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1 The classical groups and their realization as

split semi-simple group schemes over Spec(Z)

We will not discuss the general notion of a semi-simple group scheme over a
base S, instead we will discuss the examples of classical groups and explain the
main structure theorems in examples.
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1.1 The group scheme Sln/Spec(Z)

We consider a free module M of rang n over Spec(Z). We define the group
scheme Sl(M)/Spec(Z): for any Z algebra R we have Sl(M)(R) = Sl(M ⊗Z R).

This is clearly a semi simple group scheme over Spec(Z) because :

a) The group scheme is smooth over Spec(Z)
b) For any field k -which is of course a Z-algebra we have

Sl(M)×Spec(Z) Spec(k) = Sl(M ⊗Z k)/Spec(k)

and for any k this group scheme does not contain a normal subgroup scheme,
which is isomorphic to Gr

a/Spec(k) (hence it is reductive) and its center is a
finite group scheme.

If we fix a basis e1, e2, . . . , en then we get a split maximal torus T/Spec(Z)
this is the sub group scheme which fixes the lines Zei, with respect to this basis
we have

T (R) = {











t1 0 . . . 0
0 t2 . . . 0

0 0
. . . 0

0 0 0 tn











| ti ∈ R×,
∏

ti = 1}

With respect to this torus T/Spec(Z) we define root subgroups. This are
smooth subgroup schemes U ⊂ G which are isomorphic to the additive group
scheme Ga/Spec(Z) and which are normalized by T . It is clear that these root
subgroups are given by

τij : Ga → Sl(M)

τij : x →

















1 0 . . . 0 0
0 1 . . . 0 0

0 0
. . . x 0

0 0 0
. . . 0

0 0 0 0 1

















where the entry x is placed in the i-th row and j-th collumn. Let us denote
the image by Uαij

.
Then we get the relation

tτij(x)t
−1 = τij((ti/tj)x)

(If I write such a relation then I always mean that t, x.. are elements in
T (R), Ga(R)... for some unspecified Z algebra R.)
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1.2 The root system

The characters

αij : T → Gm

αij :











t1 0 . . . 0
0 t2 . . . 0

0 0
. . . 0

0 0 0 tn











→ ti/tj

are form the set ∆ of simple roots in the character module of the torus. We
may select a subset of positive roots

∆+ = {αij | i < j}.

Then the torus T and the Uαij
with αij ⊂ ∆+ stabilize the flag

F = (0) ⊂ Ze1 ⊂ Ze1 ⊕ Ze2 ⊂ · · · ⊂ M.

The stabilizer of the flag is a smooth sub group scheme B/Spec(Z). It is so-but
not entirely obvious- that B is a maximal solvable sub group scheme. These
maximal subgroup schemes are called Borel subgroups.

It is clear that the morphism

T ×
∏

αij ,i<j

Uαij
→ B,

which is induced by the multiplication is an isomorphism of schemes.
The set ∆+ of positive roots contains the subset π ⊂ ∆ of simple roots

ti/ti+1. Every positive root can be written as a sum of simple roots with positive
coefficients.

1.3 The flag variety

It is not so difficult to see that the flags form a projective scheme Gr/Spec(Z).
From this it follows:

For any Dedekind ring A and its quotient field K we have

Gr(K) = Gr(A).

If A is even a discrete valuation ring then we can show easily
The group Sln(A) acts transitively on Gr(A).

The whole point is, that results of this type are true for arbitrary split semi
simple groups G/Spec(Z). This is not so easy to explain and also much more
difficult to prove. But we have the series of so called classical groups and for
those these results are again easy to see. ( The main problem in the general
approach is that we have to start from an abstract definition of a semi simple
group and not from a group which is given to us in a rather explicit way like
Sln or the classical groups)
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1.4 The group scheme Sp
g
/Spec(Z)

Now we choose again a free Z module M but we assume that we have a non
degenerate alternating pairing

< , >: M ×M → Z

where non degenerate means: If x ∈ M and < x,M >⊂ aZ with some integer
a > 1, then x = ay with y ∈ M . It is well known and also very easy to prove
that M is of even rank 2g and that we can find a basis

{e1, . . . , eg, fg, . . . , f1}

such that < ei, fi >= − < fi, ei >= 1 and all other values of the pairing on
basis elements are zero.

The automorphism group scheme of G = Aut((M,< . >)) is the symplectic
group Spg/Spec(Z). Again it is easy to find out how a maximal torus must look
like. With respect to our basis we can take

T = {





















t1 0 . . . 0

0
. . . . . . 0

0 0 tg 0
0 0 0 t−1

g . . .

