D. Huybrechts

Exercises Algebraic Geometry I 7th week

33. Zariski tangent space via functor of points. Consider the category of schemes (Sch) and a contravariant functor $\Phi : (Sch)^o \longrightarrow (Sets)$. A k-rational point of Φ is by definition an element $x \in \Phi(\operatorname{Spec}(k))$ and the Zariski tangent space $T_x \Phi$ of Φ at $x \in \Phi(\operatorname{Spec}(k))$ is the fibre over x of $\Phi(\operatorname{Spec}(k[\varepsilon]) \longrightarrow \Phi(\operatorname{Spec}(k))$ (which is induced by the natural $\operatorname{Spec}(k) \longrightarrow \operatorname{Spec}(k[\varepsilon])$ corresponding to the projection $k[\varepsilon] \longrightarrow k$).

i) Show that elements in $T_x \Phi$ can naturally be multiplied by elements in k. (*Hint*: Use $\varepsilon \mapsto \lambda \varepsilon$.)

ii) Show that $T_x \Phi$ can naturally be endowed with the structure of a k-vector space if Φ satisfies

$$\Phi(\operatorname{Spec}(k[X]/(X^2))) \times_{\Phi(\operatorname{Spec}(k))} \Phi(\operatorname{Spec}(k[Y]/(Y^2))) = \Phi(\operatorname{Spec}(k[X,Y]/(X,Y)^2)).$$

(*Hint*: Use the morphism $k[X, Y] \longrightarrow k[\varepsilon], X, Y \longmapsto \varepsilon$).

iii) Compare the notion of $T_x \Phi$ for $\Phi = h_X$ with the notion of the Zariski tangent space T_x as introduced in Exercise 16.

34. Properties of morphisms under base change.

i) Show that 'quasi-finite' (i.e. finite fibres) and 'injective' are not preserved under base change.

ii) Show that 'finite', 'surjective', and 'closed immersion' are preserved under base change. (Here, a morphism $f: X \longrightarrow Y$ is called surjective if it is surjective on the underlying sets.)

35. Fibres. Consider the subscheme $X \subset \mathbb{A}^2_{\mathbb{Z}}$ given by $XY^2 - m$, for some $m \in \mathbb{Z}$. Study the fibres of $X \longrightarrow \operatorname{Spec}(\mathbb{Z})$. Which ones are irreducible?

1

Continued on next page.

36. Affine schemes under base field extensions. Let k be an algebraically closed field, let $k_0 \subset k$ be a subfield, and let X_0 be a scheme over k_0 . In this exercise we study the relation between X_0 and $X := X_0 \times_{\text{Spec}(k_0)} \text{Spec}(k)$ in examples.

i) Let $k = \mathbb{C}$ and $k_0 = \mathbb{R}$. Consider $X_0 = \operatorname{Spec}(k_0[x, y]/(y^2 - x(x^2 - 1)))$. Which residue fields are possible for points in X_0 and how does the set $X_0(\mathbb{R})$ of \mathbb{R} -rational points look like? The Galois group $G := \operatorname{Gal}(k/k_0) \cong \mathbb{Z}/2\mathbb{Z}$ acts on X and $X(\mathbb{C})$. Study the fibres of $X(\mathbb{C}) \longrightarrow X_0$ in terms of G-orbits.

ii) Let again $k = \mathbb{C}$ and $k_0 = \mathbb{R}$. Let $X_0 = \operatorname{Spec}(k_0[x, y]/(x^2 + y^2))$. Check that X_0 is irreducible while X is not. Describe X geometrically.

iii) Let k_0 be an imperfect field of characteristic p > 0 and let $a \in k_0 \setminus k_0^p$. Let ℓ be a non-trivial homogeneous linear polynomial in X, Y and $X_0 = \operatorname{Spec}(k_0[X, Y]/(\ell^p - a))$. Prove that X_0 is reduced. Prove further that $X \cong \operatorname{Spec}(k[X, Y]/((\ell - a^{1/p})^p))$ and thus not reduced.

37. Morphisms into separated schemes. Consider schemes X and Y over a base scheme S. Assume that X is reduced (or even stronger integral) and that $Y \longrightarrow S$ is separated. Show that two morphisms $f, g: X \longrightarrow Y$ over S that coincide on a dense open subset $U \subset X$ are actually equal. (*Hint*: Consider the composition of the graph $X \longrightarrow X \times_S Y$ of f with $(g, \operatorname{id}): X \times_S Y \longrightarrow Y \times_S Y$.) Give counterexamples if one of the hypotheses is dropped.