D. Huybrechts

Exercises Algebraic Geometry I 9th week

44. Locality of 'separated'. Use the valuative criterion to prove the following assertion: A morphism $f: X \longrightarrow Y$ is separated if and only if there exists an open cover $Y = \bigcup U_i$ such that the restriction $f^{-1}(U_i) \longrightarrow U_i$ is separated. State and prove the analogous result for 'proper'.

45. Globally generated sheaves. Let \mathcal{F} be a sheaf of \mathcal{O}_X -modules on a ringed space. Show that \mathcal{F} is globally generated if and only if the natural map

$$\Gamma(X,\mathcal{F})\otimes_{\Gamma(X,\mathcal{O}_X(X))}\mathcal{O}_{X,x}\longrightarrow \mathcal{F}_x$$

is surjective for every $x \in X$.

46. Projection formula. Let $f : (X, \mathcal{O}_X) \longrightarrow (Y, \mathcal{O}_Y)$ be a morphism of ringed spaces. Show that for a sheaf \mathcal{F} of \mathcal{O}_X -modules and a locally free sheaf \mathcal{G} of \mathcal{O}_Y -modules of finite rank there exists a natural isomorphism

$$f_*(\mathcal{F} \otimes_{\mathcal{O}_X} f^*\mathcal{G}) \cong f_*(\mathcal{F}) \otimes_{\mathcal{O}_Y} \mathcal{G}.$$

47. $M \mapsto \tilde{M}$ and adjunction. Let X be the affine scheme Spec(A) and consider an A-module M and a sheaf \mathcal{F} of \mathcal{O}_X -modules. Show that $M \mapsto \tilde{M}$ is left adjoint to $\mathcal{F} \mapsto \Gamma(X, \mathcal{F})$, i.e. that there exist functorial (in M and \mathcal{F}) isomorphisms

$$\operatorname{Hom}_A(M, \Gamma(X, \mathcal{F})) \cong \operatorname{Hom}_{\mathcal{O}_X}(M, \mathcal{F}).$$

48. Fibre dimension. Let X be a noetherian scheme and let \mathcal{F} be a coherent sheaf on X. We will consider the function

$$\varphi(x) := \dim_{k(x)} \mathcal{F}_x \otimes_{\mathcal{O}_{X,x}} k(x),$$

where $k(x) = \mathcal{O}_{X,x}/\mathfrak{m}_x$ is the residue field of the point $x \in X$. Use Nakayama's lemma to prove the following statements.

i) The function φ is upper semi-continuous, i.e. for any $n \in \mathbb{Z}$ the set $\{x \in X \mid \varphi(x) \ge n\}$ is closed.

ii) If \mathcal{F} is locally free and X is connected, then φ is a constant function.

iii) Conversely, if X is reduced and φ is constant, then \mathcal{F} is locally free.