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ALGEBRA

T. BECKMANN

Abstract. We review work of Taelman [Tae81] on derived categories of hyper-Kähler vari-
eties. More precisely, we study the LLV algebra from a different perspective to prove that it
is a derived invariant. Applications to the action of derived equivalences on cohomology and
the study of their Hodge structures are given.

1. Introduction

We present the first part of Taelman’s paper [Tae81]. The main incentive and goal is to
understand better the bounded derived category DbpXq :“ DbpCohpXqq and its group of auto-
equivalences AutpDbpXqq.

These notes are, however, light on derived categories and focus more on a different persepec-
tive of the Looijenga–Lunts–Verbitsky (LLV) Lie algebra gpXq [Ver96, LL97] which will allow
us to show the following.

Theorem 1.1. A derived equivalence Φ: DbpXq » DbpY q between projective hyper-Kähler man-
ifolds induces naturally a Lie algebra isomorphism

Φg : gpXq » gpY q

which is equivariant for the induced isomorphism

ΦH : H˚pX,Qq » H˚pY,Qq.

Notation. Throughout these notes X and Y will be hyper-Kähler manifolds of dimension 2n.
All functors will be implicitely derived.

2. Quick review of derived categories

Let us recall one of the most important results in the study of derived equivalences due to
Orlov [Orl97].

Theorem 2.1. Let X and Y be smooth projective varieties and Φ: DbpXq » DbpY q an exact
derived equivalence. Then Φ is isomorphic to a Fourier–Mukai functor, i.e. there exists E P
DbpX ˆ Y q such that

Φ » FME :“ pY ˚ ˝ E b_ ˝ p˚X .

This review was prepared in the context of the seminar organized by the ERC Synergy Grant HyperK, Grant
agreement ID 854361. The talk was delivered on May 21, 2021.
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Moreover, a derived equivalence as in the theorem naturally induces isomorphisms of several
invariants associated to the varieties such as (topological) K-theory. For us the most important
invariant will be singular cohomology. Namely, every equivalence FME induces a cohomological
Fourier–Mukai transform FMH

E given by the correspondence vpEq P H˚pX ˆ Y q where v “
chp_qtd is the Mukai vector. These are compatible via the Mukai vector, i.e. the following
diagram commutes

(2.1)
DbpXq DbpY q

H˚pX,Qq H˚pY,Qq.

Φ

v v

ΦH

Hence, the study of derived categories leads naturally to cycles on hyper-Kähler varieties.

Remark 2.2. Let us mention properties of the cohomological Fourier–Mukai transform FMH
E .

‚ Since vpEq P ‘pHp,ppX ˆ Y q, the isomorphism FMH
E respects the weight zero Hodge

structure on H˚pX ˆ Y q for which a class x is in H´i,ipXq if and only if in the decom-
position given by the usual Hodge decomposition every component of x lies in Hp,qpXq

with q ´ p “ ´i.
‚ The isomorphism FMH

E respects the generalized Mukai pairing, see [Căl03].
‚ The cohomological Fourier–Mukai transform FMH

E does not respect neither the cup
product structure on cohomology nor the cohomological grading.

3. Recollection of the LLV Lie algebra

We quickly recall the definition of the LLV Lie algebra. For a more thorough discussion we
refer to the Bottini’s notes.

Let X be a hyper-Kähler manifold and λ P H2pX,Qq a cohomology class. We attach to it
the operator

eλ :“ λY_ P EndpH˚pX,Qqq
given by cup product with the class λ. We say that λ has the Hard Lefschetz property, if for all
i the maps

eiλ : H2n´ipX,Qq //H2n`ipX,Qq
are isomorphisms. We denote by h P EndpH˚pX,Qqq the grading operator acting on HipX,Qq
via pi´ 2nqid.

For a Hard Lefschetz class λ P H2pX,Qq, the triple

peλ, h, fλq,

where fλ is the dual Lefschetz operator, is isomorphic to the Lie algebra sl2.

