
EFFECTIVITY OF SEMI-POSITIVE LINE BUNDLES
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Abstract. We review work by Campana–Oguiso–Peternell [COP10] and Verbitsky [Ver10]
showing that a semi-positive line bundle on a hyperkähler manifold admits at least one non-
trivial section. This is modest but tangible evidence towards the SYZ conjecture for hyper-
kähler manifolds.

1. Main theorem and motivation

1.1. Main theorem. The following result was first proved in the non-algebraic setting by
Campana–Oguiso–Peternell [COP10] and later, applying similar techniques, by Verbitsky [Ver10].

Theorem 1.1. Any semi-positive line bundle L on a compact hyperkähler manifold is Q-
effective, i.e. H0pX,Lmq ‰ 0 for some m ą 0.

A line bundle L, say on a compact Kähler manifold, is semi-positive if it admits a smooth
hermitian metric with semi-positive curvature. Warning: The term semi-positive is used with
different meaning in other contexts.

Clearly, any ample line bundle is semi-positive, as due to Kodaira’s theorem being ample
is equivalent to admitting a hermitian metric with positive curvature. Also, semi-positive line
bundles are nef. However, the converse is not true. There exist line bundles on projective
manifolds which are nef but not semi-positive, e.g. one finds in [Har70, Thm. I.10.5] Mumford’s
example of a nef line bundle that is not semi-ample and in [DPS01, Sec. 2.5] an example of
nef line bundles that is not semi-positive. However, the situation is expected to be better on
compact hyperkähler manifolds (or, more generally, on Calabi–Yau manifolds).

Conjecture 1.2. Any nef line bundle on a compact hyperkähler manifold is semi-ample, i.e.
some positive power Lm is globally generated, and, in particular, semi-positive.

There are two cases to be considered here: For a nef line bundle on a compact hyperkähler
manifold either qpLq ą 0 or qpLq “ 0, where q is the Beauville–Bogomolov quadratic pairing on
H2pX,Zq. In the first case, L is nef and big, X is projective [Huy99, Thm. 3.11], and, therefore,
L is semi-ample by the base-point free theorem [CKM88]. Hence, only the case of a nef line
bundle L with qpLq “ 0 needs to be dealt with and we shall restrict to this case in what follows.

This review was prepared in the context of the seminar organized by the ERC Synergy Grant HyperK, Grant
agreement ID 854361. The talk was delivered on April 16, 2021.
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Remark 1.3. The naive idea to approach Theorem 1.1 and Conjecture 1.2 is of course to
apply the hyperkähler Riemann–Roch formula χpLq “

ř

aiqpLq
i, see [Huy99, Huy03a], which

for qpLq “ 0 reduces to χpLq “ n ` 1. The problem now is that we have a priori no control
over the higher cohomology groups HqpX,Lq as the usual vanishing results do not apply. In
fact, by applying a result of Matsushita [Mat05, Thm. 1.3] showing that Rjf˚OX » Ωj

Pn for a
Lagrangian fibration f : X //Pn, we know that in this case HqpX, f˚Opkqq » H0pPn,Ωq

Pnpkqq

for k ą 0 by Bott vanishing and Leray spectral sequence. Hence, HqpX, f˚Opkqq ‰ 0 for
k ą q ď n.

1.2. SYZ conjecture. Assume that L is a non-trivial semi-ample line bundle with qpLq “ 0

on a compact hyperkähler manifold X of dimension 2n. Then the linear system |Lm|, m " 0,
defines a Lagrangian fibration X // //B over a normal base B of dimension n.

As any compact hyperkähler manifold X with b2pXq ě 5 deforms to a compact hyperkähler
manifold X 1 that admits a nef line bundle of square zero, Conjecture 1.2 would thus confirm the
following version of the Stromminger–Yau–Zaslov (SYZ) conjecture for Calabi–Yau threefolds.

Conjecture 1.4. Every compact hyperkähler manifold is deformation equivalent to a compact
hyperkähler manifold with a Lagrangian fibration.

