
Fourier Theory
Manuel Hoff

These are notes for a talk I am giving in the Kleine AG on the Weil conjectures, organized by Mingjia Zhang
and Ben Heuer and taking place in the winter term 2021/2022 in Bonn. I thank both of the organizers for their
effort and in particular Mingjia Zhang for helping me with some confusion. References for the material are
[FK88] and [KW01]. There are probably some mistakes in these notes (that are all my fault), so use them at
your own risk!

The goal of our Kleine AG is to prove the following theorem.
Theorem 0.1 (Main Theorem, Deligne). Let f : X → S be a map of algebraic κ-schemes and let F be a τ -mixed
sheaf on X. Then also the direct images with compact support Rif!(F) are τ -mixed and we have

w(Rif!(F)) ≤ w(F) + i.

We have already reduced this to a fairly concrete statement about certain sheaves on the affine line. The goal
of this talk is to prove this statement (see Proposition 5.1) and thus finish the proof of the Main Theorem.

1 Notation
• n,m,m′ will always denote positive integers with n | m | m′. w will always denote a real number.
• We fix a finite field κ of characteristic p and cardinality q. Let k be a fixed algebraic closure of κ and denote

the geometric Frobenius a 7→ a1/q on k by Fr. Also let κn be the unique degree n extension of κ inside k and
write Frn := Frn.

• X always denotes an algebraic κ-scheme (i.e. a κ-scheme that is separated and of finite type). We write |X|
for the set of closed points of the underlying topological space of X. Given x ∈ X we write d(x) := [κ(x) : κ]
and N(x) := |κ(x)| = qd(x).

• Fix a prime number ` 6= p and an algebraic closure Q` of Q`. Also fix an isomorphism τ : Q` → C of
(abstract) fields.

• When we say sheaf we really mean Weil-Q`-sheaf. We denote the derived category of sheaves on X by Db
c(X).

• We identify sheaves on Spec(κn) with finite-dimensional Q`-vector spaces with an automorphism Frn. Given
an abstract finite field extension κ′ of κ of degree n and a sheaf F on Spec(κ′) we can still obtain a Q`-vector
space with an automorphism Frn but it is only well-defined up to noncanonical isomorphism. Nevertheless we
still obtain a well-defined characteristic polynomial det

(
1− tFrn

∣∣F)
.

• Given K ∈ Db
c(X) and x ∈ X(κn) (resp. x ∈ |X|) we write Kx for the stalk of K at x, i.e. the pullback of K

along Spec(κn) → X (resp. Spec(κ(x)) → X).
Similarly we write RΓ(X,K) (resp. RΓc(X,K)) for the derived pushforward (with compact support) of K

along X → Spec(κ) and Hi(X,K) (resp. Hi
c(X,K)) for its cohomology.

• For b ∈ Q
×
` we denote by Lb the lisse sheaf of rank 1 on Spec(κ) with associated character Fr 7→ b.

• We write ‖•‖ for the standard norm on the space of C-valued functions on some finite set.

2 Generalities on `-adic cohomology
Theorem 2.1 (Base Change). Let

X ′ X

S′ S

g′

f ′ f

g

be a pullback diagram of algebraic κ-schemes and let K ∈ Db
c(X). Then there is a natural isomorphism

g∗Rf!(K) ∼= Rf ′! g
′∗(K).
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Theorem 2.2 (Projection Formula). Let f : X → S be a map of algebraic κ-schemes and let K ∈ Db
c(S) and

L ∈ Db
c(X). Then there is a natural isomorphism

K ⊗L Rf!(L) ∼= Rf!
(
f∗(K)⊗L L

)
.

Theorem 2.3 (Grothendieck Trace Formula). Let K ∈ Db
c(X). Then the following identities hold:∏

i∈Z

∏
x∈|X|

det
(
1− td(x) Frd(x)

∣∣H i(K)x
)(−1)i

=
∏
i∈Z

det
(
1− tFr

∣∣Hi
c(X,K)

)(−1)i

∑
i∈Z

∑
x∈X(κn)

(−1)i tr
(
Frn

∣∣H i(K)x
)
=

∑
i∈Z

(−1)i tr
(
Frn

∣∣Hi
c(X,K)

)
Theorem 2.4 (Poincaré Duality). Suppose that X is smooth and let K ∈ Db

c(X). Then there is a natural
isomorphism

RΓ(X,K∨)(d)[2d] ∼= RΓc(X,K)∨.

