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1 Plan

Hello, welcome to the first talk of the Weil conjectures. In this talk we will do the following:

• Give the statement of the 5 Weil conjectures: rationality, integrality, functional equation,
Riemann hypothesis and Betti numbers.

• We then sketch the proofs of 3 of them: rationality, Poincaré duality and Betti numbers.

– For rationality and Betti numbers we introduce the cohomological interpretation of L-
functions, which follows from the Lefschetz trace formula (given as a black box).

– For the functional equation we also recall (as black box) Poincaré duality.

Then in the next 4 talks, the remaining Riemann hypothesis Weil conjecture will be proven,
which will also imply the integrality conjecture.

2 History

(Taken from 1) We will start by giving some history of the Weil conjectures:

• In 1949, Weil formulated the Weil conjectures: formulated the rationality, integrality, func-
tional equation, Betti numbers and Riemann hypothesis Weil conjectures.

• In 1960, Dwork proved the Rationality conjecture.
• In 1965, Artin, Grothendieck and Verdier proved the rationality, Betti numbers and functional

equation part of the Weil conjectures by defining `-adic cohomology and proving the Lefschetz
trace formula. This we will sketch in the first talk.

• In 1974 Deligne proved the Riemann hypothesis and the integrality conjectures in his Weil I
article.

• In 1980 Deligne improved the results in his Weil II article.
• In 1987 Laumon introduced the Fourier transform which simplifies a step in Deligne’s proof.

This last proof is the one we will follow in the next 4 talks.

1https://en.wikipedia.org/wiki/Weil_conjectures#Background_and_history
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3 The 5 conjectures

Let q be a power of a prime p and X/Fq a smooth projective variety (variety = finite type
geometrically integral scheme). Then the zeta function of X is defined as

ζX(t) := exp

 ∑
n∈Z≥1

νn(X)tn

n

 ∈ Z[[t]]

νn(X) := #X(Fqn).

(1)

3.1 The conjectures

The 5 Weil conjectures are as follows: let d := dimX,

1. Rationality: ζX(t) ∈ Q(T ). More precisely, there is a characteristic 0 fieldK and Pi(t) ∈ K[t]
for i = 0, . . . , 2d such that

ζX(t) =
P1(t) · · · · · P2d−1(t)

P0(t) · · · · · P2d(t)
,

P0(t) = 1− t,
P2d(t) = 1− qdt.

(2)

2. Integrality:
Pi(t) ∈ Z[t] for i = 0, . . . , 2d. (3)

3. Functional equation:

ζX(q−dt−1) = ±q
d·χ
2 tχζX(t)

χ :=

2d∑
i=0

(−1)i degPi.
(4)

4. Riemann hypothesis: for i = 0, . . . , 2d,

write Pi(t) =

degPi∏
j=1

(1− αi,jt) for some αi,j ∈ K ↪→ C,

then |αi,j | = q
i
2 for j = 1, . . . ,degPi.

(5)

5. Betti numbers: If there is a Y/Z(p) a smooth projective good reduction mod p variety of X,
so X = Y ×Z(p)

Fq , then

degPi = dimCH
i
sing(Y

cx
C ,C). (6)

where Y cxC is the complex manifold associated to a variety.

3.2 Example: Calculation of ζPn
Fq
(t)

We can write

PnFq =

n∐
i=0

AiFq =

n∐
i=0

i∏
j=1

A1
Fq (7)

and
#A1

Fq (Fqm) = # MorFq (Fq[x],Fqm) = qm (8)
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so we get

#PnFq (Fqm) =

n∑
i=0

qim (9)

Then

ζPnFq (t) = exp

 ∑
m∈Z≥1

n∑
i=0

qim
tm

m


= exp

 n∑
i=0

∑
m∈Z≥1

(qit)m

m


= exp

(
n∑
i=0

log(
1

1− qit
)

)

=

n∏
i=0

1

1− qit

(10)

so P2i(t) = 1− qit, P2i−1(t) = 1.
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4 The cohomological interpretation of L-functions

4.1 Frobenius endomorphisms

(Reference: [7, XV §2]) Let (X,E) be a pair where X/Fq is a scheme and E ∈ Sh(Xét).
If we denote X := X ×Fq Fp and E := E ⊗Fq Fp, then we want to define Frobenius endo-

morphisms in End(Hi
c(X,E)) and End(i∗xE) for x ∈ X

0
, to be able to state the definition of

L-functions and its cohomological interpretation.