The conjecture has been verified for all known deformation types of compact hyperkähler
manifolds. This is obvious for those deformation equivalent to Hilbert schemes of K3 surfaces
or to generalized Kummer varieties. See [Rap07, Cor. 1.1.10], for those deformation equivalent
to the examples of O’Grady in dimension six and ten.

1.3. Notation. TypicallyX will denote a compact hyperkähler manifoldX of dimension 2n, i.e.
X is a simply-connected, compact Kähler manifold with H0pX,Ω2

Xq spanned by an everywhere
non-degenerate holomorphic two-form σ. The second cohomology H2pX,Zq is endowed with the
Beauville–Bogomolov form q which is of signature p3, b2pXq´3q and which satisfies qpαqn “ cX ¨
ş

α2n for all classes α P H2pX,Zq and some positive rational number cX P Q, the Fujiki constant.
The square of a class α P H1,1pXq can alternatively be computed as qpαq “

ş

α2pσσ̄qn´1 (up to
a positive scaling factor not depending on α).

2. Preparation

We shall prepare the ground for the actual proof by recalling the main results and techniques
that go into it.

2.1. Hard Lefschetz theorem. The following result is due to Mourougane [Mou99, Thm.
2.6].1

1In [Mou99] one finds the dual statement, namely that Hq
pX,Ωp

X b F q
� � //Hd´p

pX,Ωd´q
X b F q is injective.

Is there a typo in his result? Should he not assume F to be semi-negative?
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Proposition 2.1. Let L be a semi-positive line bundle on a compact Kähler manifold X of
dimension d with Kähler class ω. Then the product with ωq defines surjective maps

H0pX,Ωd´q
X b Lq // //HqpX,Ωd

X b Lq.

For L » OX , this is the content of the Hard Lefschetz theorem which, in fact, asserts the
bijectivity of the map. The techniques to prove the more general statement are similar.

If X is a hyperkähler manifold of dimension d “ 2n and so Ω2n
X » OX , one obtains surjections

H0pX,Ω2n´q b Lq // //HqpX,Lq.

This allows one to turn the non-vanishing of higher cohomology groups of L into the existence
of global sections of powers of L.

Remark 2.2. (i) The result fails if L is only assumed to be nef without having a semi-positive
metric, see [DPS01, Sec. 2.5] for an example. In this case, there is a variant of the above due to
Takegoshi [Tak97, Thm. 1] for nef line bundles and to Demailly–Peternell–Schneider [DPS01,
Thm. 2.1] for pseudo-effective line bundles: For a line bundle L on a compact Kähler manifold
X of dimension d with a singular hermitian metric h with semi-positive curvature current the
product with ωq defines a surjection

(2.1) H0pX,Ωd´q
X b Lb Iphqq // //HqpX,Ωd

X b Lb Iphqq,

where Iphq denotes the multiplier ideal sheaf.
(ii) Due to [Tak97, Thm. 2], for q ą n the morphism HqpX,Lb Iphqq //HqpX,Lq induced

by the inclusion LbIphq Ă L is the zero map for any nef line bundle L on a compact hyperkähler
manifold X of dimension 2n. In fact, according to another result of Verbitsky [Ver07, Thm.
1.6], one has HqpX,Lq “ 0, q ą n, for any nef and, more generally, for any pseudo-effective line
bundle L.

2.2. Finiteness of non-polar hypersurfaces. An integral hypersurface Y Ă X of a compact
complex manifold is called polar if there exists a meromorphic function f P KpXq that has
a pole along Y , i.e. Y is contained in the pole divisor pfq8 of f . On a projective manifold,
every integral hypersurface is polar. However, for general non-projective manifolds this fails,
but the following result was proved by Fischer–Forster [FF79] and in the case that KpXq “ C
by Krasnov [Kra75].

Proposition 2.3. A compact connected complex manifold X contains at most finitely many
integral hypersurfaces Y Ă X that are not polar. More precisely, the number of non-polar
hypersurfaces is bounded by h1,1pXq ` dimpXq ´ h1,0pXq.

