1 Plan

Hello, welcome to the first talk of the Weil conjectures. In this talk we will do the following:

- Give the statement of the 5 Weil conjectures: rationality, integrality, functional equation, Riemann hypothesis and Betti numbers.
- We then sketch the proofs of 3 of them: rationality, Poincaré duality and Betti numbers.
- For rationality and Betti numbers we introduce the cohomological interpretation of L functions, which follows from the Lefschetz trace formula (given as a black box).
- For the functional equation we also recall (as black box) Poincaré duality.

Then in the next 4 talks, the remaining Riemann hypothesis Weil conjecture will be proven, which will also imply the integrality conjecture.

2 History

(Taken from ${ }^{1}$ We will start by giving some history of the Weil conjectures:

- In 1949, Weil formulated the Weil conjectures: formulated the rationality, integrality, functional equation, Betti numbers and Riemann hypothesis Weil conjectures.
- In 1960, Dwork proved the Rationality conjecture.
- In 1965, Artin, Grothendieck and Verdier proved the rationality, Betti numbers and functional equation part of the Weil conjectures by defining ℓ-adic cohomology and proving the Lefschetz trace formula. This we will sketch in the first talk.
- In 1974 Deligne proved the Riemann hypothesis and the integrality conjectures in his Weil I article.
- In 1980 Deligne improved the results in his Weil II article.
- In 1987 Laumon introduced the Fourier transform which simplifies a step in Deligne's proof. This last proof is the one we will follow in the next 4 talks.

[^0]
3 The 5 conjectures

Let q be a power of a prime p and X / \mathbb{F}_{q} a smooth projective variety (variety $=$ finite type geometrically integral scheme). Then the zeta function of X is defined as

$$
\begin{align*}
\zeta_{X}(t) & :=\exp \left(\sum_{n \in \mathbb{Z}_{\geq 1}} \frac{\nu_{n}(X) t^{n}}{n}\right) \in \mathbb{Z}[[t]] \tag{1}\\
\nu_{n}(X) & :=\# X\left(\mathbb{F}_{q^{n}}\right)
\end{align*}
$$

3.1 The conjectures

The 5 Weil conjectures are as follows: let $d:=\operatorname{dim} X$,

1. Rationality: $\zeta_{X}(t) \in \mathbb{Q}(T)$. More precisely, there is a characteristic 0 field K and $P_{i}(t) \in K[t]$ for $i=0, \ldots, 2 d$ such that

$$
\begin{align*}
\zeta_{X}(t) & =\frac{P_{1}(t) \cdots \cdots P_{2 d-1}(t)}{P_{0}(t) \cdots \cdot P_{2 d}(t)} \\
P_{0}(t) & =1-t \tag{2}\\
P_{2 d}(t) & =1-q^{d} t
\end{align*}
$$

2. Integrality:

$$
\begin{equation*}
P_{i}(t) \in \mathbb{Z}[t] \text { for } i=0, \ldots, 2 d \tag{3}
\end{equation*}
$$

3. Functional equation:

$$
\begin{align*}
\zeta_{X}\left(q^{-d} t^{-1}\right) & = \pm q^{\frac{d \cdot \chi}{2}} t^{\chi} \zeta_{X}(t) \\
\chi & :=\sum_{i=0}^{2 d}(-1)^{i} \operatorname{deg} P_{i} \tag{4}
\end{align*}
$$

4. Riemann hypothesis: for $i=0, \ldots, 2 d$,

$$
\begin{align*}
& \text { write } P_{i}(t)=\prod_{j=1}^{\operatorname{deg} P_{i}}\left(1-\alpha_{i, j} t\right) \quad \text { for some } \alpha_{i, j} \in \bar{K} \hookrightarrow \mathbb{C} \tag{5}\\
& \text { then }\left|\alpha_{i, j}\right|=q^{\frac{i}{2}} \quad \text { for } j=1, \ldots, \operatorname{deg} P_{i}
\end{align*}
$$

5. Betti numbers: If there is a $Y / \mathbb{Z}_{(p)}$ a smooth projective good reduction $\bmod p$ variety of X, so $X=Y \times_{\mathbb{Z}_{(p)}} \mathbb{F}_{q}$, then

$$
\begin{equation*}
\operatorname{deg} P_{i}=\operatorname{dim}_{\mathbb{C}} H_{\text {sing }}^{i}\left(Y_{\mathbb{C}}^{c x}, \mathbb{C}\right) \tag{6}
\end{equation*}
$$

where $Y_{\mathbb{C}}^{c x}$ is the complex manifold associated to a variety.

3.2 Example: Calculation of $\zeta_{\mathbb{P}_{\mathbb{F}_{q}}^{n}}(t)$

We can write

$$
\begin{equation*}
\mathbb{P}_{\mathbb{F}_{q}}^{n}=\coprod_{i=0}^{n} \mathbb{A}_{\mathbb{F}_{q}}^{i}=\coprod_{i=0}^{n} \prod_{j=1}^{i} \mathbb{A}_{\mathbb{F}_{q}}^{1} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\# \mathbb{A}_{\mathbb{F}_{q}}^{1}\left(\mathbb{F}_{q^{m}}\right)=\# \operatorname{Mor}_{\mathbb{F}_{q}}\left(\mathbb{F}_{q}[x], \mathbb{F}_{q^{m}}\right)=q^{m} \tag{8}
\end{equation*}
$$

so we get

$$
\begin{equation*}
\# \mathbb{P}_{\mathbb{F}_{q}}^{n}\left(\mathbb{F}_{q^{m}}\right)=\sum_{i=0}^{n} q^{i m} \tag{9}
\end{equation*}
$$

Then

$$
\begin{align*}
\zeta_{\mathbb{P}_{\mathbb{P}_{q}}^{n}}(t) & =\exp \left(\sum_{m \in \mathbb{Z}_{\geq 1}} \sum_{i=0}^{n} q^{i m} \frac{t^{m}}{m}\right) \\
& =\exp \left(\sum_{i=0}^{n} \sum_{m \in \mathbb{Z}_{\geq 1}} \frac{\left(q^{i} t\right)^{m}}{m}\right) \tag{10}\\
& =\exp \left(\sum_{i=0}^{n} \log \left(\frac{1}{1-q^{i} t}\right)\right) \\
& =\prod_{i=0}^{n} \frac{1}{1-q^{i} t}
\end{align*}
$$

so $P_{2 i}(t)=1-q^{i} t, P_{2 i-1}(t)=1$.