We start by giving an isomorphism FrE/X : fr∗X E
∼=−→ E where frX : X → X is the absolute

Frobenius.
We do this as follows: For U/X étale, we have the relative Frobenius FrU/X defined by the

following diagram:

U

fr−1
X U := X ×frX ,X U U

X X

frU

FrU/X

prX

(frX)U

frX

(11)

then we have:

• FrU/X etale: as prX is the basechange of U → X étale, it is étale, thus U → X and prX being
étale imply FrU/X étale.

• FrU/X universally bijective: as (frX)U is the base change of frX which is universally bijective,
it also is universally bijective. Thus (frX)U and frU being universally bijective imply FrU/X
universally bijective.

So FrU/X is etale and universally bijective so an isomorphism.
So this defines an isomorphism of sections

E(FrU/X) : (frX,∗E)(U) = E(fr−1
X (U))→ E(U) (12)

functorial in U , so an isomorphism E(Fr•/X) : frX,∗E
∼=−→ E. By adjunction we get an isomor-

phism

FrE/X : fr∗X E
∼=−→ E. (13)

We can base change the maps frX and FrE/X to Fp to get maps

frX := (frX ×Fq idFp) : X → X

FrE/X := (FrE/X ⊗Fq idFp) : fr
∗
XE → E

(14)

We can now apply it as follows:

• On cohomology: we have a pullback map Hi
c(X,E) → Hi

c(X, fr
∗
XE) which we can compose

with H∗c (X,FrE/X) to get

F : Hi
c(X,E)→ Hi

c(X, fr
∗
XE)→ Hi

c(X,E) ∈ End(Hi
c(X,E)). (15)

• On stalks: if we take stalks at x ∈ X0
of FrE/X , we get a map

i∗xFrE/X : i∗
frX(x)

E → i∗xE. (16)
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Now this is not yet an endomorphism of i∗xE. as frX(x) 6= x in general. But if x ∈ X0 is

the image of x ∈ X0
, then if we take the deg(x) := [κ(x) : Fq]’th power of this map, we get

fr
deg(x)

X (x) = x. So we define

Fx := (i∗xFrE/X)deg(x) : ixE → ixE ∈ End(ixE). (17)

4.2 Comparison with geometric Frobenius

Let σq ∈ Gal(Fp/Fq) be the Frobenius map, recall the geometric and arithmetic Frobenius

1× σq := idX ×Fq Spec(σq) = idX ×Fq frFp : X → X (arithmetic)

1× σ−1
q := idX ×Fq Spec(σ−1

q ) = idX ×Fq fr−1

Fp
: X → X (geometric).

(18)

If we compose frX and FrE/X with the arithmetic frobenius, we get the absolute Frobenius of X:

(frX ×Fq idFp) ◦ (idX ×Fq frFp) = frX

(FrE/X ⊗Fq idFp) ◦ (idE ⊗FqFFp/Fq ) = FrE/X .
(19)

Then we claim that the morphism of sections induced by the absolute Frobenius of E is the
identity. This follows by functoriality, let U/X étale. Then we have

ϕE,U : H0(U,E|U )→ H0(U, fr∗
X
E|U )→ H0(U,E|U ) (20)

is a morphism functorial in E, so if take any section s ∈ E(U), which we consider as a map
s : hU → E, we get the commutative diagram

H0(U, hU ) H0(U, hU )

H0(U,E|U ) H0(U,E|U )

ϕhU ,U

H0(U,s) H0(U,s)

ϕE,U

(21)

Then because H0(U, hU ) = {∗}, we get that ϕhU ,U = id{∗} and so ϕE,U ◦H0(U, s) = H0(U, s)
so ϕE,U (s) = s. Thus we conclude ϕE,U = idH0(U,E|U ).

• As U/X was chosen arbitrarily, this implies that the absolute Frobenius acts as the identity
on stalks as well. So we can identify Fx with the geometric Frobenius 1× σ−1

q as elements of

End(Ex).
• Furthermore by properties of derived functors it can be shown that the absolute Frobenius

acts as the identity on Hi(X,E) for i ≥ 1 as well, so we can identify F with the geometric
frobenius 1× σ−1

q as elements of End(Hi
c(X,E)).

So under this identification, in particular when E = Q`(a) for some a ∈ Z, we have that Fx acts

on Q`(a)x = Q`(a) by σ
−a deg(x)
q with σ ∈ Gal(Fp/Fq), so by multiplication by q−a deg(x). In

particular when a = 0, Fx acts as the identity on (Q`)x.
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4.3 L-functions

Definition 1 ([1, p.80 Def 1.6]). For X/Fq a scheme of finite type and E a Q`-sheaf, the
L-function is defined as

L(X,E) :=
∏
x∈X0

1

det(1− F deg(x)
x tdeg(x), Ex)

where X0 := {closed points of X}
deg(x) := [κ(x) : Fq].