3 Pure, Mixed and Real Sheaves
Definition 3.1. Let G be a sheaf on X.

• G is τ -pure of weight w if we have |τ(α)|2 = N(x)w for all x ∈ |X| and eigenvalues α ∈ Q
×
` of Frd(x) : Gx → Gx.

• G is τ -mixed if there exists a filtration of G whose graded pieces are τ -pure (possibly of varying weight).
• G is τ -real if the characteristic polynomial τ det

(
1− tFrd(x)

∣∣Gx) ∈ C[t] has coefficients in R for all x ∈ |X|.
• We define

w(G) := sup
x∈|X|

max
α

logN(x)

(
|τ(α)|2

)
∈ R

where α runs through all eigenvalues of Frd(x) : Gx → Gx.
• We define functions fGn : X(κn) → C (depending on n) by setting fGn (x) := τ tr(Frn |Gx).
• We define

‖G‖ := sup
{
ρ ∈ R

∣∣∣ lim sup
n

q−n(ρ+dim(X)) ·
∥∥fGn ∥∥2 > 0

}
∈ R.

We also extend the definition of fGn to objects K ∈ Db
c(X) by setting fKn :=

∑
i∈Z(−1)if

H i(K)
n .

Theorem 3.2. Suppose that X is smooth of pure dimension 1 and let G be a τ -mixed sheaf on X that does not
admit sections with finite support. Then we have ‖G‖ = w(G).

Theorem 3.3. Let G be a τ -real sheaf on X. Then G is τ -mixed.

The following lemma doesn’t really belong here but I don’t know where else to put it.

Lemma 3.4. Let V be a finite-dimensional C-vector space and let ϕ : V → V be a (C-linear) automorphism all
of whose eigenvalues α ∈ C× satisfy |α|2 = u for some fixed u ∈ R>0. Then the the characteristic polynomial of
the automorphism ϕ⊕ (u · ϕ−1) : V ⊕ V → V ⊕ V has real coefficients.

4 The `-adic Fourier transform (after Laumon)
4.1 The Fourier Transform for Finite Abelian Groups
Let us first recall the Fourier transform for finite Abelian groups. Let G be a finite Abelian group and let
ψ : G×G→ C× be a symmetric nondegenerate pairing.

Definition 4.1. Given a function f : G→ C we define its Fourier transform Tψf : G→ C by the formula

(Tψf)(h) :=
∑
g∈G

f(g) · ψ(g, h)−1.

The Fourier transformation has the following properties:

Lemma 4.2. Let f : G→ C be a function on G.

(Fourier Inversion): We have
(
Tψ−1 ◦ Tψ

)
(f) = |G| · f .
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(Plancherel Formula): We have ‖Tψf‖ = |G|1/2 · ‖f‖.

In the following we will be interested in the finite abelian groups κn.

Notation 4.3. We introduce the following notation (where ψ denotes a character of κn).

• We set ψκm := ψTrκm/κn . This is now a character of κm.
• Given b ∈ κn we write ψb for the character κn 3 a 7→ ψ(ba).

These constructions are compatible in the sense that ψκm,b = ψb,κm .
Now given a nontrivial character ψ of κ we have an associated symmetric nondegenerate pairing on κn that is

given by
(a, b) 7→ ψ

(
Trκn/κ(ab)

)
= ψκn,b(a).

We denote this pairing again by ψ.

4.2 Artin-Schreier Coverings
Definition 4.4. We define the n-th Artin-Schreier map

℘(n) : A1
κ → A1

κ, x 7→ xq
n

− x.

We also define the maps

α(m,n) : A1
κ → A1

κ, x 7→
m/n−1∑
i=0

xq
in

.

One immediately checks the identity ℘(n)α(m,n) = ℘(m).

Lemma 4.5. ℘(n) is a finite étale geometrically connected covering of degree qn. After extending scalars to κn
it is Galois (even Abelian) with automorphism group

κn ∼= Aut(℘(n)
κn ), a 7→ (x 7→ x+ a).

Under this isomorphism the map Aut(℘
(m)
κm ) → Aut(℘

(n)
κm) induced by α(m,n) identifies with Trκm/κn : κm → κn.