For the proof one needs the following elementary but useful observation, see [Kra75, Prop.
1].
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Lemma 2.4. Let E be a vector bundle of rank r on X. Then the space of meromorphic sections
of E is of dimension at most r, i.e.

dimKpXqH
0pX,E bKXq ď rkpEq,

where KX is the sheaf or rational (meromorphic) functions and KpXq “ H0pX,KXq is the
function field of X. In particular, if KpXq “ C, then for any vector bundle E one has
h0pX,Eq ď rkpEq.

Proof. Suppose there exist sections s1, . . . , sr`1 P H0pX,E b KXq linearly independent over
KpXq. Then there is a proper closed analytic subset such that all sections si are holomorphic
on its open complement U Ă X and such that (after renumbering) the sections s1, . . . , sr1
span the subspace xs1pxq, . . . , srpxqy Ă Epxq of constant (maximal) dimension r1 at every point
x P U . In particular, on U we can write (˚q sr “

řr1

i“1 ai ¨ si for certain holomorphic functions
ai P OXpUq.

It suffices to check that the ai are meromorphic functions which is a local question. Thus,
we may think of the si as vectors si “ psijqj“1,...,r of meromorphic functions and view paiq as
a solution of the system of linear equations (˚). Expressing paiq in terms of the adjoint matrix
and the vector psrjq proves that all ai are indeed meromorphic. �

Proof of proposition. We shall follow [Kra75] and assume KpXq “ C. This is the only case that
will be needed for Corollary 2.5 and its application later on. For the general case we refer to
[FF79].

Applying d log, the sheaf of complexified Cartier divisors K˚X{O˚X bZ C is identified with the
the quotient of Ω1

X Ă Ω1
X,log, where the latter sheaf is by definition locally generated by all

holomorphic one-forms and logarithmic one-forms d log f with f a local section of K˚X . Taking
cohomology yields a long exact sequence

0 // H0pX,Ω1
Xq

// H0pX,Ω1
X,logq

// ClpXq bZ C // H1pX,ΩXq // ¨ ¨ ¨ .

Since H0pX,Ω1
X,logq Ă H0pX,Ω1

X b KXq and since we assume KpXq “ C, the lemma implies
dimCpClpXq bZ Cq ď h1pX,Ω1

Xq ` dimpXq ´ h0pX,Ω1
Xq. �

Corollary 2.5. If a compact complex manifold X contains infinitely many integral hypersur-
faces, then its algebraic dimension satisfies apXq ą 0, i.e. KpXq ‰ C. �

2.3. Sections of twists of vector bundles. Proposition 2.1 does not directly produce sections
of powers of L. For this one needs the following result due to Demailly–Peternell–Schneider
[DPS01, Prop. 2.15]

Proposition 2.6. Let L be a line bundle and E a vector bundle (or, more generally, a torsion
free sheaf) on a compact complex manifold X. Assume mi is an unbounded sequence of positive
integers such that H0pX,E b Lmiq ‰ 0.
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(i) Then there exists a line bundle M on X and an unbounded sequence m1i of positive
integers such that H0pX,M b Lm

1
iq ‰ 0.

(ii) There exist infinitely many integral hypersurfaces Y Ă X, and in particular KpXq ‰ C,
or L is Q-effective.

Proof. Let F Ă E be the coherent subsheaf of E generated by all homomorphisms L´mi //E.
By assumption, F is non-trivial, so F is a torsion free sheaf of positive rank r :“ rkpF q ą

0. Furthermore, we may assume that there exist integers n1, . . . , nr´1 (among the mi) and
an unbounded subsequence mj of mi for which there exist injections L´n1 ‘ ¨ ¨ ¨ ‘ L´nr´1 ‘

L´mj �
� //F .