4 The cohomological interpretation of L-functions

4.1 Frobenius endomorphisms

(Reference: [7, XV §2]) Let (X, E) be a pair where X / \mathbb{F}_{q} is a scheme and $E \in \operatorname{Sh}\left(X_{\text {ét }}\right)$.
If we denote $\bar{X}:=X \times_{\mathbb{F}_{q}} \overline{\mathbb{F}}_{p}$ and $\bar{E}:=E \otimes_{\mathbb{F}_{q}} \overline{\mathbb{F}}_{p}$, then we want to define Frobenius endomorphisms in $\operatorname{End}\left(H_{c}^{i}(\bar{X}, \bar{E})\right)$ and $\operatorname{End}\left(i_{\bar{x}}^{*} \bar{E}\right)$ for $\bar{x} \in \bar{X}^{0}$, to be able to state the definition of L-functions and its cohomological interpretation.

We start by giving an isomorphism $\operatorname{Fr}_{E / X}: \operatorname{fr}_{X}^{*} E \xrightarrow{\cong} E$ where $\operatorname{fr}_{X}: X \rightarrow X$ is the absolute Frobenius.

We do this as follows: For U / X étale, we have the relative Frobenius $\mathrm{Fr}_{U / X}$ defined by the following diagram:

then we have:

- $\mathrm{Fr}_{U / X}$ etale: as pr_{X} is the basechange of $U \rightarrow X$ étale, it is étale, thus $U \rightarrow X$ and pr_{X} being étale imply $\operatorname{Fr}_{U / X}$ étale.
- $\operatorname{Fr}_{U / X}$ universally bijective: as $\left(\mathrm{fr}_{X}\right)_{U}$ is the base change of fr_{X} which is universally bijective, it also is universally bijective. Thus $\left(\mathrm{fr}_{X}\right)_{U}$ and fr_{U} being universally bijective imply $\operatorname{Fr}_{U / X}$ universally bijective.
So $\mathrm{Fr}_{U / X}$ is etale and universally bijective so an isomorphism.
So this defines an isomorphism of sections

$$
\begin{equation*}
E\left(\operatorname{Fr}_{U / X}\right):\left(\operatorname{fr}_{X, *} E\right)(U)=E\left(\mathrm{fr}_{X}^{-1}(U)\right) \rightarrow E(U) \tag{12}
\end{equation*}
$$

functorial in U, so an isomorphism $E\left(\operatorname{Fr}_{\bullet / X}\right): \operatorname{fr}_{X, *} E \stackrel{\cong}{\rightrightarrows} E$. By adjunction we get an isomorphism

$$
\begin{equation*}
\operatorname{Fr}_{E / X}: \operatorname{fr}_{X}^{*} E \xrightarrow{\cong} E . \tag{13}
\end{equation*}
$$

We can base change the maps fr_{X} and $\operatorname{Fr}_{E / X}$ to $\overline{\mathbb{F}}_{p}$ to get maps

$$
\begin{align*}
\overline{\operatorname{fr}}_{X}:=\left(\operatorname{fr}_{X} \times_{\mathbb{F}_{q}} \operatorname{id}_{\overline{\mathbb{F}}_{p}}\right): \bar{X} \rightarrow \bar{X} \\
\overline{\operatorname{Fr}}_{E / X}:=\left(\operatorname{Fr}_{E / X} \otimes_{\mathbb{F}_{q}} \mathrm{id}_{\overline{\mathbb{F}}_{p}}\right): \overline{\mathrm{fr}}_{X}^{*} \bar{E} \rightarrow \bar{E} \tag{14}
\end{align*}
$$

We can now apply it as follows:

- On cohomology: we have a pullback map $H_{c}^{i}(\bar{X}, \bar{E}) \rightarrow H_{c}^{i}\left(\bar{X}, \overline{\operatorname{fr}}_{X}^{*} \bar{E}\right)$ which we can compose with $H_{c}^{*}\left(\bar{X}, \overline{\operatorname{Fr}}_{E / X}\right)$ to get

$$
\begin{equation*}
F: H_{c}^{i}(\bar{X}, \bar{E}) \rightarrow H_{c}^{i}\left(\bar{X}, \overline{\operatorname{fr}}_{X}^{*} \bar{E}\right) \rightarrow H_{c}^{i}(\bar{X}, \bar{E}) \in \operatorname{End}\left(H_{c}^{i}(\bar{X}, \bar{E})\right) \tag{15}
\end{equation*}
$$

- On stalks: if we take stalks at $\bar{x} \in \bar{X}^{0}$ of $\overline{\operatorname{Fr}}_{E / X}$, we get a map

$$
\begin{equation*}
i_{\bar{x}}^{*} \overline{\operatorname{Fr}}_{E / X}: i_{\operatorname{fr}_{X}(\bar{x})}^{*} \bar{E} \rightarrow i_{\bar{x}}^{*} \bar{E} \tag{16}
\end{equation*}
$$

Now this is not yet an endomorphism of $i * \bar{x} \bar{E}$. as $\overline{f r}_{X}(\bar{x}) \neq \bar{x}$ in general. But if $x \in X^{0}$ is the image of $\bar{x} \in \bar{X}^{0}$, then if we take the $\operatorname{deg}(x):=\left[\kappa(x): \mathbb{F}_{q}\right]^{\prime}$ 'th power of this map, we get $\overline{\operatorname{fr}}_{X}^{\operatorname{deg}(x)}(\bar{x})=\bar{x}$. So we define

$$
\begin{equation*}
F_{x}:=\left(i_{\bar{x}}^{*} \overline{\operatorname{Fr}}_{E / X}\right)^{\operatorname{deg}(x)}: i_{\bar{x}} \bar{E} \rightarrow i_{\bar{x}} \bar{E} \in \operatorname{End}\left(i_{\bar{x}} \bar{E}\right) \tag{17}
\end{equation*}
$$