Definition 3.1. The LLV Lie algebra gpXq is the Lie subalgebra of EndpH˚pX,Qqq generated
by all sl2-triples peλ, h, fλq for λ P H2pX,Qq Hard Lefschetz.
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As said in the beginning, we refer to Bottini’s notes or [LL97] for more details and properties
of gpXq. Our main goal is to relate the Lie algebra g with DbpXq. Note that since a cohomo-
logical Fourier–Mukai functor does not respect cup product nor grading, which are the defining
properties of the LLV algebra, it is a priori not clear how this can be done. The main ingredient
for it is the ring of polyvector fields, to be introduced now.

4. Polyvector fields

Definition 4.1. The ring of polyvector fields HT˚pXq is the graded C-algebra whose degree k
part is

HTk :“ ‘p`q“kH
qpX,ΛpTXq.

The ring structure is induced by the one from the exterior algebra.

For X a hyper-Kähler variety we can choose a symplectic form σ P H0pX,Ω2
Xq which induces

isomorphisms

ΛpTX » Ωp
X

which induce a C-algebra isomorphism

HT˚pXq “ H˚pX,Λ˚TXq » H˚pX,Ω˚Xq » H˚pX,Cq.(4.1)

Thus, as a C-algebra, the ring of polyvectors is isomorphic to the de Rham cohomology.
In this note, we are more interested in another viewpoint of the polyvector fields. Namely, the

ring of polyvectors acts on the de Rham cohomology by contraction, i.e. given v P HqpX,ΛpTXq
and x P Hq1pX,Ωp1

Xq the action is

v{x P Hq`q1pX,Ωp1´p
X q.

The following is immediate, see also [Tae81, Lem. 2.4]

Lemma 4.2. For X a hyper-Kähler manifold the de Rham cohomology is a free module of rank
one over the polyvector fields generated by a Calabi–Yau form σn P H0pX,Ω2n

X q.

Hence, one may identify the ring of polyvector fields HT˚pXq with the de Rham cohomology
H˚pX,Cq. Via this identification the grading on HT˚pXq corresponds to the Hodge grading
on HpX,Cq. In this way, the de Rham cohomology obtains a new ring structure, which this
time has horizontal grading in contrast to the vertical grading of the usual cup product in the
standard representation of the Hodge diamond. We will make this more precise and formal
using Lie algebras and operators in the next section.

The reason why the ring of polyvectors are of interest to us is the following crucial result.
It relies on the modified Hochschild–Konstant–Rosenberg isomorphism identifying Hochschild
(co)homology with polyvectors and the de Rham cohomology [CRVdB12].
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Theorem 4.3. A derived equivalence Φ: DbpXq » DbpY q induces naturally a C-algebra iso-
morphism ΦHT : HT˚pXq » HT˚pY q such that the action of the polyvector fields is equivariant
for the induced isomorphism ΦH : H˚pXCq » H˚pY,Cq.

Spelling this out, for v P HT˚pXq and x P H˚pX,Cq we have

ΦHpv{xq “ ΦHTpvq{ΦHpxq P H˚pY,Cq.

5. Reinventing the LLV Lie algebra

We make more precise the observations from the last section and define a new Lie algebra,
which will turn out to be isomorphic to gpXq with extended scalars.

We consider the holomorphic grading operator hp and the antihomolorphic grading operator
hq defined by acting on Hk,lpXq via

hp “ pk ´ nqid, hq “ pl ´ nqid.

With these definitions the usual grading operator h for the cohomological grading is just h “
hp ` hq. We define the Hodge grading operator h1 :“ hq ´ hp.

With this definition the action of the polyvector fields HT˚pXq on the de Rham cohomology
H˚pX,Cq has degree two with respect to the grading h1.

For µ P HT2pXq we define the operator eµ :“ µ{_ P EndpH˚pX,Cqq. We say that µ is
Hard Lefschetz is the operator eµ satisfies the Hard Lefschetz isomorphisms with respect to
the grading operator h1. The Jacobson–Morozov theorem asserts that this is equivalent to the
existence of an operator fµ P EndpH˚pX,Cqq such that

peµ, h
1, fµq

forms an sl2-triple.