Taking determinants yields non-trivial global sections sj P H0pX,M b Lm
1
j q, where M :“

detpF q and m1j :“
ř

ni `mj . This proves (i).
Let us turn to (ii). There is nothing to prove in the case that X is projective or weaker

that KpXq ‰ C. So we assume that X contains only finitely many integral hypersurfaces
Y1, . . . , YN Ă X. Then the zero loci Zpsjq Ă X as Weil divisors are in the convex hull of
the finitely many Yi, i.e. M b Lm

1
j P

ř

Zě0 ¨ OpYiq. As the sequence m1j is unbounded, also
Lm

2
j P

ř

Zě0 ¨OpYiq for an unbounded sequence m2j and, in particular, L is Q-effective. �

A priori, X could contain only one integral hypersurface Y Ă X and all sections of powers
of Lm are of the form sm for some s P H0pX,Lq with Zpsq “ Y . In other words, the above
result only ensures the existence of one non-trivial section of the line bundles Lm up to passing
to powers, which is not enough to make progress on Conjecture 1.2.

2.4. Cones on hyperkähler manifolds. We recall some basic notations and facts concerning
the various cones relevant for the arguments below.

The positive cone CX Ă H1,1pX,Rq of a compact hyperkähler manifold X is the connected
component of the open set of all classes α P H1,1pX,Rq with qpαq ą 0. It contains the Kähler
cone KX Ă CX of all Kähler classes as an open subcone. The closure of the Kähler cone
KX Ă CX , the nef cone, is the set of all classes α P CX with

ş

C α ě 0 for all rational curves
C Ă X, cf. [Huy03b, Prop. 3.2], and the open Kähler cone KX Ă CX is the set of all classes
α P CX with

ş

C α ą 0 for all rational curves C Ă X, cf. [Bou01, Thm. 1.2].
The birational Kähler cone BKX is by definition the union

Ť

KX 1 of all Kähler cones of
birational compact hyperkähler manifolds X 1. Here, we use that any birational correspondence
X „ X 1 induces a natural Hodge isometry H2pX,Zq » H2pX 1,Zq, cf. [Huy03a, Prop. 25.14].
Clearly, BKX Ă CX and according to [Huy03a, Prop. 28.7] its closure BKX Ă CX , the modified
nef cone, is the set of all classes α P CX with qpα,Dq ě 0 for all uniruled divisors. Of course, it
suffices to test this for prime exceptional divisors, i.e. irreducible divisors D Ă X with qpDq ă 0.
Alternatively, BKX can be described as the dual of the pseudo-effective cone EX of all classes
α P H1,1pX,Rq that can be represented by a positive current, see [Huy03b, Cor. 4.6]. In
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particular, all effective divisors D Ă X define classes in EX . Note that in particular qpL,Dq ě 0

for any nef line bundle L and any effective divisor D Ă X.
According to Boucksom [Bou04, Thm. 4.8], any pseudo-effective class α P H1,1pX,Rq admits

a Zariski decomposition α “ P pαq ` Npαq, where P pαq P BKX and Npαq is the class of
an exceptional R-divisor, i.e. Npαq “

ř

aiDi with Di Ă X irreducible divisors such that
the matrix pqpDi, Djqq is negative definite. Furthermore, P pαq and Npαq are orthogonal, i.e.
qpP pαq, Npαqq “ 0. We shall need the Zariski decomposition only for divisor classes α P

H1,1pX,Zq and in this case P pαq and Npαq are in fact rational.

2.5. Stability of the tangent bundle. Due to existence of a Kähler–Einstein metric in each
Kähler class, the tangent bundle TX of a compact hyperkähler manifold X is µ-stable with
respect to any Kähler class ω P KX . In fact, stability holds with respect to all ω in the interior
of BKX , see also Section 5.1.

Proposition 2.7. Let X be a compact hyperkähler manifold and M Ă ΩbNX a line bundle in
some tensor power of its cotangent bundle. Then the dual M˚ is pseudo-effective.