Notation 4.6. Given a character ψ : κn → Q
×
` we denote by L(ψ) the associated lisse sheaf of rank 1 on A1

κn .
Note that we have L(ψκm) ∼= L(ψ)κm .

Lemma 4.7 (Cohomology and Stalks of L(ψ)). Let ψ : κn → Q
×
` be a character. Then we have

Hi
c(A

1
κn ,L(ψ)) ∼=

{
Q`(−1) if ψ = 1 and i = 2,
0 else.

Moreover, for a ∈ A1
κn(κm) = κm we have

det
(
Frm

∣∣L(ψ)a) = ψκm(a)
−1.

Proof. It is a standard result in étale cohomology that RΓ(A1
κn ,Q`)

∼= Q`. Applying Theorem 2.4 to this yields
RΓc(A

1
κn ,Q`)

∼= Q`(−1)[−2]. The first part of the lemma now follows because R℘(n)
κn,∗(Q`)

∼=
⊕

ψ L(ψ) (where
the direct sum is over all characters of κn).

Let us now turn to the second part and suppose we are given a ∈ A1
κn(κm) = κm. Then we can choose

b ∈ A1
κn(κm′) for some m′ such that ℘(n)

κn (b) = a. This gives rise to a commutative diagram

Spec(κm′) A1
κn

Spec(κm) A1
κn .

b

℘(n)
κn

a

The induced map Gal(κm′/κm) → Aut(℘
(n)
κn ) sends Frm to the automorphism x 7→ x − Trκm/κn(a), i.e. the

element −Trκm/κn(a) ∈ κn. The result now readily follows as ψ(−Trκm/κn(a)) = ψκm(a)
−1.
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4.3 The `-adic Fourier transform
In this subsection ψ always denotes a nontrivial character κ→ Q

×
` .

Definition 4.8 (Fourier Transform). Define the `-adic Fourier Transform Tψ : D
b
c(A

1
κ) → Db

c(A
1
κ) by the

formula
Tψ(K) := R pr1,!

(
pr∗2K ⊗m∗L(ψ)

)
[1].

Here m : A2
κ → A1

κ denotes the multiplication map.

Lemma 4.9 (Stalks of the Fourier Transform). For K ∈ Db
c(A

1
κ) and b ∈ A1

κ(κn) = κn we have

Tψ(K)b ∼= RΓc
(
A1
κn ,Kκn ⊗ L(ψκn,b)

)
[1]

in Db
c(Spec(κn)).

Proof. Applying Theorem 2.1 yields

Tψ(K)b ∼= RΓc
(
A1
κn ,Kκn ⊗ λb,∗L(ψ)κn

)
[1]

where the map λb : A1
κn → A1

κn is given by x 7→ bx. Thus we are done if we can show that λb,∗L(ψ)κn ∼= L(ψκn,b).
To see this note that we have a commutative diagram

A1
κn A1

κn

A1
κn A1

κn

λb

℘(n)
κn

℘(n)
κn

λb

inducing the map Aut(℘
(n)
κn ) → Aut(℘

(n)
κn ) that is given by a 7→ ba under the isomorphism κn ∼= Aut(℘

(n)
κn ).

Remark 4.10. Let’s try to explain why Tψ is called a “Fourier transform” by giving the following (incomplete)
table of analogies (compare with Section 4.1).

G A1
κ

f : Gn → C K ∈ Db
c(A

n
κ)

ψ−1 m∗L(ψ)∑
h∈G f(g, h) R pr1,!(K)

Using this table one should be able to compare Definition 4.8 with Definition 4.1 (except for possibly the
appearing shift).

Lemma 4.11. Let K ∈ Db
c(A

1
κ). Then we have

f
TψK
n = −Tτψ(fKn ).

In particular we get a Plancherel Formula ‖fTψKn ‖ = qn/2 · ‖fKn ‖.