(22)

The cohomological interpretation of L-functions is then:

Theorem 1 ([1, p.86 Thm 3.1]). Let X/Fq be a separated scheme of finite type, E a constructible
Q`-sheaf, then

L(X,E) =

2 dimX∏
i=0

det(1− Ft,Hi
c(X,E))(−1)i+1

(23)

This identity is obtained from the following trace formula

Theorem 2 ([1, p.86 Thm 3.2]). Let X/Fq a separated scheme of finite type and E a constructible
Q`-sheaf on X. Then for n ∈ Z≥1:

∑
x∈XfrnX

tr(Fnx , Ex) =

2 dimX∑
i=0

(−1)i tr(Fn, Hi
c(X,E)) (24)

Proof of Thm 2 ⇒ Thm 1. [1, p.86,87] Apply Lemma 1 with K = Q`. So we get

t
d

dt
logL(X,E) =

∑
x∈X0

∑
n∈Z≥1

deg(x) tr(Fn deg(x)
x )tn deg(x)

=
∑
n∈Z≥1

∑
x∈X0

deg(x) tr(Fn deg(x)
x )tn deg(x)

=
∑

m∈Z≥1

∑
x∈X0

deg(x)|m

deg(x) tr(Fmx )tm

(25)

Then we use the following combinatorial identity:∑
x∈X0

deg(x)|m

deg(x) tr(Fmx )tm =
∑

x∈X(Fqm )

tr(Fmx )tm (26)

which follows because if we consider x ∈ X0, then there are Gal(κ(x)/Fq)-many Fqm ⊃ κ(x) ⊃ Fq
inclusions and we must have deg(x) | m for the inclusion Fqm ⊃ κ(x) to hold. So we get

=
∑

m∈Z≥1

∑
x∈X(Fqm )

tr(Fmx )tm

=
∑

m∈Z≥1

∑
x∈XfrnX

tr(Fmx )tm
(27)
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and

t
d

dt
log

2 dimX∏
i=0

det(1− Ft,Hi
c(X,E))(−1)i+1

=

2 dimX∑
i=0

(−1)i
∑

m∈Z≥1

tr(Fm, Hi
c(X,E))tm

=
∑

m∈Z≥1

2 dimX∑
i=0

(−1)i tr(Fm, Hi
c(X,E))tm.

(28)

Then we have equality on the coefficients of tm by the Lefschetz trace formula.
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5 Proof of rationality

We start with the following combinatorial identity:∑
m∈Z≥1

#X(Fqm)tm =
∑
x∈X0

∑
k∈Z≥1

|Gal(κ(x)/Fq)|tk deg(x)

=
∑
x∈X0

∑
k∈Z≥1

deg(x)tk deg(x).
(29)

We see this as follows: if x ∈ X0 then the elements of X(Fqm) which have underlying set-point
x are parametrised by maps

Fqm κ(x) Fq

κ(x)

σ (30)

which implies in particular that deg(x) | m, so m = k deg(x) and that any two Fq-linear maps
Fqm ← κ(x) differ by an automorphism σ ∈ Gal(κ(x)/Fq).

So we get

t
d

dt
log ζX(t) =

∑
m∈Z≥1

νm(X)tm

t
d

dt

∏
x∈X0

1

1− tdeg(x)
=
∑
x∈X0

∑
k∈Z≥1

deg(x)tdeg(x)k

(31)

which implies

ζX(t) =
∏
x∈X0

1

1− tdeg(x)
. (32)

We apply Theorem 1 with E := Q`. We have by definition that the Gal(Fp/Fq)-action on
Q` = Q`(0) is trivial, so Fx = idQ` on (Q`)x = Q`. We then obtain

ζX(t) = exp

 ∑
m∈Z≥0

νm(X)

m
tm


(32)
=

∏
x∈X0

1

1− tdeg(x)

Fx=idQ`=
∏
x∈X0

1

det(1− Fxtdeg(x),Q`)

Thm 1
=

2 dimX∏
i=0

det(1− Ft,Hi
c(X,Q`))(−1)i+1

=

2 dimX∏
i=0

det(1− Ft,Hi(X,Q`))(−1)i+1

.

(33)

Then if we take K = Q` and

Pi(t) := det(1− Ft,Hi(X,Q`)) ∈ Q`[t] (34)

we have shown rationality. Also by triviality of action of F on Q`, we have that F is the identity
on H0(X,Q`) so P0(t) = 1− t.
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6 Proof of Betti numbers

We have
degPi = deg det(1− Ft,Hi(X,Q`)) = dimQ` H

i(X,Q`). (35)

Let Y/Z(p) be the smooth projective good reduction mod p variety such that Y ×Z(p)
Fq = X.