Proof. In the projective case, the assertion is a consequence of a general result due to Campana–
Peternell [CP11, Thm. 0.1] showing that any torsion free quotient pΩ1

Xq
bq // //F has a pseudo-

effective determinant detpFq unless X is uniruled.
Verbitsky [Ver10] gives an alternative argument relying on the observation that all tensor

powers ΩbNX of the cotangent bundle are µ-semistable with respect to any class in the birational
Kähler cone. More precisely, let α P BKX be a class corresponding to Kähler class ω1 P KX 1

on some birational model X 1 of X. Since X and X 1 are isomorphic in codimension one, the
inclusion M Ă ΩbNX carries over to an inclusion M 1 Ă ΩbNX 1 . To conclude use the stability of
ΩX 1 , which proves qpα,Mq “ qpω1,M 1q ď 0. Hence, qpα,M˚q ě 0 for all α P BKX , i.e. M˚ is
pseudo-effective. �

3. Proofs

In this section we present two proofs of the main theorem. The original of Campana–Oguiso–
Peternell [COP10] applies only to the case that the hyperkähler manifold is non-projective.
Verbitsky [Ver10] showed how to combine the original approach with Boucksom’s Zariski de-
composition to also cover the algebraic case. In the next section we will sketch a different
approach that reduces the projective case to the non-projective one.

3.1. Non-algebraic case. We follow the arguments in [COP10].

Proof. Assume L is a non-trivial nef line bundle on a non-projective compact hyperkähler mani-
fold X of dimension 2n and assume qpLq “ 0. Suppose H0pX,Lmq “ 0 for all m ą 0.
The Riemann–Roch formula [Huy99, Huy03a] simply states χpX,Lmq “ n ` 1. Thus, there
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exists an even number q ą 0 and an unbounded sequence mi of positive integers such that
HqpX,Lmiq ‰ 0. By virtue of Proposition 2.1 this implies H0pX,Ω2n´q

X b Lmiq ‰ 0.
Combining Corollay 2.5 and Proposition 2.6, we conclude that L is Q-effective, in which case

we are done, or KpXq ‰ C. For example, the former case holds if ρpXq “ 1. In the latter case,
the algebraic reduction [Uen75, Ch. 3] provides us with a diagram

X̃
π

{{

f̃

## ##
X

f
// B.

Here, X̃ is a compact complex manifold, B is smooth and projective of dimension at least one,
and π is birational. The pull-back f̃˚H of a very ample line bundle H on B can be written
as f̃˚H » π˚M bOp´Eq with E Ă X̃ effective, in fact π-exceptional but possibly trivial, and
M P PicpXq. This yields inclusions

H0pB,Hq �
� //H0pX̃, f̃˚Hq �

� //H0pX̃, π˚Mq » H0pX,Mq.

Since dimpBq ě 1, this shows that M is non-trivial and effective. In fact, as H is very ample,
we may assume that M admits two linearly independent sections with distinct zero divisors
D1, D2 Ă X without irreducible components.

According to [Bou04, Prop. 4.2], for any two such divisorsD1, D2 Ă X we have qpD1, D2q ě 0.
Indeed, up to a positive scalar qpD1, D2q “

ş

D1XD2
pσσ̄qn´1 ě 0, since pσσ̄qn´1 is a positive form.

Applied to our situation this yields qpMq ě 0. On the other hand, since X is assumed to be
non-projective, the projectivity criterion [Huy99, Thm. 3.11] implies qpMq ď 0. Therefore,
qpMq “ 0. However, as the form q restricted to H1,1pX,Rq satisfies the Hodge index theorem,
every line bundle M on X with qpMq “ 0 is a rational multiple of L. As L was assumed
semi-positive (hence, nef) and M is effective, M is a positive rational multiple of L. Therefore,
L is Q-effective. �

3.2. Algebraic case. In fact, the following arguments taken from [Ver10] apply also to non-
algebraic hyperkähler manifolds and thus subsume the original proof in [COP10]

Proof. The first part of the proof is identical to the one in the non-algebraic case. From
Proposition 2.6 we deduce the existence of a line bundle M with H0pX,M b Lmiq ‰ 0 for
an unbounded sequence of positive integers. Since L is nef with qpLq “ 0, this implies qpM b

Lmi , Lq ě 0 and qpM,Lq ě 0. On the other hand, the line bundleM in the proof of Proposition
2.6 was constructed as the determinant M “ detpF q of a subsheaf F Ă E “ Ω2n´q