4.2 Comparison with geometric Frobenius

Let $\sigma_{q} \in \operatorname{Gal}\left(\overline{\mathbb{F}}_{p} / \mathbb{F}_{q}\right)$ be the Frobenius map, recall the geometric and arithmetic Frobenius

$$
\begin{align*}
1 \times \sigma_{q} & :=\operatorname{id}_{X} \times_{\mathbb{F}_{q}} \operatorname{Spec}\left(\sigma_{q}\right)=\operatorname{id}_{X} \times_{\mathbb{F}_{q}} \mathrm{fr}_{\overline{\mathbb{F}}_{p}}: \bar{X} \rightarrow \bar{X} \quad \text { (arithmetic) } \\
1 \times \sigma_{q}^{-1} & :=\operatorname{id}_{X} \times_{\mathbb{F}_{q}} \operatorname{Spec}\left(\sigma_{q}^{-1}\right)=\operatorname{id}_{X} \times_{\mathbb{F}_{q}} \mathrm{fr}_{\mathbb{F}_{p}}^{-1}: \bar{X} \rightarrow \bar{X} \quad \text { (geometric) } \tag{18}
\end{align*}
$$

If we compose $\overline{\operatorname{fr}}_{X}$ and $\overline{\operatorname{Fr}}_{E / X}$ with the arithmetic frobenius, we get the absolute Frobenius of \bar{X} :

$$
\begin{align*}
\left(\mathrm{fr}_{X} \times_{\mathbb{F}_{q}} \mathrm{id}_{\overline{\mathbb{F}}_{p}}\right) \circ\left(\mathrm{id}_{X} \times_{\mathbb{F}_{q}} \mathrm{fr}_{\overline{\mathbb{F}}_{p}}\right) & =\mathrm{fr}_{\bar{X}} \\
\left(\operatorname{Fr}_{E / X} \otimes_{\mathbb{F}_{q}} \mathrm{id}_{\overline{\mathbb{F}}_{p}}\right) \circ\left(\mathrm{id}_{E} \otimes_{\mathbb{F}_{q}} F_{\overline{\mathbb{F}}_{p} / \mathbb{F}_{q}}\right) & =\operatorname{Fr}_{\bar{E} / \bar{X}} . \tag{19}
\end{align*}
$$

Then we claim that the morphism of sections induced by the absolute Frobenius of \bar{E} is the identity. This follows by functoriality, let U / \bar{X} étale. Then we have

$$
\begin{equation*}
\varphi_{\bar{E}, U}: H^{0}\left(U,\left.\bar{E}\right|_{U}\right) \rightarrow H^{0}\left(U,\left.\operatorname{fr}_{\bar{X}}^{*} \bar{E}\right|_{U}\right) \rightarrow H^{0}\left(U,\left.\bar{E}\right|_{U}\right) \tag{20}
\end{equation*}
$$

is a morphism functorial in \bar{E}, so if take any section $s \in \bar{E}(U)$, which we consider as a map $s: h_{U} \rightarrow \bar{E}$, we get the commutative diagram

$$
\begin{align*}
& H^{0}\left(U, h_{U}\right) \xrightarrow{\varphi_{h_{U}, U}} H^{0}\left(U, h_{U}\right) \tag{21}\\
& \downarrow^{\downarrow} H^{0}(U, s) \\
& H^{0}\left(U,\left.\bar{E}\right|_{U}\right) \xrightarrow{\varphi_{\bar{E}, U}} H^{0}\left(U,\left.\bar{E}\right|_{U}\right)
\end{align*}
$$

Then because $H^{0}\left(U, h_{U}\right)=\{*\}$, we get that $\varphi_{h_{U}, U}=\operatorname{id}_{\{*\}}$ and so $\varphi_{\bar{E}, U} \circ H^{0}(U, s)=H^{0}(U, s)$ so $\varphi_{\bar{E}, U}(s)=s$. Thus we conclude $\varphi_{\bar{E}, U}=\operatorname{id}_{H^{0}\left(U,\left.\bar{E}\right|_{U}\right)}$.

- As U / \bar{X} was chosen arbitrarily, this implies that the absolute Frobenius acts as the identity on stalks as well. So we can identify F_{x} with the geometric Frobenius $1 \times \sigma_{q}^{-1}$ as elements of $\operatorname{End}\left(\bar{E}_{\bar{x}}\right)$.
- Furthermore by properties of derived functors it can be shown that the absolute Frobenius acts as the identity on $H^{i}(\bar{X}, \bar{E})$ for $i \geq 1$ as well, so we can identify F with the geometric frobenius $1 \times \sigma_{q}^{-1}$ as elements of $\operatorname{End}\left(H_{c}^{i}(\bar{X}, \bar{E})\right)$.
So under this identification, in particular when $E=\mathbb{Q}_{\ell}(a)$ for some $a \in \mathbb{Z}$, we have that F_{x} acts on $\mathbb{Q}_{\ell}(a)_{\bar{x}}=\mathbb{Q}_{\ell}(a)$ by $\sigma_{q}^{-a \operatorname{deg}(x)}$ with $\sigma \in \operatorname{Gal}\left(\overline{\mathbb{F}}_{p} / \mathbb{F}_{q}\right)$, so by multiplication by $q^{-a \operatorname{deg}(x)}$. In particular when $a=0, F_{x}$ acts as the identity on $\left(\mathbb{Q}_{\ell}\right)_{\bar{x}}$.