Definition 5.1. The complex Lie algebra g1pXq is defined to be the smallest Lie subalgebra of
EndpH˚pX,Cqq containing all sl2-triples peµ, h1, fµq for all Hard Lefschetz µ P HT2pXq.

Equivalently, one could have defined the Lie algebra g1 as the Lie subalgebra of EndpHT˚pXqq

containing all sl2-triples with µ Hard Lefschetz. Through the isomorphism

HT˚pXq{σn » H˚pX,Cq

these two definitions are identified.
Recall from (4.1) that the choice of a symplectic form yields an abstract graded C-algebra

isomorphism
HT˚pXq » H˚pX,Ω˚Xq » H˚pX,Cq.

Thus, the choice of a symplectic form leads to the following isomorphism.

Lemma 5.2. There is an isomorphism of Lie algebras

gpXq bQ C » g1pXq.
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We also deduce the following consequence from Theorem 4.3.

Proposition 5.3. For derived equivalent hyper-Kähler varieties Φ: DbpXq » DbpY q the iso-
morphism

ΦHT : HT2pXq » HT2pY q

induces naturally a Lie algebra isomorphism

Φg : g1pXq » g1pY q

which is equivariant for the induced isomorphism ΦH.

Spelling this again out means that for j P gpXq and x P H˚pX,Cq we have

ΦHpj.xq “ Φgpjq.ΦHpxq P H˚pY,Cq.

The connection between all that has been said so far and the main tool for all the applications
we will present is the following main theorem of [Tae81] which was also implicitely proven (but
not stated in the form below) by Verbitsky [Ver99].

Theorem 5.4. The Lie algebras gpXqbQC and g1pXq are equal as Lie subalgebras of EndpH˚pX,Cqq.

Proof. We will sketch Taelman’s approach.
From Lemma 5.2 we infer that it is enough to show only the inclusion

g1pXq Ă gpXq bQ C.

A straight-forward calculation shows that

peσ, hp, eσ̌q

is an sl2-triple, where σ̌ P H0pΛ2pTXqq is the dual symplectic form (note that the Lefschetz
operator eσ acts via cup product, whereas eσ̌ acts by contraction of polyvector fields).

Analogously or by Hodge symmetry, for the complex conjugate form σ̄ P H2pX,OXq the
operator eσ̄ has the Hard Lefschetz property for the grading operator hq. The Jacobson–
Morozov Theorem grants the existence of an operator g P EndpH˚pX,Cqq such that

peσ̄, hq, gq

forms an sl2-triple. An easy check shows that all elements from the sl2-triple peσ, hp, eσ̌q com-
mute with all elements from the sl2-triple peσ̄, hq, gq. Thus we obtain two new sl2-triples

peσ ` eσ̄, h, eσ̌ ` gq, peσ ´ eσ̄, h, eσ̌ ´ gq.

This gives that eσ̌ P gpXq bQ C. Since reσ, eσ̌s “ hp, we deduce furthermore that hp, hq and
therefore h1 are all contained inside gpXq bQ C.
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Since evidently eσ̄ is also contained in gpXqbQC (the contraction action agrees with the cup
product), it is left to show that for almost all µ P H1pX, TXq the operator eµ lies in gpXq bQ C.
This follows from the identity

reσ̌, eηs “ eµ

for η P H1pX,ΩXq satisfying
µ “ σ̌{η P H1pX, TXq

which follows from a calculation, see [Tae81, Lem. 2.13]. �

The theorem implies that the isomorphism from Proposition 5.3 is already defined over Q,
since the same holds for the induced isomorphism on singular cohomology.

Corollary 5.5. A derived equivalence Φ: DbpXq » DbpY q between hyper-Kähler varieties in-
duces naturally a Lie algebra isomorphism

Φg : gpXq » gpY q

which is equivariant for the induced isomorphism

ΦH : H˚pX,Qq » H˚pY,Qq.