Proof. We make the following computation (for b ∈ A1
κ(κn) = κn).

f
TψK
n (b) = τ

∑
i∈Z

(−1)i tr
(
Frn

∣∣H i(TψK)b
)

4.9
= −τ

∑
i∈Z

(−1)i tr
(
Frn

∣∣Hi
c(A

1
κn ,Kκn ⊗ L(ψκn,b))

)
2.3
= −τ

∑
i∈Z

∑
a∈κn

(−1)i tr
(
Frn

∣∣H i(Kκn)a ⊗ L(ψκn,b)a
)

= −τ
∑
a∈κn

∑
i∈Z

(−1)i tr
(
Frn

∣∣H i(K)a
)
· det

(
Frn

∣∣L(ψκn,b)a)
4.7
= −

∑
a∈κn

fKn (a) · τψκn(ab)−1

= −Tτψ(fKn )(b)

We now also want to establish a “Fourier Inversion”-result for the `-adic Fourier Transform. To do so, we
need the following key computation that should be compared to the identity∑

h∈G

ψ(h, k)−1 · ψ(g, h) =

{
|G| if g = k,
0 else.

4



Lemma 4.12. We have

R pr13,!
(
pr∗23m

∗L(ψ)⊗ pr∗12m
∗L(ψ−1)

) ∼= ∆∗(Q`)(−1)[−2]

where ∆: A1
κ → A2

κ denotes the diagonal map.

Proof. We first claim that we have

pr∗23m
∗L(ψ)⊗ pr∗12m

∗L(ψ−1) ∼= α∗m∗L(ψ)

where α : A3
κ → A2

κ is the map (x, y, z) 7→ (y, z − x). To see this we consider

X := Spec
(
κ[x, y, z][ε, η]/(εq − ε− xy, ηq − η − yz)

) χ−→ A3
κ.

χ is a finite étale geometrically connected Abelian covering with automorphism group

κ× κ ∼= Aut(χ), (aε, aη) 7→ (ε 7→ ε+ aε, η 7→ η + aη).

Moreover we have commutative diagrams
X A1

κ

A3
κ A1

κ

(??)

χ ℘(1)

(?)

with the maps (?) and (??) given by m ◦ pr23, m ◦ pr12, m ◦α and (x, y, z, ε, η) 7→ η, ε, η− ε respectively. Hence
we obtain induced maps on the automorphism groups that are given by

κ× κ→ κ, (aε, aη) 7→ aη, aε, aη − aε.

Our claim now reduces to the identity

ψ(aη) · ψ−1(aε) = ψ(aη − aε).

Next we note that we have pullback squares

A3
κ A2

κ

A2
κ A1

κ

α

pr13 pr2

β

and
A1
κ Spec(κ)

A2
κ A1

κ

pr

∆ i0

β

where the map β is given by (x, y) 7→ y − x and i0 is the inclusion of the origin. Applying Theorem 2.1 yields

R pr13,! ◦α∗ ∼= β∗ ◦R pr2,! and ∆∗ ◦ pr∗ ∼= β∗ ◦ i0,∗.

As a final ingredient we note that Lemma 4.7 and Lemma 4.9 together imply that Tψ(Q`)
∼= i0,∗(Q`)(−1)[−1],

i.e. that R pr2,!
(
m∗L(ψ)

) ∼= i0,∗(Q`)(−1)[−2]. Now putting it all together gives

R pr13,!
(
pr∗23m

∗L(ψ)⊗ pr∗12m
∗L(ψ−1)

) ∼= R pr13,! α
∗m∗L(ψ)

∼= β∗R pr2,!m
∗L(ψ)

∼= β∗i0,∗(Q`)(−1)[−2]

∼= ∆∗(Q`)(−1)[−2].

Theorem 4.13 (Fourier Inversion). For K ∈ Db
c(A

1
κ) we have a natural isomorphism

(Tψ−1 ◦ Tψ)(K) ∼= K(−1).
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Proof. We make the following computation.

(Tψ−1 ◦ Tψ)(K) ∼= R pr1,!

(
pr∗2R pr1,!

(
pr∗2K ⊗m∗L(ψ)

)
⊗m∗L(ψ−1)

)
[2]

2.1∼= R pr1,!

(
R pr12,! pr

∗
2,3

(
pr∗2K ⊗m∗L(ψ)

)
⊗m∗L(ψ−1)

)
[2]

2.2∼= R pr1,!
(
pr∗3K ⊗ pr∗23m

∗L(ψ)⊗ pr∗12m
∗L(ψ−1)

)
[2]

2.2∼= R pr1,!

(
pr∗2K ⊗R pr13,!

(
pr∗23m

∗L(ψ)⊗ pr∗12m
∗L(ψ−1)

))
[2]

4.12∼= R pr1,!
(
pr∗2K ⊗∆∗(Q`)

)
(−1)

2.2∼= R pr1,!
(
∆∗(K)

)
(−1) ∼= K(−1)

5 End of Proof of the Main Theorem
Let us fix the following notation.

• ψ : κ→ Q
×
` is a nontrivial character as before.