4.3 L-functions

Definition 1 (1, p. 80 Def 1.6]). For X / \mathbb{F}_{q} a scheme of finite type and E a \mathbb{Q}_{ℓ}-sheaf, the L-function is defined as

$$
\begin{align*}
L(X, E) & :=\prod_{x \in X^{0}} \frac{1}{\operatorname{det}\left(1-F_{x}^{\operatorname{deg}(x)} t^{\operatorname{deg}(x)}, \bar{E}_{\bar{x}}\right)} \\
\text { where } X^{0} & :=\{\operatorname{closed} \text { points of } X\} \tag{22}\\
\operatorname{deg}(x) & :=\left[\kappa(x): \mathbb{F}_{q}\right] .
\end{align*}
$$

The cohomological interpretation of L-functions is then:
Theorem 1 ([1] p. 86 Thm 3.1]). Let X / \mathbb{F}_{q} be a separated scheme of finite type, E a constructible \mathbb{Q}_{ℓ}-sheaf, then

$$
\begin{equation*}
L(X, E)=\prod_{i=0}^{2 \operatorname{dim} X} \operatorname{det}\left(1-F t, H_{c}^{i}(\bar{X}, \bar{E})\right)^{(-1)^{i+1}} \tag{23}
\end{equation*}
$$

This identity is obtained from the following trace formula
Theorem 2 ($1, ~ p .86 \mathrm{Thm} 3.2])$. Let X / \mathbb{F}_{q} a separated scheme of finite type and E a constructible \mathbb{Q}_{ℓ}-sheaf on X. Then for $n \in \mathbb{Z}_{\geq 1}$:

$$
\begin{equation*}
\sum_{x \in X^{\operatorname{Tr} n}} \operatorname{tr}\left(F_{x}^{n}, \bar{E}_{\bar{x}}\right)=\sum_{i=0}^{2 \operatorname{dim} X}(-1)^{i} \operatorname{tr}\left(F^{n}, H_{c}^{i}(\bar{X}, \bar{E})\right) \tag{24}
\end{equation*}
$$

Proof of Thm 2 \Rightarrow Thm 1. [1, p.86,87] Apply Lemma 1] with $K=\mathbb{Q}_{\ell}$. So we get

$$
\begin{align*}
t \frac{d}{d t} \log L(X, E) & =\sum_{x \in X^{0}} \sum_{n \in \mathbb{Z} \geq 1} \operatorname{deg}(x) \operatorname{tr}\left(F_{x}^{n \operatorname{deg}(x)}\right) t^{n \operatorname{deg}(x)} \\
& =\sum_{n \in \mathbb{Z}_{\geq 1}} \sum_{x \in X^{0}} \operatorname{deg}(x) \operatorname{tr}\left(F_{x}^{n \operatorname{deg}(x)}\right) t^{n \operatorname{deg}(x)} \tag{25}\\
& =\sum_{m \in \mathbb{Z}_{\geq 1}} \sum_{\substack{x \in X^{0} \\
\operatorname{deg}(x) \mid m}} \operatorname{deg}(x) \operatorname{tr}\left(F_{x}^{m}\right) t^{m}
\end{align*}
$$

Then we use the following combinatorial identity:

$$
\begin{equation*}
\sum_{\substack{x \in X^{0} \\ \operatorname{deg}(x) \mid m}} \operatorname{deg}(x) \operatorname{tr}\left(F_{x}^{m}\right) t^{m}=\sum_{x \in X\left(\mathbb{F}_{q^{m}}\right)} \operatorname{tr}\left(F_{x}^{m}\right) t^{m} \tag{26}
\end{equation*}
$$

which follows because if we consider $x \in X^{0}$, then there are $\operatorname{Gal}\left(\kappa(x) / \mathbb{F}_{q}\right)$-many $\mathbb{F}_{q^{m}} \supset \kappa(x) \supset \mathbb{F}_{q}$ inclusions and we must have $\operatorname{deg}(x) \mid m$ for the inclusion $\mathbb{F}_{q^{m}} \supset \kappa(x)$ to hold. So we get

$$
\begin{align*}
& =\sum_{m \in \mathbb{Z}_{\geq 1}} \sum_{x \in X\left(\mathbb{F}_{q^{m}}\right)} \operatorname{tr}\left(F_{x}^{m}\right) t^{m} \\
& =\sum_{m \in \mathbb{Z}_{\geq 1}} \sum_{x \in \bar{X}^{\overline{\operatorname{Tr}_{X}^{n}}}} \operatorname{tr}\left(F_{x}^{m}\right) t^{m} \tag{27}
\end{align*}
$$

and

$$
\begin{align*}
& t \frac{d}{d t} \log \prod_{i=0}^{2 \operatorname{dim} X} \operatorname{det}\left(1-F t, H_{c}^{i}(\bar{X}, \bar{E})\right)^{(-1)^{i+1}} \\
& =\sum_{i=0}^{2 \operatorname{dim} X}(-1)^{i} \sum_{m \in \mathbb{Z}_{\geq 1}} \operatorname{tr}\left(F^{m}, H_{c}^{i}(\bar{X}, \bar{E})\right) t^{m} \tag{28}\\
& =\sum_{m \in \mathbb{Z}_{\geq 1}} \sum_{i=0}^{2 \operatorname{dim} X}(-1)^{i} \operatorname{tr}\left(F^{m}, H_{c}^{i}(\bar{X}, \bar{E})\right) t^{m} .
\end{align*}
$$

Then we have equality on the coefficients of t^{m} by the Lefschetz trace formula.