6. Verbitsky component and extended Mukai lattice

We want to draw consequences from Theorem 5.4 for the study of derived equivalences of
hyper-Kähler manifolds and their induced actions on cohomology.

Definition 6.1. The Verbitsky component SHpX,Qq Ă H˚pX,Qq is the subalgebra generated
by H2pX,Qq.

It is known that the Verbitsky component is an irreducible representation of the LLV Lie
algebra and it is characterized as such as the irreducible representation whose Hodge strucutre
attains the maximal possible width.

Corollary 6.2. For a derived equivalence Φ: DbpXq » DbpY q between hyper-Kähler manifolds
the induced isomorphism ΦH restricts to a Hodge isometry

ΦSH : SHpX,Qq » SHpY,Qq.

The pairing on the Verbitsky component is the Mukai pairing bSH defined via

bSHpλ1 . . . λm, µ1 . . . µ2n´mq :“

ż

X
λ1 . . . λmµ1 . . . µ2n´m

for classes λi, µj P H2pX,Qq.
We want to study the Verbitsky component and the LLV Lie algebra more closely to further

refine the study of AutpDbpXqq.
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Definition 6.3. The extended Mukai lattice pH̃pX,Qq, b̃q is the rational quadratic vector space
defined by

Qα‘H2pX,Qq ‘Qβ.

The quadratic form b̃ on H̃pX,Qq restricts to the BBF form b on H2pX,Qq and the two classes
α and β are orthogonal to H2pX,Qq and satisfy b̃pα, βq “ ´1 as well as b̃pα, αq “ b̃pβ, βq “ 0.

Furthermore, we define on H̃pX,Qq a grading by declaring α to be of degree ´2, H2pX,Qq
sits in degree zero and β is of degree two. Finally, the extended Mukai lattice is equipped with
a weight-two Hodge structure

pH̃pX,Qq b Cq2,0 :“ H2,0pXq

pH̃pX,Qq b Cq0,2 :“ H0,2pXq

pH̃pX,Qq b Cq1,1 :“ H1,1pXq ‘ Cα‘ Cβ.

Verbitsky [Ver96] proved the existence of a graded morphism ψ : SHpX,Qq // SymnpH̃pX,Qqq
sitting in a short exact sequence

0 // SHpX,Qq ψ
Ý // SymnpH̃pX,Qqq ∆

Ý // Symn´2pH̃pX,Qqq // 0.

Here, the map ∆ is the Laplacian operator defined on pure tensors via

v1 ¨ ¨ ¨ vn
� //

ÿ

iăj

b̃pvi, vjqv1 ¨ ¨ ¨ v̂i ¨ ¨ ¨ v̂j ¨ ¨ ¨ vn.

The map ψ is uniquely determined (up to scaling) by the condition that it is a morphism of
gpXq-modules.

The gpXq-structure of H̃pX,Qq is defined by the conditions eωpαq “ ω, eωpµq “ bpω, µqβ

and eωpβq “ 0 for all classes ω, µ P H2pX,Qq. The n-th symmetric power SymnpH̃pX,Qqq then
inherits the structure of a gpXq-module by letting gpXq act by derivations. We fix once and for
all a choice of ψ by setting ψp1q “ αn{n!.

Taelman [Tae81, Sec. 3] showed that the map ψ is an isometry with respect to the Mukai
pairing on SHpX,Qq and the pairing

brnspx1 ¨ ¨ ¨xn, y1 ¨ ¨ ¨ ynq “ p´1qncX
ÿ

σPSn

n
ź

i“1

b̃pxi, yσpiqq

on SymnpH̃pX,Qqq, where cX is the Fujiki constant characterized by the property
ż

X
ω2n “ cX

p2nq!

2nn!
bpω, ωqn

for all ω P H2pX,Qq. Note that our definition of brns differs from Taelman’s definition by the
Fujiki constant. Ours has the advantage that ψ is always an isometry.

Summing up, the inclusion ψ respects the

‚ gpXq-structure,



8 T. BECKMANN

‚ quadratic forms,
‚ Hodge structures,
‚ gradings.

