D. Huybrechts

Summer 2012

Exercises Algebraic Geometry I 11th week

53. Additivity of the Euler characteristic. Let X be a projective scheme over a field k. For any coherent sheaf \mathcal{F} on X one defines the Euler characteristic

$$\chi(\mathcal{F}) := \sum (-1)^i \dim_k H^i(X, \mathcal{F}).$$

Show that $\chi()$ is additive for short exact sequences, i.e. for any short exact sequence

$$0 \longrightarrow \mathcal{F}_1 \longrightarrow \mathcal{F}_2 \longrightarrow \mathcal{F}_3 \longrightarrow 0$$

of coherent sheaves one has $\chi(\mathcal{F}_2) = \chi(\mathcal{F}_1) + \chi(\mathcal{F}_3)$.

In other words, $\chi($) defines additive homomorphism

$$\chi: K(X) \longrightarrow \mathbb{Z}$$

from the Grothendieck group K(X) = K(Coh(X)).

54. Cohomology of hypersurfaces. Let $X \subset \mathbb{P}_k^n$, n > 1, be a hypersurface, i.e. X is the closed subscheme defined by a homogenous polynomial $0 \neq f \in k[x_0, \ldots, x_n]$. Prove the following assertions:

i) The restriction map $H^0(\mathbb{P}^n_k, \mathcal{O}(d)) \longrightarrow H^0(X, \mathcal{O}_X(d))$ is surjective for all d.

ii) X is connected.

iii) $H^i(X, \mathcal{O}_X(d)) = 0$ for all 0 < i < n-1 and all d.

(Similar results hold for complete intersections.)

55. Arithmetic genus. For a projective scheme X of dimension d over a field k the arithmetic genus is defined as

$$p_a(X) := (-1)^d (\chi(\mathcal{O}_X) - 1).$$

i) Compute $p_a(\mathbb{P}^n_k)$.

ii) Show that the arithmetic genus of a plane curve $C \subset \mathbb{P}^2_k$ defined by a polynomial of degree d is (d-1)(d-2)/2.

iii) Conclude that a plane curve $C \subset \mathbb{P}^2_k$ of degree $d \neq 1, 2$ cannot be isomorphic to \mathbb{P}^1_k .

Continued on next page.

56. *Hilbert polynomial.* This exercise requires familiarity with Hilbert polynomials of graded modules as in my class on commutative algebra last term or in [Hartshorne, Chapter I.7] or in

Let X be a projective scheme over a field k and let \mathcal{F} be a coherent sheaf on X. Depending on a very ample line bundle $\mathcal{O}_X(1)$ on X, one defines the Hilbert polynomial $P(X, \mathcal{F})(n) = \chi(\mathcal{F}(n))$.

i) More precisely: Show that there exists a numerical polynomial $P(X, \mathcal{F}) \in \mathbb{Q}[z]$ such that $P(X, \mathcal{F})(n) = \chi(\mathcal{F}(n))$ for all $n \in \mathbb{Z}$. (Use induction over the dimension of the support of \mathcal{F} .)

ii) Show that for \mathcal{F} on $X = \mathbb{P}_k^n$ the Hilbert polynomial $P(X, \mathcal{F})$ equals the Hilbert polynomial of the graded module $\Gamma_* \mathcal{F}$ over $k[x_0, \ldots, x_n]$.