X and,
therefore, M Ă ΩbNX for some N . Then, Proposition 2.7 shows thatM˚ is pseudo-effective and,
hence, qpM,Lq ď 0, see Section 2.4. Therefore, qpM,Lq “ 0. In the case that ρpXq “ 2, we
can conclude already that M is a rational multiple of L and that, therefore, L is Q-effective.
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For ρpXq ą 2, we consider the Zariski decomposition of the pseudo-effective line bundle M˚

as P ` N with P contained in the closure of the birational Kähler cone and N exceptional
effective. In particular, qpP q ě 0 with qpP,Lq ą 0 unless P is a rational multiple of L and
qpNq ă 0 unless N “ 0. Then, 0 “ qpL,Mq “ qpL,P q ` qpL,Nq with both summands non-
negative and, therefore, both zero. Thus, the Zariski decomposition ofM˚ is of the form λL`N ,
with λ P Qě0. On the other hand, M b Lmi is effective for an unbounded sequence of positive
integers mi. Hence, pmi´ λqL can be written as the sum of the two effective divisors M bLmi

and N . Therefore, L itself is Q-effective. �

4. Semi-positivity under deformations

We will now show that alternatively the proof in the algebraic case can be reduced via
deformation to the non-algebraic case. The techniques are potentially relevant to make progress
on Conjecture 1.2.

First recall that for a smooth proper family X //∆ is of complex manifolds with central
fibre X “ X0 of Kähler type, all nearby fibres Xt are of Kähler type as well, i.e. for all t after
shrinking ∆ to an open neighbourhood of 0 P ∆. More precisely, if the Kähler class on X stays
of type p1, 1q on the nearby fibres, then it is Kähler there as well. This classical result is due
to Kodaira and Spencer [KS60]. Note that since the Kähler property is a combination of the
open condition that a real p1, 1q-form ω is positive and the closed condition dω “ 0, this is a
priori not clear. In the case of closed semi-positive forms ω, the corresponding statement fails.
Similarly, if α P H1,1pX,Rq is a nef class that stays of type p1, 1q on all the fibres Xt, as a class
on Xt it need not be nef, see [Mor92] for an example.

4.1. Degenerate twistor lines. We shall describe a one-parameter deformation of a compact
hyperkähler manifold endowed with a semi-positive isotropic p1, 1q-form, see [Ver15]. In the
following, we letX be a compact hyperkähler manifold of dimension 2n with a fixed holomorphic
two-form σ and a Ricci-flat Kähler form ω. Furthermore, we assume that η is a semi-positive
closed real p1, 1q-form with isotropic cohomology class rηs P H1,1pX,Rq, i.e. qprηsq “ 0. Note
that we also know

qprσsq “ 0, qprσs, rηsq “ 0 and qprσs ` rηsq “ 0.

Now, by virtue of Verbitsky’s description of the cohomology generated by H2pX,Rq, see [Bog96,
Ver96], these equalities imply

rηsn`1 “ 0 and prσs ` rηsqn`1 “ 0

in H2n`2pX,Rq. The semi-positivity of η implies that the same equalities hold on the level of
forms, see [Ver15, Sec. 3].

Lemma 4.1. Under the above assumptions, the following assertions hold true:

(i) ηn`1 “ 0.
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(ii) pσ ` ηqn`1 “ 0.
(iii) pσ ` ηqn ^ pσ̄ ` ηqn is a volume form.

Proof. We skip the proof. This is a point-wise statement which boils down to linear algebra. �

Of course, the same results hold for all positive multiples tη which will be used to define a
family of complex structures on X.

First recall that the kernel of the map σ : TCX // TCX
˚ naturally induced by the complex

two-form σ is the bundle of p0, 1q-vector fields T 0,1 Ă TCX. Copying this, one defines for the
closed two-forms

σt :“ σ ` t ¨ η

the bundle T 0,1
t Ă TCX as the kernel of the map induced by the complex two-form σt. Lemma

4.1, (iii) implies that T 0,1
t really is a complex vector bundle of dimension 2n and that TCX “

T 1,0
t ‘T 0,1

t , where T 1,0
t is the complex conjugate of T 0,1

t . This direct sum decomposition describes
an almost complex structure It on the differentiable manifold M underlying X.