Let π : Y → Spec(Z(p)) be the structure map. Let

x0 := (p) ∈ Spec(Z(p)),

x1 := (0) ∈ Spec(Z(p)),

x0 := Spec(Fp)
x1 := Spec(C),

x0 ∈ {x1} so x1  x0.

(36)

By an inclusion of neighbourhood systems, we obtain a specialisation map

(Riπ∗Q`)x0 → (Riπ∗Q`)x1 (37)

then by a Leray spectral sequence argument, using the smooth base change theorem we get that
this map is an isomorphism. So combined with the proper base change theorem we get

Hi(XFp ,Q`) = Hi(YFp ,Q`)
proper∼= (Riπ∗Q`)x0

smooth+proper∼= (Riπ∗Q`)x1

proper∼= Hi(YC,Q`).

(38)

Then by the comparison theorem of cohomology:

Theorem 3 ([3, p.132 Thm 21.5]). Let Y be a connected nonsingular variety over C. For any
locally constant sheaf F on Xet with finite stalks, Hr(Xet,F) ∼= Hr(Ycx,Fcx) for all r ∈ Z≥0

applies to Y with F = Q` because Y is smooth and connected. So we have

Hi(YC,Q`)⊗Q` C ∼= Hi(YC,C) ∼= Hi
sing(Y (C)cx,C). (39)

So we get
degPi = dimQ` H

i(X,Q`)
= dimQ` H

i(XFp ,Q`)

= dimQ` H
i(YFp ,Q`)

= dimQ` H
i(YC,Q`)

= dimCH
i
sing(Y (C)cx,C).

(40)
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7 Proof of functional equation

Recall the Poincaré duality theorem:

Theorem 4 ([5, p. 4 Thm 2.6]). Let X/K smooth proper and equidimensional of dimension d.
There is a Gal(Ksep/K)-equivariant homomorphism

tr : H2d(X,Q`)→ Q`(−d) (41)

so that the cup product pairing

Hi(X,Q`)×H2d−i(X,Q`)
∪−→ H2d(X,Q`)

tr−→ Q`(−d) (42)

is perfect.

We apply this theorem with K = Fq and X our smooth projective variety as before. Denote
by 〈a, b〉 := tr(a∪b) the pairing. As F is the geometric frobenius 1×σ−1

q , it acts as multiplication

by q−1 on Q`(1), so it acts by multiplication by qd on Q`(−d). So we have by Gal(Ksep/K)-
equivariance of the pairing that

〈Fa, Fb〉 = F 〈a, b〉 = qd〈a, b〉 (43)

Side remark: We noted in Rationality that F is the identity on H0(X,Q`). Now by this
perfect pairing we have that F is qd on H2d(X,Q`), so we conclude that P2d = 1 − qdt.

Let βi := dimQ` H
i = dimQ` H

2d−i.

• We can choose a basis e1, . . . , eβi of Hi ⊗Q` Q` such that F is upper triangular:

F (ei) =

βi∑
j=1

ai,jej qi,j = 0 for i > j. (44)

• By perfectness of the pairing, we can choose a basis f1, . . . , fβi of H2d−i ⊗Q` Q` such that
〈ei, fj〉 = δi,j .

• If we write F−1 on H2d−i as a matrix with respect to the basis f1, . . . , fβi

F−1(fi) =

βi∑
j=1

bi,jfj (45)

then we have

bi,j = 〈ej ,
βi∑
k=1

bi,kfk〉

= 〈ej , F−1(fi)〉
= F−1〈Fej , fi〉

= q−d〈
βi∑
k=1

aj,kek, fi〉

= q−daj,i = 0 if j > i

(46)

so F−1 has lower-triangular matrix with respect to the basis fi.
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•

det(F ;Hi) =

βi∏
i=1

ai,i

=

βi∏
i=1

〈F (ei), fi〉

=

βi∏
i=1

F 〈ei, F−1(fi)〉

=

βi∏
i=1

qdbi,i

= qdβi det(F−1;H2d−i)

(47)

so
det(F ;Hi) det(F ;H2d−i) = qdβi . (48)

•

det(1− F

qdt
;Hi) =

(
−1

qdt

)βi
det(F ;Hi) det(1− F−1qdt;Hi)

=

(
−1

qdt

)βi
det(F ;Hi)

βi∏
i=1

(1− a−1
i,i q

dt)

=

(
−1

qdt

)βi
det(F ;Hi)

βi∏
i=1

(1− b−1
i,i t)

=

(
−1

qdt

)βi
det(F ;Hi) det(1− Ft;H2d−i)

(49)

Then using the cohomological interpretation of L-functions we get

ζX(
1

qdt
) =

2d∏
i=0

det(1− F

qdt
,Hi)(−1)i+1

=

(
2d∏
i=0

(−qdt)(−1)i+2βi det(F ;Hi)(−1)i+1

)
·

2d∏
i=0

det(1− Ft;H2d−i)(−1)i+1

=

(
2d∏
i=0

(−qdt)(−1)i+2βi det(F ;Hi)(−1)i+1

)
ζX(t).