5 Proof of rationality

We start with the following combinatorial identity:

$$
\begin{align*}
\sum_{m \in \mathbb{Z} \geq 1} \# X\left(\mathbb{F}_{q^{m}}\right) t^{m} & =\sum_{x \in X^{0}} \sum_{k \in \mathbb{Z}_{\geq 1}}\left|\operatorname{Gal}\left(\kappa(x) / \mathbb{F}_{q}\right)\right| t^{k \operatorname{deg}(x)} \\
& =\sum_{x \in X^{0}} \sum_{k \in \mathbb{Z}_{\geq 1}} \operatorname{deg}(x) t^{k \operatorname{deg}(x)} \tag{29}
\end{align*}
$$

We see this as follows: if $x \in X^{0}$ then the elements of $X\left(\mathbb{F}_{q^{m}}\right)$ which have underlying set-point x are parametrised by maps

which implies in particular that $\operatorname{deg}(x) \mid m$, so $m=k \operatorname{deg}(x)$ and that any two \mathbb{F}_{q}-linear maps $\mathbb{F}_{q^{m}} \leftarrow \kappa(x)$ differ by an automorphism $\sigma \in \operatorname{Gal}\left(\kappa(x) / \mathbb{F}_{q}\right)$.

So we get

$$
\begin{align*}
t \frac{d}{d t} \log \zeta_{X}(t) & =\sum_{m \in \mathbb{Z}_{\geq 1}} \nu_{m}(X) t^{m} \\
t \frac{d}{d t} \prod_{x \in X^{0}} \frac{1}{1-t^{\operatorname{deg}(x)}} & =\sum_{x \in X^{0}} \sum_{k \in \mathbb{Z}_{\geq 1}} \operatorname{deg}(x) t^{\operatorname{deg}(x) k} \tag{31}
\end{align*}
$$

which implies

$$
\begin{equation*}
\zeta_{X}(t)=\prod_{x \in X^{0}} \frac{1}{1-t^{\operatorname{deg}(x)}} \tag{32}
\end{equation*}
$$

We apply Theorem 1 with $E:=\mathbb{Q}_{\ell}$. We have by definition that the $\operatorname{Gal}\left(\overline{\mathbb{F}}_{p} / \mathbb{F}_{q}\right)$-action on $\mathbb{Q}_{\ell}=\mathbb{Q}_{\ell}(0)$ is trivial, so $F_{x}=\operatorname{id}_{\mathbb{Q}_{\ell}}$ on $\left(\mathbb{Q}_{\ell}\right)_{\bar{x}}=\mathbb{Q}_{\ell}$. We then obtain

$$
\begin{align*}
\zeta_{X}(t) & =\exp \left(\sum_{m \in \mathbb{Z}_{\geq 0}} \frac{\nu_{m}(X)}{m} t^{m}\right) \\
& \stackrel{32]}{=} \prod_{x \in X^{0}} \frac{1}{1-t^{\operatorname{deg}(x)}} \\
& \stackrel{F_{x}}{ }=\text { id }_{Q_{\ell}}^{=} \tag{33}\\
& \prod_{x \in X^{0}} \frac{1}{\operatorname{Thm} \mathbb{T}^{2}} \prod_{i=0}^{\operatorname{dim} X} \operatorname{det}\left(1-F_{x} t^{\operatorname{deg}(x)}, \mathbb{Q}_{\ell}\right) \\
& \left.\left.=\prod_{i=0}^{2 \operatorname{dim} X} \operatorname{det}\left(1-F t, H_{c}^{i}\left(\bar{X}, \mathbb{Q}_{\ell}\right)\right)^{(-1)^{i+1}}, \mathbb{Q}_{\ell}\right)\right)^{(-1)^{i+1}} .
\end{align*}
$$

Then if we take $K=\mathbb{Q}_{\ell}$ and

$$
\begin{equation*}
P_{i}(t):=\operatorname{det}\left(1-F t, H^{i}\left(\bar{X}, \mathbb{Q}_{\ell}\right)\right) \in \mathbb{Q}_{\ell}[t] \tag{34}
\end{equation*}
$$

we have shown rationality. Also by triviality of action of F on \mathbb{Q}_{ℓ}, we have that F is the identity on $H^{0}\left(\bar{X}, \mathbb{Q}_{\ell}\right)$ so $P_{0}(t)=1-t$.

6 Proof of Betti numbers

We have

$$
\begin{equation*}
\operatorname{deg} P_{i}=\operatorname{deg} \operatorname{det}\left(1-F t, H^{i}\left(\bar{X}, \mathbb{Q}_{\ell}\right)\right)=\operatorname{dim}_{\mathbb{Q}_{\ell}} H^{i}\left(\bar{X}, \mathbb{Q}_{\ell}\right) . \tag{35}
\end{equation*}
$$

Let $Y / \mathbb{Z}_{(p)}$ be the smooth projective good reduction $\bmod p$ variety such that $Y \times_{\mathbb{Z}_{(p)}} \mathbb{F}_{q}=X$. Let $\pi: Y \rightarrow \operatorname{Spec}\left(\mathbb{Z}_{(p)}\right)$ be the structure map. Let

$$
\begin{align*}
& x_{0}:=(p) \in \operatorname{Spec}\left(\mathbb{Z}_{(p)}\right), \\
& x_{1}:=(0) \in \operatorname{Spec}\left(\mathbb{Z}_{(p)}\right), \\
& \overline{x_{0}}:=\operatorname{Spec}\left(\overline{\mathbb{F}}_{p}\right) \tag{36}\\
& \overline{x_{1}}:=\operatorname{Spec}(\mathbb{C}), \\
& x_{0} \in \overline{\left\{x_{1}\right\}} \text { so } x_{1} \rightsquigarrow x_{0} .
\end{align*}
$$