0
. . . 0

0 t−1
1





















}

We can say that the torus is the stabilizer of the ordered collection of rank 2
submodules Zei,Zfi. We can define a Borel subgroup B/Z which is the stabilizer
of the flag

F = (0) ⊂ Ze1 ⊂ · · · ⊂ Ze1 · · · ⊕ . . .Zeg ⊂ Ze1 · · · ⊕ . . .Zeg ⊕ Zfg ⊂ · · · ⊂ M

(A flag starts with isotropic subspaces until we reach half the rank of the
module. But then this lower part of the flag determines the upper half, because
it is given by the orthogonal complements of the members in the lower half).

We can define the root subgroups (with respect to T )

τα : Ga
∼
−→ Uα ⊂ G

which are normalized by T . As before we have the relation

tτ(x)t−1 = τ(α(t)x),

where α ∈ ∆ ⊂ X∗(T ).
Now it is not quite so easy to write down what these root subgroups are,

we write down the simple positive roots in the the case g = 2: We have the
maximal torus

T = {









t1 0 0 0
0 t2 0 0
0 0 t−1

2 0
0 0 0 t−1

1









}
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and we want to find one-parameter subgroups Uα ⊂ G which stabilize the flag.
The one parameter subgroups corresponding to the simple roots are

τα1
: x 7→ {e1 7→ e1, e2 7→ e2 + xe1, f2 7→ f2, f1 7→ f1 − xf2}

τα2
: y 7→ {e1 7→ e1, e2 7→ e2, f2 7→ f2 + ye2, f1 7→ f1}

where α1(t) = t1/t2, α2(t) = t22. The unipotent radical is then

{









1 x v u
0 1 y −v
0 0 1 −x
0 0 0 1









}

As before it is not so difficult to show that the flags form a smooth projec-
tive scheme X/Spec(Z) (see also [book], V.2.4.3). Show that for any discrete
valuation ring A the group G(A) acts transitively on X (A) = X (K). It is also
easy to verify the statements in 1.1.

1.5 The group scheme SO(n, n)/Spec(Z)

We can play the same game with symmetric forms. Let M together with its
basis as above, we replace g by n. But now we take the quadratic form F

F : M → Z

which is defined by

F (x1e1 · · ·+ xnen + ynfn + · · ·+ y1f1) =
∑

xiyi

and all other values of the pairing on basis elements are zero. We define the
group scheme of isomorphisms but in addition we require the the determinant
is one. Hence

SO(n, n)/Spec(Z) = Aut(M,F, det = 1).

The maximal torus and the flags look pretty much the same as in the previous
case. But the set of roots looks different. For n = 2 the torus and the unipotent
radical are given by

T = {









t1 0 0 0
0 t2 0 0
0 0 t−1

2 0
0 0 0 t−1

1









}, U = {









1 x y −xy
0 1 0 −y
0 0 1 −x
0 0 0 1









}.

The system of positive roots consists of two roots α1(t) = t1/t2, α2(t)t1t2.
This is the Dynkin diagramA1×A1 hence there exists a homomorphism (isogeny)
between group schemes over Spec(Z) :

Sl2 × Sl2 → SO(2, 2).

It is an amusing exercise to write down this isogeny.
Another even more interesting excercise is the computation of the roots for

the torus (here n = 3)
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T = {

















t1 0 0 0 0 0
0 t2 0 0 0 0
0 0 t3 0 0 0
0 0 0 t−1

3 0 0
0 0 0 0 t−1

2 0
0 0 0 0 0 t−1

1

















}.

In this case we have the root subgroups

τα1
: x 7→

















1 x 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 −x
0 0 0 0 0 1

















, τα2
: x 7→

















1 0 0 0 0 0
0 1 x 0 0 0
0 0 1 0 0 0
0 0 0 1 −x 0
0 0 0 0 1 0
0 0 0 0 0 1

















and

τα3
: x 7→

















1 0 0 0 0 0
0 1 0 x 0 0
0 0 1 0 −x 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

















where
α1(t) = t1/t2, α1(t) = t2/t3, α3(t) = t2t3

Use the result of this computation to show that we have an isogeny

Sl4 → SO(3, 3).

How can we give a linear algebra interpretation of this isogenies.

1.6 The group scheme SO(n+ 1, n)/Spec(Z)

Of course we can also consider quadratic forms in an odd number of variables.
We take a free Z-module of rank 2n+ 1 with a basis

{e1, . . . , en, h, fn, . . . , f1}.

On this module we consider the quadratic form

F : M → Z

F (
∑

xiei + zh+
∑

yifi) =
∑

xiyi + z2.

From this quadratic fom we get the bilinear form

B(u, v) = F (u + v)− F (u)− F (v).

We have the relation
F (u) = 2B(u, u),
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hence we can reconstruct the quadratic form if we extend Z to a larger ring
where 2 is invertible.