• j : U → A1
κ is the inclusion of a nonempty open subscheme. Fix a geometric point x ∈ U(k).

• F is a lisse τ -pure sheaf of weight w on U . Write V := Fx and let ρ : W (U, x) → AutQ`
(V ) be the associated

representation. We assume that the following conditions are satisfied.
◦ F is geometrically irreducible and geometrically nonconstant.
◦ F is unramified at ∞, i.e. F extends to a lisse sheaf on U ∪ {∞} ⊆ P1

κ.
• We also set G := j!(F).

What remains to be shown in order to prove Theorem 0.1 is the following proposition.

Proposition 5.1. The eigenvalues α of the Frobenius Fr: H1
c (U,F) → H1

c (U,F) satisfy |τ(α)|2 ≤ qw+1.

Before giving the proof of the proposition we collect some properties of the Fourier Transform Tψ(G).

Lemma 5.2. Tψ(G) is concentrated in degree 0.

Proof. Using Lemma 4.9 we need to show that

Hi
c

(
A1
κn ,Gκn ⊗ L(ψκn,b)

) 2.2∼= Hi
c

(
Uκn ,Fκn ⊗ j∗L(ψκn,b)

) ∼= 0

for i = 0, 2 and all b ∈ κn. For i = 0 this is clear because U is affine of positive dimension and F is lisse. For
i = 2 we apply Theorem 2.4 to see that

H2
c

(
Uκn ,Fκn ⊗ j∗L(ψκn,b)

) ∼= H0
(
Uκn , (Fκn ⊗ j∗L(ψκn,b))∨

)∨
(−1)

so that we need to show that the π1(Uk, x)-invariants of V (ψκn,b)
∨ are trivial. F being geometrically irreducible

precisely means that V is an irreducible π1(Uk, x)-representation. Thus we are done if we can show that
Fk 6∼= L(ψκn,b)k for any b ∈ κn.

• As F is geometrically nonconstant we can’t have Fk ∼= L(ψ0)k (note that L(ψ0) ∼= Q`).
• As F is unramified at ∞ we can’t have Fk ∼= L(ψκn,b)k for b 6= 0 (using that π1(P1

k, x) = 1).

Lemma 5.3. The sheaf Tψ(G) is τ -mixed.

Proof. Let b := τ−1(qw) ∈ Q
×
` . Then the sheaf

H :=
(
pr∗2 j!F ⊗m∗L(ψ)

)
⊕

(
pr∗2 j!F∨ ⊗m∗L(ψ−1)⊗ Lb,A2

κ

)
on A2

κ is τ -real by Lemma 3.4 (where we use that F is lisse and τ -pure of weight w). Applying Lemma 5.2 and
Theorem 2.2 gives that

R pr1,! H[1] ∼= Tψ(G)⊕ Tψ−1(j!F∨)⊗ Lb,A1
κ

is concentrated in degree 0. Applying Theorem 2.1 and Theorem 2.3 now shows that R pr1,! H[1] is again τ -real
hence also τ -mixed by Theorem 3.3. Thus also Tψ(G) ⊆ R pr1,! H[1] is τ -mixed as desired.
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Lemma 5.4. H0
c (A

1
κ, Tψ(G)) = 0.

Proof. We make the following calculation.

H0
c

(
A1
κ, Tψ(G)

) 4.9∼= H −1
(
(Tψ−1 ◦ Tψ)(G)

)
0

4.13∼= H −1
(
G(−1)

)
0
∼= 0

Proof of Proposition 5.1. Applying the Plancherel Formula from Lemma 4.11 to G yields

‖TψG‖ = ‖G‖+ 1.

Now G and Tψ(G) are both τ -mixed and we have H0
c (A

1
κ,G) ∼= H0

c (A
1
κ, Tψ(G)) ∼= 0 (for Tψ(G) this is the content

of Lemma 5.3 and Lemma 5.4) so that we can apply Theorem 3.2 to obtain

w(Tψ(G)) = w + 1.

This gives us precisely what we want because Tψ(G)0 ∼= H1
c (A

1
κ,G) ∼= H1

c (U,F) by Lemma 4.9.
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