D. Huybrechts

Exercises Algebraic Geometry I 4th week

17. Morphisms to affine schemes. If $(f, f^{\sharp}) : X \longrightarrow \operatorname{Spec}(A)$ is a morphism of schemes, then taking global sections of $f^{\sharp} : \mathcal{O}_{\operatorname{Spec}(A)} \longrightarrow f_*\mathcal{O}_X$ yields a homomorphism of rings $A \longrightarrow \Gamma(X, \mathcal{O}_X)$. Show that this map

$$\operatorname{Hom}_{Sch}(X, \operatorname{Spec}(A)) \longrightarrow \operatorname{Hom}_{Ring}(A, \Gamma(X, \mathcal{O}_X))$$

is bijective.

18. Flasque sheaves. i) Let $0 \longrightarrow \mathcal{F}' \longrightarrow \mathcal{F} \longrightarrow \mathcal{F}'' \longrightarrow 0$ be an exact sequence with \mathcal{F} and \mathcal{F}' flasque. Show that \mathcal{F}'' is flasque, too.

ii) Show that for any sheaf \mathcal{F} the sheaf \mathcal{G} given by

$$\mathcal{G}(U) := \{ s : U \longrightarrow \bigcup_{x \in U} \mathcal{F}_x \mid s(x) \in \mathcal{F}_x \}$$

is flasque and that the natural morphism $\mathcal{F} \longrightarrow \mathcal{G}$ is injective. (This is the beginning of the natural *flasque resolution* of the sheaf \mathcal{F} .)

19. Abelian categories. Recall the abstract notion of an abelian category.

i) Show that the categories of abelian groups Ab and of sheaves of abelian groups $Sh_{Ab}(X)$ are abelian categories.

ii) Let (X, \mathcal{O}_X) be a ringed space. A sheaf \mathcal{F} of abelian groups is a *a sheaf of* \mathcal{O}_X -modules, if for all open subsets $U \subset X$ the group $\mathcal{F}(U)$ is an $\mathcal{O}_X(U)$ -module such that the restriction maps are compatible with these module structures. Show that the category $Mod(X, \mathcal{O}_X)$ of \mathcal{O}_X -modules is an abelian category.

1

Continued on next page.

20. Extending a sheaf by zero. Consider the inclusion of an open subset $j : U \longrightarrow X$ and a sheaf \mathcal{F} on U. Then $j_! \mathcal{F}$ is defined as the sheaf on X that associates $\mathcal{F}(V)$ to an open subset $V \subset X$ if $V \subset U$ and 0 otherwise.

i) Show that there is natural injection of sheaves $j_!(\mathcal{F}|_U) \longrightarrow \mathcal{F}$ for all sheaves \mathcal{F} on X.

ii) Show that there is a natural bijection $\operatorname{Hom}(j_!\mathbb{Z}_U, \mathcal{G}) = \mathcal{G}(U)$ for all sheaves \mathcal{G} . Here, \mathbb{Z}_U is the constant sheaf on U associated to \mathbb{Z} .

iii) State and prove an analogous statement for ringed spaces (X, \mathcal{O}_X) , i.e. replace \mathbb{Z}_U by $\mathcal{O}_U = \mathcal{O}_X|_U$ and consider sheaves \mathcal{G} of \mathcal{O}_X -modules.

iv) Show that a sheaf \mathcal{F} that is an injective object in $Sh_{Ab}(X)$ is flasque.

21. Quasi-isomorphisms. Find explicit examples of:

i) quasi-isomorphic complexes (e.g. in Kom(Ab)) that are not isomorphic;

ii) of a quasi-isomorphism that has no inverse in the homotopy category $K(\mathcal{A})$;

iii) of a complex morphism $f : A^{\bullet} \longrightarrow B^{\bullet}$ with $H^{i}(f) = 0$ for all *i* but without *f* being homotopic to zero.