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1 Plan

Hello, welcome to the first talk of the Weil conjectures. In this talk we will do the following:
e Give the statement of the 5 Weil conjectures: rationality, integrality, functional equation,
Riemann hypothesis and Betti numbers.
e We then sketch the proofs of 3 of them: rationality, Poincaré duality and Betti numbers.
— For rationality and Betti numbers we introduce the cohomological interpretation of L-
functions, which follows from the Lefschetz trace formula (given as a black box).
— For the functional equation we also recall (as black box) Poincaré duality.
Then in the next 4 talks, the remaining Riemann hypothesis Weil conjecture will be proven,
which will also imply the integrality conjecture.

2 History

(Taken from E[) We will start by giving some history of the Weil conjectures:

e In 1949, Weil formulated the Weil conjectures: formulated the rationality, integrality, func-
tional equation, Betti numbers and Riemann hypothesis Weil conjectures.

e In 1960, Dwork proved the Rationality conjecture.

e In 1965, Artin, Grothendieck and Verdier proved the rationality, Betti numbers and functional
equation part of the Weil conjectures by defining ¢-adic cohomology and proving the Lefschetz
trace formula. This we will sketch in the first talk.

e In 1974 Deligne proved the Riemann hypothesis and the integrality conjectures in his Weil 1
article.

e In 1980 Deligne improved the results in his Weil II article.

e In 1987 Laumon introduced the Fourier transform which simplifies a step in Deligne’s proof.
This last proof is the one we will follow in the next 4 talks.

Thttps://en.wikipedia.org/wiki/Weil_conjectures#Background_and_history
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3 The 5 conjectures

Let ¢ be a power of a prime p and X/F, a smooth projective variety (variety = finite type
geometrically integral scheme). Then the zeta function of X is defined as

STORETETY ) picioliy ey )

"GZZI n (1)

Un(X) == #X(Fyn).

3.1 The conjectures

The 5 Weil conjectures are as follows: let d := dim X,
1. Rationality: (x(¢t) € Q(T'). More precisely, there is a characteristic 0 field K and P;(t) € K|[t]
for e =0,...,2d such that

B Pl(t) C 'P2d—1(t)
Po(t) =11, (2)

Pgd(t) =1- th

2. Integrality:
Pi(t) € Z[t] for i = 0,...,2d. (3)

3. Functional equation:
d-
Cx(q7") = %"= ¢x (1

2d ‘ (4)
X =Y (~1)"deg .
i=0
4. Riemann hypothesis: for ¢ = 0,...,2d,
g —
write P;(t H 1 — o t) for some o, ; € K — C, %)
j=1 5

then |a; ;| = q* forj=1,... degP,

5. Betti numbers: If there is a Y/Z,) a smooth projective good reduction mod p variety of X,
so X =Y xz,, Fy, then
deg P, = dim¢ Hsmq(YC“, ). (6)

where Y§” is the complex manifold associated to a variety.

3.2 Example: Calculation of (p: (1)

We can write 4
n ) n 2
B, = I1ak, = 111145, ™)
i=0 i=0 j=1

and
#A]qu (Fgm) = # Mory, (Fy[z], Fgm) = ¢™ (8)



so we get

Then

0 Py(t) =1 —q't, Py—1(t) = 1.




4 The cohomological interpretation of L-functions

4.1 Frobenius endomorphisms

(Reference: [7, XV §2]) Let (X, F) be a pair where X/F, is a scheme and E € Sh(Xg).

If we denote X := X XF, E, and F := E ®F, E,, then we want to define Frobenius endo-
morphisms in End(H:(X, E)) and End(i:E) for T € YO, to be able to state the definition of
L-functions and its cohomological interpretation.

We start by giving an isomorphism Frg,x : fry £ =, E where fr x : X — X is the absolute
Frobenius.

We do this as follows: For U/X étale, we have the relative Frobenius Fry,x defined by the
following diagram:

=X Xfrx,X U LX)U

[ |

then we have:

e Iy, x etale: as pry is the basechange of U — X étale, it is étale, thus U — X and pry being
étale imply Fry/x étale.

e Fry/x universally bijective: as (frx )y is the base change of frx which is universally bijective,
it also is universally bijective. Thus (frx)y and fry being universally bijective imply Fry)x
universally bijective.

