ λ2
∫
X

(q∨)2.

1Hitchin and Sawon use a different convention for exterior products of differential forms.
The two conventions differ by a binomial coefficient: if we use Hitchin and Sawon’s formu-

lation for Vol(X) and ‖R‖, in terms of σnσ̄n and σn−1σ̄n−1 respectively, then (5) becomes

((2n)!)n−1N(c2(X))n

(24n(2n−2)!)n
·
(
2(n−1)
n−1

)n(
2n
n

)n−1 =
∫
X td

1
2 (X).
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But λ2
∫
X

(q∨)2 = λ
∫
X

(λq∨ + r)q∨ = λ
∫
X
c2(X)q∨ and so

c22 ≥ λ2
∫
X

(q∨)2 =
(λ
∫
X
c2(X)q∨)2

λ2
∫
X

(q∨)2
=

(
∫
X
c2(X)q∨)2∫
X

(q∨)2
.

Now let {ei}i=1,...,b2 be a orthonormal basis of H2(X,C) with respect to q. Then
we use (7) to compute the coefficients of q∨ in the basis {[ei⊗ ej ]}i,j and we obtain

〈[ei ⊗ ej ], q∨〉 = δi,j i.e. q∨ =
∑
i=1,...,b2

e2i in Sym2H2(X,C). So we have

q(ei) = 1 =⇒
∫
X

e4i = cX .

For i 6= j

4cX = q(ei + ej)
2cX =

∫
X

(ei + ej)
4 =

∫
X

(e4i + 4e3i ej + 6e2i e
2
j + 4eie

3
j + e4j ),

4cX =

∫
X

(ei − ej)4 =

∫
X

(e4i − 4e3i ej + 6e2i e
2
j − 4eie

3
j + e4j )

In turn the two equalities above implies cX − 3
∫
X
e2i e

2
j =

∫
X
e3i ej + eie

3
j = −(cX −

3
∫
X
e2i e

2
j ). So

cX − 3

∫
X

e2i e
2
j = 0⇐⇒

∫
X

e2i e
2
j =

cX
3
.

Now we can compute∫
X

(q∨)2 =

∫
X

 ∑
i=1,...,b2

e2i

2

= b2(b2 − 1)
cX
3

+ b2cX =
b2(b2 + 2)

3
cX ,

∫
X

c2(X)q∨ =
∑

i=1,...,b2

∫
X

c2(X)e2i =
∑

i=1,...,b2

∫
X
c2(X)e2i

(
∫
X
e4i )

1
2

·
(∫

X

e4i

) 1
2

= b2N(c2(X))(cX)
1
2 .

Putting all together we obtain

c22 ≥
(
∫
X
c2(X)q∨)2∫
X

(q∨)2
= 3b2N(c2(X))2/(b2 + 2).

Finally, the equality holds if and only if
∫
X
r2 = 0 if and only if r = 0, c2(X) =

λq∨ ∈ H(4). �

3. Bounds on b3

Consider again X of dimension 4. A formal computation shows

(9)

∫
X

td
1
2 (X) = td

1
2 (X)4 =

1

5760
(7c22 − 4c4).

Moreover, by Hirzebruch-Riemann-Roch we have

(10) 3 = χ(X,OX) =

∫
X

td(X) = td(X)4 =
1

720
(3c22 − c4).

Theorem 3.1. [2, Theorem 2] Let X be an irreducible compact hyperkähler mani-
fold of dimension 4. Then

(11) b3 ≤
4(23− b2)(8− b2)

b2 + 1
.

If b2 > 7, then (b2, b3) ∈ {(8, 0), (23, 0)}.
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Proof. We substitute Lemma 2.3, with n = 2, in Proposition 2.4 to obtain

3b2
(24 · 4)2

4!

∫
X

td
1
2 (X) ≤ (b2 + 2)c22.

By substituting in (9) the expression for e(X) = c4 given by (10) we get∫
X

td
1
2 (X) =

1

5760
(7c22 − 4(3c22 − 720 · 3)) =

3

2
− c22

1152
.

Hence

(12) (b2 + 2)c22 ≥ 2 · 242b2

∫
X

td
1
2 (X) = 2 · 242b2(

3

2
− c22

1152
) = b2(3 · 242 − c22).

We have h1,1 − 2h2,1 = χ1 = 12− c4
6 , see Olivier’s talk; using

b2 = 2 + h1,1 b3 = 2h1,2

a simple computation gives c4 = 3(16 + 4b2 − b3). We use this in (10) to have
c22 = 736 + 4b2 − b3. Then (12) becomes (b2 + 1)b3 ≤ 4(23 − b2)(8 − b2) as in the
statement,

If b2 > 7 then the RHS of (11) is at most zero, since b2 ≤ 23, so it has to be
zero. �

Corollary 3.2. [2, Corollary 1] If b2 ≤ 7, then one of the following holds:

• b2 = 3 and b3 = 4` with ` ≤ 17;
• b2 = 4 and b3 = 4` with ` ≤ 15;
• b2 = 5 and b3 = 4` with ` ≤ 9;
• b2 = 6 and b3 = 4` with ` ≤ 4;
• b2 = 7 and b3 = 4` with ` ∈ {0, 2}.

Proof. By [1, Lemma 1.2], 4|bk for k odd. Then the bounds are obtained using either
(2) or (11). Guan proved in [2] that the case (b2, b3) = (7, 4) cannot occur. �

Remark 3.3. When b2 = 7, either b3 = 0 or the Hodge diamond of X is the same
of the Hodge diamond of a Kummer variety.

Remark 3.4. Given a couple (b2, b3), it is possible to computeN(c2) using Lemma 2.3,
since the Chern numbers of X are computed in the proof of Theorem 3.1. Then it is
possible to check which couples give an equality in (8). Hence, using Proposition 2.4,
one can check that c2 ∈ H(4) if and only if (b2, b3) ∈ {(5, 36), (7, 8), (8, 0), (23, 0)}.
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