We consider the automorphism scheme

G = SO(n+ 1, n)/Spec(Z) = Aut(M,F, det = 1)/Spec(Z)

and I claim that this is indeed a semi simple group scheme over Spec(Z). To
see this I strongly recommend to discuss the case n = 1.

We have of course the maximal torus

T = {





t 0 0
0 1 0
0 0 t−1



}.

It is also the stabilizer of the collection of three subspaces Ze,Zh,Zf , here we
use the determinant condition.

Now one has to discuss the root subgroups with respect to this torus.
From this we can derive that we have an isogeny

Sl2 → SO(2, 1)

It is also interesting to look at the case n = 2. In this case we can compare
the root systems of Sp2 and SO(3, 2) they are isomorphic. Now it is a general
theorem in the theory of split semi simple group schemes that the root system
determines the group scheme up to isogeny. Hence we we should be able to
construct an isogeny between Sp2 and SO(3, 2). Who can do it?

2 Some facts concerning the system of roots

2.1 Positive roots, simple roots and so on

I do not discuss the general definition of a semi-simple group scheme over
Spec(Z), I hope that the examples above give some idea of what it should
be. Our examples are split semi simple group schemes, because they have a
maximal split torus, which is split over Spec(Z).

Of course we also have the notion of a semi simple group scheme over any
field k or even over any base scheme. The official definition for G/k to be semi-
simple is that the groups scheme is smooth and G ×k k̄ does not have a non
trivial connected solvable subgroup which is normal.

Such a semi-simple group scheme has always a maximal torus T/k ⊂ G/k.
We can always find a finite separable normal extension E/k such that the ex-
tension T ×k E is a split maximal torus. The semi simple group scheme is split
if it has a maximal torus T/k, which is split. This means that we can find a
torus for which we can choose E = k.

Then we have a finite system ∆ of roots in the character module X∗(T ×E)
of our maximal torus and for any of these roots α ∈ ∆ we have a unique sub
group scheme τα : Ga →֒ G/k, such that tτα(x)t

−1 = τα((α(t))x).
We have the action of the Galois group Gal(E/k) on X∗(T × E) it acts by

permutations on set of roots ∆.
If we choose a Borel subgroup B ⊃ T × E, then we saw in our examples

that it is a semidirect product of the torus T and the unipotent radical U . This
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unipotent radical contains (and is generated by) the root subgroups Uα where
α ∈ ∆+

B, these are the positive roots with respect to B. The choice of a Borel
subgroup is the same as the choice of a system ∆+ of positive roots which is
closed under addition and satisfies ∆+ ∪ −∆+ = ∆. In ∆+ we have the subset
πB of simple roots, these are the roots which can not be written as a sum of two
positive roots. Then any positive root can be written as sum β =

∑

α∈πB
mαα

with mα ≥ 0. If β ∈ ∆+ and if β is not simple then we can find a simple root α1

such that β − α1 ∈ ∆+. The system of simple positive roots can be visualised
by its Dynkin graph.

We say that G/k is quasi split if we can find a torus T/k which is contained
in a Borel subgroup. This is the same as saying that X∗(T ×E) contains a set
of simple roots which is invariant under the action of the Galois group.

2.2 The Weyl group

Now I state a general theorem, which is easy to prove in our examples. We take
a root α. Then it can be shown that Qα ∩ ∆ = {α,−α} ⊂ ∆. Then we can
consider the torus T (α) which is the connected component of the kernel of α. It
is a torus of codimension 1.

Now the theorem says that
The root subgroups Uα, resp. U−α are uniquely determined by α (resp. −α)

and can construct a unique homomorphism

πα : Sl2 → G

which sends the root subgroups

U+ = {

(

1 x
0 1

)

}
∼
−→ Uα

U− = {

(

1 0
x 1

)

}
∼
−→ U−α.

The image of the maximal torus T1 in Sl2 is a one dimensional torus T(α) ⊂ T .

The element w1 =

(

0 1
−1 0

)

∈ Sl2(Z) maps to an element wα ∈ G(Z). This

element lies in the normalizer N(T ) of T , and t 7→ wαtw
−1
α induces the identity

on T (α) and t 7→ t−1 on T(α).
These elements wα generate the group W = N(T )(Z)/T (Z), this is the Weyl

group. This Weyl group acts simply transitively on the set of Borel subgroups
containing the torus T.

This is also easy to verify in our examples.
The elements wα induce automorphisms sα of order two of the character

module X∗(T ). If course we can define a positive definite quadratic form on
X∗(T ), let < , > the associated bilinear form. Then these elements sα are
reflections, we have

sα(γ) = γ − 2
< γ, α >

< α, α >
α

Excercise: Determine the structure of the Weyl group in our examples
above and make pictures of the root systems in the cases Sl2, Sl3, Sp2, SO(3, 2).
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I forgot to say that the rank of G is the dimension of the maximal torus.