By an inclusion of neighbourhood systems, we obtain a specialisation map

$$
\begin{equation*}
\left(R^{i} \pi_{*} \mathbb{Q}_{\ell}\right)_{\overline{x_{0}}} \rightarrow\left(R^{i} \pi_{*} \mathbb{Q}_{\ell}\right)_{\overline{x_{1}}} \tag{37}
\end{equation*}
$$

then by a Leray spectral sequence argument, using the smooth base change theorem we get that this map is an isomorphism. So combined with the proper base change theorem we get

$$
\begin{align*}
H^{i}\left(X_{\overline{\mathbb{F}}_{p}}, \mathbb{Q}_{\ell}\right) & =H^{i}\left(Y_{\overline{\mathbb{F}}_{p}}, \mathbb{Q}_{\ell}\right) \\
& \stackrel{\text { proper }}{\cong}\left(R^{i} \pi_{*} \mathbb{Q}_{\ell}\right)_{\bar{x}_{0}} \\
& \text { smoothh+proper } \tag{38}\\
& \stackrel{\text { proper }}{\cong}\left(R^{i} \pi_{*} \mathbb{Q}_{\ell}\right)_{\bar{x}_{1}} \\
& \stackrel{i}{i}\left(Y_{\mathbb{C}}, \mathbb{Q}_{\ell}\right) .
\end{align*}
$$

Then by the comparison theorem of cohomology:
Theorem 3 ([3, p. 132 Thm 21.5]). Let Y be a connected nonsingular variety over C. For any locally constant sheaf \mathcal{F} on $X_{e t}$ with finite stalks, $H^{r}\left(X_{e t}, \mathcal{F}\right) \cong H^{r}\left(Y_{c x}, \mathcal{F}^{c x}\right)$ for all $r \in \mathbb{Z}_{\geq 0}$
applies to Y with $\mathcal{F}=\mathbb{Q}_{\ell}$ because Y is smooth and connected. So we have

$$
\begin{equation*}
H^{i}\left(Y_{\mathbb{C}}, \mathbb{Q}_{\ell}\right) \otimes_{\mathbb{Q}_{\ell}} \mathbb{C} \cong H^{i}\left(Y_{\mathbb{C}}, \mathbb{C}\right) \cong H_{\text {sing }}^{i}\left(Y(\mathbb{C})^{c x}, \mathbb{C}\right) \tag{39}
\end{equation*}
$$

So we get

$$
\begin{align*}
\operatorname{deg} P_{i} & =\operatorname{dim}_{\mathbb{Q}_{\ell}} H^{i}\left(\bar{X}, \mathbb{Q}_{\ell}\right) \\
& =\operatorname{dim}_{\mathbb{Q}_{\ell}} H^{i}\left(X_{\overline{\mathbb{F}}_{p}}, \mathbb{Q}_{\ell}\right) \\
& =\operatorname{dim}_{\mathbb{Q}_{\ell}} H^{i}\left(Y_{\overline{\mathbb{F}}_{p}}, \mathbb{Q}_{\ell}\right) \tag{40}\\
& =\operatorname{dim}_{\mathbb{Q}_{\ell}} H^{i}\left(Y_{\mathbb{C}}, \mathbb{Q}_{\ell}\right) \\
& =\operatorname{dim}_{\mathbb{C}} H_{\text {sing }}^{i}\left(Y(\mathbb{C})^{c x}, \mathbb{C}\right) .
\end{align*}
$$

7 Proof of functional equation

Recall the Poincaré duality theorem:
Theorem 4 ([5] p. 4 Thm 2.6]). Let X / K smooth proper and equidimensional of dimension d. There is a $\operatorname{Gal}\left(K^{\text {sep }} / K\right)$-equivariant homomorphism

$$
\begin{equation*}
\operatorname{tr}: H^{2 d}\left(\bar{X}, \mathbb{Q}_{\ell}\right) \rightarrow \mathbb{Q}_{\ell}(-d) \tag{41}
\end{equation*}
$$

so that the cup product pairing

$$
\begin{equation*}
H^{i}\left(\bar{X}, \mathbb{Q}_{\ell}\right) \times H^{2 d-i}\left(\bar{X}, \mathbb{Q}_{\ell}\right) \xrightarrow{\cup} H^{2 d}\left(\bar{X}, \mathbb{Q}_{\ell}\right) \xrightarrow{\operatorname{tr}} \mathbb{Q}_{\ell}(-d) \tag{42}
\end{equation*}
$$

is perfect.
We apply this theorem with $K=\mathbb{F}_{q}$ and X our smooth projective variety as before. Denote by $\langle a, b\rangle:=\operatorname{tr}(a \cup b)$ the pairing. As F is the geometric frobenius $1 \times \sigma_{q}^{-1}$, it acts as multiplication by q^{-1} on $\mathbb{Q}_{\ell}(1)$, so it acts by multiplication by q^{d} on $\mathbb{Q}_{\ell}(-d)$. So we have by $\operatorname{Gal}\left(K^{\text {sep }} / K\right)$ equivariance of the pairing that

$$
\begin{equation*}
\langle F a, F b\rangle=F\langle a, b\rangle=q^{d}\langle a, b\rangle \tag{43}
\end{equation*}
$$

Side remark: We noted in Rationality that F is the identity on $H^{0}\left(\bar{X}, \mathbb{Q}_{\ell}\right)$. Now by this perfect pairing we have that F is q^{d} on $H^{2 d}\left(\bar{X}, \mathbb{Q}_{\ell}\right)$, so we conclude that $P_{2 d}=1-q^{d} t$.

Let $\beta_{i}:=\operatorname{dim}_{\mathbb{Q}_{\ell}} H^{i}=\operatorname{dim}_{\mathbb{Q}_{\ell}} H^{2 d-i}$.