7. Action of derived equivalences on the extended Mukai lattice

Recall that we have deduced the existence of a representation

ρSH : AutpDbpXqq //OpSHpX,Qqq

and the isometries in the image of this representation normalize the action of the LLV algebra
gpXq, i.e. for these g P OpSHpX,Qqq we have

ggpXqg´1 “ gpXq Ă EndpH˚pX,Qqq.

Let us study these automorphisms a bit further.

Definition 7.1. The group AutpSHpX,Qq, bSH, gpXqq is the group of all isometries of the
Verbitsky component that normalize the action of the LLV algebra.

The main representation-theoretic input for our discussion is the following result [Tae81, Sec.
4].

Proposition 7.2. If n is odd or the second Betti number is odd, then

AutpSHpX,Qq, bSH, gpXqq » OpH̃pX,Qqq.

We make this isomorphism more explicit. Let X and Y be deformation-equivalent hyper-
Kähler manifolds together with Φ: DbpXq » DbpY q. Then there exists a unique Hodge isometry

ΦH̃ : H̃pX,Qq » H̃pY,Qq

inducing the following commutative diagram

(7.1)

SHpX,Qq SHpY,Qq

SymnpH̃pX,Qqq SymnpH̃pY,Qqq.

detppΦH̃qqn`1ΦSH

ψ ψ

SymnΦH̃

Remark 7.3. For all the known examples, derived equivalent hyper-Kähler varieties are deformation-
equivalent. In general, however, it is not known whether derived equivalent hyper-Kähler va-
rieties are deformation-equivalent. Without this assumption, the above proposition has to
weakened as we shall demonstrate.

The (linear algebra) problem is that if there exists an abstract isometry between Verbitsky
components of hyper-Kähler varieties which normalizes the LLV algebra, it is not true that
the corresponding Mukai lattices must be isometric. As an example, take a rational quadratic
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vector space pV, qq and consider the quadratic space pV, λqq for λ P QzQ2. These spaces are not
isometric, but the kernels of the respective Laplacians

Sym2pV q
∆
Ý // Q

are isometric.

One can, using similitudes, still formulate a version of the above in the general case. This
will be needed in the next section for the application to Hodge structures.

Theorem 7.4. Let X and Y be arbitrary hyper-Kähler varieties and Φ: DbpXq » DbpY q a
derived equivalence. Then there exists a Hodge similitude ΦH̃ : H̃pX,Qq // H̃pY,Qq and a scalar
λ P Q such that

(7.2)

SHpX,Qq SHpY,Qq

SymnpH̃pX,Qqq SymnpH̃pY,Qqq

ΦSH

ψ ψ

λSymnΦH̃

commutes.

8. Hodge structures

In this last section we want to give one application of the results presented so far regarding
derived equivalent hyper-Kähler varieties and their Hodge structures.

We first want to recall a recent result of Soldatenkov [Sol21]1, whose statement and proof are
similiar in flavour to what we will discuss afterwards for derived equivalences.

Theorem 8.1. Let X and Y be arbitrary hyper-Kähler varieties and ϕ : H2pX,Qq » H2pY,Qq
and isomorphism of Q-Hodge structures, which is the restriction of a global algebra automor-
phism φ : H˚pX,Qq » H˚pY,Qq. Then for all i P Z the restrictions

φ : HipX,Qq » HipY,Qq

are isomorphisms of Q-Hodge structures.

Proof. We briefly sketch the argument. Since φ is a graded algebra automorphism, the adjoint
action yields an isomorphism

adpφq : gpXq » gpY q.

The fact that φ is graded implies that adpφqphq “ h. Moreover, the restriction of φ to H2pX,Qq
respects the Hodge structures. This implies that adpφqph1q “ h1. Since h ` h1 “ 2hq and
h ´ h1 “ 2hp we deduce adpφqphpq “ hp and adpφqphqq “ hq. This is equivalent to φ being a
morphism of Q-Hodge structures. �

1We thank Andrey Soldatenkov for a stimulating conversation about his results.
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The assertion that the isomorphism of Hodge structures is the restriction of a global algebra
automorphism is frequently met. For example, Hodge isometries with positive determinant can
be extended to algebra automorphisms of the even cohomology by integrating the LLV action.
For more details and examples we refer to [Sol21].