So Fry/x is etale and universally bijective so an isomorphism.
So this defines an isomorphism of sections

E(Fry x) : (frx.. B)(U) = BE(fr(U)) — E(U) (12)

functorial in U, so an isomorphism E(Fr,/x) : frx « £ = E. By adjunction we get an isomor-
phism
FrE/X fr}E—=—>E (13)

We can base change the maps frx and Frg,x to F, to get maps
ﬁx = (fI‘X XFq ldﬁ ) Y—)Y

— . (14)

Frg x = (FrE/X ®F, 1dﬁp) fryF— FE

We can now apply it as follows:
e On cohomology: we have a pullback map H:(X,E) — H.(X, fryE) which we can compose
with H} (X, Frg/x) to get
F:H(X,E) = H(X,iryE) = H(X,E) € End(H!(X,E)). (15)

e On stalks: if we take stalks at T € X' of ﬁE/X, we get a map

ixFrp)x z';;rx(@E — itE. (16)



Now this is not yet an endomorphism of iZE. as frx(T) # T in general. But if z € X0 is
the image of T € YO, then if we take the deg(z) := [k(z) : F,]’th power of this map, we get

*deg(x)(

fry 7 (T) =T. So we define

F, = (itFrg x)98® 1 izE — izE € End(izE). (17)

4.2 Comparison with geometric Frobenius

Let o, € Gal(F,/F,) be the Frobenius map, recall the geometric and arithmetic Frobenius

1 x 04 := idx X, Spec(oq) = idx XF, frg - X — X (arithmetic)

18
1xo ! (18)

. =idx X, Spec(aq_l) =idx xr, fl'i)l : X =+ X (geometric).

If we compose frx and Frg /x Wwith the arithmetic frobenius, we get the absolute Frobenius of X:

(frx xg, idg,) o (idx xw, frz,) = fix (19)
(FrE/X ®]Fq lde) °© (ldE ®F(1FFP/F(I) = FI‘E/X .

Then we claim that the morphism of sections induced by the absolute Frobenius of E is the
identity. This follows by functoriality, let U/X étale. Then we have

Py H°(U,E|y) = H(U,it%-E|y) — H°(U, E|v) (20)

is a morphism functorial in E, so if take any section s € E(U), which we consider as a map
s:hy — E, we get the commutative diagram

HO(U, hyy) 2% HO(U, hyy)
lHO(U,s) lHO(U,s) (21)
HOU, Ely) 2% HO(U,Ely)

Then because H°(U, hy) = {x}, we get that ¢, v = idg,y and so YBu © HO(U, s) = HO(U, )
s0 ¢ 1(s) = s. Thus we conclude ¢z 1; = id oy 7,,)-

e As U/X was chosen arbitrarily, this implies that the absolute Frobenius acts as the identity
on stalks as well. So we can identify F, with the geometric Frobenius 1 x oq’l as elements of
e Furthermore by properties of derived functors it can be shown that the absolute Frobenius
acts as the identity on H'(X, E) for i > 1 as well, so we can identify F' with the geometric
frobenius 1 x o, ! as elements of End(H!(X, E)).
So under this identification, in particular when E = Qy(a) for some a € Z, we have that F, acts
on Qu(a)z = Qu(a) by Jq_adeg(x) with o € Gal(F,/F,), so by multiplication by g=¢9¢(®). In
particular when a = 0, F, acts as the identity on (Qy)z.



4.3 [L-functions

Definition 1 ([Il p.80 Def 1.6]). For X/F, a scheme of finite type and E a Q-sheaf, the
L-function is defined as

1
meon det(1 — Fy*8Wdes(@) Br)
where X° := {closed points of X}
deg(z) = [k(z) : Fy).

L(X,E) =

The cohomological interpretation of L-functions is then:

Theorem 1 ([I} p.86 Thm 3.1]). Let X/F, be a separated scheme of finite type, E a constructible

Qg-sheaf, then
2dim X

LX,E)= [] det( - Ft,H(X,E)D" (23)
=0

This identity is obtained from the following trace formula

Theorem 2 ([I} p.86 Thm 3.2]). Let X/F, a separated scheme of finite type and E a constructible
Q¢-sheaf on X. Then forn € Z>q:

2dim X
S w(FLEr) = ) (—1)'tr(F" HAX,E)) (24)

cex™% i=0

Proof of Thm[3 = Thm[l [1, p.86,87] Apply Lemmal[l] with K = Q. So we get

d 9 r
t—logL(X,E) Z Z deg(x)tr(ngeg(w))tndeg(a:)

dt

z€XO NEL>,
= Y Y deg(e) tr(p dest))ndesta) -
n€Zy; xeXO ( )
= Z Z deg(z) tr(F,")t™
meZ>1 geX°
deg(x)|m
Then we use the following combinatorial identity:
> deg(a)tr(E i = Y (BT (26)
zeX? zeX(Fgm)
deg(z)|m

which follows because if we consider z € X°, then there are Gal(k(z)/F,)-many F,m» D x(z) D F,
inclusions and we must have deg(z) | m for the inclusion Fym D k(z) to hold. So we get

