D. Huybrechts Summer 2012

Exercises Algebraic Geometry I
8th week

38. The image of a proper scheme is proper. Let f : X —Y be a morphism of
S-schemes. Suppose that Y — S is separated.

i) Show that the graph I'y : X — X Xg Y is a closed immersion.

ii) Let Z C X be a closed subscheme that is proper over S. Show that f(Z) C Y
is closed.

39. Finite morphisms are proper. Recall that a ring homomorphism f: A—B
is integral if B is integral over f(A), i.e. every b € B is a root of a monic polynomial
2"+ f(a)z" 4. . .+ f(an) € f(A)[x]. Recall that B is a finitely generated A-module
if and only if f is integral and B is a finitely generated A-algebra.

Use the going-up theorem for integral ring extensions A C B to prove that integral
(and in particular finite) morphisms X —Y of schemes are proper.

40. Global reqular functions on projective spaces. Show that for a ring A one has
[(P%, Opn) = A. Deduce from this that P’} is affine if and only if n = 0. (Hint: Use
the standard open cover.)

41. Quasi-projective schemes. i) Show that any affine morphism of finite type
X —Y = Spec(A) is quasi-projective. (The assertion holds under much weaker
assumptions on Y, though.)

ii) Suppose f; : X;—Y, i = 1,2, are quasi-projective morphisms. Show that then
also X1 Xy X9 —Y is quasi-projective.

42. Composition of projective morphisms. Use the Segre embedding to prove that
the composition of projective morphisms is projective.
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43. Veronese embedding. The following is analogous to the construction of the
Segre embedding discussed in class. Consider all monomials My, ..., My of degree d
in n+ 1 variables xg, . .., z,, where N = (”:d) —1. Let Zlyo, - . . yn] —Z[zg, . . . , Ty
be the homomorphism of graded Z-algebras defined by y;+= M;. (Replace Z by
some field k if you prefer.)

i) Show that this induces a morphism of schemes vy : IP’%%P]ZV , the Veronese
embedding.

ii) Show that f is a closed immersion. For any other base scheme Y the Veronese
embedding v, : Py %]P’y is obtained by base change and is also a closed embedding.

iii) For an algebraically closed field k, write out v3 : P}g%}}”z on closed points.
(The image is called the twisted cubic.)