With this in mind, we can now prove the following result of Taelman [Tae81, Sec. 5].

Theorem 8.2. Let X and Y be derived equivalent hyper-Kähler varieties. Then for all i P Z
we have an isomorphism

HipX,Qq » HipY,Qq

of Q-Hodge structures.

Proof. Let us denote by Φ a derived equivalence between X and Y . From Theorem 7.4 we know
that there exists a Hodge similitude φ : H̃pX,Qq // H̃pY,Qq such that under the isomorphism
gpXq » sopH̃pX,Qqq the Lie algebra isomorphism Φg corresponds to adpφq.

By Witt cancelation for vector spaces one easily shows that there exists a Hodge isometry
γ P SOpH̃pY,Qqq such that the composition γ ˝φ is now a graded Hodge similitude, i.e. α and β
are mapped to multiplies of themselves. By definition, this implies that the adjoint morphism
of γ ˝ φ satisfies

adpγ ˝ φqphq “ h, adpγ ˝ φqph1q “ h1.(8.1)

Let us for the moment assume that we can find a global algebra isomorphism η : H˚pY,Qq »
H˚pY,Qq whose adjoint action equals γ as isomorphisms of the LLV Lie algebra gpY q. Then we
can consider the composition

η ˝ ΦH : H˚pX,Qq » H˚pY,Qq.

From (8.1) we infer again that adpη ˝ ΦHqphq “ h and adpη ˝ ΦHqph1q “ h1. As in the proof of
Theorem8.1 this implies that η ˝ ΦH induces in each degree the desired isomorphism of Hodge
structures.

It is left to prove the existence of the global algebra isomorphism η. In general, the integrated
action of the LLV Lie algebra can only be extended to the even cohomology. This is circumvented
by using the Q-algebraic group QSpin. For details we refer to [Tae81, Sec. 5]. �

References

[Căl03] Andrei Căldăraru. The Mukai pairing, I: the Hochschild structure, 2003. arXiv:0308079.
[CRVdB12] D. Calaque, C. A. Rossi, and M. Van den Bergh. Căldăraru’s conjecture and Tsygan’s formality.

Ann. of Math. (2), 176(2):865–923, 2012.
[LL97] E. Looijenga and V. A. Lunts. A Lie algebra attached to a projective variety. Invent. Math.,

129(2):361–412, 1997.
[Orl97] D. O. Orlov. Equivalences of derived categories and K3 surfaces. J. Math. Sci. (New York),

84(5):1361–1381, 1997. Algebraic geometry, 7. arXiv:alg-geom/9606006.



11

[Sol21] A. Soldatenkov. On the Hodge structure of compact hyperkähler manifolds. Math. Res. Lett.,
28(2):623–635, 2021.

[Tae81] L. Taelman. Derived equivalences of hyperkähler varieties, 2019, arXiv:1906.08081.
[Ver96] Mikhail Verbitsky. Cohomology of compact hyper-Kähler manifolds and its applications. Geom.

Funct. Anal., 6(4):601–611, 1996. arXiv:alg-geom/9511009.
[Ver99] Misha Verbitsky. Mirror symmetry for hyper-Kähler manifolds. In Mirror symmetry, III (Montreal,

PQ, 1995), volume 10 of AMS/IP Stud. Adv. Math., pages 115–156. Amer. Math. Soc., Providence,
RI, 1999.

Max–Planck–Institute, Bonn, Viviatsgasse 7, 53111 Bonn, Germany
Email address: beckmann@math.uni-bonn.de,


	1. Introduction
	Notation

	2. Quick review of derived categories
	3. Recollection of the LLV Lie algebra
	4. Polyvector fields
	5. Reinventing the LLV Lie algebra
	6. Verbitsky component and extended Mukai lattice
	7. Action of derived equivalences on the extended Mukai lattice
	8. Hodge structures
	References