Excercise Can there be more root systems of rank 2?

2.3 The simply connected and the adjoint group

It we have two split tori T1, T2 over Spec(Z), then we have their character
modules X∗(T1), X

∗(T2) and a canonical isomorphism

Hom(T1, T2) = Hom(X∗(T2), X
∗(T1))

φ 7→t φ.

A morphism π : T1 → T2 is an isogeny if it is surjective and has a finite kernel.
This is the case if and only if tφ : X∗(T2) → X∗(T1) is injective and the image
has finite index. The kernel ker(π) is the a product of group schemes µd of d-th
roots of unity.

We come back to our split semi simple group scheme. Of course the set ∆
generates a sublattice Z∆ = X∗(Tad) ⊂ X∗(T ), this is the root lattice. It is
clear that this lattice is of finite index. It is also clear, that these two lattices
are equal if the center of G/Z is trivial, then our group is an adjoint group, and
we write G/center = Gad.

How much bigger can X∗(T ) be? There is of course a constraint:

For all γ ∈ X∗(T ) the number 2<γ,α>
<α,α>

∈ Z.

We choose a Borel subgoup, i.e. a set of positive roots ∆+ and for α ∈ πB

we define the coroots (or fundamental weights) ωα ∈ X∗(T )⊗Q by the rule

2 < ωα, β >

< β, β >
= δα,β

then these span a lattice X∗(Tsc) . We can construct the simply connected cover
Gsc → G whose maximal torus is Tsc.

We have an isogeny Tsc → Tad the kernel is of multiplicative type and dual
to X∗(Tsc)/X

∗(Tad). For the module of cocharacters we have an inclusion in
the opposite direction X∗(Tsc) →֒ X∗(Tad).

Excercise Consider our classical groups, which one is simply connected,
which one is adjoint?

2.4 Highest weight representations

The characters ωα are called the fundamental dominant weights. They play a
role in the theory of representations.

Let us assume that G/k is a split semi simple group scheme over a field
k of characteristic zero. We consider rational representations of G/k, this are
homomorphisms between algebraic groups over k

r : G/k → Gln(M)/k,
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here M is a k-vector space. These representations have an important property:
They are semi-simple, i.e. if we have an invariant submodule M1 ⊂ M, then we
can find a complement M2 which is also invariant and of courseM = M1⊕M2.
Hence any rational representation is a direct sum of irreducibles.

Now we have a fundamental fact:
Let G/k be a split semi simple group over a field k, let r : G/k → Gl(M) be

an irreducible rational representation. Let T/k ⊂ G/k be a split maximal torus,
let B/k ⊃ T/k be a Borel subgroup, let U/k ⊂ B/k be its unipotent radical.
Then the space MU of invariants is of dimension one, the torus T/k acts on
this space by a character λ ∈ X∗(T ). This character is a linear combination
λ =

∑

α∈πB
nαωα with nα ∈ Z, nα ≥ 0 and it is called the highest weight

of the representation. If the group G/k is simply connected, then there exists
up to isomorphism exactly one representation Mλ to a given highest weight
λ =

∑

α∈πB
nαωα.

2.5 The reductive groups of similitudes

All these classical semi simple group schemes can be embedded in a natural way
in a slightly larger reductive group scheme. In the first case we have Sl(M) ⊂
Gl(M). The other groups are defined as stabilizers of a bilinear or a quadratic
form. This can be considered as an element in < , >∈ M∨ ⊗M∨ and we can
also consider the stabilizer of the line Z < , >⊂ M∨ ⊗M∨ and this then will
be the group of similitudes.

If we do this for instance for the symplectic group, then we get the group
scheme GSpg/Spec(Z). We have a character α : GSpg → Gm which is defined
by < gv, gw >= α(g) < v,w >, and we have a center Z ⊂ GSpg consisting of
the diagonal matrices. If we restrict α to the center then we get the character
t 7→ t2.

2.6 Arbitrary semi-simple group schemes over k.

If we have an arbitrary semi simple group scheme G/k, then we can always find
a finite, normal separable extension E/k, such that G ×k E is split. Let us
choose a maximal split torus T0/F ⊂ G×k E and a Borel subgroup B0 ⊃ T0. If
now σ ∈ Gal(E/k), then we can conjugate the pair (T0, B0) by this element and
get (T σ

0 , B
σ
0 ). Now it follows from the general theory -and can easily be verified

in our examples- that we can find an element gσ ∈ G(E) such that

g−1
σ T0gσ = T σ

0 , g
−1
σ B0gσ = Bσ

0

and this element is unique up to multiplication by an element tσ ∈ T0(F ) from
the left. Hence the element gσ provides a unique bijection between the set of
simple positive roots ΠB0