= Z Z tr(F )™

meZ>1 x€X (Fgm)

=YY wEme

mEZZl xeyﬁ}



and
d 2dim X o Ly
t-log 1}) det(1 — Ft, H(X,E))
2dim X ] )
= > (-1 > (P H(X,E)"
i=0 mEL>q
2dim X ) )
= > D () (P HAX,E)E
meZsy =0

Then we have equality on the coefficients of t™ by the Lefschetz trace formula



5 Proof of rationality

We start with the following combinatorial identity:

S #XEe)m = S Y | Gal((a)/F,)|¢ e

MmEL>, 2€XO0 kE€EL>,

Z Z deg(z)tk des(®),

2€X0 k€Z>,

(29)

We see this as follows: if 2 € X° then the elements of X (F,=) which have underlying set-point

x are parametrised by maps
o — k(x) «— F,
SOl (30)
k()

which implies in particular that deg(x) | m, so m = kdeg(z) and that any two Fg-linear maps
Fym < k(z) differ by an automorphism ¢ € Gal(k(z)/F,).

F

So we get
d m
- log Cx (1) = eizj v (X)t
d >1 (31)
el deg(z)k
tdt H 1,tdeg(ac) Z Z deg t
reX 2€XO0 kE€EZ>,
which implies
1
=] 1 fdes@) (32)
zeX0

We apply Theorem [I| with E := Q;,. We have by definition that the Gal(F,/F,)-action on
Q¢ = Q¢(0) is trivial, so Fy =idg, on (Q¢)z = Q. We then obtain

(x(t) =exp Z %tm

MEZZO
(B2 1
- H 1— tdcg(r)
reX0
Fm 1dm 1
H , det(1 — F,tdes@), Q) (33)
2dim X . -
el TT det(1 - Fr, HA(X, Q)07
i=0
2dim X ' »
[T det( - Ft, H (X, Q)0
i=0
Then if we take K = Qg and
Pi(t) := det(1 — Ft, H(X,Q0)) € Q[ (34)

we have shown rationality. Also by triviality of action of F' on Q, we have that I is the identity
on HY(X,Qy) so Py(t) =1—t.



6 Proof of Betti numbers
We have
deg P; = degdet(1 — Ft, H'(X,Qy)) = dimg, H" (X, Qy). (35)

Let Y/Z ) be the smooth projective good reduction mod p variety such that Y Xz, Fg = X.
Let 7 : Y — Spec(Z)) be the structure map. Let

xg := (p) € Spec(Zy)),

Ty = (O) S Spec(Z(p)),

75 = Spec(F,) (36)
Ty = Spec((C),

xo € {1} so x1 ~ xp.
By an inclusion of neighbourhood systems, we obtain a specialisation map
(R'mQe)zg — (R Qe)zr (37)

then by a Leray spectral sequence argument, using the smooth base change theorem we get that
this map is an isomorphism. So combined with the proper base change theorem we get

H'(Xz,, Qo) = H'(Yz,, Q)

proper i

= (R Tk QZ)?O
smooth+proper ;

= (R W*Qf)fl

proper .

= H (Y(Ca QZ) .

Then by the comparison theorem of cohomology:

Theorem 3 ([3, p.132 Thm 21.5]). Let Y be a connected nonsingular variety over C. For any
locally constant sheaf F on Xep with finite stalks, H"(Xey, F) = H" (Yo, F°) for all T € Z>g

applies to Y with F = Qg because Y is smooth and connected. So we have

H'(Ye,Qe) ®g, C= H'(Ye, C) = H,,,(Y(C)*,C). (39)
So we get
deg P; = dimg, H*(X, Qy)
= dimg, H'(X F, » Qo)
= dimg, H' (Y5 , F, Q) (40)
= dimg, H*(Ye, Q)
= dim¢ Hsmg(Y((C)CT,(C).



7 Proof of functional equation

Recall the Poincaré duality theorem:

Theorem 4 ([5, p. 4 Thm 2.6]). Let X/K smooth proper and equidimensional of dimension d.
There is a Gal(K*? | K)-equivariant homomorphism

tr: H*4(X, Q) — Qu(—d) (41)
so that the cup product pairing
HY(X,Qq) x H* (X, Q) = H* (X, Q) = Qu(—d) (42)
is perfect.