(50)

Where the factor is

(−qdt)χ ·
d−1∏
i=0

(det(F ;Hi) det(F ;H2d−i))(−1)i+1

· det(F ;Hd)(−1)d+1

= (−qdt)χ · ±q−
dχ
2

= ±q
dχ
2 tχ.

(51)

Here χ =
∑2d
i=0(−1)iβi, so the proof is complete.

11



8 Linear algebra lemma’s

Lemma 1 ([2, p.186 Lem 2.7]). Let α ∈ EndK(V ) for V a finite dimensional K-vector space.
Then

t
d

dt
log det(1− αt)−1 =

∑
n∈Z≥1

tr(αn)tn. (52)

Proof. Let K an algebraic closure, and set V := V ⊗K K. Any identity we find on V will be
valid in V , by faithfulness of the tensor functor − ⊗K K. So we may assume K = K. As K
is algebraically closed, we can find a Jordan normal basis of α, so in terms of this basis we can
write α as an upper-triangular matrix [α] with diagonal entries α1, . . . , αn with n := dimK V .

Then det(1− αt) =
∏n
i=1(1− αit) and tr(αk) =

∑n
i=1 α

k
i so we have

t
d

dt
log det(1− αt)−1 = t

d

dt

(
−

n∑
i=1

log(1− αit)

)

=

n∑
i=1

αit

1− αit

=

n∑
i=1

∑
k∈Z≥1

(αit)
k

=
∑
k∈Z≥1

tr(αk)tk.

(53)

Lemma 2 ([4, p.33 Lem 4.15], [6, p.456 Lem 4.3]). Let 〈·, ·〉 : V ×W → K be a perfect pairing of
vector spaces V,W of dimension r over K. Let λ ∈ K,ϕ ∈ EndK(V ), ψ ∈ EndK(W ) such that

〈ϕ(v), ψ(w)〉 = λ〈v, w〉 ∀v ∈ V,w ∈W. (54)

Then

det(1− ψt;W ) =
(−1)rλrtr

det(ϕ;V )
det
(

1− ϕ

λt
;V
)
,

det(ψ;W ) =
λr

det(ϕ;V )
.

(55)

Proof. Let K an algebraic closure, and set V := V ⊗K K. Any identity we find on V will be
valid in V , by faithfulness of the tensor functor −⊗K K. So we may assume K = K.

• Choose a basis v1, . . . , vr of V such that ϕ is upper-triangular with respect to this basis, so
ϕ(vi) =

∑r
j=1 ai,jej with ai,j = 0 for i > j.

• By the pairing being perfect, we can choose a basis w1, . . . , wr of W such that 〈vi, wj〉 = δi,j .
• We have that ψ is injective, thus an isomorphism: if ψ(w) = 0, then for all v ∈ V :

0 = 〈ϕ(v), ψ(w)〉 = λ〈v, w〉 (56)

so by perfectness of the pairing we have w = 0.
• Then wi is a basis for which ψ−1 is lower-triangular: if we write ψ−1(wj) =

∑r
i=1 bj,iw`, for

i > j:
bj,i = 〈vi, ψ−1(wj)〉 = 〈ϕ(vi), wj〉 = ai,j = 0. (57)
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• Thus we have

det(ϕ;V ) =

r∏
i=1

ai,i

=

r∏
i=1

〈ϕ(vi), wi)〉

=

r∏
i=1

λ〈vi, ψ−1(wi)〉

= λr det(ψ−1;W )

=
λr

det(ψ;W )

(58)

and
det(1− ψt;W ) = det(ψ;W ) det(ψ−1 − t;W )

=
λr

det(ϕ;V )
·
r∏
i=1

(bi,i − t)

=
λr

det(ϕ;V )
·
r∏
i=1

(
ai,i
λ
− t)

=
(−1)rλrtr

det(ϕ;V )
·
r∏
i=1

(1− ai,i
λt

)

=
(−1)rλrtr

det(ϕ;V )
det(1− ϕ

λt
;V ).

(59)
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