⊂ X+(T0) and ΠBσ
0
⊂ X∗(T σ

0 ). Hence we see that
we may speak of the system ΠG of positive roots of any semi simple group
scheme. It can be represented by a Dynkin graph. But also the element σ
yields a bijection between these two sets of simple roots. Since these two sets
are identified we see easily

that any semi simple group G/k comes with a Dynkin graph ΠG together
with an action of some Galois group Gal(E/k) on ΠG.
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It is also clear from the general theory that there is a unique split group
scheme G0/k such that G ×k E

∼
−→ G0 ×k E. One says that two semi simple

group schemes G1/k,G2/k are k-forms of each other, if they become isomorphic
over a suitable finite normal extension. So we saw that the k forms of a given
split semi simple group scheme G0/k come with an action of the Galois group
on the system of positive roots. Of course this action is trivial for G0/k itself.
We say that a k-form G1/k of G0/k is an inner form, if this Galois action is
trivial.

The theory of representation becomes a little bit more complicated. If we
have an irreducible rational representation

r : G/k → Gl(M)

then it may become reducible if we extend the ground field. Actually we may
pass to an algebraic closure k̄ of k, then we get an isotypical decomposition

M⊗k k̄ =
⊕

λ

M
m(λ)
λ .

It is easy to see that the weights λ which occur with positive multiplicity form an
orbit under the above action of the Galois group Gal(k̄/k) and the multiplicities
m(λ) are all the same on this orbit.

These multiplicities are not necessarily equal to one, the determination of
the numbers involves Galois cohomology.

In the following we mean by an absolutely irreducible representation of G/k
a rational representation

r : G×k F → Gl(MF ),

where F/k is a finite extension and where this representation stays irreducible
if we extend the field F/k further.

The field extension is not unique in general. It certainly contains the fi-
nite extension F0/k, which is determined by requiring that its Galois group
Gal(k̄/F0) fixes the highest weight of MF . But after that we may have several
choices.

2.7 Minimal parabolic subgroups, relative simple roots

If G/k is a semisimple group then we may consider a maximal split torus S/k ⊂
G/k, a theorem of Borel and Tits asserts that all maximal split tori in G/k are
conjugate by an element in G(k). Given such a maximal split torus we define
M = Z(S) this is the centralizer of S. We can embed S/k into a maximal torus
T/k ⊂ G/k which is then a subtorus of M/k. We choose a normal splitting field
E/k for our torus. We consider the root system ∆ ⊂ X∗(T × E). It contains
the set ∆M of those roots whose restriction to S becomes trivial. This set is
the set of simple roots of the derived group M (1) the semisimple part of M. We
can choose a cocharacter χ : Gm → S/k which is sufficiently generic, this means
that < χ,α >= 0 if and only if α ∈ ∆M . Then we get two more subsets

∆+
U = {α| < χ,α >> 0}, ∆−

U = {α| < χ,α >< 0}
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and ∆ = ∆M ∪∆+
U ∪∆−

U , the sets are invariant under the action of the Galois
group Gal(E/k). We have two minimal parabolic subgroups P+ and P− con-
taining M and whose unipotent radicals U+ resp.U− contain and are generated
by the one parameter subgroups Uα, α ∈ ∆+

U resp. Uα, α ∈ ∆−
U . Since our torus

S was maximal split it follows that M (1) is anisotropic and therefore we have
that P+ and P− are minimal parabolic.

We can find a Borel subgroup B ⊂ P+ which also contains the torus T ×E.
Then this defines a subset ΠG ⊂ ∆+. This set is the union of the two sets
ΠG = ΠM ∩ π̃G, where ΠM = ΠG ∩∆M and π̃G = ΠG ∩∆+

U .
Our torus T decomposes in T (1)·C, where T (1) = M (1)∩T and where C is the

connected component of the identity of the center ofM. We get a decomposition
of character modules X∗(T × E) = X∗

Q(T
(1) × E) ⊕ X∗

Q(C × E). Under the
restriction from T to C the set π̃G maps injectively to π∗

G ⊂ X∗
Q(C × E). The

following lemma is easy to prove

Lemma 2.1. The set π∗
G is invariant under the action of the Galois group

Gal(E/k). Two simple roots have the same restriction to S if and only if they
are conjugate under the Galois group.

The image of π∗
G in X∗

Q(S) is denoted by πG, it is the set of relative simple
roots. Its elements are the orbits of the action of Gal(E/k) on π∗

G. We denote
this set πG = {α1, . . . , αr} and identify it to the set I = {1, . . . , r}. Here r is
the k-rank of G/k. Actually π∗

G is only a supporting actor, it serves to define a
permutation action on π̃G ⊂ ΠG via the above bijection, it disappears from the
stage.

