D. Huybrechts

Exercises Algebraic Geometry I 10th week

49. *Quasi-coherence under sheaf operations.* Prove (at least some of) the following assertions.

i) For (quasi-)coherent sheaves \mathcal{F} and \mathcal{G} on a scheme (X, \mathcal{O}_X) the sheaf $\mathcal{F} \otimes \mathcal{G}$ is (quasi-)coherent. (*Warning*: One has to be careful with $\mathcal{H}om(\mathcal{F}, \mathcal{G})$ for quasi-coherent sheaves.)

ii) If \mathcal{F} is a quasi-coherent sheaf on a scheme X and $f: Y \longrightarrow X$ is a morphism of schemes, then the pull-back $f^*\mathcal{F}$ is again quasi-coherent.

iii) Prove ii) for 'quasi-coherent' replaced by 'coherent' for X and Y locally Noetherian. (If $A \longrightarrow B$ is a ring homomorphism and M is an A-module, then M finitely generated implies $M \otimes_A B$ finitely generated, but M coherent does not imply $M \otimes_A B$ coherent.)

iv) Let $f: X \longrightarrow Y$ be a morphism. Assume that f is quasi-compact and separated or that X is Noetherian. Then $f_*\mathcal{F}$ of a quasi-coherent sheaf \mathcal{F} is again quasi-coherent.

v) Give an example that iv) does not hold for 'quasi-coherent' replaced by 'coherent'.

50. Restriction of sections on affine schemes. Let X be an affine scheme Spec(A) and \mathcal{F} a quasi-coherent sheaf on X. Use the equivalence $\text{Qcoh}(X) \cong A$ -mod to prove the following assertions.

i) If for $s \in \Gamma(X, \mathcal{F})$ and $a \in A$ one knows that $s|_{D(a)} \in \Gamma(D(a), \mathcal{F})$ is trivial, then there exists n > 0 such that $a^n \cdot s = 0$ in $\Gamma(X, \mathcal{F})$.

ii) Let $t \in \Gamma(D(a), \mathcal{F})$. Then there exists n > 0 and $s \in \Gamma(X, \mathcal{F})$ such that $s|_{D(a)} = a^n \cdot t$ in $\Gamma(D(a), \mathcal{F})$.

51. Products of Proj. Let $B = \bigoplus_{n \ge 0} B_n$ and $C = \bigoplus_{n \ge 0} C_n$ be two graded rings with $A := B_0 \cong C_0$. Consider $B \times_A C := \bigoplus_{n \ge 0} B_n \otimes_A C_n$ and the schemes $X := \operatorname{Proj}(B)$ and $Y := \operatorname{Proj}(C)$.

i) Show that $X \times_{\operatorname{Spec}(A)} Y \cong \operatorname{Proj}(B \times_A C)$ and that

ii) under this isomorphism $\mathcal{O}(1)$ on $\operatorname{Proj}(B \times_A C)$ is isomorphic to $p_1^* \mathcal{O}_X(1) \otimes p_2^* \mathcal{O}_Y(1)$, where p_1 and p_2 are the two projections from $X \times_{\operatorname{Spec}(A)} Y$.

52. Segre embedding (again). Consider in the previous exercise $B = k[x_0, \ldots, x_n]$ and $C = k[y_0, \ldots, y_m]$.

i) Show that $B \times_A C$ is naturally a graded quotient of $k[z_0, \ldots, z_N]$ with N = mn + m + n and use this to

ii) describe the Segre embedding $\mathbb{P}^n \times \mathbb{P}^m \longrightarrow \mathbb{P}^N$.