D. Huybrechts

Exercises Algebraic Geometry I 1st week

1. Basis of topology. Let X be a topological space and let \mathcal{B} be a basis of open sets. Show that for any sheaf \mathcal{F} on X and any open set $V \subset X$ the space of sections $\mathcal{F}(V)$ can naturally be identified with

$$\{(s_U) \in \prod_{U \in \mathcal{B}, U \subset V} \mathcal{F}(U) \mid s_{U_1} \mid_{U_2} = s_{U_2}\},\$$

which can also be written as the inverse limit

$$\lim_{V \supset U \in \mathcal{B}} \mathcal{F}(U).$$

L

Recall the universal property of the inverse limit and the fact that it is only left exact in general.

2. Support of a section. Let \mathcal{F} be a sheaf on a topological space X and let $s, t \in \mathcal{F}(U)$ be two sections over an open set $U \subset X$. Show that the set of points $x \in U$ with $s_x = t_x$ in \mathcal{F}_x is an open subset of U.

If \mathcal{F} is a sheaf of abelian groups, one defines the support supp(s) of a section $s \in \mathcal{F}(U)$ as the set of points $x \in U$ such that $0 \neq s_x \in \mathcal{F}_x$. Show that supp(s) is a closed subset of U.

3. Espace étale of a presheaf. Let \mathcal{F} be a presheaf on a topological space X. Define

$$|\mathcal{F}| := \bigsqcup_{x \in X} \mathcal{F}_x,$$

which comes with a natural projection $\pi : |\mathcal{F}| \longrightarrow X$, $(s \in \mathcal{F}_x) \mapsto x$. Then any $s \in \mathcal{F}(U)$ defines a section of π over U by $x \mapsto s_x$. One endows $|\mathcal{F}|$ with the strongest topology such that all $s \in \mathcal{F}(U)$ define continuous sections $x \mapsto s_x$. Show that the sheafification \mathcal{F}^{\dagger} can be described as the sheaf of continuous sections of $|\mathcal{F}| \longrightarrow X$.

Continued on next page.

4. Gluing of sheaves. Let X be a topological space and let $X = \bigcup U_i$ be an open covering. We use the shorthand $U_{ij} = U_i \cap U_j$ and $U_{ijk} = U_i \cap U_j \cap U_k$.

Consider sheaves \mathcal{F}_i on U_i and gluings $\varphi_{ij} : \mathcal{F}_i|_{U_{ij}} \xrightarrow{\sim} \mathcal{F}_i|_{U_{ij}}$. Show that if the cocycle condition $\varphi_{ik} = \varphi_{jk} \circ \varphi_{ij}$ on U_{ijk} is satisified, then there exists a sheaf \mathcal{F} on X together with isomorphisms $\varphi_i : \mathcal{F}|_{U_i} \cong \mathcal{F}_i$ such that $\varphi_{ij} \circ \varphi_i = \varphi_j$ on U_{ij} . The (\mathcal{F}, φ_i) is unique up to unique isomorphism.

5. Exponential map. Consider $X = \mathbb{C} \setminus \{0\}$ with its usual topology and let \mathcal{O}_X be the sheaf of holomorphic functions, i.e. $\mathcal{O}_X(U) = \{f : U \longrightarrow \mathbb{C} \mid \text{holomorphic}\}$. Similarly, let \mathcal{O}_X^* be the sheaf of holomorphic functions without zeroes. (Throughout, you may work with differentiable function instead of holomorphic ones if you prefer.)

Show that the exponential map defines a morphism of sheaves (of abelian groups)

$$\exp: \mathcal{O}_X \longrightarrow \mathcal{O}_X^*, f \in \mathcal{O}_X(U) \longmapsto \exp(f) \in \mathcal{O}_X^*(U).$$

Find a basis \mathcal{B} of the topology such that $\exp_U : \mathcal{O}_X(U) \longrightarrow \mathcal{O}_X^*(U)$ is surjective for all $U \in \mathcal{B}$. Note that $\mathcal{O}_X(X) \longrightarrow \mathcal{O}_X^*(X)$ is not surjective and compare this with the fact that \lim is only left exact in general. Describe the kernel of \exp_U .