If our group G/k is split then our torus S = T is a maximal, then ΠG = πG.
If our group is quasisplit then the set ΠG = π̃G,

Attached to the roots α ∈ π̃G we have the fundamental dominant weight
γα ∈ X∗

Q(T × E). It is clear that the Galois group acts by permutations on the
set of these weights. Our αν or more consequently ν ∈ {1, . . . , r} = I are orbits
of elements in π̃G, if ν̃ is the orbit corresponding to ν then we put

γν =
∑

α∈ν̃

γα ∈ X∗
Q(T )

these characters are in fact defined over Q.

2.7.1 Parabolic subgroups

We want to describe the set of G(k)− conjugacy classes of parabolic subgroups.
It is clear that each such conjugacy class contains a unique parabolic subgroup
P ⊃ P+. Hence we only have to describe the parabolic subgroups above P+.

We get these parabolic subgroups if we choose a subset J ⊂ I and look at
the subtorus SJ ⊂ S where all αν , ν ∈ J are trivial. (Hence we have S = S∅)
Then we can look at the centralizer MJ of SJ this is a reductive subgroup and
there is a unique parabolic subgroup PJ ⊃ P+ whose Levi subgroup is MJ .
We want to assume J 6= I because we do not consider G itself as a parabolic
subgroup.

We get maximal parabolic subgroups if we take Jν = I \ {ν} in this case
we denote the parabolic subgroup by Pν . The parabolic subgroup PJ can be
written as intersection

12



PJ =
⋂

ν∈I\J

Pν

Finally we consider the character groups Hom(PJ ,Gm) = Hom(MJ ,Gm).
The central torus CJ ofMJ contains SJ . If we divide MJ by its derived subgroup

M
(1)
J the the quotientMJ/M

(1)
J = C′

J is again a torus and the composition yields
an isogeny

CJ
jJ
−→ C′

J .

The torus C′
J has a maximal anisotropic subtorus and if we divide by this

subtorus we get the maximal split quotient

PJ → MJ → C′
J → S′

J .

The composition gives us an isogeny

SJ → S′
J .

Then we clearly get

Hom(PJ ,Gm) = X∗(S′
J ) and X∗

Q(S
′
J ) = X∗

Q(SJ )

For ν ∈ I \ J we take the restriction of the relative simple root αν to SJ

and denote this restriction by α
[J]
ν . Then these α

[J]
ν , ν ∈ I \ J form a basis of

X∗
Q(SJ ). Using the above identification we may also view these characters in

X∗
Q(S

′
J ) and the provide a basis

{. . . , α[J]
ν , . . . }ν∈I\J

of X∗
Q(S

′
J).

On the other hand for ν ∈ I \ J the fundamental dominant weight γν is a
character on S′

J and we get a second basis for X∗
Q(S

′
J ):

{. . . , γν , . . . }ν∈I\J .

We can write one basis in terms of the other and get

γν =
∑

ν,µ

c[J]ν,µα
[J]
µ

where the coefficients c
[J]
ν,µ are rational numbers and it is of importance to

notice that c
[J]
ν,µ ≥ 0.

The parabolic subgroups PJ have an unipotent radical UPJ
. Let ∆+

J be the
set of roots occurring in UPJ

, this are those roots β ∈ ∆ for which τβ : Ga →֒
UPJ

× E. The set of these roots is easy to describe. Recall that we have the
projection π̃G → I let us denote by J̃† the set of those simple roots in π̃G which
map to an element in J† = I \ J. Then we write a root β ∈ ∆+ as

β =
∑

α∈Π,α6∈J̃†

mβαα+
∑

α∈J̃†

mβαα

13



where mβα ≥ 0, and β ∈ ∆+
J if and only if at least one of the coefficients mβα

in the second sum is not zero.
The characters (half sums of roots)

ρJ =
1

2

∑

β∈∆+

J

β

are defined over k. We apply this to the case J \ {ν}. Then

ρI\{ν} = ρν =
∑

β:mβα>0 for some α7→ν

β = fνγν

and since a simple root α ∈ π̃G which maps to ν it follows that the coefficients in

the equation above are greater or equal to zero and it also follows that c
[J]
ν,ν > 0.

2.8 The relative Weyl group

We have the Weyl group invariant pairing on X∗(T × E) and this induces

3 Semi-simple Lie algebras over fields of charac-

teristic zero.

We assume that the of k of characteristic zero. We consider Lie-algebras g/k.
A Lie-algebra is called abelian, if the Lie-bracket is identically zero. An ideal
a ⊂ g is a subspace for which [a, g] ⊂ a. An ideal is always two sided and it is
always a subalgebra. We can form the quotient g/a, this is again a Lie-algebra.
The commutators {[U, V ], U, V ∈ g} generate a vector space [g, g] ⊂ g, which
then itself is an ideal. We can form the quotient algebra g/[g, g] it is is abelian.
The Lie-algebra g is called nilpotent if [[. . . [g, g], g], . . . , g] = 0, provided the
number of brackets is large enough. The Lie-algebra g/k is called solvable if the
commutator algebra [g, g] is nilpotent.