- We can choose a basis $e_{1}, \ldots, e_{\beta_{i}}$ of $H^{i} \otimes_{\mathbb{Q}_{\ell}} \overline{\mathbb{Q}_{\ell}}$ such that F is upper triangular:

$$
\begin{equation*}
F\left(e_{i}\right)=\sum_{j=1}^{\beta_{i}} a_{i, j} e_{j} \quad q_{i, j}=0 \text { for } i>j \tag{44}
\end{equation*}
$$

- By perfectness of the pairing, we can choose a basis $f_{1}, \ldots, f_{\beta_{i}}$ of $H^{2 d-i} \otimes_{\mathbb{Q}_{\ell}} \overline{\mathbb{Q}_{\ell}}$ such that $\left\langle e_{i}, f_{j}\right\rangle=\delta_{i, j}$.
- If we write F^{-1} on $H^{2 d-i}$ as a matrix with respect to the basis $f_{1}, \ldots, f_{\beta_{i}}$

$$
\begin{equation*}
F^{-1}\left(f_{i}\right)=\sum_{j=1}^{\beta_{i}} b_{i, j} f_{j} \tag{45}
\end{equation*}
$$

then we have

$$
\begin{align*}
b_{i, j} & =\left\langle e_{j}, \sum_{k=1}^{\beta_{i}} b_{i, k} f_{k}\right\rangle \\
& =\left\langle e_{j}, F^{-1}\left(f_{i}\right)\right\rangle \\
& =F^{-1}\left\langle F e_{j}, f_{i}\right\rangle \tag{46}\\
& =q^{-d}\left\langle\sum_{k=1}^{\beta_{i}} a_{j, k} e_{k}, f_{i}\right\rangle \\
& =q^{-d} a_{j, i}=0 \text { if } j>i
\end{align*}
$$

so F^{-1} has lower-triangular matrix with respect to the basis f_{i}.

$$
\begin{align*}
\operatorname{det}\left(F ; H^{i}\right) & =\prod_{i=1}^{\beta_{i}} a_{i, i} \\
& =\prod_{i=1}^{\beta_{i}}\left\langle F\left(e_{i}\right), f_{i}\right\rangle \\
& =\prod_{i=1}^{\beta_{i}} F\left\langle e_{i}, F^{-1}\left(f_{i}\right)\right\rangle \tag{47}\\
& =\prod_{i=1}^{\beta_{i}} q^{d} b_{i, i} \\
& =q^{d \beta_{i}} \operatorname{det}\left(F^{-1} ; H^{2 d-i}\right)
\end{align*}
$$

SO

$$
\begin{equation*}
\operatorname{det}\left(F ; H^{i}\right) \operatorname{det}\left(F ; H^{2 d-i}\right)=q^{d \beta_{i}} \tag{48}
\end{equation*}
$$

$$
\begin{align*}
\operatorname{det}\left(1-\frac{F}{q^{d} t} ; H^{i}\right) & =\left(\frac{-1}{q^{d} t}\right)^{\beta_{i}} \operatorname{det}\left(F ; H^{i}\right) \operatorname{det}\left(1-F^{-1} q^{d} t ; H^{i}\right) \\
& =\left(\frac{-1}{q^{d} t}\right)^{\beta_{i}} \operatorname{det}\left(F ; H^{i}\right) \prod_{i=1}^{\beta_{i}}\left(1-a_{i, i}^{-1} q^{d} t\right) \\
& =\left(\frac{-1}{q^{d} t}\right)^{\beta_{i}} \operatorname{det}\left(F ; H^{i}\right) \prod_{i=1}^{\beta_{i}}\left(1-b_{i, i}^{-1} t\right) \tag{49}\\
& =\left(\frac{-1}{q^{d} t}\right)^{\beta_{i}} \operatorname{det}\left(F ; H^{i}\right) \operatorname{det}\left(1-F t ; H^{2 d-i}\right)
\end{align*}
$$

Then using the cohomological interpretation of L-functions we get

$$
\begin{align*}
\zeta_{X}\left(\frac{1}{q^{d} t}\right) & =\prod_{i=0}^{2 d} \operatorname{det}\left(1-\frac{F}{q^{d} t}, H^{i}\right)^{(-1)^{i+1}} \\
& =\left(\prod_{i=0}^{2 d}\left(-q^{d} t\right)^{(-1)^{i+2} \beta_{i}} \operatorname{det}\left(F ; H^{i}\right)^{(-1)^{i+1}}\right) \cdot \prod_{i=0}^{2 d} \operatorname{det}\left(1-F t ; H^{2 d-i}\right)^{(-1)^{i+1}} \tag{50}\\
& =\left(\prod_{i=0}^{2 d}\left(-q^{d} t\right)^{(-1)^{i+2} \beta_{i}} \operatorname{det}\left(F ; H^{i}\right)^{(-1)^{i+1}}\right) \zeta_{X}(t) .
\end{align*}
$$

Where the factor is

$$
\begin{align*}
& \left(-q^{d} t\right)^{\chi} \cdot \prod_{i=0}^{d-1}\left(\operatorname{det}\left(F ; H^{i}\right) \operatorname{det}\left(F ; H^{2 d-i}\right)\right)^{(-1)^{i+1}} \cdot \operatorname{det}\left(F ; H^{d}\right)^{(-1)^{d+1}} \\
& =\left(-q^{d} t\right)^{\chi} \cdot \pm q^{-\frac{d \chi}{2}} \tag{51}\\
& = \pm q^{\frac{d \chi}{2}} t^{\chi}
\end{align*}
$$

Here $\chi=\sum_{i=0}^{2 d}(-1)^{i} \beta_{i}$, so the proof is complete.

8 Linear algebra lemma's

Lemma 1 ([2, p. 186 Lem 2.7]). Let $\alpha \in \operatorname{End}_{K}(V)$ for V a finite dimensional K-vector space. Then

$$
\begin{equation*}
t \frac{d}{d t} \log \operatorname{det}(1-\alpha t)^{-1}=\sum_{n \in \mathbb{Z}_{\geq 1}} \operatorname{tr}\left(\alpha^{n}\right) t^{n} \tag{52}
\end{equation*}
$$

Proof. Let \bar{K} an algebraic closure, and set $\bar{V}:=V \otimes_{K} \bar{K}$. Any identity we find on \bar{V} will be valid in V, by faithfulness of the tensor functor $-\otimes_{K} \bar{K}$. So we may assume $K=\bar{K}$. As K is algebraically closed, we can find a Jordan normal basis of α, so in terms of this basis we can write α as an upper-triangular matrix $[\alpha]$ with diagonal entries $\alpha_{1}, \ldots, \alpha_{n}$ with $n:=\operatorname{dim}_{K} V$.