Lemma 4.2. The almost complex structure It is integrable and σt is a holomorphic symplectic
form on pM, Itq. Furthermore, for all t the form η is of type p1, 1q with respect to It and η is
semi-positive for small t.

Proof. Due to the Newlander–Nirenberg theorem, it suffices to show that T 0,1
t is preserved

under the Lie bracket, i.e. rT 0,1
t , T 0,1

t s Ă T 0,1
t , cf. [Huy05, Sec. 2.6]. The standard formula for

the derivative of differential forms applied to v1, v2 P T
0,1
t and arbitrary v P TCX shows

0 “ pdσtqpv1, v2, vq “ v1pσtpv2, vqq ´ v2pσtpv1, vqq ` vpσtpv1, v2qq

´σtprv1, v2s, vq ` σtprv1, vs, v2q ´ σtprv2, vs, vq,

which by definition of T 0,1
t yields σprv1, v2s, vq “ 0 for all v P TCX and, therefore, rv1, v2s P T

0,1
t .

By construction, σt is of type p2, 0q on pM, Itq, closed since σ and η are closed, and non-
degenerate by Lemma 4.1, (iii). Hence, σt is a holomorphic symplectic form on pM, Itq. The
form η is of type p1, 1q with respect to It, for σnt ^ η “ pσ ` t ¨ ηqn ^ η “ 0 by Lemma 4.1, (ii).

The semipositivity of a smooth form can be checked point-wise and it is suffices to verify it
at a general point x P M , where we can assume η to be of maximal rank n.2 Now, choose a
family of forms αiptq, i “ 1, . . . , 2n, that are of type p1, 0q with respect to It, vary smoothly
with t, and form a basis of pT 1,0

t q˚ at x with respect to which η is diagonal, i.e. ηpxq “
i

ř

aiptq ¨ pαiptq ^ αiptqqpxq. By Lemma 4.1, (i) and the semipositivity of η with respect to
I0, the coefficients satisfy aip0q ě 0 and exactly n of them, say a1p0q, . . . , anp0q, are strictly

2This is oversimplifying things a little: There is such an open subset, but it may be open only in the analytic
topology. To make this rigorous one has to work with an analytically dense union of open subsets

Ť

Ui Ă M

such that on each Ui the rank ni of η is constant. Then ηni`1
|Ui ‰ 0 but ηni |Ui “ 0. The rest of the argument

remains unchanged.
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positive. By continuity, a1ptq, . . . , anptq ą 0 for all small t and ηn`1 “ 0 then implies that we
still must have an`1ptq “ ¨ ¨ ¨ “ a2nptq “ 0 for those t. Hence, η is semi-positive for small t. �

Remark 4.3. It is possible to show that in fact η is semi-positive with respect to all It, t P C,
but we will not need this stronger statement.

Altogether the above describes a smooth family X //C of compact hyperkähler manifolds
Xt :“ pM, Itq, called degenerate twistor family, together with a constant closed real p1, 1q-form
η that is semi-positive for small t P ∆ Ă C.3 The central fibre X0 is the original compact
hyperkähler manifold X.

4.2. Semi-continuity. We apply the above construction to the case of a non-trivial semi-
positive line bundle L with qpLq “ 0. By assumption, c1pLq “ rηs for some semi-positive closed
real p1, 1q-form η. For example, if f : X //Pn is a Lagrangian fibration and L » f˚Op1q, then
any positive form η0 on Pn representing the hyperplane class c1pOp1qq P H2pPn,Zq induces a
semi-positive form η “ f˚η0 that represents c1pLq. The properties in Lemma 4.1, for example
ηn`1 “ 0, are obvious in this case. Note that in contrast to the uniqueness of Ricci-flat Kähler
forms in any given Kähler class, the form η satisfying the degenerate Monge–Ampère equation
η2n “ 0, or even ηn`1 “ 0, is certainly not unique.