We say that g/k is semi simple, if it does not contain a non zero solvable
ideal, we have the famous Killing criterion

The Lie algebra g/k is semi simple, if and only if the Killing form

B : g× g → k
(U, V ) 7→ tr(ad(U), ad(V ))

is non degenerate

A Cartan -subalgebra t ⊂ g is a maximal commutative subalgebra, for which
all for all H ∈ t the endomorphism ad(H) : g → g are semi simple. This means
that the extensions to endomorphisms of g⊗ k̄ become diagonalizable .

A Cartan algebra is called split, if all ad(H) are diagonalizable, i.e. all the
eigenvalues of ad(H) are in k. In this case we can diagonalize the endomorphisms
ad(H) simultaneously and decompose

g = t
⊕

⊕α∈∆gα,

14



where ∆ is a subset of the dual t∨, (the set of roots) where

gα = {U ∈ g|[H,U ] = α(H)U}.

Then we have

(i) All elements α are non zero
(ii) If α ∈ ∆ then −α ∈ ∆ and if r ∈ Q, rα ∈ ∆ then r = ±1.
(iii) The spaces gα are of dimension one, we write gα = keα.
(iv) If α, β ∈ ∆, α 6= −β then

[eα, eβ ] =

{

Nα,βeα+β if α+ β ∈ ∆

0 else

where Nα,β 6= 0.
(v) 0 6= [eα, e−α] ∈ t

It is not hard to see that the connected component of 1 of the group of au-
tomorphisms of a semi simple Lie-algebra is in fact a semi-simple group scheme
G/k = Aut(0)(g). This is then the adjoint group. If in turn G/k is any semi
simple group scheme over k, then its Lie algebra g = Lie(G) is semi simple. If
T/k ⊂ G/k is a maximal torus, then its Lie algebra t = Lie(T ) is a Cartan sub-
algebra. The torus T/k is split if and only if t is split, and the roots ∆ ⊂ X∗(T )
can be identified to the roots ∆ ⊂ t∨. The Lie-algebra Lie(Uα) can be identified
to keα = gα. If B ⊃ T is a Borel subgroup, then its Lie algebra b is a maximal
solvable sub algebra and we have

b = t
⊕

⊕α∈∆+keα,

where ∆+ is the system of positive roots corresponding to B/k.

4 The universal enveloping algebra, its centre

and the Harish-Chandra Isomorphism

To any Lie-algebra g/k we can attach its universal enveloping algebra U(g). This
algebra is the quotient of the tensor algebra

T (g) = k ⊕ g⊕ g⊗ g⊕ g⊗ g⊗ g · · · ⊕ g⊗n ⊕ . . .
π

−→ U(g)

by an ideal I, which is the two sided ideal generated by the tensors U ⊗ V −
V ⊗ U − [U, V ], in other words inside U(g) = T (g)/I in inside U(g) we have
the relation U · V − V · U = [U, V ]. Hence U(g) is an infinite dimensional (see
below) associative k algebra, it is a vector space with an increasing filtration
U(g)0 ⊂ U(g)1 · · · ⊂ U(g)n ⊂ . . . , The subspace U(g)n is of finite dimension and
generated by products U1 · U2 · · · · Uk with k ≤ n.

The symmetric tensor algebra S(g) is the quotient of the tensor algebra
T (g)/I0 where I0 is the two side vector space g∨. It is graded by the subspaces
Sn(g) of tensors of degree n and this graduation defines a filtration on S(g).
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We have an inclusion j : S(g) → T (g) : If we represent an element F ∈ S(g)
by a tensor U1 ⊗ U2 ⊗ . . . Un then

j(F ) =
∑

σ∈Sn

Uσ(1)Uσ(2) ⊗ · · · ⊗ Uσ(n).

From this inclusion we get a linear map

π ◦ j : S(g) → U(g)

and the theorem of Poincare-Birkhoff-Witt asserts that this is an isomorphism
of filtered vector spaces. This theorem looks quite obvious, but its proof is non
trivial at all. (See )

If the Lie algebra g is the Lie algebra of an affine group scheme G/k and
if A(G)/k is the affine algebra, then every element U ∈ g defines a derivation
DU : A(G) → A(G) which is defined by

f((e+ ǫU)g) = f(g) + ǫDU (f)(g),

this is a first order differential operator. Then taking products we easily see
that we get an isomorphism

U(g)
∼
−→ right invariant differential operators on A(G).