We apply this theorem with K =, and X our smooth projective variety as before. Denote
by (a,b) := tr(aUb) the pairing. As F is the geometric frobenius 1x o, !, it acts as multiplication
by ¢=! on Q(1), so it acts by multiplication by ¢% on Q;(—d). So we have by Gal(K*°"/K)-
equivariance of the pairing that

(Fa, Fb) = F{a,b) = ¢*(a,b) (43)

Side remark: We noted in Rationality that F' is the identity on H°(X,Qy). Now by this
perfect pairing we have that F is ¢ on H?¥(X,Qy), so we conclude that Py = 1 — q¢%.

Let 3; := dimg, H* = dimg, H2d—1,
e We can choose a basis e, ..., eg of H ®q, Qg such that F is upper triangular:

Bi
F(Ei) = Zam»ej qij = 0 for ¢ > j (44)
j=1
e By perfectness of the pairing, we can choose a basis f1,..., fs, of H?¥"" ®g, Qq such that
(€i, f5) = 0ij-

o If we write F~1 on H?%"" as a matrix with respect to the basis fi,..., fa;
Bi
F7Nf) = bif (45)
j=1
then we have p
bij = (e Y bikfr)

k=1
= <ej5F71(fi)>
= F_1<F€j7fi> (46)

Bi
=q O ajner i)
k=1

=q %, =0ifj>i

so F~! has lower-triangular matrix with respect to the basis f;.

10



det(F; H') Ha”
:ﬂwe
= HF e, F7H(f2)
= ﬁqdbi,i
i1

= ¢ det(F_l; HQd_i)

S0
det(F; HY) det(F; H*4~%) = g%,

-1 .
det(l = (qt) det F; HZ) det( Fﬁlth;HZ)
_1 B?
= () det(F; Hl (1 —a;}q)
q°t ’
i=1
1\ 7 Bi
=(> detFHZ (1—b t)
q%t
i=1
1\ P
= (t) det(F; H) det(1 — Ft; H?>37%)

Then using the cohomological interpretation of L-functions we get
2d
~ o - £ o
i=0 t

2d
(H(—th)( D det(F HY) Dm) Hdet — Pt H2 )0

=0

2d
= (H(_th)(_w“m det(F; Hi)(—l)'LJrl) Cx(t).
=0
Where the factor is
d—1 ‘ ‘ -
(—qt)X - T (det(F; H') det(F; H**=")"D" - det(F; H)
=0
= (") £q 7
= :tdaXtX.

)d+1

Here x = Z?io(—l)lﬂi, so the proof is complete.

11



8 Linear algebra lemma’s

Lemma 1 ([2| p.186 Lem 2.7]). Let a € Endi (V) for V a finite dimensional K -vector space.
Then J
- logdet(1 — at) ™t = ) tr(a™)t". (52)

TLGZzl

Proof. Let K an algebraic closure, and set V := V ®x K. Any identity we find on V will be

valid in V, by faithfulness of the tensor functor — ®x K. So we may assume K = K. As K

is algebraically closed, we can find a Jordan normal basis of «a, so in terms of this basis we can

write o as an upper-triangular matrix [o] with diagonal entries a1, ..., a, with n:=dimg V.
Then det(1 — at) = [, (1 — ayt) and tr(a®) = 327 | aF so we have

d
td— logdet(l —at)™" = t— ( Zlog 1—at )
o Z 1— a4t

(53)
= (ait)"*
= Z tr(a®)tk.
k€Zs>,
O

Lemma 2 ([4 p.33 Lem 4.15], [6, p.456 Lem 4.3]). Let (-,-) : V. xW — K be a perfect pairing of
vector spaces V,W of dimension r over K. Let A € K, p € Endg(V),¢ € Endg (W) such that

(p(v), Y(w)) = Mo,w) VveV,weW. (54)
Then
det(1 — ot W) = SUA o ( 2 V)
’ det(p; V) At (55)
det(¢; W) = th(/\(PZV).

Proof. Let K an algebraic closure, and set V := V @k K. Any identity we find on V will be
valid in V| by faithfulness of the tensor functor — ® x K. So we may assume K = K.

e Choose a basis vy, ...,v, of V such that ¢ is upper-triangular with respect to this basis, so
p(vi) = 327 aijej with a; ; = 0 for i > j.
e By the pairing being perfect, we can choose a basis wn, . .., w, of W such that (v;,w;) = J; ;.
e We have that v is injective, thus an isomorphism: if ¥(w) = 0, then for all v € V:
0 = {p(v), ¥(w)) = Av,w) (56)

so by perfectness of the pairing we have w = 0.
e Then w; is a basis for which ¢! is lower-triangular: if we write ! (w;) = >_;_, b; ;wp, for
1> g
bji = (vi, v~ (wy)) = (p(vi), w;) = ai; = 0. (57)

12



e Thus we have

det(p; V

and
det(1 —ot; W)
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