Lemma 4.4. The degenerate twistor line X //C associated to a semi-positive form η represent-
ing c1pLq has the property that for very general t P C, the fibre Xt “ pM, Itq is non-projective.
Furthermore, the complex line bundle L is holomorphic with respect to all t P C and semi-positive
for small t P ∆.

Proof. As the first Chern class of the complex line bundle L satisfies qpc1pLq, σtq “ qprηs, rσsq`

t ¨ qprηs, rηsq “ 0, the line bundle L is holomorphic on all fibres XT . Since the non-trivial nef
class c1pLq is not orthogonal to any class in the positive cone CX , the very general fibre is not
projective.

On every fibre the class c1pLq is represented by the closed real p1, 1q-form η and any such
form is the curvature of a uniquely determined hermitian structure on L. Since for small t the
form η is still semi-positive, one finds that L is a semi-positive holomorphic line bundle on all
fibres Xt for small t. �

This allows one to show that the original result of Campana–Oguiso–Peternell [COP10] for
non-projective hyperkähler manifolds is enough to conclude the result for all hyperkähler mani-
folds, which gives an alternative proof of Verbitsky’s result [Ver10].

Corollary 4.5. Assume any semi-positive line bundle on a non-projective hyperkähler manifold
X is Q-effective. Then the same also holds for projective hyperkähler manifolds.

3There is a minor technical issue here. The parameter t above was assumed to be real and positive. Either,
Lemma 4.1 has to be adapted in (iii) to say that pσ ` tηqn ^ pσ̄ ` t̄ηqn is a volume form or the family is first
constructed just over Rą0 X∆ Ă C and then extended from there.
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Proof. Indeed, as explained above, any compact hyperkähler manifold X with a semi-positive
line bundle L with qpLq “ 0 can be realized as the central fibre of a degenerate twistor family
X //C. The very general fibre Xt is non-projective and [COP10] thus applies to L considered
as a semi-positive line bundle on Xt. Therefore, L is Q-effective on the very general fibre Xt,
t P ∆, and, by semi-continuity, the same holds for the central fibre. �

5. Open questions

Besides the two conjectures stated in the introduction, there are a number of related questions
that seem approachable.

5.1. Stability of the tangent bundle. Due to the existence of a hyperkähler (and hence
Kähler–Einstein) metric on a hyperkähler manifold X, the tangent bundle TX is µ-stable. In
fact, TX is µ-stable with respect to every Kähler class and, as explained in Section 2.5, with
respect to the generic class in the birational Kähler cone.

Question 5.1. Is the tangent bundle TX of a hyperkähler manifold µ-stable with respect to any
class in the positive cone?

This would subsume Proposition 2.7 and would allow one to conclude the stronger statement
that the line bundle M constructed in the proof of Proposition 2.6 and used in the two proofs
in Section 3 is contained in the closure of the positive cone.

5.2. Elliptic and parabolic hyperkähler manifolds. The paper [COP10] discusses the pos-
sibilities for the algebraic dimension apXq “ trdegKpXq of a compact hyperkähler manifold and
how the algebraic dimension is related to the intersection form on the Néron–Severi group. We
only touch upon one aspect here.

Question 5.2. Assume X is a compact hyperkähler manifold of algebraic dimension zero, i.e.
KpXq “ C. Is the Beauville–Bogomolov form q on NSpXq » H1,1pX,Zq negative definite?

Following [COP10], X is called elliptic if q is negative definite on NSpXq. It is known that
elliptic hyperkähler manifolds satisfy KpXq “ C. The above question is the converse.

Similarly, X is called parabolic if q on NSpXq is semi-negative definite with one isotropic
direction and hyperbolic if it has signature p1, ρpXq ´ 1q. By the Hodge index theorem and the
projectivity criterion for hyperkähler manifolds, the latter is equivalent to X being projective.
The analogue of Question 5.2 in the parabolic case is the conjecture that X is parabolic if and
only if apXq “ n. According to [COP10, Thm. 3.6], any non-algebraic compact hyperkähler
manifold satisfies apXq ď n, so that the cases 0 ă apXq ă n would need to be excluded.
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