In this situation the Poincare-Birkhoff-Witt theorem becomes obvious.
The universal enveloping algebra U(g) has a centre Z(g). We study this

centre in the case that g/k is semi-simple. Since our Lie-algebra will be split
after a finite extension L/k and since Z(g) ⊗ L = Z(g ⊗ L) we assume that
already g/k is split, let t a maximal split torus.

The adjoint action of the adjoint group G/k = Aut(g)(0)/k on g extends to
an action on U(g) and clearly we have

Z(g) = U(g)G.

If we consider the sub group of Aut(G), which fixes t (or the maximal torus
T ), then this is the normalizer N(T ) of the torus. If we restrict these automor-
phisms in N(T ) to t, then the action of T becomes trivial and we get back the
operation of the Weyl group W = W (k) = N(T )(k)/T (k). (Here it plays a role
that t is split.)

Of course we also get an operation on the dual spaces: If g ∈ G(k) and
φ ∈ g∨ = Homk(g, k) then we write the evaluation of φ at an element U ∈ g as
U(φ), i.e we consider g as the space of linear forms on g∨. The we write

(Ad(g)(U))(φ) = U(φg),

and then we have the rule (φg1 )g2 = φg1g2 .

We write as before

g = t
⊕

⊕α∈∆keα,

let us choose a basis H1, H2, . . . , Hr of t. we represent an element D ∈ Z(g) as
a symmetric tensor in T (g). Then it is a sum of pure tensors aU1 ⊗ U2 ⊗ . . . Us

where the Ui are either an Hi or one of the eα. Then we write
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D = Dt +De

where Dt ∈ S(t) contains pure tensors with no eα in it and where De is a
sum of pure tensors with an eα in it.

Then we have a first assertion (See ???)

The map D 7→ Dt provides an isomorphism of vector spaces

HC0 : Z(g)
∼
−→ S(t)W

where the term on the right denotes the invariants under the Weyl group

We choose a system ∆+ of positive roots we write a new decomposition,
which depends on this choice. We can write any element D ∈ Z(g) in the form

D = D′
t
+D′

where now D′
t
⊂ S(t) and where D′ ∈ ⊕α∈∆+U(g)eα (See Knapp, p.220 ff).

Clearly we have for any D′ ∈ ⊕α∈∆+U(g)eα and H ∈ t that D′ · H ∈
⊕α∈∆+U(g)eα and hence we see that D 7→ D′

t
is an algebra homomorphism.

Once we have chosen a Borel subgroup or a system ∆+ of positive roots then
we define

ρB = ρ∆+ =
1

2

∑

α∈∆+

α,

and the choice of this element in turn fixes B ⊃ T. In the following we fix the
choice of B ⊃ T and drop the subscript B at ρ, i.e. ρ = ρ.

We define a twisted action of the Weyl group on S(t). An element in S(t) is
defined by its values on t∨. For an F ∈ S(t) we define

(w ·ρ F )(µ) = F (µw − ρw + ρ).

We define S(t)W ·ρ to be the ring of invariants under this action. Clearly we
have an isomorphism

iρ : S(t)W
∼
−→ S(t)W ·ρ ,

which is the restriction of the translation morphism Tρ : F ( ) 7→ F ( +ρ) on
S(t).

Now we can write down the Harish-Chandra isomorphism

HCρ : Z(g)
∼
−→ S(t)W ·ρ

HCρ = iρ ◦HC0

HCρ : D 7→ D′
t

.

We notice that the Harish-Chandra homomorphism refers to the choice of a
system of positive roots or the choice of a Borel-subalgebra b ⊃ t.

But we saw already something else that refers to the choice of a set of
positive roots. If we investigate the different kind of representations of G/k, the
finite dimensional rational representations or if k = R the infinite dimensional
representations of G(R) then the first step is always to construct some kind of
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induced representations from B to G. Here we see the reference to a choice of
B.

For instance in section 2.4. we explained the highest weight representations
Mλ. This is an irreducible representation of G/k, for which MU

λ = keλ.
The centre Z(g) acts on Mλ by scalars we get a homomorphism

χλ : Z(g) → k
Dm = χλ(D)m

.

Especially we have Deλ = D′
t
eλ and so we end up with the formula

χλ(D) = HCρ(D)(λ).

This formula is the essential content of the Harish-Chandra isomorphism.
We have a special element C ∈ Z(g), this is the Casimir operator. The

Killing form B is a symmetric bilinear form on g, since our Lie algbera is semi
simple it is non degenerate it yields an identification g

∼
−→ g∨ and hence we

can consider it as a symmetric tensor B∨ =
∑

aiei ⊗ ei, where the ei form an
orthonormal basis of g/k. Then we get

B(U, V ) =
∑

i

aiB(ei, U)B(ei, V ).

We send this symmetric tensor to U(g), the image is the Casimir operator
C and since the Killing form is invariant under Ad(G) we see that it lies in the
centre.
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