Then $\operatorname{det}(1-\alpha t)=\prod_{i=1}^{n}\left(1-\alpha_{i} t\right)$ and $\operatorname{tr}\left(\alpha^{k}\right)=\sum_{i=1}^{n} \alpha_{i}^{k}$ so we have

$$
\begin{align*}
t \frac{d}{d t} \log \operatorname{det}(1-\alpha t)^{-1} & =t \frac{d}{d t}\left(-\sum_{i=1}^{n} \log \left(1-\alpha_{i} t\right)\right) \\
& =\sum_{i=1}^{n} \frac{\alpha_{i} t}{1-\alpha_{i} t} \\
& =\sum_{i=1}^{n} \sum_{k \in \mathbb{Z}_{\geq 1}}\left(\alpha_{i} t\right)^{k} \tag{53}\\
& =\sum_{k \in \mathbb{Z}_{\geq 1}} \operatorname{tr}\left(\alpha^{k}\right) t^{k} .
\end{align*}
$$

Lemma 2 (4, p. 33 Lem 4.15], [6, p. 456 Lem 4.3]). Let $\langle\cdot, \cdot\rangle: V \times W \rightarrow K$ be a perfect pairing of vector spaces V, W of dimension r over K. Let $\lambda \in K, \varphi \in \operatorname{End}_{K}(V), \psi \in \operatorname{End}_{K}(W)$ such that

$$
\begin{equation*}
\langle\varphi(v), \psi(w)\rangle=\lambda\langle v, w\rangle \quad \forall v \in V, w \in W \tag{54}
\end{equation*}
$$

Then

$$
\begin{align*}
\operatorname{det}(1-\psi t ; W) & =\frac{(-1)^{r} \lambda^{r} t^{r}}{\operatorname{det}(\varphi ; V)} \operatorname{det}\left(1-\frac{\varphi}{\lambda t} ; V\right), \\
\operatorname{det}(\psi ; W) & =\frac{\lambda^{r}}{\operatorname{det}(\varphi ; V)} \tag{55}
\end{align*}
$$

Proof. Let \bar{K} an algebraic closure, and set $\bar{V}:=V \otimes_{K} \bar{K}$. Any identity we find on \bar{V} will be valid in V, by faithfulness of the tensor functor $-\otimes_{K} \bar{K}$. So we may assume $K=\bar{K}$.

- Choose a basis v_{1}, \ldots, v_{r} of V such that φ is upper-triangular with respect to this basis, so $\varphi\left(v_{i}\right)=\sum_{j=1}^{r} a_{i, j} e_{j}$ with $a_{i, j}=0$ for $i>j$.
- By the pairing being perfect, we can choose a basis w_{1}, \ldots, w_{r} of W such that $\left\langle v_{i}, w_{j}\right\rangle=\delta_{i, j}$.
- We have that ψ is injective, thus an isomorphism: if $\psi(w)=0$, then for all $v \in V$:

$$
\begin{equation*}
0=\langle\varphi(v), \psi(w)\rangle=\lambda\langle v, w\rangle \tag{56}
\end{equation*}
$$

so by perfectness of the pairing we have $w=0$.

- Then w_{i} is a basis for which ψ^{-1} is lower-triangular: if we write $\psi^{-1}\left(w_{j}\right)=\sum_{i=1}^{r} b_{j, i} w_{\ell}$, for $i>j$:

$$
\begin{equation*}
b_{j, i}=\left\langle v_{i}, \psi^{-1}\left(w_{j}\right)\right\rangle=\left\langle\varphi\left(v_{i}\right), w_{j}\right\rangle=a_{i, j}=0 . \tag{57}
\end{equation*}
$$

- Thus we have

$$
\begin{align*}
\operatorname{det}(\varphi ; V) & =\prod_{i=1}^{r} a_{i, i} \\
& \left.=\prod_{i=1}^{r}\left\langle\varphi\left(v_{i}\right), w_{i}\right)\right\rangle \\
& =\prod_{i=1}^{r} \lambda\left\langle v_{i}, \psi^{-1}\left(w_{i}\right)\right\rangle \tag{58}\\
& =\lambda^{r} \operatorname{det}\left(\psi^{-1} ; W\right) \\
& =\frac{\lambda^{r}}{\operatorname{det}(\psi ; W)}
\end{align*}
$$

and

$$
\begin{align*}
\operatorname{det}(1-\psi t ; W) & =\operatorname{det}(\psi ; W) \operatorname{det}\left(\psi^{-1}-t ; W\right) \\
& =\frac{\lambda^{r}}{\operatorname{det}(\varphi ; V)} \cdot \prod_{i=1}^{r}\left(b_{i, i}-t\right) \\
& =\frac{\lambda^{r}}{\operatorname{det}(\varphi ; V)} \cdot \prod_{i=1}^{r}\left(\frac{a_{i, i}}{\lambda}-t\right) \tag{59}\\
& =\frac{(-1)^{r} \lambda^{r} t^{r}}{\operatorname{det}(\varphi ; V)} \cdot \prod_{i=1}^{r}\left(1-\frac{a_{i, i}}{\lambda t}\right) \\
& =\frac{(-1)^{r} \lambda^{r} t^{r}}{\operatorname{det}(\varphi ; V)} \operatorname{det}\left(1-\frac{\varphi}{\lambda t} ; V\right) .
\end{align*}
$$

References

[1] P. Deligne SGA 4.5: Cohomologie étale
[2] J. Milne Etale cohomology
[3] J. Milne Lectures on Etale cohomology, https://www.jmilne.org/math/CourseNotes/LEC. pdf
[4] M. Mustafa https://dept.math.lsa.umich.edu/~mmustata/zeta_book.pdf
[5] S.
Marks
https://people.math.harvard.edu/~smarks/notes/ frobenius-zeta-rationality.pdf
[6] R. Hartshorne - Algebraic Geometry
[7] SGA5

[^0]: ${ }^{11}$ https://en.wikipedia.org/wiki/Weil_conjectures\#Background_and_history

